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Abstract

This section introduces multilayer perceptrons, which are the most commonly used
type of neural network. The popular backpropagation training algorithm is studied
in detail. The momentum and adaptive step size techniques, which are used for
accelerated training, are discussed. Other acceleration techniques are briefly referenced.
Several implementation issues are then examined. The issue of generalization is studied
next. Several measures to improve network generalization are discussed, including
cross validation, choice of network size, network pruning, constructive algorithms and
regularization. Recurrent networks are then studied, both in the fixed point mode, with
the recurrent backpropagation algorithm, and in the sequential mode, with the unfolding
in time algorithm. A reference is also made to time-delay neural networks. The section
also includes brief mention of a large number of applications of multilayer perceptrons,
with pointers to the bibliography.

C1.2.1 Introduction

Multilayer perceptrons (MLPs) are the best known and most widely used kind of neural network. They
are formed by units of the type shown in figure C1.2.1. Each of these units forms a weighted sum of its
inputs, to which a constant term is added. This sum is then passed through a nonlinearity, which is often
called itsactivation function. Most often, units are interconnected in afeedforward manner, that is, with B3.2.4

interconnections that do not form any loops, as shown in figure C1.2.2. For some kinds of applications,
recurrent (i.e. nonfeedforward) networks, in which some of the interconnections form loops, are also used.

Figure C1.2.1. A unit of a multilayer perceptron.

Training of these networks is normally performed in a supervised manner. One assumes that atraining
set is available, which contains both input patterns and the corresponding desired output patterns (also
called target patterns). As we shall see, the training is normally based on the minimization of some
error measure between the network’s outputs and the desired outputs. It involves a backward propagation
through a network similar to the one being trained. For this reason the training algorithm is normally
calledbackpropagation.

In this chapter we will study multilayer perceptrons and the backpropagation training algorithm. We
will review some of the most important variants of this algorithm, designed both for improving the training
speed and for dealing with different kinds of networks (feedforward and recurrent). We will also briefly
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Figure C1.2.2. Example of a feedforward network. Each circle represents a unit of the type indicated
in figure C1.2.1. Each connection between units has a weight. Each unit also has a bias input, not depicted
in this figure.

mention some theoretical and practical issues related to the use of multilayer perceptrons and other kinds
of supervised networks.

C1.2.2 Network architectures

We saw in figure C1.2.2 an example of a feedforward network, of the type that we will consider in this
chapter. As we noted above, the interconnections of the units of this network do not form any loops,
and hence the network is said to befeedforward. Networks in which there are one or more loops ofB2.3

interconnections, such as the one in figure C1.2.3, are calledrecurrent.

Figure C1.2.3. A recurrent network.

Figure C1.2.4. A layered network.

In feedforward networks, units are often arranged in layers, as in figure C1.2.4, but other topologies
can also be used. Figure C1.2.5 shows a network type that is useful in some applications, in which direct
links between inputs and output units are used. Figure C1.2.6 shows a three-unit network that is fully
connected, i.e. that has all the interconnections that are allowed by the feedforward restriction.

The nonlinearities in the network’s units can be any differentiable functions, as we shall see below.
The kind of nonlinearity that is most commonly used has the general form shown in figure C1.2.7. It
has two horizontal asymptotes, and is monotonically increasing, with a single point where the curvature
changes sign. Curves with this general shape are usually calledsigmoids. Some of the most commonB3.2.4

expressions of sigmoids are

S(s) = 1

1 + e−s
= 1 + tanh(s/2)

2
(C1.2.1)

S(s) = tanh(s) (C1.2.2)

S(s) = arctan(s) . (C1.2.3)
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Figure C1.2.5. A network with direct links between input and output units.

Figure C1.2.6. A fully connected feedforward network.

Figure C1.2.7. Sigmoids corresponding to: (a) equation (C1.2.1), (b) equation (C1.2.2) and (c)
equation (C1.2.3).

Sigmoid (C1.2.3) is sometimes scaled to vary between−1 and+1. Sigmoid (C1.2.1) is often designated
as thelogistic function. As we said above, interconnections between units haveweights, that multiply
the values which go through them. Besides the variable inputs that come through weighted links, units
normally also have a fixed input, which is often calledbias.

It is through the variation of the weights and biases that networks are trained to perform the operations
that are desired from them. As an example of how weight changes can affect the behavior of networks,
figure C1.2.8 shows three one-unit networks that differ in their weights and that perform different logical
operations. Figure C1.2.9 shows two networks with different topologies, that both perform the logical
XOR operation. These two networks were trained by the backpropagation algorithm, to be described
below. Note that since these networks have analog outputs, the output values are often not exactly 0 or
1. A usual convention, for binary applications, is that output values above the middle of the range of the
sigmoid are taken astrue or 1, and output values below that are taken asfalseor 0. This is the convention
adopted here.

As we shall see below, it is sometimes convenient to consider input nodes as units of a special kind,
which simply copy the input components to their outputs. These units are then normally designated as
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input units. The number of units and the number of layers that a given network is said to have may depend
on whether this convention is taken or not. Another convention that is normally made is to designate as
hidden unitsthe units that are internal to the network, i.e. those units that are neither input nor output
units. The two networks of figure C1.2.9 have, respectively, two and one hidden units.

Figure C1.2.8. Single-unit networks implementing simple Boolean functions. (a) OR. (b) AND. (c) NOT.
The units are assumed to have logistic nonlinearities.

Figure C1.2.9. Two networks that have been trained to perform the XOR operation. The units are assumed
to have logistic nonlinearities. The weight values have been rounded, for convenience.

C1.2.3 The backpropagation algorithm for feedforward networks

Let us represent the input pattern of a network by anm-dimensional vectorx (italic bold characters shall
represent vectors) and the outputs of the units of the network by anN -dimensional vectory. To keep
the notation compact, we will represent the input nodes of the network as units (numbered from 1 tom).
These units simply copy the components of the input pattern, i.e.

yi = xi i = 1, . . . , m .

We will also assume that there is a unit number 0, whose output is fixed at 1, i.e.y0 = 1. The weights
from this unit to other units of the network will represent the bias terms of those units. The remaining
units,m + 1 to N , are the operative units, that have the form shown in figure C1.2.1. In this way, all the
parameters of the network appear as weights in interconnections among units, and can therefore be treated
jointly, in a common manner. Denoting bywji the weight in the branch that links unitj to unit i, we can
write the weighted sum performed by uniti as

si =
N∑

j=0

wjiyj i = m + 1, . . . , N . (C1.2.4)

Note thatw0i represents the unit’s bias term andwji , with j = 1, . . . , m, are the weights linking the inputs
to unit i. We will make the convention that if a branch from one unit to another does not exist in the
network, the corresponding weight is set to zero. The unit’s output will be

yi = S(si) i = m + 1, . . . , N (C1.2.5)

where S represents the unit’s nonlinearity. For the sake of simplicity, we shall assume that the same
nonlinearity is used in all units of the network (it would be straightforward to extend the reasoning in this
chapter to situations in which nonlinearities differ from one unit to another). As we shall see, the only
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restriction on the nonlinearities is that they must be differentiable. The output pattern of the network is
formed by the outputs of one or more of its units. We will collect these outputs into the output vectoro.

Let us denote byxk thekth pattern of the training set. We assume the training set to haveK patterns
(the training sets that are most often used are of finite size; infinite-sized training sets are sometimes used,
and this would imply slight modifications in what follows, essentially amounting to changing the sums
over training patterns into series or integrals, as appropriate). If we assume that we are presentingxk at
the input of the network, we can define an error vectorek between the actual outputsok and the desired
outputsdk for the current input pattern:

ek = ok − dk . (C1.2.6)

The squared norm of the error vector,Ek = ‖ek‖2 can be seen as a scalar measure of the deviation of the
network from its ideal behavior, for the input patternxk. In fact, Ek is zero if ok = dk. Otherwise it is
positive, progressively increasing as the network outputs deviate from the desired ones. We can define a
measure of the network’s deviation from the ideal, in the whole training set, as

E =
K∑

k=1

Ek (C1.2.7)

whereK is the number of patterns of the training set. If the training set and the network architecture are
fixed, E is only a function of the weights of the network, that is,E = E(w) (when convenient, we will
assume that we have collected all the weights as components of a single vectorw). We can think of the
task of training the network on the given training set as the task of finding the weights that minimizeE.
If there is a set of weights that yieldsE = 0, then a successful minimization will result in a network that
performs without error in the whole training set. Otherwise, the weights that minimizeE will correspond
to the network that performs best in the quadratic error sense.

The quadratic error may not be the best measure of the deviation from ideal in all situations, though
it is by far the most commonly used one. If convenient, however, some other cost functionC(e) can be
used, withEk = C(ek). The total cost to be minimized is still given by (C1.2.7). The cost functionC

should be chosen so as to represent, as closely as possible, the relative importances of different errors in
the situation where the network is to be applied. In general,C(e) has an absolute minimum fore = 0,
and in what follows the only restriction onC is that it be differentiable relative to all components ofe.

C1.2.3.1 The basic algorithm

There are, in the mathematical literature, several different methods for minimizing a function such asE(w).
Among these, one that results in a particularly simple procedure is the gradient method. Essentially, this
method consists of iteratively taking steps, in weight space, proportional to the negative gradient of the
function to be minimized, that is, of iteratively updating the weights according to

wn+1 = wn − η∇E (C1.2.8)

where∇E represents the gradient ofE relative tow. This iteration is repeated until some appropriate
stopping criterion is met. IfE(w) obeys some mild regularity conditions andη is small enough, this
iteration will converge to a local minimum ofE. The parameterη is normally designated as thelearning
rate parameteror step size parameter.

The main issue in applying this algorithm is the computation of the gradient components,∂E/∂wji .
For feedforward networks, this computation takes a very simple form (Bryson and Ho 1969, Werbos 1974,
Parker 1985, Le Cun 1985, Rumelhartet al 1986). This is best described by means of an example.
Consider the network of figure C1.2.10(a). From this network we obtain another one (figure C1.2.10(b))
as follows: we first linearize all nonlinear elements of the original network, replacing them by linear
branches with gainsgi = S ′(si). We thentransposeit (Oppenheim and Schafer 1975) that is, we reverse
the direction of flow of all branches, replacing summing nodes by divergence nodes and vice-versa,
and changing outputs into inputs and vice-versa. This new network is often called thebackpropagation
network, or error propagation network, for reasons that will soon become clear. As indicated in the figure,
we denote the variables in this network by the same letters as the corresponding ones in the MLP, with
an overbar.

