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ABSTRACT This has sometimes resulted in a relatively slow learning.
In this paper, after a brief introduction to MISEP, we dis-
‘cuss the possible causes of this slowness, conjecturing that
it is due, at least in part, to the nonlocal character of the
MLP’s units. We test this conjecture by comparing systems
based on MLPs with systems based on radial basis function
(RBF) units, which have a local character. The experimen-
tal results confirm the validity of this conjecture. They also
show that, while the MLP-based systems could usually per-
form a good separation without the use of any explicit form
of regularization, the RBF-based ones do need an explicit
regularization.

The paper is organized as follows. Section 2 gives a
brief introduction to the MISEP method. Section 3 dis-
cusses the causes of the slow learning that is sometimes
observed. Section 4 describes the alternate implementation

tem. The paper gives a brief introduction to the basics of the based on RBF units and presents experimental results, and
MISEP method, and presents experimental results ShOWingSection 5 concludes '

the speed advantage of using an RBF-based network to per-
form the ICA operation.

MISEP has been proposed as a generalization of the INFO
MAX method in two directions: (1) handling of nonlinear

mixtures, and (2) learning the nonlinearities to be used at
the outputs, making the method suitable to the separation
of components with a wide range of statistical distributions.
In all implementations up to now, MISEP had used multi-

layer perceptrons (MLPs) to perform the nonlinear ICA op-
eration. Use of MLPs sometimes leads to a relatively slow
training. This has been attributed, at least in part, to the
non-local character of the MLP’s units. This paper investi-
gates the possibility of using a network of radial basis func-
tion (RBF) units for performing the nonlinear ICA opera-

tion. It shows that the local character of the RBF network’s
units allows a significant speedup in the training of the sys-

2. THE MISEP METHOD
1. INTRODUCTION In this section we briefly summarize the MISEP method

Li ind dent i vsis (ICAY is b ._for linear and nonlinear ICA. Given observation vectors
In€éar independent componen s_ana ysis (ICA) is ecommgdrawn from an unknown distribution, MISEP tries to find
a well researched area. Its nonlinear counterpart (nonlinear,

ICA) i_s much. less resgarched, but interest in this.area hasgi:;aeﬂzfigmi“;?(’:h_t:;\i()t)h((awsoer;ep(:)? ggé ;?;/reetzg isnadrg_e
peen increasing. Previous works on on uncon;tramed NOMhendent as possible, according to a mutual information cri-
linear I.CA include [1, 2,3, 4, 5, 6 .8 9]' In this PaPEr We 40 ion. The mutual information of the componentsyofs
deal with a method for performing nonlinear ICA which is defined as
an extension of INFOMAX, called MISEP [10, 9, 11]. I(v) — ) — H 1
MISEP extends the well known INFOMAX method in (¥) = Z () ), @
two ways: (1) it is able to perform nonlinear ICA, and (2) ’
it uses adaptive nonlinearities at the outputs. These nonlin-whereH denotes Shannon’s entropy, for discrete variables,
earities are intimately related to the statistical distributions or Shannon’s differential entropy,
of the components, and the adaptivity allows the method to
deal with components with a wide range of distributions. H(y) = — /p(y) log p(¥)dy, 2)
As originally proposed, MISEP could use any parame-
terized, linear or nonlinear network to perform the ICA op-
eration. However, all previous implementations have used
multilayer perceptrons (MLPs) to perform that operation.

for continuous variableg(.) denoting the probability den-
sity of the random variablg. The mutual informatiod (y)
is non-negative, and is zero only if the componentg afe
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and by the European IST project BLISS. independence criterion for ICA.




2.1. Theoretical basis One of the main ideas behind MISEP is that, by max-
imizing the output entropyH (z), we can simultaneously
achieve two objectives: (1) we lead the adaptive nonlineari-
ties); to become estimates of the CPFs of their respective
inputs and, this being so, (2) we minimize the mutual infor-
mation!(y), because in such a situatiéfy) = —H(z), as
shown above. To see that we achieve objective (1), assume
for the moment that thE module was fixed. Thef(y) and

1(z) would be fixed. From (3)

MISEP is an extension of the well known INFOMAX method
[12]. Figure 1 Shows the general structure of the network
that is used. The module that performs the ICA operation
proper is markedr in the figure (in INFOMAX this module
performs simply a product by a matrix, while in MISEP it
generally is a nonlinear module). The result of the analysis
are the componentg. Thet; modules, and their outputs
z;, are auxiliary, being used only during the training phase.
Each of those modules applies an increasing function, with

values in[0, 1], to its input. H(z) = Z H(z:) — 1(2). )
Oj—» Y1 Y, ——7Z; This shows that maximizing{ (z) would lead to the indi-
E vidual maximization of each of thé/(z;) (since they are

