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ABSTRACT

MISEP has been proposed as a generalization of the INFO-
MAX method in two directions: (1) handling of nonlinear
mixtures, and (2) learning the nonlinearities to be used at
the outputs, making the method suitable to the separation
of components with a wide range of statistical distributions.
In all implementations up to now, MISEP had used multi-
layer perceptrons (MLPs) to perform the nonlinear ICA op-
eration. Use of MLPs sometimes leads to a relatively slow
training. This has been attributed, at least in part, to the
non-local character of the MLP’s units. This paper investi-
gates the possibility of using a network of radial basis func-
tion (RBF) units for performing the nonlinear ICA opera-
tion. It shows that the local character of the RBF network’s
units allows a significant speedup in the training of the sys-
tem. The paper gives a brief introduction to the basics of the
MISEP method, and presents experimental results showing
the speed advantage of using an RBF-based network to per-
form the ICA operation.

1. INTRODUCTION

Linear independent components analysis (ICA) is becoming
a well researched area. Its nonlinear counterpart (nonlinear
ICA) is much less researched, but interest in this area has
been increasing. Previous works on on unconstrained non-
linear ICA include [1, 2, 3, 4, 5, 6, 7, 8, 9]. In this paper we
deal with a method for performing nonlinear ICA which is
an extension of INFOMAX, called MISEP [10, 9, 11].

MISEP extends the well known INFOMAX method in
two ways: (1) it is able to perform nonlinear ICA, and (2)
it uses adaptive nonlinearities at the outputs. These nonlin-
earities are intimately related to the statistical distributions
of the components, and the adaptivity allows the method to
deal with components with a wide range of distributions.

As originally proposed, MISEP could use any parame-
terized, linear or nonlinear network to perform the ICA op-
eration. However, all previous implementations have used
multilayer perceptrons (MLPs) to perform that operation.

This work was partially supported by Praxis project P/EEI/14091/1998
and by the European IST project BLISS.

This has sometimes resulted in a relatively slow learning.
In this paper, after a brief introduction to MISEP, we dis-
cuss the possible causes of this slowness, conjecturing that
it is due, at least in part, to the nonlocal character of the
MLP’s units. We test this conjecture by comparing systems
based on MLPs with systems based on radial basis function
(RBF) units, which have a local character. The experimen-
tal results confirm the validity of this conjecture. They also
show that, while the MLP-based systems could usually per-
form a good separation without the use of any explicit form
of regularization, the RBF-based ones do need an explicit
regularization.

The paper is organized as follows. Section 2 gives a
brief introduction to the MISEP method. Section 3 dis-
cusses the causes of the slow learning that is sometimes
observed. Section 4 describes the alternate implementation
based on RBF units and presents experimental results, and
Section 5 concludes.

2. THE MISEP METHOD

In this section we briefly summarize the MISEP method
for linear and nonlinear ICA. Given observation vectorso,
drawn from an unknown distribution, MISEP tries to find
a transformationy = F(o) (whereo andy have the same
dimensionn), such that the components ofy are as inde-
pendent as possible, according to a mutual information cri-
terion. The mutual information of the components ofy is
defined as

I(y) =
∑

i

H(yi)−H(y), (1)

whereH denotes Shannon’s entropy, for discrete variables,
or Shannon’s differential entropy,

H(y) = −
∫

p(y) log p(y)dy, (2)

for continuous variables,p(.) denoting the probability den-
sity of the random variabley. The mutual informationI(y)
is non-negative, and is zero only if the components ofy are
mutually statistically independent. It is known to be a good
independence criterion for ICA.



2.1. Theoretical basis

MISEP is an extension of the well known INFOMAX method
[12]. Figure 1 Shows the general structure of the network
that is used. The module that performs the ICA operation
proper is markedF in the figure (in INFOMAX this module
performs simply a product by a matrix, while in MISEP it
generally is a nonlinear module). The result of the analysis
are the componentsyi. Theψi modules, and their outputs
zi, are auxiliary, being used only during the training phase.
Each of those modules applies an increasing function, with
values in[0, 1], to its input.
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Fig. 1. Structure of the ICA systems studied in this paper. In the
INFOMAX method the nonlinearitiesψi are fixed a-priori. In the
MISEP method they are adaptive, being implemented by MLPs.