For feedforward networks, thebackpropagation rulefor computing the gradient components, which
we shall describe next, can be easily derived by repeated application of the chain rule of differentiation;
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Figure C1.2.10. Example of a multilayer perceptron and of the corresponding backpropagation network.
(a) Multilayer perceptron. (b) Backpropagation network, also called error propagation network.

see for example (Rumelhartet al 1986). We will not make that derivation here, however, because
in section C1.2.8.1 we will make the derivation for a certain class of recurrent networks that includes
feedforward networks as a special case. Here, we will therefore simply describe the rule. First of all, note
that, from (C1.2.7)

∂E

∂wji

=
∑

k

∂Ek

∂wji

.

We place the patternxk at the inputs of the MLP, we compute the output error according to (C1.2.6)
and we place at the inputs of the error propagation network the values∂Ek/∂oi as shown in figure C1.2.10.
The backpropagation rule states that the partial derivatives can then be obtained as

∂Ek

∂wji

= yj si (C1.2.9)

i.e. the partial derivative relative to a weight is the product of the inputs of the branches corresponding
to that weight in the MLP and in the backpropagation network. As we said, the proof of this fact will be
given in section C1.2.8.1.

If the quadratic error is used as a cost function, then∂Ek/∂oi = 2ek
i . Since the backpropagation

network is linear, we can place at its inputsek
i , instead of 2ek

i , and compute the derivatives according to

∂Ek

∂wji

= 2yj si . (C1.2.10)

In this case the backpropagation network is propagating errors. This justifies the name oferror propagation
network that is commonly given to the backpropagation network. The variablessi are often called
propagated errors.

To apply this training procedure, we must have a training set, containing a collection of input patterns
and the corresponding target outputs, and we must select a network architecture to be trained (number of
units, arranged or not in layers, interconnections among units, activation functions). We must also choose
an initial weight vector,w1 (weights are normally initialized in a random manner, usually with a uniform
distribution in some symmetric interval [−a, a]—see section C1.2.5.3 below), a step size parameterη and
an appropriate stopping criterion.

The backpropagation algorithm can be summarized as follows, where we denote byK the number of
patterns in the training set.

(i) Set n = 1. Repeat steps (a) through (c) below until the stopping criterion is met.

(a) Set the variablesgji to zero. These variables will be used to accumulate the gradient components.

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.2:6



Multilayer perceptrons

(b) For k = 1, . . . , K perform steps (1) through (4).

(1) Propagate forward: apply the training patternxk to the perceptron and compute its internal
variablesyi and outputsok.

(2) Compute the cost function derivatives: compute∂Ek/∂ok
i .

(3) Propagate backwards: apply∂Ek/∂ok
i to the inputs of the backpropagation network and

compute its internal variablessi .

(4) Compute and accumulate the gradient components: compute the values∂Ek/∂wji = yj si

and accumulate each of them in the corresponding variable, i.e.gji = gji + yj si .

(c) Update the weights: setwn+1
ji = wn

ji − ηgji . Incrementn.

This algorithm can be used with any differentiable cost function. When the quadratic error is used as a
cost function, the factor 2 that appears in (C1.2.10) is usually incorporated into the learning rate constant
η, and steps (2) to (4) are replaced by the following.

(2) Compute the output errors: computeek = ok − dk.

(3) Propagate backwards: applyek
i to the inputs of the backpropagation network and compute

its internal variablessi .

(4) Compute and accumulate the gradient components: compute the valuesyj si and accumulate
each of them in the corresponding variable,gji = gji + yj si .

For finite minima, i.e. for minima that are not situated at infinity, the above algorithm is guaranteed to
converge forη below a certain valueηmax, if the activation functions and the cost function are continuous
and differentiable. However, the upper boundηmax depends on the network, on the training set and on the
cost function, and cannot be specified in advance. On the other hand, the fastest convergence is normally
obtained for an optimal value ofη that is somewhat below this upper bound. Forη below the optimal value,
the convergence speed can decrease considerably. This makes the choice of the learning rate parameterη

a critical aspect of the training procedure. Often, preliminary tests have to be made with different learning
rates, in order to try to find a good value ofη for the problem to be solved. In section C1.2.4.2 we will
describe a modification of the algorithm, involving adaptive step sizes, which solves this difficulty almost
completely, and also yields faster training.

The stopping criterion to be used depends on the problem being addressed. In some situations,
the training is stopped when the cost functionE becomes lower than some prescribed value. In other
situations, the algorithm is stopped when the maximum absolute value of the error componentsek

i becomes
lower than some given limit. In other situations still, training is stopped when the variation ofE or of the
weights becomes too slow. Often, an upper bound on the number of iterationsn is also incorporated, to
prevent the algorithm from running forever if the chosen conditions are never met.

C1.2.3.2 Stochastic backpropagation

When the training set is large, each weight update (which involves a sweep through the whole training
set) may become very time-consuming, making learning very slow. In such cases, another version of the
algorithm, performing a weight update per pattern presentation, can be used.

(i) Set n = 1. Repeat step (a) below until the stopping criterion is met.

(a) Fork = 1, . . . , K, perform steps (1) through (5).

(1) Propagate forward: apply the training patternxk to the perceptron, and compute its internal
variablesyi and outputsok.

(2) Compute the cost function derivatives: compute∂Ek/∂ok
i .

(3) Propagate backwards: apply∂Ek/∂ok
i to the inputs of the backpropagation network, and

compute its internal variablessi .

(4) Compute the gradient components: compute the values∂Ek/∂wji = yj si .

(5) Update the weights: setwn+1
ji = wn

ji − ηyj si . Incrementn.

To differentiate between the two forms of the algorithm, the former is often qualified asbatch, off-line or
deterministic, while the latter is calledreal-time, on-line or stochastic. This last designation stems from
the fact that, under certain conditions, the latter form of the algorithm implements astochastic gradient
descent. Its convergence can then be guaranteed ifη is varied withn, in such a way that (i)η(n) → 0 and
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(ii)
∑∞

n=1 η(n) = ∞. In fact, the algorithm can then be shown to satisfy the conditions for convergence
introduced by Ljung (1978). In practice, since any training is in fact finite, it is not always clear how
best to decreaseη. A solution that is sometimes used is to train first in real-time mode, until convergence
becomes slow, and then switch to batch mode. Frequently, the largest speed advantage of real-time training
occurs in the first part of the training process, and the later switch to batch mode does not bring about any
significant increase in training time.

Backpropagation is a generalization of the delta rule for training single linear units:adalines. In fact, C1.1.3

it is easy to see that, when applied to a single linear unit (i.e. a unit without nonlinearity), backpropagation
coincides with the delta rule. For this reason, backpropagation is sometimes designated thegeneralized B3.2.4

delta rule.

C1.2.3.3 Local minima

An issue that may have already come to the reader’s mind is that gradient descent, like any other local
optimization algorithm, converges to local minima of the function being minimized. Only by chance will it
converge to the global minimum. A solution that can be used to try to alleviate this problem is to perform
several independent trainings, with different random initializations of the weights. Even this, however,
does not guarantee that the global minimum will be found, although it increases the probability of finding
lower local minima. On the other hand, this solution cannot be used for large problems, where training
times of days or even weeks can be involved. When the functionE(w) is very complex, with many
local minima, one must essentially abandon the hope of finding the optimum, and accept local minima as
the best that can be found. If these are good enough, the problem is solved. Otherwise, the only viable
solution normally involves using a more complex architecture (e.g. with more hidden units, and/or with
more layers) that will normally have lower local minima. It must be said, however, that although local
minima are a drawback in the training of multilayer perceptrons, they do not usually cause too many
difficulties in practice.

C1.2.3.4 Universal approximation property

An important property of feedforward multilayer perceptrons is their universality, that is, their capacity
to approximate, to any desired accuracy, any desired function. The main result in this respect was first
obtained by Cybenko (1989), and later, independently, by Funahashi (1989) and by Horniket al (1989).
It shows that a perceptron with a single hidden layer of sigmoidal units and with a linear output unit can
uniformly approximate any continuous function in any hypercube (and therefore also in any closed, bounded
set). More specifically, it states that, if a functionf , continuous in a closed hypercubeH ⊂ Rk, and an
error boundε > 0 are given, then a numberh, weight vectorswi and output weightsai (i = 1, . . . , h)

exist such that the output of the single hidden layer perceptron

o(x) =
h∑

i=1

aiS(wi · x)

approximatesf in H with an error smaller thanε, that is, |f (x) − o(x)| < ε for all x ∈ H , if the
nonlinearityS is continuous, monotonically increasing and bounded. Here, for compactness of notation,
we have assumed that the input vectorx has been extended with a componentx0 = 1 and that the weight
vectorswi have components from 0 tok, so that the inner product(wi · x) incorporates a bias term.

This result is rather reassuring, since it guarantees that even perceptrons with a single hidden layer
can approximate essentially all useful functions. However, the limitations of this result should also be
understood. First of all, the theorem only guarantees the existence of a network, but does not provide
any constructive method to find it. Second, it does not give any bounds on the number of hidden units
h needed for approximating a given function to a desired level of accuracy. It may well turn out that,
for some specific problems, while a single hidden layer perceptron must exist which gives a good enough
approximation to the desired result, either it is too hard to find, or it has too large a number of hidden units
(or both). A large number of units, and therefore of weights, may be a strong drawback, meaning that a
very large number of training patterns is required for adequately training the network (see the discussion
on generalization in section C1.2.6). On the other hand, it may happen that networks with more than one
hidden layer can yield the desired approximation with a much smaller number of weights. The situation
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is somewhat similar to what happens with combinatorial digital circuits. Although any digital function
can be implemented in two layers (e.g. by expressing it as a sum of products), a complex function, such
as an output of a binary adder for a large word size, can require an intractable number of product terms,
and therefore of gates in the first layer. However, by using more layers, the implementation may become
easily tractable.

C1.2.4 Accelerated training

The training of multilayer perceptrons by the backpropagation algorithm is often rather slow, and may
require thousands or tens of thousands ofepochs, in complex problems (the nameepochis normally given
to a training sweep through the whole training set, either in batch or in real-time mode). The essential
reason for this is that the error surface, as a function of the weights, normally has narrow ravines (regions
where the curvature along one direction is rather strong, while it is very weak in an orthogonal direction,
the gradient component along the latter direction being very small). In these regions, the use of a large
learning rate parameterη will lead to a divergent oscillation across the ravine. A smallη will lead the
weight vector to the ‘bottom’ of the ravine, and convergence to the minimum will then proceed along this
bottom, but at a very low speed, because the gradient andη are both small. In the next sections we will
describe two methods ofimproving the training speedof multilayer perceptrons, especially in situationsB3.4

where narrow ravines exist.