Y, decoupled from one another). The maximun¥fz;) will

O,—» » Y, — L correspond to a uniform distribution af in [0, 1], if the

function v; is constrained to have values [ 1]. If this
Fia. 1 o function is also constrained to be increasing, it will equal
'g. 1. Structure of the ICA systems studied in this paper. In the e cpE of,, at that maximum. We see, therefore, that if
INFOMAX method the nonlinearitieg; are fixed a-priori. In the X . - - .
MISEP method they are adaptive, being implemented by MLPs. W.e constralr.\ thep; module; to y!eld increasing functlons
’ with values in[0, 1], they will estimate the CPFs of their

Assume that each of these functions is the cumulative NPUtS.

probability function (CPF) of the corresponding inpgit In
such a case it's easy to see that eachvill be uniformly 2.2, Implementation
distributed in[0, 1]; thereforeH (z;) = 0, and
The MISEP method can be implemented in different ways,
I(z) = Z H(z;) — H(z) = —H(z). @) and this paper discusses two different implementations: in
i this section we briefly describe the previous implementa-
On the other hand, since each of thes related to the cor-  tions, in which both th& and they); modules were based on

respondingy; through an invertible transformatioh(y) = multilayer perceptrons (MLPs); the next section discusses
I(z). Consequently implementing thd" module by means of a radial basis func-
tion (RBF) network.
I(y) = —H(z). ( There are two main issues in the implementation MISEP:

If we maximize the output entropy we shall, therefore, be training theF and+; modules according to a criterion of

minimizing the mutual informatiod (y), as desired. Both ~Maximum output entropy/(z), and constraining the;

INFOMAX and MISEP learn by maximizing the output en- modules as described in the previous section. Both the train-

tropy. ing and the constraints issues are discussed in detail in the
In INFOMAX the F module is linear, as said above, and references, e.g. [11].

the nonlinearities); are fixed, being chosen by the user. In Briefly speaking, the constraints on tljg blocks are

the framework of the reasoning given in the previous para- implemented by using linear output units , normalizing the

graph, this corresponds to an a-priori choice of the estimatesEuclidean norms of the weight vectors of these units, and

of the CPFs of the components to be extracted. Linear ICA initializing all weights of these modules to positive values.

is a rather constrained problem, and even relatively poor ap-  Training of the network of Fig. 1 is done through gra-

proximations of the actual CPFs work well in many cases. dient descent. The objective function is first transformed as
MISEP extends INFOMAX in two ways: (1) the ICA follows:

moduleF !s generally nonlinear, to allow the system to per- H(z) = H(o) + (log |det J|) (6)

form nonlinear ICA, and (2) the); modules are adaptive,

learning the estimates of the CPFs during the training pro-whereJ = 0z/0do is the Jacobian of the transformation

cess. Having good estimates of the actual CPFs is importanperformed by the network, and the angle brackets denote

for MISEP, because nonlinear ICA is much less constrainedexpectation. The entropif (o) doesn’t depend on the net-

than its linear counterpart. Consequently, poor CPF esti-work’s parameters, and can be ignored in the optimization.

mates can easily lead to poor ICA results. The other term on the right hand side of this equation is



approximated as into the lower part, on the right hand side, the value

LK g—? — (3. ®)
(log |det J|) ~ —Zlog|det.]k’ =F, (7 L _
K o1 Nothing is input into the upper part, becauseloesn’t de-
pend onz. Backpropagation must be performed along all
whereJ* denotes the value dffor thek-th training pattern, information transfer paths (i.e. along both the white and the
and K is the number of training patterns. gray arrows). More details can be found in [11].

An important remark is that the values of the compo-
nents of the gradient of’ vary widely during the training.
It is very important to use a fast training procedure, which
can deal with such variations effectively. We have used, in
all tests with MISEP, the adaptive step sizes technique with
error control described in [13], with very good results.