Assume that each of these functions is the cumulative
probability function (CPF) of the corresponding inputyi. In
such a case it’s easy to see that eachzi will be uniformly
distributed in[0, 1]; thereforeH(zi) = 0, and

I(z) =
∑

i

H(zi)−H(z) = −H(z). (3)

On the other hand, since each of thezi is related to the cor-
respondingyi through an invertible transformation,I(y) =
I(z). Consequently

I(y) = −H(z). (4)

If we maximize the output entropy we shall, therefore, be
minimizing the mutual informationI(y), as desired. Both
INFOMAX and MISEP learn by maximizing the output en-
tropy.

In INFOMAX theF module is linear, as said above, and
the nonlinearitiesψi are fixed, being chosen by the user. In
the framework of the reasoning given in the previous para-
graph, this corresponds to an a-priori choice of the estimates
of the CPFs of the components to be extracted. Linear ICA
is a rather constrained problem, and even relatively poor ap-
proximations of the actual CPFs work well in many cases.

MISEP extends INFOMAX in two ways: (1) the ICA
moduleF is generally nonlinear, to allow the system to per-
form nonlinear ICA, and (2) theψi modules are adaptive,
learning the estimates of the CPFs during the training pro-
cess. Having good estimates of the actual CPFs is important
for MISEP, because nonlinear ICA is much less constrained
than its linear counterpart. Consequently, poor CPF esti-
mates can easily lead to poor ICA results.

One of the main ideas behind MISEP is that, by max-
imizing the output entropyH(z), we can simultaneously
achieve two objectives: (1) we lead the adaptive nonlineari-
tiesψi to become estimates of the CPFs of their respective
inputs and, this being so, (2) we minimize the mutual infor-
mationI(y), because in such a situationI(y) = −H(z), as
shown above. To see that we achieve objective (1), assume
for the moment that theF module was fixed. ThenI(y) and
I(z) would be fixed. From (3)

H(z) =
∑

i

H(zi)− I(z). (5)

This shows that maximizingH(z) would lead to the indi-
vidual maximization of each of theH(zi) (since they are
decoupled from one another). The maximum ofH(zi) will
correspond to a uniform distribution ofzi in [0, 1], if the
function ψi is constrained to have values in[0, 1]. If this
function is also constrained to be increasing, it will equal
the CPF ofyi at that maximum. We see, therefore, that if
we constrain theψi modules to yield increasing functions
with values in[0, 1], they will estimate the CPFs of their
inputs.

2.2. Implementation

The MISEP method can be implemented in different ways,
and this paper discusses two different implementations: in
this section we briefly describe the previous implementa-
tions, in which both theF and theψi modules were based on
multilayer perceptrons (MLPs); the next section discusses
implementing theF module by means of a radial basis func-
tion (RBF) network.

There are two main issues in the implementation MISEP:
training theF andψi modules according to a criterion of
maximum output entropyH(z), and constraining theψi

modules as described in the previous section. Both the train-
ing and the constraints issues are discussed in detail in the
references, e.g. [11].

Briefly speaking, the constraints on theψi blocks are
implemented by using linear output units , normalizing the
Euclidean norms of the weight vectors of these units, and
initializing all weights of these modules to positive values.

Training of the network of Fig. 1 is done through gra-
dient descent. The objective function is first transformed as
follows:

H(z) = H(o) + 〈log |detJ|〉 (6)

whereJ = ∂z/∂o is the Jacobian of the transformation
performed by the network, and the angle brackets denote
expectation. The entropyH(o) doesn’t depend on the net-
work’s parameters, and can be ignored in the optimization.
The other term on the right hand side of this equation is



approximated as

〈log |detJ|〉 ≈ 1
K

K∑

k=1

log
∣∣detJk

∣∣ = E, (7)

whereJk denotes the value ofJ for thek-th training pattern,
andK is the number of training patterns.

E is the objective function that is maximized during
training. This is a function of the JacobiansJk. Its gra-
dient is computed by backpropagating through an auxiliary
network that computesJk. Figure 2 shows an example of
such a network, for the case ofF andψi blocks each im-
plemented through an MLP with a single, nonlinear hidden
layer, and with linear output units.
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Fig. 2. Network for computing the Jacobian.

The upper part of the figure depicts the network of Fig.
1, shown in a different form. BlockA multiplies the input
pattern by the input weight matrix of theF module. Its out-
puts are the input activations of the hidden units ofF. The
leftmostΦ block applies the nonlinear activation functions
of those hidden units to each of those activations, yielding
the vector of output activations of the hidden units. BlockB
then multiplies these activations by the output weight ma-
trix of F, yielding the vector of extracted components,y.
BlocksC, rightmostΦ andD represent, in a similar fash-
ion, theψi modules (which, taken together, form a single-
hidden-layer MLP).