C1.2.4.1 Momentum technique

Let us rewrite the weight update equation C1.2.8 as

wn+1 = wn + 1wn

with
1wn = −η∇E .

The momentum technique (Rumelhartet al 1986) replaces the latter equation with

1wn = −η∇E + αwn

in which 0 ≤ α < 1. The second term in the equation, called themomentum term, introduces a kind ofB6.3.3

‘inertia’ in the movement of the weight vector, since it makes successive weight updates similar to one
another, and has an accumulation effect, if successive gradients are in similar directions. This increases
the movement speed along the ravine, and helps to prevent oscillations across it. This effect can also
be seen as a linear low-pass filtering of the gradient∇E. The effect becomes more pronounced asα

approaches 1, but normally one has to be conservative in the choice ofα because of an adverse effect of
the momentum term: the ravines are normally curved, and in a bend the weight movement may be up
a ravine wall, if too much momentum has been previously acquired. Like the learning rate parameterη,
the momentum parameterα has to be appropriately selected for each problem. Typical values ofα are in
the range 0.5 to 0.95. Values below 0.5 normally introduce little improvement relative to backpropagation
without momentum, while values above 0.95 often tend to cause divergence at bends. The momentum
technique may be used both in batch and real-time training modes. In the latter case, the low-pass filtering
action also tends to smooth the randomness of the gradients computed for individual patterns.

With momentum, the batch-mode backpropagation algorithm becomes the following.

(i) Set n = 1 and1w0
ji = 0. Repeat steps (a) through (d) below until the stopping criterion is met.

(a) Set the variablesgji to zero. These variables will be used to accumulate the gradient components.
(b) For k = 1, . . . , K (whereK is the number of training patterns), perform steps (1) through (4).

(1) Propagate forward: apply the training patternxk to the perceptron and compute its internal
variablesyj and outputsok.

(2) Compute the cost function derivatives: compute∂Ek/∂ok
i .

(3) Propagate backwards: apply∂Ek/∂ok
i to the inputs of the backpropagation network and

compute its internal variablessi .
(4) Compute and accumulate the gradient components: compute the values∂Ek/∂wji = yj si

and accumulate each of them in the corresponding variable, i.e.gji = gji + yj si .
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(c) Apply momentum: set1wn
ji = −ηgji + α1wn−1

ji

(d) Update the weights: setwn+1
ji = wn

ji + 1wn
ji . Incrementn.

The real-time backpropagation algorithm with momentum is

(i) Set n = 1 and1w0
ji = 0. Repeat step (a) below until the stopping criterion is met.

(a) Fork = 1, . . . , K, perform steps (1) through (6).

(1) Propagate forward: apply the training patternxk to the perceptron and compute its internal
variablesyj and outputsok.

(2) Compute the cost function derivatives: compute∂Ek/∂ok
i .

(3) Propagate backwards: apply∂Ek/∂ok
i to the inputs of the backpropagation network and

compute its internal variablessi .

(4) Compute the gradient components: compute the values∂Ek/∂wji = yj si .

(5) Apply momentum: set1wn
ji = −ηyj si + α1wn−1

ji .

(6) Update the weights: setwn+1
ji = wn

ji + 1wn
ji . Incrementn.

C1.2.4.2 Adaptive step sizes

The adaptive step size method is a simple acceleration technique, proposed in Silva and Almeida (1990a,
b) for dealing with ravines. For related techniques see Jacobs (1988) and Tollenaere (1990). It consists of
using an individual step size parameterηji for each weight, and adapting these parameters in each iteration,
depending on the successive signs of the gradient components:

ηn
ji =


ηn−1
ji u if

(
∂E
∂wji

)n

and
(

∂E
∂wji

)n−1
have the same sign

ηn−1
ji d if

(
∂E
∂wji

)n

and
(

∂E
∂wji

)n−1
have different signs

(C1.2.11)

1wn
ji = − ηn

ji

∂E

∂wji

(C1.2.12)

whereu > 1 andd < 1. There are two basic ideas behind this procedure. The first is that, in ravines
that are parallel to some axis, use of appropriate individual step sizes is equivalent to eliminating the
ravine, as discussed in Silva and Almeida (1990b). Ravines that are not parallel to any axis but are not
too diagonal either, are not completely eliminated, but are made much less pronounced. The second idea
is that quasi-optimal step sizes can be found by a simple strategy: if two successive updates of a given
weight were performed in the same direction, then its step size should be increased. On the other hand, if
two successive updates were in opposite directions, then the step size should be decreased.

As is apparent from the explanation above, the adaptive step size technique is especially useful for
ravines that are parallel, or almost parallel, to some axis. Since the technique is less effective for ravines
that are oblique to all axes, use of a combination of adaptive step sizes and the momentum term technique
is justified. This combination is normally done by replacing (C1.2.12) with

zn
ji = ∂E

∂wji

+ αzn−1
ji

1wn
ji = − ηn

jiz
n
ji

that is, we first filter the gradient with the momentum technique, and then multiply the filtered momentum
by the adaptive step sizes.

For applying the backpropagation algorithm with adaptive step sizes and momentum, one must choose
the following parameters:

η0 initial value of the step size parameters

u ‘up’ step size multiplier

d ‘down’ step size multiplier

α momentum parameter.
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Typical values, which will work well in most situations, areu = 1.2, d = 0.8 andα = 0.9. The initial
value of the step size parameters is not critical, but is normally chosen small to prevent the algorithm
from diverging in the initial epochs, while the step size adaptation still did not have enough time to act.
The step size parameters will then be increased by the step size adaptation algorithm, if necessary. If the
robustness measures indicated in section C1.2.4.3 are incorporated in the algorithm, even large initial step
size parameters will not cause divergence, and essentially any value can be chosen forη0.

The batch-mode training algorithm with adaptive step sizes and momentum is as follows.

(i) Set n = 1, η1
ji = η0 and z0

ji = 0. Repeat steps (a) through (d) below until the stopping criterion is
met.

(a) Set the variablesgn
ji to zero. These variables will be used to accumulate the gradient components.

(b) For k = 1, . . . , K (whereK is the number of training patterns), perform steps (1) through (4).

(1) Propagate forward: apply the training patternxk to the perceptron and compute its internal
variablesyj and outputsok.

(2) Compute the cost function derivatives: compute∂Ek/∂ok
i .

(3) Propagate backwards: apply∂Ek/∂ok
i to the inputs of the backpropagation network and

compute its internal variablessi .

(4) Compute and accumulate the gradient components: compute the values∂Ek/∂ok
i and

accumulate each of them in the corresponding variable, i.e.gn
ji = gn

ji + yj si .

(c) Apply momentum: setzn
ji = gn

ji + αzn−1
ji .

(d) Adapt the step sizes: ifn ≥ 2 set

ηn
ji =

{
uηn−1

ji if gn
ji andgn−1

ji have the same sign

dηn−1
ji if gn

ji andgn−1
ji have opposite signs .

(e) Update the weights: setwn+1
ji = wn

ji − ηn
jiz

n
ji . Incrementn.

The adaptive step size technique was designed, in principle, for batch training. It has, however, been
used with success in real-time training, with the following modifications: (i) while weights are adapted
after every pattern presentation, step sizes are adapted only at the end of each epoch, and (ii) instead of
comparing the signs of the derivatives, in the step size adaptation (C1.2.11), we compare the signs of the
total changes of the weight in the last and next to last epochs.

C1.2.4.3 Robustness

As was said in section C1.2.3.1, the step size parameterη has to be small enough for the backpropagation
algorithm to converge. During the course of training, either with or without adaptive step sizes, one may
come to a region of weight space for which the current step size parameters are too large, causing an
increase in the cost function from one epoch to the next. A similar increase can also occur in a curved
ravine if too much momentum has previously been acquired, as noted in section C1.2.4.1. To prevent the
cost function from increasing, one must then go back to the step with lowest cost function, reduce the step
size parameters and set the momentum memory to zero. To do this, after each epoch we must compare the
current value of the cost function with the lowest that was ever found in the current training, and take the
above-mentioned measures if the current value is higher than that lowest one (a small tolerance for cost
function increases is allowed, as we will see below). To be more specific, these measures are as follows.

(i) Return to the set of weights that produced the lowest value of the cost function.
(ii) Reduce all the step size parameters (or the single step size parameter, if adaptive step sizes are not

being used) by multiplying by a fixed factorr < 1.
(iii) Set the momentum memorieszn−1

ji (or 1wn−1
ji if adaptive step sizes are not being used) to zero.

After this, an epoch is again executed. If the error still increases, the same measures are repeated: returning
to the previous point, reducing step sizes and setting momentum memories to zero. This repetition continues
until an error decrease is observed. The normal learning procedure is then resumed. A value that is often
used for the reduction factor isr = 0.5. A tolerance is normally used in the comparison of values of
the cost function, that is, a small increase is allowed without taking the measures indicated above. In
batch mode, the allowed increase is very small (e.g. 0.1%) just to allow for small numerical errors in
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the computation of the cost function. In real-time mode, a larger increase (e.g. 20%) has to be allowed,
because the exact cost function is normally never computed. Instead, the cost function contributions from
the different patterns are added during a whole epoch, while the weights are also being updated. This sum
of cost function contributions is only an estimate of the actual cost function at the end of the epoch, and
this is why a larger tolerance is needed. If desired, the actual cost function could be computed at the end
of each epoch, by presenting all the patterns while keeping the weights frozen, but this would increase
computation significantly.

The procedure described in this section is rather effective in making the training robust, irrespective of
whether it is combined with adaptive step sizes and/or momentum or not. When combined with adaptive
step sizes and momentum, it yields a very effective MLP training algorithm.