Matlab-compatible code implementing MISEP with a
structure based on MLPs is available at
http://neural.inesc-id.pttlba/ICA/MIToolbox.html

E is the objective function that is maximized during
training. This is a function of the Jacobiad$. Its gra-
dient is computed by backpropagating through an auxiliary
network that computed®. Figure 2 shows an example of
such a network, for the case Bf and+; blocks each im-
plemented through an MLP with a single, nonlinear hidden
layer, and with linear output units.

o=y 4 o = B = C o — D =z
3. LEARNING SPEED

The way in which both INFOMAX and MISEP extract in-
dependent components can be described as trying to make
the distribution otz become uniform. Sinceis bounded to
a hypercube, its distribution being uniform implies that its
componentg; will be mutually independent. Since eagh
is univocally related to the corresponding they; will also
] ) ~ be independent.
The upper part of the figure depicts the network of Fig. |nyitively speaking, the uniformization of the distribu-
1, shown in a different form. Block\ multiplies the input o of 5 is achieved in the following way: For each pattern
pattern by the input weight matrix of tiemodule. Its out-, that is presented at the input, the corresponding outjsut
puts are the input activations of the hidden unit&ofThe computed, and a "spreading force” is applied, at that point,
leftmost® block applies the nonlinear activation functions g the mapping betweem andz. If there is a region where
of those hidden units tp ee_ach of those_ activatic_)ns, yielding {he output patterns are more densely packed, more spread-
the vector of output activations of the hidden units. BI&k i force is applied in that region, tending to uniformize the
then multiplies these activations by the output weight ma- output distribution.
trix of F, yielding the vector of extracted componerys, Given this description, one would expect the training
Blocks C, rightmost® andD represent, in a similar fash- {4 perform a relatively smooth uniformization of the out-
ion, they; modules (which, taken together, form a single- ,; gistribution: The regions of higher density would be ex-
hidden-layer MLP). pected to simply spread until the density becomes uniform.
The lower part of the figure is the part that computes the This is not what happens, however. The reason is that the
Jacobian proper. It propagates matrices, instead of vectorsnapping between andz is constrained by the structure of
(this is depicted in the figure by the 3D arrows). Its inputis the network that implements it. The network may not be
then x n identity matrix. All its blocks perform products  able to simply spread a region without impairing the uni-
by matrices. Matrices\, B, C andD are the same as in  formization that has already been achieved in other regions.
the upper part (each without the column corresponding to  This is especially true if th& block is implemented
bias terms), and the tw’ blocks correspond to diagonal  with non-local units, as is the case with an MLP. This phe-
matrices, in which each diagonal element is the derivative nomenon has been observed by us in practice: sometimes,
of the activation function of the corresponding hidden unit. some regions of relatively high density, in the output space,
The gray arrows transmit the hidden units’ activations to remain for quite a long time during learning. During that
the lower part, to allow it to compute these derivatives. The time, learning proceeds quite slowly. Apparently the MLP
output of the lower part is the Jacobian corresponding to theneeds to simultaneously adjust several of its units in order
pattern that is presented at the input of the upper part. to be able to expand these high density regions without af-
For computing the gradient @f relative to the network's  fecting what has already been done in other regions of the
weights, we backpropagate through this network, inputting output space.

I— 4 = o = B [ C = o [ D =J

Fig. 2. Network for computing the Jacobian.



This raised the question of whether using a network of only to the weights linking the hidden units of modie
local units would be able to yield a significantly faster train- to its output units. The decay parameter was adjusted, in
ing. The following section shows experimental results that preliminary tests, to a value that allowed the approximate
confirm that this is indeed true. separation of the sources.

These networks were tested with two artificial mixtures:
a mixture of two supergaussian sources, and a mixture of
a supergaussian and a subgaussian, bimodal source. Both
mixtures were of the forne; = s; + a(s2)?, 02 = s9 +
a(s1)?, where thes; are the sources and the are the ob-
servations. In the case of the two supergaussian sources, the
observations were then passed through a linear mixing step.
The mixtures are shown in Figs. 3 and 6.

The stopping criterion that was used in the training was
sed on the value of the objective functibn Since this
function is an estimate of the mutual informatidty) —
apart from an additive constant, cf. (4,6,7) — this stoppin
all the inputs. Half (?f the hidden units were connected t(_) clr?terion demanded the same sepafation)quality (asf)l%e%—
each of the -modules outpgts. The network also had.d" sured by mutual information) for both implementations.
rect connections between inputs and outputs (these direct Figures 4 and 5 show the results of ICA performed on

connegtions can b? seen as implementing a quear mappinqhe mixture of two supergaussian sources, by the MLP-based
which is modified, in a nonlinear way, by the hidden layer and the RBF-based implementations respectively. It is in-

urr\:_'[sr)]. :]- his Ztrt'ucéure wats ;:rhots_en l_)ecause |t_was the O_neieresting to note that the two results were almost identical,
which showed to be most effective, in our previous experi- except for a scaling of the components.

ence with MISEP. All the network’s weights were trained
using the gradient of the objective function.