The lower part of the figure is the part that computes the
Jacobian proper. It propagates matrices, instead of vectors
(this is depicted in the figure by the 3D arrows). Its input is
then × n identity matrix. All its blocks perform products
by matrices. MatricesA, B, C andD are the same as in
the upper part (each without the column corresponding to
bias terms), and the twoΦ′ blocks correspond to diagonal
matrices, in which each diagonal element is the derivative
of the activation function of the corresponding hidden unit.
The gray arrows transmit the hidden units’ activations to
the lower part, to allow it to compute these derivatives. The
output of the lower part is the Jacobian corresponding to the
pattern that is presented at the input of the upper part.

For computing the gradient ofE relative to the network’s
weights, we backpropagate through this network, inputting

into the lower part, on the right hand side, the value

∂E

∂J
=

(
J−1

)T
. (8)

Nothing is input into the upper part, becauseE doesn’t de-
pend onz. Backpropagation must be performed along all
information transfer paths (i.e. along both the white and the
gray arrows). More details can be found in [11].

An important remark is that the values of the compo-
nents of the gradient ofE vary widely during the training.
It is very important to use a fast training procedure, which
can deal with such variations effectively. We have used, in
all tests with MISEP, the adaptive step sizes technique with
error control described in [13], with very good results.

Matlab-compatible code implementing MISEP with a
structure based on MLPs is available at
http://neural.inesc-id.pt/∼lba/ICA/MIToolbox.html.

3. LEARNING SPEED

The way in which both INFOMAX and MISEP extract in-
dependent components can be described as trying to make
the distribution ofz become uniform. Sincez is bounded to
a hypercube, its distribution being uniform implies that its
componentszi will be mutually independent. Since eachyi

is univocally related to the correspondingzi, theyi will also
be independent.

Intuitively speaking, the uniformization of the distribu-
tion of z is achieved in the following way: For each pattern
o that is presented at the input, the corresponding outputz is
computed, and a ”spreading force” is applied, at that point,
to the mapping betweeno andz. If there is a region where
the output patternsz are more densely packed, more spread-
ing force is applied in that region, tending to uniformize the
output distribution.

Given this description, one would expect the training
to perform a relatively smooth uniformization of the out-
put distribution: The regions of higher density would be ex-
pected to simply spread until the density becomes uniform.
This is not what happens, however. The reason is that the
mapping betweeno andz is constrained by the structure of
the network that implements it. The network may not be
able to simply spread a region without impairing the uni-
formization that has already been achieved in other regions.

This is especially true if theF block is implemented
with non-local units, as is the case with an MLP. This phe-
nomenon has been observed by us in practice: sometimes,
some regions of relatively high density, in the output space,
remain for quite a long time during learning. During that
time, learning proceeds quite slowly. Apparently the MLP
needs to simultaneously adjust several of its units in order
to be able to expand these high density regions without af-
fecting what has already been done in other regions of the
output space.



This raised the question of whether using a network of
local units would be able to yield a significantly faster train-
ing. The following section shows experimental results that
confirm that this is indeed true.

4. COMPARISON BETWEEN LOCAL AND
NONLOCAL NETWORKS

We performed tests in which we compared, on the same
nonlinear ICA problems, networks in which theF module
had an MLP structure and networks in which that block was
based on radial basis function (RBF) units, which have a
local character. In the MLP-based case, that module was
formed by an MLP with a single hidden layer of sigmoidal
units and with linear output units. All hidden units received
all the inputs. Half of the hidden units were connected to
each of the module’s outputs. The network also had di-
rect connections between inputs and outputs (these direct
connections can be seen as implementing a linear mapping
which is modified, in a nonlinear way, by the hidden layer
units). This structure was chosen because it was the one
which showed to be most effective, in our previous experi-
ence with MISEP. All the network’s weights were trained
using the gradient of the objective function.

In the RBF-based implementation, theF block had a
hidden layer with Gaussian radial basis function units and a
linear output layer, and also had direct connections between
its input and output units. Again, these direct connections
can be seen as implementing a linear mapping, which is then
modified, in a nonlinear way, by the RBF units. The RBF
units’ centers and radiuses were trained in an unsupervised
manner, as described in [14]. Only the weights connecting
the hidden units and the input units to the output ones were
trained based on the gradient of the objective function.