C1.2.4.4 Other acceleration techniques

In this section we will summarize other existing techniques forfast MLP training. Most of them are B3.4

based on a local second-order approximation to the cost function, attempting to reach the minimum of that
approximation in each step (for a review of a number of variants see Battiti (1992)). These techniques
make use of the Hessian matrix, that is, of the matrix of second derivatives of the cost function relative to
the weights. Some methods compute the full Hessian matrix. Since the number of elements of the Hessian
is the square of the number of weights, these methods have the important drawback that their amount of
computation per epoch is proportional to that square. These methods reduce the number of training epochs
but, for large networks, they involve a very large amount of computation per epoch. Other methods
assume that the Hessian is diagonal, thereby achieving a linear growth of the computation per epoch
with the number of weights. Among these, a variant (Becker and Le Cun 1989) estimates the diagonal
elements of the Hessian through a backward propagation, similar to the one described in section C1.2.3.1
for computing the gradient. Another variant, calledquickprop (Fahlman 1989) estimates the second
derivatives based on the variation of the first derivatives from one epoch to the next. It should be noted
that the adaptive step size algorithm described in section C1.2.4.2, and the related algorithms referenced
in that section, can also be viewed as indirect ways to estimate diagonal Hessian elements.

Another class of second-order techniques is based on the method of conjugate gradients (Presset
al 1986). This is a method which, when employed with a second-order function, can find its minimum
in a number of steps equal to the number of arguments of the function. The various conjugate gradient
techniques that are in use differ from one another, essentially, in the approximations they make to deal
with non-second-order functions. Among these techniques, one of the most effective appears to be the one
of Moller (1990).

We should not conclude this section without mentioning that, when the input patterns have few
components (up to about 5–10), networks of local units (e.g.radial basis function networks) are normally B1.7.3, C1.6.2

much faster to train than multilayer perceptrons. However, as the dimensionality of the input grows,
networks of local units tend to require an exponentially large number of units, making their training very
long, and requiring very large training sets to be able to generalize well (cf section C1.2.6).

C1.2.5 Implementation

In this section we discuss some issues that are related to the practical implementation of multilayer
perceptrons and of the backpropagation algorithm.

C1.2.5.1 Sigmoids

As we said above, the activation functions that are most commonly used in units of multilayer perceptrons
are of the sigmoidal type. Other kinds of nonlinearities have sometimes been tried, but their behavior
generally seems to be inferior to that of sigmoids. Within the class of sigmoids there still is, however, a
wide room for choice. The characteristic of sigmoids that appears to have the strongest influence on the
performance of the training algorithm is symmetry relative to the origin. Functions like the hyperbolic
tangent and the arctangent are symmetric relative to the origin, while the logistic function, for example,
is symmetric relative to a point of coordinates(0, 0.5). Symmetry relative to the origin gives sigmoids a
bipolar character that normally tends to yield better conditioned error surfaces. Sigmoids like the logistic

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.2:12



Multilayer perceptrons

tend to originate narrow ravines in the error function, which impair the speed of the training procedure
(Le Cunet al 1991).

C1.2.5.2 Output units and target values

Most practical applications of multilayer perceptrons can be divided, in a relatively clear way, into two
different classes. In one of the classes, the target outputs take a continuous range of values, and the task
of the network is to perform a nonlinear regression operation. Normally, in this case, it is convenient not
to place nonlinearities in the outputs of the network. In fact, we normally wish the outputs to be able
to span the whole range of possible target values, which is often wider than the range of values of the
sigmoids. We could, of course, scale the amplitudes of the output sigmoids appropriately, but this rarely
has any advantage relative to the simple use of units without nonlinearities at the outputs. Output units
are then said to be linear. They simply output the weighted sum of their inputs plus their bias term.

In the other class, which includes most classification and pattern recognition applications, the target
outputs are binary, that is, they take only two values. In this case it is common to use output units
with sigmoid nonlinearities, similar to other units in the network. The binary target values that are most
appropriate depend on the sigmoids that are used. Often, target values are chosen equal to the two
asymptotic values of the sigmoids (e.g. 0 and 1 for the logistic function, and±1 for the tanh and the
scaled arctan functions). In this case, to achieve zero error, the output units would have to achieve full
saturation, i.e. their input sums would have to become infinite. This fact would tend to drive the weights
linking to these units to grow indefinitely in absolute value, and would slow down the training process.
To improve training speed, it is therefore common to use target values that are close, but not equal, to the
asymptotic values of the sigmoids (e.g. 0.05 and 0.95 for the logistic function, and±0.9 for the tanh and
the scaled arctan functions).

C1.2.5.3 Weight initialization

Before the backpropagation algorithm can be started, it is necessary to set the weights of the network
to some initial values. A natural choice would be to initialize them all with a value of zero, so as not
to bias the result of training in any special direction. However, it can easily be seen, by applying the
backpropagation rule, that if initial weights are zero, all gradient components are zero (except for those
that concern weights on direct links between input and output units, if such links exist in the network).
Moreover, those gradient components will always remain at zero during training, even if direct links
do exist. Therefore, it is normally necessary to initialize the weights to nonzero values. The most
common procedure is to initialize them to random values, drawn from a uniform distribution in some
symmetric interval [−a, a]. As we mentioned above, several independent trainings with independent
random initializations may be used, to try to find better minima of the cost function.

It is easy to understand that large weights (resulting from large values ofa) will tend to saturate
the respective units. In saturation the derivative of the sigmoidal nonlinearity is very small. Since this
derivative acts as a multiplying factor in the backpropagation, derivatives relative to the unit’s input weights
will be very small. The unit will be almost ‘stuck’, making learning very slow.

If the inputs to a given uniti in the network all have similar root mean square (rms) values and are
all independent from one another, and if the weights are initialized in some given, fixed interval, the rms
value of the unit’s input sum will be proportional to(fi)

1/2, wherefi is the number of inputs of uniti
(often called the unit’sfan-in). To keep the rms values of the input sums similar to one another, and to
avoid saturating the units with largest fan-ins, the parametera, controlling the width of the initialization
interval, is sometimes varied from unit to unit, by makingai = k/(fi)

1/2. There are different preferences
for the choice ofk. Some people prefer to initialize the weights very close to the origin, makingk very
small (e.g. 0.01 to 0.1), and therefore keeping the units in their central linear regions in the beginning of
the training process. Other people prefer larger values ofk (e.g. 1 or larger), that lead the units into their
nonlinear regions right from the start of training.

C1.2.5.4 Input normalization and decorrelation

Let us consider the simplest network that one can design, formed by a single linear unit. Single-unit
linear networks (adalines) have been in use for a long time, in the area of discrete-time signal processing.
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Finite-impulse response (FIR) filters (Oppenheim and Schafer 1975) can actually be viewed as single linear
units with no bias. The inputs are consecutive samples of the input signal, and the weights are the filter
coefficients. Therefore, adaptive filtering with FIR filters is essentially a form of real-time training of
linear-unit networks. It is therefore no surprise that the first adaptive filtering algorithms were derived
from the delta rule (Widrow and Stearns 1985).

It is a well-known fact from adaptive filter theory that training is fastest, because the error function is
best conditioned (without any ravines) if the inputs to the linear unit are uncorrelated among themselves,
that is,〈xixj 〉 = 0 for i 6= j , and have equal mean-squared values, that is,〈x2

i 〉 = 〈x2
j 〉 for all i, j . Here〈·〉

represents the expected value (most often, when training perceptrons, the expected value can be estimated
simply by averaging in the training set).

If a bias term is also used in the linear unit, it acts as an extra input that is constantly equal to
1. Its mean squared value is 1, and therefore the mean squared values of all other inputs should also
be equal to 1. On the other hand, cross-correlations of other inputs with this new input are simply the
expected values of those other inputs, which should be equal to zero, as all cross-correlations between
inputs: 〈xi1〉 = 〈xi〉 = 0. In summary, for fastest training of a single linear unit with bias one should
preprocess the data so that the average of each input component is zero,

〈xi〉 = 0

and the components are decorrelated and normalized:

〈xixj 〉 = δij

where δij is the Kronecker symbol. It has been found by experience that this kind of preprocessing
also tends to accelerate the training in the case of multilayer perceptrons. Setting the averages of
input components to zero can simply be performed by adding an appropriate constant to each of them.
Decorrelation can then be performed by any orthogonalization procedure, for example, the Gram–Schmidt
technique (Golub and Van Loan 1983). Finally, normalization can be performed by an appropriate scaling
of each component. The most cumbersome of these steps is the orthogonalization, and people sometimes
skip it, simply setting means to zero and mean-squared values to one. This simplified preprocessing
is usually designatedinput normalization, and is often quite effective at increasing the training speed of
networks. A more elaborate acceleration technique, involving the adaptive decorrelation and normalization
of the inputs of all layers of the network, is described in (Silva and Almeida 1991).

C1.2.5.5 Shared weights

In some cases one would wish to constrain some weights of a network to be equal to one another. This
situation may arise, for example, if we wish to perform the same kind of processing in various parts of
the input pattern. It is a common situation in image processing, where one may want to detect the same
feature in different parts of the input image. An example, in a handwritten digit application, is given in (Le
Cun et al 1990a). Two examples of shared weight situations will also be found below, in the discussion
of recurrent networks.

The difficulty in handling shared weights comes from the fact that even if these weights are initialized
with the same value, the derivatives of the cost function relative to each of them will usually be different
from one another. The solution is rather simple. Assume that we have collected all weights in a weight
vector w = (w1, w2, . . .)

T (where T denotes transposition), and that the firstm weights are to be kept
equal to one another. These weights are not, in fact, free arguments of the cost functionE. To keep all
of the arguments ofE free, one should replace all of these weights by a single argumenta, to which all
of them will be equal. Then, the partial derivative ofE should be computed relative toa, and not relative
to each of these weights individually. But

∂E

∂a
=

m∑
i=1

∂E

∂wi

∂wi

∂a

=
m∑

i=1

∂E

∂wi

.

The derivatives that appear in the last line can be computed by the normal backpropagation procedure.
In summary, one should compute the derivatives relative to each of the individual weights in the normal
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way, and then use their sum to updatea and therefore to update all the shared weights. One should also
remember that shared weights should be initialized to the same value.

C1.2.6 Generalization

Until now we have been discussing the training of multilayer perceptrons based on the assumption that
we wish to optimize their performance (measured by the cost function) in the training set. However, this
is a simplification of the situation that we normally find in practice. Consider, for example, a network
being trained to perform a classification task. We assume that we are given a training set, which is usually
finite, containing examples of the desired classification. This set is usually only a minute fraction of the
universe in which the network will be used after training. After training, the network will be used to
classify patterns that were not in the training set.