In the RBF-based implementation, tlieblock had a
hidden layer with Gaussian radial basis function units and a
linear output layer, and also had direct connections between °* ) B
its input and output units. Again, these direct connections P
can be seen as implementing a linear mapping, whichisthen o). .~ . | %
modified, in a nonlinear way, by the RBF units. The RBF ’
units’ centers and radiuses were trained in an unsupervisec
manner, as described in [14]. Only the weights connecting
the hidden units and the input units to the output ones were
trained based on the gradient of the objective function. -0051

Thevy; modules were implemented in the same way in Lo .
both cases. Each of them consisted of an MLP with two _,| ol ’ ’ i
hidden units (with scaled arctangent activation functions) S '
and with a single linear output unit. Each of these networks ‘ - ‘ ‘ ‘
has a single input and a single output, and therefore the MLP o0 ° 005 o 015
structure doesn't give it any non-local character. All the
weights of these modules were trained based on the gradient
of the objective function.

4. COMPARISON BETWEEN LOCAL AND
NONLOCAL NETWORKS

We performed tests in which we compared, on the same
nonlinear ICA problems, networks in which tliemodule

had an MLP structure and networks in which that block was
based on radial basis function (RBF) units, which have a
local character. In the MLP-based case, that module wasy
formed by an MLP with a single hidden layer of sigmoidal
units and with linear output units. All hidden units received

Fig. 3. Mixture of supergaussian sources.

. . Figures 7 and 8 show the results of ICA performed on
Although our main purpose was to study the nonlinear ; . .
the mixture of a supergaussian and a subgaussian source,

ICA operation |tself,_ the tests were performe_d inaway that by the MLP-based and the RBF-based implementations re-
allowed the approximate recovery of the original sources. spectively

As discussed elsewhere [11], this is possible when the non- L
. . : o o Table 1 shows the means and standard deviations of the
linear mixture is smooth, requiring adequate regularization . : o
. : numbers of epochs required to reach the stopping criterion,
of the separation transformation performed by the network. : .
: . for both kinds of networks. One epoch took approximately
As in previously reported tests, the MLP-based networks . . : )
the same time in both kinds of network. It is clear that

dlo!nt_requwe any explicit regularlgatlon, t.h:‘* inherent regu- the RBF-based implementations trained much faster, and
larization performed by MLPs being sufficient. The RBF- N L .
showed a much smaller oscillation of training tirhie$his

based networks required explicit regularization, however.
This was implemented in the form of weight decay, applied  2Strictly speaking, the times involved in the unsupervised training of
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Fig. 7. Separation performed by the MLP-based network.
Fig. 5. Separation performed by the RBF-based network.

5. CONCLUSIONS

confirms our interpretation that the cause for the relatively we have briefly presented the MISEP, a method for linear
slow training of MLP-based nonlinear ICA systems is the and nonlinear ICA, which is an extension of the well known
nonlocal character of these networks. INFOMAX method. We discussed a possible cause for the

Figure 9 shows an example of an ICA result obtained relatively slow learning that it sometimes shows, having
with the RBF-based network, in the case of the mixture of conjectured that it was due to the use of non-local units in
two supergaussians, but without weight decay. While a rel- the network that performs the ICA operation.
atively good ICA result was achieved, the original sources  This conjecture was confirmed by experimental tests, in
were not Separa‘[ed_ This shows the importance of using regWhiCh asystem based on a radial basis function network was
ularization with networks of this kind. compared to one based on a multilayer perceptron on the

same nonlinear ICA problems. These tests confirmed that

that system based on RBF units learns significantly faster,
the RBF units’ centers and radiuses should be added to the RBF networks’a'nd shows a lower variability of the training times. The tests
results. However, these times were much shorter than those involved in the2!SO showed, however, that the RBF-based system needs to
gradient-based optimization, and thus were not considered here. have explicit regularization to be able to perform nonlin-
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Fig. 9. ICA result obtained with the RBF-based network without

regularization, in the case of the mixture of two supergaussians.

Table 1. Results obtained with the MLP- and RBF-based net-
works. The table shows the mean and standard deviation of the [7] G. C. Marques and L. B. Almeida, “Separation of nonlin-
number of training epochs needed to reach a specified mutual in-
formation at the outputs.

Two supergaussians| Superg. and subg.
RBF MLP RBF MLP
Mean | 68 500 233 610
St.dev.| 10 152 87 266
ear source separation, contrary to what happened with the

MLP-based one.

(1]

(2]

(3]

(4]

(5]

(6]
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