Theψi modules were implemented in the same way in
both cases. Each of them consisted of an MLP with two
hidden units (with scaled arctangent activation functions)
and with a single linear output unit. Each of these networks
has a single input and a single output, and therefore the MLP
structure doesn’t give it any non-local character. All the
weights of these modules were trained based on the gradient
of the objective function.

Although our main purpose was to study the nonlinear
ICA operation itself, the tests were performed in a way that
allowed the approximate recovery of the original sources.
As discussed elsewhere [11], this is possible when the non-
linear mixture is smooth, requiring adequate regularization
of the separation transformation performed by the network.
As in previously reported tests, the MLP-based networks
didn’t require any explicit regularization, the inherent regu-
larization performed by MLPs being sufficient. The RBF-
based networks required explicit regularization, however.
This was implemented in the form of weight decay, applied

only to the weights linking the hidden units of moduleF
to its output units. The decay parameter was adjusted, in
preliminary tests, to a value that allowed the approximate
separation of the sources.

These networks were tested with two artificial mixtures:
a mixture of two supergaussian sources, and a mixture of
a supergaussian and a subgaussian, bimodal source. Both
mixtures were of the formo1 = s1 + α(s2)2, o2 = s2 +
α(s1)2, where thesi are the sources and theoi are the ob-
servations. In the case of the two supergaussian sources, the
observations were then passed through a linear mixing step.
The mixtures are shown in Figs. 3 and 6.

The stopping criterion that was used in the training was
based on the value of the objective functionE. Since this
function is an estimate of the mutual informationI(y) –
apart from an additive constant, cf. (4,6,7) – this stopping
criterion demanded the same separation quality (as mea-
sured by mutual information) for both implementations.

Figures 4 and 5 show the results of ICA performed on
the mixture of two supergaussian sources, by the MLP-based
and the RBF-based implementations respectively. It is in-
teresting to note that the two results were almost identical,
except for a scaling of the components.
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Fig. 3. Mixture of supergaussian sources.

Figures 7 and 8 show the results of ICA performed on
the mixture of a supergaussian and a subgaussian source,
by the MLP-based and the RBF-based implementations re-
spectively.

Table 1 shows the means and standard deviations of the
numbers of epochs required to reach the stopping criterion,
for both kinds of networks. One epoch took approximately
the same time in both kinds of network. It is clear that
the RBF-based implementations trained much faster, and
showed a much smaller oscillation of training times2. This

2Strictly speaking, the times involved in the unsupervised training of
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Fig. 4. Separation performed by the MLP-based network.
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Fig. 5. Separation performed by the RBF-based network.

confirms our interpretation that the cause for the relatively
slow training of MLP-based nonlinear ICA systems is the
nonlocal character of these networks.

Figure 9 shows an example of an ICA result obtained
with the RBF-based network, in the case of the mixture of
two supergaussians, but without weight decay. While a rel-
atively good ICA result was achieved, the original sources
were not separated. This shows the importance of using reg-
ularization with networks of this kind.

the RBF units’ centers and radiuses should be added to the RBF networks’
results. However, these times were much shorter than those involved in the
gradient-based optimization, and thus were not considered here.
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Fig. 6. Mixture of a supergaussian and a subgaussian source.
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Fig. 7. Separation performed by the MLP-based network.

5. CONCLUSIONS

We have briefly presented the MISEP, a method for linear
and nonlinear ICA, which is an extension of the well known
INFOMAX method. We discussed a possible cause for the
relatively slow learning that it sometimes shows, having
conjectured that it was due to the use of non-local units in
the network that performs the ICA operation.

This conjecture was confirmed by experimental tests, in
which a system based on a radial basis function network was
compared to one based on a multilayer perceptron on the
same nonlinear ICA problems. These tests confirmed that
that system based on RBF units learns significantly faster,
and shows a lower variability of the training times. The tests
also showed, however, that the RBF-based system needs to
have explicit regularization to be able to perform nonlin-
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Fig. 8. Separation performed by the RBF-based network.

Table 1. Results obtained with the MLP- and RBF-based net-
works. The table shows the mean and standard deviation of the
number of training epochs needed to reach a specified mutual in-
formation at the outputs.

Two supergaussians Superg. and subg.
RBF MLP RBF MLP

Mean 68 500 233 610
St. dev. 10 152 87 266

ear source separation, contrary to what happened with the
MLP-based one.
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