We see that ideally we would like to minimize the cost function computed in the whole universe.
That is normally either impossible or impractical, however, because the universe is infinite, because we do
not know it all in advance, or simply because that would be too costly in computational terms. Until now
we have been using the cost function evaluated in the training set as an estimate of its value in the whole
universe. Whenever possible, precautions should be taken to ensure that the training set is as representative
of the whole universe as possible. This may be achieved, for example, by randomly drawing patterns from
the universe, to form the training set. Even if this is done, however, the statistical distribution of the
training set will only be an approximation to the distribution of the universe. A consequence of this is
that, since we optimize the performance of the network in the training set, its performance in that set will
normally be better than in the whole universe. A network whose performance in the universe is similar to
the performance in the training set is said togeneralizewell, while a network whose performance degradesB3.5

significantly from the training set to the universe is said to generalize poorly.
These facts have two main implications. The first is that if we wish to have an unbiased estimate

of the network’s performance in the universe, we should not use the performance in the training set, but
rather in atest setthat is independent from the training set. The second implication is that we should
try to design networks and training algorithms in order to ensure good generalization, and not only good
performance in the training set.

C1.2.6.1 Network size

An important issue in what concerns generalization is the size of the network. Intuitively, it is clear that
one cannot effectively train a large network with a training set containing only a few patterns. Consider
a network with a single output. When we present at the input a given training pattern, we can idealize
writing an expression of the output of the network as a function of the weights. If we wish to make
the output equal to the desired output, we can set that expression equal to the desired output, and we
will obtain an equation whose unknowns are the weights. The whole training set will therefore yield a
set of equations. If the network has more than one output, the situation is similar, and the number of
equations will be the number of training patterns times the number of outputs. These equations are usually
nonlinear and very complex, and therefore not solvable by conventional means. They may even have no
exact solution. Training algorithms are methods to find exact or approximate solutions for such sets of
equations.

By making an analogy with the well-known case of the systems of linear equations, we can gain
some insight into the issue of generalization. If the number of unknowns (i.e. weights) is larger than the
number of equations, there will generally be an infinite number of solutions. Since each of these solutions
corresponds to a different set of weights, it is clear that they will generalize differently from one another,
and only by chance will the specific solution that we find generalize well. If the number of weights is equal
to the number of equations, a linear system will usually have a single solution. A nonlinear system will
usually have no solutions, a single solution or a finite number of solutions. Since these are optimal for the
training set, which is different from the universe, they will still often not generalize well. The interesting
situation is the one in which there are fewer weights than equations. In this case, there will be no solution,
unless the set of equations is redundant. Even the existence of an approximate solution implies that there
must be some kind of redundancy, or regularity, in the training set (e.g. in a digit-recognition problem,
regularities are the facts that all zeros have a round shape, all ones are approximately vertical bars, and so
on). With fewer weights than training patterns, the only way for the network to approximately satisfy the
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training equations is to exploit the regularities of the problem, and the fewer weights the network has, the
more it will have to rely on the training set’s regularities to be able to perform well on that set. But these
regularities are exactly what we expect to be maintained, from the training set to the universe.Therefore,
small networks, with fewer weights than the number of equations, are the ones that can be expected to
generalize best, if they can be trained to perform well on the training set. Note that the latter condition
means that network topology is a very important factor. A network with the appropriate number of weights
but with an inappropriate topology will not be able to perform well in the training set, and therefore cannot
also be expected to perform well in the universe. On the other hand, a network with an appropriately
small number of weights and with the appropriate topology will be able to perform well in the training
set, and also to generalize well. As a rule of thumb, we would say that the number of weights should be
around or below one tenth of the product of the number of training patterns by the number of outputs. In
some situations, however, it may go up to about one half of that product.

There are other methods to try to improve generalization. The methods that we will mention are
stopped training, network pruning, constructive techniquesand the use of aregularization term.

C1.2.6.2 Stopped training and cross-validation

In stopped training, one considers all the successive weight vectors found during the course of the trainingB3.5.2

process, and tries to find the vector that corresponds to the best generalization. This is normally done by
cross-validation. Another set of patterns, independent from the training and test sets, is used to evaluateB3.5.2

the network’s performance during the training (this set of patterns is often designated thevalidation set).
At the end of training, instead of selecting the weights that perform best in the training set, we select the
weights that performed best in the validation set. This is equivalent, in fact, to performing an early stop
of the training process, before convergence in the training set, which justifies the designation of ‘stopped
training’. Since the performance in the validation set tends to oscillate significantly during the training
process, it is advisable to continue training even after the first local minimum in the validation performance
is observed, because better validation performance may still arise later in the process. Note that, since the
validation set is used to select the set of weights to be kept, it effectively becomes part of the training data,
i.e. the performance of the final network in the validation set is not an unbiased estimate of its performance
on the universe. Therefore, an independent test set is still required, to evaluate the network’s performance
after training is complete.

C1.2.6.3 Pruning and constructive techniques

Network pruningtechniques start from a large network, and try to successively eliminate the least importantB3.5.2

interconnections, thereby arriving at a smaller network whose topology is appropriate for the problem at
hand, and which has a good probability of generalizing well. Among the pruning techniques we mention
the skeletonization method of Mozer and Smolensky (1989),optimal brain damage(Le Cunet al 1990b)
andoptimal brain surgeon(Hassibiet al 1993). Network pruning, while effective, tends to be rather time-
consuming, since after each pruning some retraining of the network has to be performed (an interesting and
efficient technique, which is a blend of pruning and regularization, is mentioned below in section C1.2.6.4).
Constructive techniques work in the opposite way to pruning: they start with a small network and add
units until the performance is good enough. Several constructive techniques have appeared in the literature,
the best known of which is probably cascade-correlation (Fahlman and Lebiere 1990). Other constructive
techniques can be found in Frean (1990) and Mézard and Nadal (1989).

C1.2.6.4 Regularization

Regularization is a class of techniques that comes from the field of statistics (MacKay 1992a, b). In its
simplest form, it consists of adding aregularization termto the cost function to be optimized:

Etotal = E + λEreg

whereE is the cost function that we defined in the previous sections,Ereg is the regularization term,λ
is a parameter controlling the amount of regularization andEtotal is the total cost function that will be
minimized. The regularization term is chosen so that it tends to smooth the function that is generated by
the network at its outputs. This term should have small values for weight vectors that generate smooth
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outputs, and large values for weight vectors that generate unsmooth outputs. An intuitive justification for
the use of such a term can be given by considering a simple example (figure C1.2.11). Assume that a
number of training data points are given (in the figure these are represented by dark circles). There is an
infinite number of functions that pass through these points, two of which are represented in the figure.
Of these, clearly the most reasonable are the ones that are smoothest. If the function to be approximated
is smooth, then the approximator’s output should be smooth also. On the other hand, if the function to
be approximated is unsmooth, then only by chance would an unsmooth function generated by a network
approximate the desired one, in the regions between the given data points, since unsmooth functions have a
very large variability. Therefore, only by chance would the network generalize well, in such a case. Only
a larger number of training points would allow us to expect to be able to successfully approximate such
a function. Therefore, one should bias the training algorithm towards producing smooth output functions.
This can be done through the use of a regularization term (in the theory of statistics, supervised learning
can be viewed as a form of maximum-likelihood estimation, and in this context the use of a regularization
term can be justified in a more elaborate way, by taking into consideration a prior distribution of weight
vectors (MacKay 1992a, b)).

Figure C1.2.11. An illustration of generalization. Given the data points denoted by full circles, there is an
infinite number of functions that pass through them. Only the smooth ones can be expected to generalize
well.

One of the simplest regularization terms, which is often used in practice (Krogh and Hertz 1992), is
the squared norm of the weight vector

Ereg =
∑
j,i

w2
ji .

Use of such a regularization term is justified since smaller weights tend to produce slower-changing (and
therefore smoother) functions. The use of this term leads to gradient components that are given by

∂Etotal

∂wji

= ∂E

∂wji

+ λwji .

The first term on the right-hand side of this equation is still computed by the backpropagation rule. Since
the derivative ofEtotal is to be subtracted (after multiplication by the step size parameter) from the weight
itself, we see that if the derivative ofE is zero, the weight will decay exponentially to zero. For this
reason, this technique is often calledexponential decay. Other forms of regularization terms have been
proposed in the literature, which are based e.g. on minimizing derivatives of the function generated by the
network (Bishop 1990), or on placing a smooth cost on the individual weights, in an attempt to reduce
their number (Weigendet al 1991).

A type of regularization term that appears to be particularly promising has been recently introduced
(Williams 1994). Instead of the sum of the squares of the weights, it uses the sum of their absolute values:

Ereg =
∑
j,i

|wji | .

Use of this term leads to
∂Etotal

∂wji

= ∂E

∂wji

+ λsgn(wji)
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where ‘sgn’ denotes the sign function. If the derivative ofE is zero, the weight will decay linearly to zero,
reaching that value in a finite time. Only if the derivative ofE relative to a weight has absolute value larger
than λ will this weight be able to escape the zero value. Therefore, thisEreg term acts simultaneously
as a regularizer, tending to keep the weights small, and as a pruner, since it automatically sets the least
important weights to zero. Experience with this technique is still limited, but its ability to perform both
regularization and pruning during the normal training of the network gives it a potential that should not
be overlooked. We will designate this form of regularization aslinear decay, for the reasons given above,
or Laplacian regularization, since it can be justified, in a statistical framework, by assuming a Laplacian
prior on the weights. One word of caution regarding the use of this form of regularization concerns the
fact that the regularizer termEreg is not differentiable relative to the weights when these have a value of
zero. A way to deal with this problem is discussed in Williams (1994). A simpler way, which this author
has used with success, is to check, in every training step, whether each weight has changed sign, and
to set the weight to zero if it did. The weight is allowed to leave the zero value in later training steps,
if |∂E/∂wji | > λ.

In finalizing this section, we should point out that there are several other approaches to the issue of
trying to find a network with good generalization ability, and also to other related issues, such as trying
to estimate the generalization ability of a given network. One of the best known of these approaches is
based on the concept ofVapnik–Chervonenkisdimension (often designated simplyVC dimension) (Guyon B3.5.2.2

et al 1992).

C1.2.7 Application examples

We have already seen, in figure C1.2.9, two examples of networks trained to perform the logical XOR
operation. Another artificial problem that is often used to test network training is the so-calledencoder
problem. A network withm inputs andm outputs is trained to perform an identity mapping (i.e. to yield
output patterns that are equal to the respective input patterns) in a universe consisting ofm patterns: those
obtained by setting one of the components to 1 and all other ones to 0. The difficulty lies in the fact that
the network topology that is adopted has a hidden layer with fewer thanm units, forming a bottleneck. The
network has to learn to encode them patterns into different combinations of values of the hidden units,
and to decode these combinations to yield the correct outputs. An example of a 4–2–4 encoder is shown in
figure C1.2.12. Table C1.2.1 shows the encoding learned by a network with the topology of figure C1.2.12,
trained by backpropagation. In this case target values were 0.05 and 0.95 instead of 0 and 1, respectively,
as explained in section C1.2.5.2. It should be noted that, with the given architecture, the network cannot
reproduce the target values exactly. This is why it sometimes outputs 0.02 and sometimes 0.06, instead
of 0.05.

Figure C1.2.12. A 4–2–4 encoder.

Multilayer perceptrons have a rather widespread use, in very diverse application areas. We cannot
give a full description of any of these applications here. We shall only give brief accounts of some of
them, with references to publications where the reader can find more details.

Often, perceptrons are used as classifiers. A well-known example is the application to therecognition G1.3

of handwritten digits(Le Cunet al 1990a). Normally, digit images are segmented, normalized in size and
de-skewed. After this, their resolution is lowered to a manageable level (e.g. 16× 16 pixels), before they
are fed to a recognizer MLP. Recognition error rates of only a few percent can be achieved. A significant
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Table C1.2.1. Encoding learned by the network of figure C1.2.12.

inputs hidden units outputs

1.0 0.0 0.0 0.0 0.95 0.94 0.95 0.06 0.02 0.06
0.0 1.0 0.0 0.0 0.07 0.95 0.06 0.95 0.06 0.02
0.0 0.0 1.0 0.0 0.10 0.03 0.02 0.06 0.95 0.06
0.0 0.0 0.0 1.0 0.95 0.08 0.06 0.02 0.06 0.95

percentage of errors normally comes from the segmentation, which is not performed by neural means.
In the author’s group (unpublished work), an error rate of 3.8% on zipcode digits was achieved, with
automatic segmentation followed by manual elimination of the few gross segmentation errors (segments
with no digit at all, or with two or more complete digits). For digits that are pre-segmented, e.g. by
being written in forms with boxes for individual digits, it is now possible to achieve recognition errors
below 1%, a performance that is already suitable for replacing manual data entry. Several such systems
are probably in use these days. The author knows of one designed and being used in Spain (López 1994).
However, the problems of automatic digit segmentation and, more generally, of segmentation of cursive
handwriting are still hard to deal with (Matanet al 1992).

Another important example of a classification application isspeech recognition. Here, perceptronsF1.7.2, G1.4

can be usedper se (Waibel 1989) or in hybrid systems, combined with hidden Markov models. See
Robinsonet al (1993) for an example of a state-of-the-art hybrid recognizer for large vocabulary, speaker
independent, continuous speech. In hybrid systems, MLPs are actually used as probability estimators,
based on an important property of supervised systems: when they are trained for classification tasks, using
as cost function the quadratic error (or certain other cost functions), they essentially become estimators
of the probabilities of the classes given the input vectors. This property is discussed in Richard and
Lippmann (1991). In another example of a classification application, MLPs have been used to validate
sensor readings in an industrial plant (Ramoset al 1994).

In nonclassification, analog tasks, an important class is formed bycontrol applications. An interesting F1.9

example is that of a neural network system that is used to drive a van, controlling the steering based on
an image of the road supplied by a forward-looking video camera (Pomerleau 1991). This kind of system
has already been used to drive the vehicle on a highway at speeds up to 30 mph. It can also be used, with
appropriately trained networks, to drive the vehicle on various other kinds of roads, including some that
are hard to deal with by classical means (e.g. dirt roads covered with tree shadows) (Pomerleau 1993).

Another example of a control application is the control of fast movements of a robot arm, a problem
that is hard to handle by more formal, theoretical means (Goldberg and Pearlmutter 1989). For further
examples of applications to control, see White and Sage (1992). There have already been in the market,
for a few years, industrial control modules that incorporate multilayer perceptrons.

Another important area of application is prediction. Multilayer perceptrons (and also other kinds
of networks, namely those based on radial basis functions) have been used in the academic problem of
predicting chaotic time series (Lapedes and Farber 1987), but also to predict consumptions of commodities
(Yuan and Fine 1993), crucial variables inindustrial plants(Cruzet al 1993) and so on. A very appealing,G2.8

but also somewhat controversial area is prediction offinancial time series(Trippi and Turban 1993). G6.3

The practical applications of neural networks are constantly increasing in number. Given the
impossibility of making an exhaustive listing here, we shall content ourselves with the above examples.

C1.2.8 Recurrent networks

Recurrent networks are networks with unit interconnections that form loops. They can be employed in
two very different modes. One is nonsequential, that is, it involves no memory, the desired output for
each input pattern depending only on that pattern and not on past ones. The other mode is sequential, that
is, desired outputs depend not only on the current input pattern, but also on previous ones. We shall deal
with them separately.
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C1.2.8.1 Nonsequential networks

In this mode, as said above, desired outputs depend only on the current input pattern. Furthermore, it
is assumed that whenever a pattern is presented at the network’s input, it is kept fixed long enough to
allow the network to reach equilibrium. As is well known from the theory of nonlinear dynamic systems
(Thompson and Stewart 1986), a network with a fixed input pattern can exhibit three different kinds of
behavior: it can converge to a fixed point, it can oscillate (either periodically or quasi-periodically) and it
can have chaotic behavior. In what follows, we shall assume that for each input pattern the network will
have stable behavior, with a single fixed point. The conditions under which this will happen are discussed
later in this section.

Recurrent backpropagation.In this nonsequential situation, the gradient of the cost functionE

can still be computed by backward propagation of derivatives through a backpropagation network, in a
natural extension of the backpropagation rule of feedforward networks (this extension is usually designated
recurrent backpropagation). The proof of this fact was first given by Almeida (1987), and soon thereafter
independently by Pineda (1987). Here we shall give a version of the proof based on graphs, which is more
intuitive than the ones given in those references.

Consider first a recurrent nonlinear network N (not necessarily a multilayer perceptron), which has a
single output, any number of inputs, and an internal branch which is linear with a gainw. Such a network,
with the notation that we will adopt for its variables, is depicted in figure C1.2.13(a). A single input is
shown, for simplicity, but multiple inputs would be treated in exactly the same manner, as we shall see.
We assume that this network, as well as all other networks used in this proof, are in equilibrium at fixed
points. We wish to compute the derivative of the network’s output relative tow, and therefore we shall
give an infinitesimal increment dw to w. This can be done by changingw to w + dw, but it can also be
achieved by adding an extra branch with gain dw, as shown in figure C1.2.13(b). Of course, all internal
variables, as well as the output, will suffer increments, as indicated in the figure.

The state of the network will not change if we replace the new branch by an input branch, as long
as its contribution to its sink node is unchanged. This could be achieved by keeping the gain dw and the
input y + dy of this branch unchanged. We can, however, change the input toy, since the contribution
dy dw is a higher order infinitesimum, and can therefore be disregarded (figure C1.2.13(c)).

We shall now linearize the network around its fixed point, obtaining a linear network NL that takes
into account only increments (figure C1.2.13(d)). Note that the original input branch disappears, since its
contribution has suffered no increment. If we had multiple inputs, the same would have happened to all
of them.

We will now divide the contribution of the input branch by dw, by changing its gain to unity. Since this
network is linear, its node variables and its output will change to derivatives relative tow, which we will
represent by means of upper dots, for compactness (i.e. for example,ȯ = ∂o/∂w; see figure C1.2.13(e)).

Finally, we will transpose the network, obtaining network NLT, shown in figure C1.2.13(f ) (recall
that transposition of a linear network consists in changing the direction of flow of all branches, keeping
their gains; inputs become outputs, and vice-versa; summation points become divergence points, and vice-
versa). From thetransposition theorem(Oppenheim and Schafer 1975) we know that the input–output
relationship of the network is not changed by transposition, i.e. if we placey at its input we will still
obtain ȯ at its output. Therefore, we can write

ȯ = ty

wheret is the total gain from the input to the output node of the NLT network.
Now consider a recurrent perceptron P (figure C1.2.14(a)) with several outputs, and assume that we

wish to compute the derivative of an outputop relative to a weightwji . By the same reasoning, we can
write

ȯp = tipyj

where we now use the upper dot to designate the derivative relative towji . The factortip is the total gain
of the linearized and transposed network, PLT, from inputp to nodei (cf figure C1.2.14(b)). Finally, let
us consider the derivative of a cost function termEk (corresponding to a given input patternxk) relative
to wji . Using the chain rule, we can write

∂Ek

∂wji

=
∑
p∈P

∂Ek

∂op

ȯp
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Figure C1.2.13. Illustration of the proof of validity of the backpropagation rule for recurrent networks.
Case of a general network. See text for explanation.

and therefore

∂Ek

∂wji

=
∑
p∈P

∂Ek

∂op

tipyj

= yj

∑
p∈P

∂Ek

∂op

tiptip

whereP is the set of indices of units that produce outputs. Noting that network PLT is linear, we can
write

∂Ek

∂wji

= yj si (C1.2.13)
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Figure C1.2.14. Illustration of the proof of validity of the backpropagation rule for recurrent networks.
Case of a recurrent perceptron. See text for explanation.

where, as depicted in figure C1.2.14(b), si is obtained in the corresponding node of network PLT when
the values∂Ek/∂op are applied at its inputs.

If we assume that the original perceptron was feedforward, we recognize network PLT as the
backpropagation network. Equation (C1.2.13) is the same as (C1.2.9), proving the validity of the
backpropagation rule for feedforward networks, described in section C1.2.3.1. We will keep the designation
of backpropagation networkfor network PLT in the case of recurrent networks. As we saw, this network
is still obtained from the original perceptron by linearization followed by transposition. The recurrent
backpropagation rule states that, if we apply the values∂Ek/∂op to the corresponding inputs of the
backpropagation network, the partial derivative of the cost function relative to a weight will be given by
the product of the inputs of that weight’s branches in the perceptron network and in the backpropagation
network. Of course, the special case of the quadratic error, described in section C1.2.3.1, where one places
the errors at the inputs of the backpropagation network, and then uses (C1.2.10), is also still valid in the
recurrent case. For this reason, the backpropagation network is still often called theerror propagation
network, in the recurrent case.

Training a recurrent network by backpropagation takes essentially the same steps as for a feedforward
network. The difference is that, when a pattern is applied to the perceptron network, this network must
be allowed to stabilize before its outputs and node values are observed. The error propagation network
must also be allowed to stabilize, when the derivatives∂Ek/∂op are applied to its inputs. In digital
implementations (including computer simulations) this involves an iteration in the propagation through the
perceptron, until a stable state is found, and a similar loop in the propagation through the backpropagation
network. In analog implementations the networks will evolve, through their own dynamics, to their stable
states.

An important practical remark is that, in recurrent networks, the gradient’s components can easily
have a much larger dynamic range than in feedforward networks. The use of a technique such as adaptive
step sizes, and of the robustness measures described in section C1.2.4.3, is therefore even more important
here than for feedforward networks. Note that the gradient can even become infinite, at some points in
weight space. This, however, does not cause any significant practical problem: gradient components can
simply be limited to some convenient large value, with the proper sign.

Network stability.We assumed above that, with any fixed pattern at its input, the perceptron network
was stable and had a single fixed point. It is this author’s experience that often, when training recurrent
networks with recurrent backpropagation, the networks that are obtained during the training process are
all stable and all have single fixed points. There are exceptions, however, and it would be desirable to be
able to guarantee that networks will in fact always be stable, and will always have a single fixed point.
The issue of stability can be dealt with by means of a sufficient condition for stability, which we shall
discuss next. The discussion of the number of fixed points will be deferred to the end of this section.

To derive a sufficient condition for stability, we first note that, while the static equations (C1.2.4)
and (C1.2.5) suffice to describe the static behavior of a network, and therefore to find its fixed points,
the dynamic behavior of the network is only defined if we specify the dynamic behavior of its units.
Therefore, a discussion of network stability will always involve the units’ dynamic behavior.

If some restrictions are imposed on it, a recurrent perceptron is formally equivalent to aHopfield C1.3.4

network with graded units (Hopfield 1984). These restrictions are that the units’ dynamic behavior is
as schematized in figure C1.2.15(a), that weights between units are symmetrical, i.e.wji = wij for
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i, j = m + 1, . . . , N , and that the units’ nonlinearities are all increasing, bounded functions. The stability
of such networks has been proved in Hopfield (1984) (we have assumed that the network variables are
voltages; if currents were considered instead, then the resistor and capacitor should both be connected
from the input to ground, as in Hopfield (1984)).

Figure C1.2.15. Typical dynamic behaviors assumed for units of continuous-time recurrent networks.

The behavior of figure C1.2.15(a) normally arises from attempting to model the dynamic behavior
of biological neurons. When considering network realizations based on analog electronic systems, it is
more natural to consider the dynamic behavior of figure C1.2.15(b). This is because, unless special
measures are taken, an analog electronic circuit will have a lowpass behavior that can be modeled, to
a first approximation, by a first-order lowpass system. The two behaviors are equivalent if all RC time
constants are equal, but otherwise they are not. Here we shall give the proof of stability for the behavior
of figure C1.2.15(b). This proof was first given in Almeida (1987), and is very similar to the proof given
in Hopfield (1984) for the dynamic behavior of figure C1.2.15(a).

Using the notation given in figure C1.2.15(b), we can write

si =
N∑

j=0

wjiyj

ui = S(si)

dyi

dt
= 1

τi

(ui − yi) (C1.2.14)

whereτi = RiCi is the time constant of the RC circuit of theith unit. Here we assume that the indexi

varies fromm + 1 to N , as in (C1.2.4) and (C1.2.5). We shall prove the network’s stability by showing
that it has a Lyapunov function (Willems 1970) that always decreases with time. The Lyapunov function
that we will consider is

W = − 1
2

N∑
j,i

wjiyiyj +
N∑

i=m+1

U(yi)

where U is a primitive of S−1, the inverse ofS (see figure C1.2.16). We are still assuming, as in
section C1.2.3, thaty0 has a fixed value of 1, and thaty1, . . . , ym represent the input components. We
are also still assuming that the nonlinearities of all units are equal (it would again be straightforward to
extend this proof to the situation in which the nonlinearities differ from one unit to another, but are all
increasing and bounded; the proof could still be easily extended to the case in which all nonlinearities are
decreasing and bounded; in this case the functionW would increase with time, instead of decreasing).

Since we assumed that the inputs do not change, the time derivative ofW is given by

dW

dt
=

N∑
i=m+1

dW

dyi

dyi

dt
. (C1.2.15)
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Figure C1.2.16. The functionsS, S−1 andU . See text for explanation.

For i = m + 1, . . . , N , we have

∂W

∂yi

= −
N∑

j=0

wjiyj + U ′(yi)

= − [si − S−1(yi)]

= − [S−1(ui) − S−1(yi)] .

SinceS is an increasing function,S−1 also is, and therefore either the difference in the last equation has
the same sign as the difference in (C1.2.14), or they are simultaneously zero. Therefore, the products in
(C1.2.15) are all negative or zero, and dW/dt must be negative or zero. It is zero if and only if all the
∂W/∂yi and the dyi/dt are simultaneously zero. In that case the network is in a fixed point, andW is at
a point of stationarity. SinceW always decreases in time during the network’s evolution, the network’s
state cannot oscillate or have chaotic behavior. It can only move towards a fixed point, or to infinity. But
since theyi are bounded (becauseS is bounded), movement towards infinity is not possible, and the state
must converge towards some fixed point. As we saw, these fixed points occur at the points of stationarity
of W .

A useful remark (Almeida 1987) is that, except for marginally stable states, whenever the perceptron
network is stable, the backpropagation network will also be stable, if the same RC-type dynamics are used
in it. In fact, if the perceptron is in a nonmarginal stable state, the linearized perceptron network will also
be stable. If we write its equations in the standard state space form (Willems 1970)

du

dt
= Au

whereu is the vector of state variables andA is the system matrix, then it will be stable if and only if all
the eigenvalues ofA have negative real parts. The backpropagation network, being the transpose of this
system, has state equations

du

dt
= ATu

where ū is the state vector of the backpropagation network andAT is the transpose ofA. But the
eigenvalues of a matrix and of its transpose are equal. Therefore, if the linearized perceptron was stable,
the backpropagation network will also be stable. Here,transposeis taken in the dynamic system sense.
In practice this means that the RC dynamics have to be kept in the backpropagation network too.

The above remark is always true, except for marginally stable states, which are those stable states for
which the linearized network is not stable. They lie at the boundary between stability and instability, and
can normally be disregarded in practice, since the probability of their occurrence is essentially zero. To
train a network with the guarantee that it will always be stable, we therefore have to obey three conditions.

(i) To use nonlinearities which are increasing and bounded. Networks with sigmoidal units always satisfy
this condition.

(ii) To keep the weights symmetrical. For this purpose, we have first to initialize them in a symmetrical
way, and then to keep them symmetrical during training. This is an example of a situation of
shared weights, and is dealt with in the manner we described in section C1.2.5.5: the two derivatives
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∂Ek/∂wij and∂Ek/∂wji are both computed using recurrent backpropagation, and their sum is used
for updating bothwji andwij .

(iii) To implement the RC dynamics both in the perceptron and in the backpropagation network. In digital
implementations this means performing a numerical simulation of the continuous-time dynamics. If
stability is not achieved, the numerical simulation is too coarse, and its time resolution should be
increased. In analog implementations, RC circuits can actually be placed both in the perceptron and
in the backpropagation network, to ensure that they have the appropriate dynamics.

Clearly, weight symmetry is a sufficient, but not necessary condition for stability. For example, feedforward
networks are always stable, but do not obey the symmetry condition. Weight symmetry is a restriction
on the network’s adaptability, and it can be argued that it will reduce the network’s capabilities. This is
a price to be paid for being sure to obtain a network that will always be stable. But as we said at the
beginning of this section, training without enforcing symmetry often yields stable networks, and in many
situations it may be worth trying first, before resorting to symmetrical networks.

We come now to the discussion of the requirement that there be a single fixed point for each input
pattern. Unfortunately, we do not know of any sufficient condition for guaranteeing that this will be true.
The discussion of this issue can therefore only be made in qualitative terms. In practice, we have observed
situations with multiple stable states only very seldom, and we never needed to take any special measures
to cope with them—multiple stable states normally merged by themselves, during training. This can be
explained by noting that, when training a recurrent network, we are in fact trying to move its stable states
to given areas that are determined by the desired values of the outputs. If two different stable states exist
for the same input pattern, and if the network stabilizes sometimes in one and sometimes in the other,
then we will be trying to move them both to the same region. It is therefore not too surprising that they
will merge. On the other hand, if there are multiple stable states but the network always stabilizes in the
same one, then the other ones can be disregarded, as if they did not exist, since they do not influence the
network’s behavior in any way.

C1.2.8.2 Sequential networks

Besides the nonsequential mode described in section C1.2.8.1, recurrent networks can also be used in a
sequential, or dynamic mode. In this case, network outputs depend not only on the current input, but also
on previous inputs. There are several variants of the sequential mode, and we will concentrate here on the
one that is most commonly used: discrete-time recurrent networks.

In this mode, it is assumed that the network’s inputs only change at discrete timest = 1, 2, . . . ,

and that there are units in the network whose outputs are also only updated at these discrete times,
synchronously with the inputs. We shall designate these unitsdiscrete-time units. The other units, whose
outputs immediately follow any variations of their inputs, will be calledinstantaneous units. Wherever
interconnections between units form loops, there must be at least one discrete-time unit in the loop. There
may, however, be more than one of these units per loop. Often, people build networks in which all units
are discrete-time ones, as in figure C1.2.17(a). However, nothing prevents us from using discrete-time and
instantaneous units in the same network, as long as there is at least one discrete-time unit per loop. A simple
example of a network with one instantaneous and two discrete-time units is given in figure C1.2.17(b).
We will use this second network as an example, to better specify the operation of networks of this kind.
To be consistent with the conventions used above, we will identify unit 1 with the input, that is,yn

1 = xn.
The input has some initial valuex0 (here, we will denote by an upper index the time step that variables
refer to). Units 2 and 3, which are the discrete-time ones, have initial statesy0

2 and y0
3 . Unit 4, which

is instantaneous, immediately reflects at its output whatever is present at its input. Therefore, its output is
always given by

yn
4 = S(w24y

n
2)

(heren denotes the discrete time, and not the iteration number as in previous sections). Whenever a new
discrete-time step arises, the input changes fromxn to xn+1, and the outputs of the discrete-time units
change to new values that are computed using the values of variables before that time step:

yn+1
2 = S(w12x

n + wn
32y

n
3)

yn+1
3 = S(w33y

n
3 + w43y

n
4) .
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Figure C1.2.17.Examples of sequential networks. Shaded units are discrete time ones, unshaded units are
instantaneous ones. (a) A network that has only discrete time units. (b) A network with both discrete time
and instantaneous units.

The output of unit 4 instantaneously changes to reflect the changes of the other units and of the input:

yn+1
4 = S(w24y

n+1
2 ) .

We see that, given the initial state of the network, for each input sequencex0, x1, x2, . . . , xT the network’s
outputs will yield a sequence of values. The network’s operation is sequential because each output value
will depend on previous values of the input.

It is now easy to see why it is required that in every loop of interconnections there be at least one
discrete-time unit. In a loop formed only by instantaneous units, there would be a never-ending sequence
of updates, always going around the loop.

Training of this kind of recurrent network consists in finding weights so that, for given input sequences,
the network approximates, as closely as possible, desired output sequences. The desired output sequences
may specify target values for all time steps, or only for some of them. For example, in some situations
only the desired final value of the outputs is specified. Different input sequences may be of different
lengths, in which case the corresponding output sequences will also have different lengths. Naturally,
training, test and validation sets will be formed by pairs of input and desired output sequences.

A great advantage of discrete-time recurrent networks is that, as we shall see, they can be reduced
to feedforward networks, and can therefore be trained with ordinary backpropagation. This had already
been noted in the well known book by Minsky and Papert (1969). To see how it can be done, consider
again the network of figure C1.2.17(a). Assume that we construct a new network (figure C1.2.18(a))
where each unit of the recurrent network is unfolded into a sequence of units, one for each time step.
Clearly, this network will always be feedforward since, in the original network, information could only
flow forward in time. The input pattern of this unfolded network will be formed by the sequence of input
valuesx0, x1, x2, . . . , xT, presented all at once to the respective input nodes. The output sequence can also
be obtained all at once, from the respective output nodes. The outputs can be compared with target values
(for those times for which target values do exist), and errors (or, more generally, cost function derivatives)
can be fed into a backpropagation network, obtained from the feedforward network in the usual way. The
only remark that needs to be made, regarding the training procedure, concerns the fact that each weight
from the recurrent network appears unfolded, in the feedforward network (and also in the backpropagation
network) T times. All instances of the same weight must be kept equal, since they actually correspond
to a single weight in the recurrent network. This is again a situation of shared weights, that we have
already seen how to handle: the derivatives relative to each of the instances of the same weight are all
added together, and the sum is used to update the weight (in all its instances). Networks involving both
discrete-time and instantaneous units can also be easily handled. Figure C1.2.18(b) shows the unfolding
of the network of figure C1.2.17(b).

The training method that we have described is normally calledunfolding in time, or backpropagation
through time. It requires an amount of storage that is proportional to the number of units and to the length
of the sequence being trained, since the outputs of the units at intermediate time steps must be stored until
the backward propagation is completed and the cross-products of (C1.2.9) are computed. The total amount
of computation per presentation of an input sequence is O(WT ), whereW is the number of weights in
the network, andT is, as above, the length of the input sequence.

Unfolding in time can clearly be used in the batch and real-time modes, if real-time is understood
to mean that weights are updated once per presentation of an input sequence. In some situations, instead
of having a number of input sequences with the corresponding desired output sequences, one has a single
very long (or even indefinitely long) input sequence, with the corresponding desired output sequence. It
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Figure C1.2.18. The unfolded networks corresponding to the sequential networks of figure C1.2.17.

would then be desirable to be able to make a weight update per time step, without having to wait for the
end of the sequence to update weights. In such cases, unfolding-in-time may become rather inefficient
(or even unusable, if the sequence is indefinitely long). Even in cases where there are several sequences
in the training set, it might be more efficient to perform one update per time step. On the other hand,
if training sequences are long, it may also be desirable not to have to store the values corresponding to
all time steps, as required by the unfolding in time procedure, since these values may consume a large
amount of memory. A few algorithms exist which do not need to wait for the end of the sequence to
compute contributions to gradients, and which require only a limited amount of memory, irrespective of
the length of the input sequence. We will mention only the best known one, often designatedreal-time
recurrent learning (RTRL), which was originally proposed by Robinson and Fallside (1987) under the
name ofinfinite impulse response algorithm, and is best known from later publications of Williams and
Zipser (1989). This algorithm carries forward, in time, the information that is necessary to compute the
derivatives of the cost function, and therefore does not need to store previous network states, and also
does not need to perform backward propagations in time. There are two prices to be paid for this. One is
computational complexity. While, for a fully interconnected network withN units (and thereforeW = N2

weights) unfolding in time requires O(N2T ) operations per sequence presentation, RTRL requires O(N4T )

operations. This quickly makes it impractical for large networks. The other price to be paid is that, if
weight updates are performed at every time step, what is computed is only an approximation to the actual
gradient of the cost function. Depending on the situation, this approximation may be good or bad. For
some problems this is of little importance, but for others it may affect convergence, and even lead the
training process to converge to wrong solutions. A variant of RTRL that deserves mentioning is called the
Green’s function algorithm(Sun et al 1992). It has the advantage of reducing the number of operations
to O(N3T ). However, in numerical implementations it involves an approximation that may affect its
validity for long sequences.

Several examples of the application of unfolding in time to the training of recurrent networks have
appeared in the literature. A very interesting one is described in Nguyen and Widrow (1990), where
a controller is trained to park a truck with a trailer in backward motion. A very early example of an
application to speech was given in Watrous (1987). Examples of the use of RTRL have also appeared in
the literature; for example, for the learning of grammars (Gileset al 1992).

Besides the discrete-time mode, recurrent networks are also sometimes used in a continuous-time
mode. In this case, the outputs of units change continuously in time according to given dynamics. Inputs
and target outputs of the network are then both functions of continuous time, instead of being sequences.
A training algorithm for this kind of network, which is an extension of unfolding in time to the continuous
time situation, was presented in Pearlmutter (1989).

C1.2.8.3 Time-delay neural networks

An architecture that is often used for sequential applications is shown in figure C1.2.19. It consists of
a feedforward neural network that is fed by a delay line which stores past values of the input. In this
case the sequential capabilities of the system do not come from the neural network itself, which is a plain
feedforward one. They come, instead, from the delay line. An advantage of this structure is that it can be
trained with standard backpropagation, since the neural network is feedforward. The disadvantages come
from the facts that the architecture is not recursive and that its memory capabilities are fixed and cannot
be adapted by training. For several kinds of problems, like those involving a long-time memory, this
architecture may need many more weights (and therefore many more training patterns) than a recurrent
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one. Systems of this kind are often designatedtime-delay neural networks(TDNN). They have been
applied to several kinds of problems. See Waibel (1989) for an example of an application tospeech F1.7.2

recognition, in which this architecture is extended by using delay lines at multiple levels, with multiple
time resolutions.

Figure C1.2.19. A time-delay neural network.
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Cruz C S, Rodriguez F, Dorronsoro J R and Ĺopez V 1993 Nonlinear dynamical system modelling and its integration

in intelligent controlProc. Workshop on Integration in Real-Time Intelligent Control Systems(Miraflores de la
Sierra) pp 30-1 to 30-9

Cybenko G 1989 Approximation by superpositions of a sigmoidal functionMath. Control, Signal Syst.2 303–14
Fahlman S E 1989 Fast-learning variations on back-propagation: an empirical studyProc. 1988 Connectionist Models

Summer Schooled D Touretzky, G Hinton and T Sejnowski (San Mateo, CA: Morgan Kaufmann) pp 38–51
Fahlman S E and Lebiere C 1990 The cascade-correlation learning architectureAdvances in Neural Information

Processing Systems 2ed D S Touretzky (San Mateo, CA: Morgan Kaufmann) pp 524–32
Frean M 1990 The upstart algorithm: a method for constructing and training feedforward neural networksNeural

Comput.2 198–209
Funahashi K 1989 On the approximate realization of continuous mappings by neural networksNeural Networks2

183–92
Giles C L, Miller C B, Chen D, Sun G Z, Chen H H and Lee Y C 1992 Extracting and learning an unknown grammar

with recurrent neural networksAdvances in Neural Information Processing Systems 4ed J E Moody, S J Hanson
and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp 317–24

Goldberg K Y and Pearlmutter B A 1989 Using backpropagation with temporal windows to learn the dynamics of the
CMU direct-drive arm IIAdvances in Neural Information Processing Systems 1ed D S Touretzky (San Mateo,
CA: Morgan Kaufmann) pp 356–65

Golub G H and Van Loan C F 1983Matrix Computations(Baltimore, MD: Johns Hopkins University Press)
Guyon I, Vapnik V, Boser B, Bottou L and Solla S A 1992 Structural risk minimization for character recognition

Advances in Neural Information Processing Systems 4ed J Moody, S J Hanson and Lippmann R P (San Mateo,
CA: Morgan Kaufmann) pp 471–9

Hassibi B, Stork D G and Wolff G J 1993 Optimal brain surgeon and general network pruningProc. IEEE Int. Conf.
on Neural Networks(San Francisco, CA) pp 293–9

c© 1997 IOP Publishing Ltd and Oxford University Press Handbook of Neural Computationrelease 97/1 C1.2:28



Multilayer perceptrons

Hopfield J J 1984 Neurons with graded response have collective computational properties like those of two-state
neuronsProc. Natl Acad. Sci. USA 813088–92

Hornik K, Sithcombe M and White H 1989 Multilayer feedforward networks are universal approximatorsNeural
Networks2 359–66

Jacobs R 1988 Increased rates of convergence through learning rate adaptationNeural Networks1 295–307
Krogh A and Hertz J A 1992 A simple weight decay can improve generalizationAdvances in Neural Information

Processing Systems 4ed J E Moody, S J Hanson and R P Lippmann (San Mateo, CA: Morgan Kaufmann) pp
950–7

Lapedes A S and Farber R 1987 Nonlinear signal processing using neural networks: prediction and system modelling
Technical Report LA-UR-87-2662(Los Alamos, NM: Los Alamos National Laboratory)
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