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1
Introduction to Bayesian Decision
Theory

1.1 Introduction

Statistical decision theory deals with situations where decisions have to be
made under a state of uncertainty, and its goal is to provide a rational
framework for dealing with such situations. The Bayesian approach, the
main theme of this chapter, is a particular way of formulating and dealing
with statistical decision problems. More specifically, it offers a method of
formalizing a priori beliefs and of combining them with the available obser-
vations, with the goal of allowing a rational (formal) derivation of optimal
(in some sense) decision criteria.

As can be inferred from the previous paragraph, this book’s introduction
to Bayesian theory adopts a decision theoretic perspective. An important
reason behind this choice is that inference problems (e.g., how to estimate
an unknown quantity) can be naturally viewed as special cases of decision
problems; this way, all the conceptual tools of Bayesian decision theory
(a priori information and loss functions) are incorporated into inference
criteria.

The literature on Bayesian theory is vast and anyone interested in fur-
ther reading is referred to the many excellent textbooks available on the
subject; at the risk of unfairly but unintentionally leaving out important
works, we mention here some books that somehow influenced the authors:
Berger [8], Bernardo and Smith [14], Gelman, Carlin, Stern, and Rubin
[46], Lee [69], and Robert [93]; a not recent, but still useful and insightful
review is the one by Lindley [72]; a short and easily readable summary of
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the main arguments in favor of the Bayesian perspective can be found in
a paper by Berger whose title, “Bayesian Salesmanship,” clearly reveals
the nature of its contents [9]. Also highly recommended by its conceptual
depth and the breadth of its coverage is Jaynes’ (still unfinished but par-
tially available) book [58]. Recent advances are reported in workshops and
conferences (special emphasis should be be given to [13], [11], and [12])
and in several scientific journals (for example, the Journal of the American
Statistical Association and the Journal of the Royal Statistical Society).

Bayesian frameworks have been used to deal with a wide variety of prob-
lems in many scientific and engineering areas. Whenever a quantity is to be
inferred, or some conclusion is to be drawn, from observed data, Bayesian
principles and tools can be used. Examples, and this is by no means an
exhaustive list of mutually exclusive areas, include: statistics, signal pro-
cessing, speech analysis, image processing, computer vision, astronomy,
telecommunications, neural networks, pattern recognition, machine learn-
ing, artificial intelligence, psychology, sociology, medical decision making,
econometrics, and biostatistics. Focusing more closely on the topic of inter-
est to this book, we mention that, in addition to playing a major role in the
design of machine (computer) vision techniques, the Bayesian framework
has also been found very useful in understanding natural (e.g., human)
perception [66]; this fact is a strong testimony in favor of the Bayesian
paradigm.

Finally, it is worth pointing out that the Bayesian perspective is not only
important at a practical application level, but also at deeper conceptual lev-
els, touching foundational and philosophical aspects of scientific inference,
as the title of Rozenkrantz’s book [95] so clearly shows: “Inference, Method,
and Decision: Towards a Bayesian Philosophy of Science”. On this issue,
the book by Jaynes is a fundamental more recent reference [58].

1.2 Statistical Decision Theory

1.2.1 Basic Elements

The fundamental conceptual elements supporting the (formal) theory of
statistical decision making are the following:

• Formalization of the underlying unknown reality. This is done
by considering that all that is unknown but relevant for the decision
maker, the so-called state of nature, can be represented by an entity s
taking values on a state space S. Often, this will be a single unknown
numerical quantity (a parameter), or an ordered set of numerical
parameters (a vector). In other problems, the elements of S may not
be of numerical nature. Throughout most of this chapter, we will
implicitly assume that s is a single quantity.
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• Formal model of the observations. The observations, based on
which decisions are to be made, are possibly random and depend on
the state of nature s. In formal probabilistic terms, this dependence
is expressed by assuming that the observations are a sample x of a
random variable (or process, or vector, or field) X, taking values on
a sample space X , whose probability (density or mass) function, for
x ∈ X , is conditioned on the true state of nature s, i.e., we write
fX(x|s). This probability function appears in the literature under
several different names: class-conditional probability function (usu-
ally in pattern recognition problems, where the observations x are
called features); observation model (typically in signal/image process-
ing applications, where x is usually referred to as the observed signal
or observed image); parametric statistical model, or likelihood func-
tion (terms from the statistics literature but also adopted by other
communities).

• Formal decision rules. These are the goal of decision theory in
the following sense: based on the observations, a decision rule has
to choose an action amongst a set A of allowed decisions or actions.
Formally, a decision rule is a function1 δ(x) from X into A, specifying
how actions/decisions are chosen, given observation(s) x. A set or
class D of allowed decision rules may be specified.

• Quantification of the consequences of the decisions. This is
formally expressed via a loss function L(s, a) : S × A −→ IR, spec-
ifying the “cost” that is incurred when the true state of nature is
s and the chosen decision is a. It is usually required that L(s, a) ≥
Lmin > −∞, often (but not necessarily) with Lmin = 0. Although
L(s, a) is required to be a real valued function, its range does not
necessarily have to be IR; it can be some subset of IR, with typi-
cal examples being IR+

0 and {0, 1}. Sometimes, the consequences are
viewed optimistically (for example, in the economics and business
literature) and, rather than losses, one talks about an utility func-
tion U(s, a) : S × A −→ IR, specifying the “gain” that is obtained
when the state of nature is s, and a is the chosen action. Writing
L(s, a) = −U(s, a) makes it clear that these are two equivalent con-
cepts.

A statistical decision problem is then formalized by specifying this set of
elements {S,A,X , L(s, a),D, fX(x|s)}. It will be considered solved when
a decision rule δ(x) (from D, the set of allowed rules) is chosen such that
it achieves some sort of optimality criterion (associated with the loss func-
tion). Below, we will look more in detail at how this is done, both under
the (so-called) classical (or frequentist) and Bayesian frameworks.

1This notation should not be confused with the Dirac delta function.
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Parameter estimation problems (also called point estimation problems),
that is, problems in which some unknown scalar quantity (real valued) is to
be estimated, can be viewed from a statistical decision perspective: simply
let the unknown quantity be the state of nature s ∈ S ⊆ IR; take A = S,
meaning that the decision rule will output estimates (guesses) of the true
s; design a loss function L(s, a) expressing how much wrong estimates are
to be penalized (usually verifying L(s, s) = 0, and L(s, a) > 0 for any
a 6= s). With this setup, the decision rule will output estimates, denoted
ŝ = δ(x), of the state of nature s; This approach can, of course, be extended
to multidimensional states of nature (when s is a set of unknowns). This
class of problems then contains all types of signal and image estimation
problems, including restoration and reconstruction.

In addition to estimation problems, many other problems in image anal-
ysis and pattern recognition can naturally be cast into a statistical decision
framework. For example, pattern classification is clearly a decision making
problem, where S = A is the set of possible classes; here, x ∈ X is the
observed feature vector which is input to the decision rule δ(x) : X → A,
and fX(x|s) is the class conditional probability function. For example, a
system may have to decide what is the dominant type of vegetation in
some satellite image, denoted x, and then, as an illustration, S = A =
{pine, eucalyptus, oak}. Notice here, the non-numerical, often called cate-
gorical, nature of the set S = A.

Signal detection, so widely studied in the statistical communications
and signal processing literature, can also be interpreted as a classification
problem; see classical references such as [76], [77], [96], [104], and [109],
or more recent accounts in [53], [64], [68], [84], or [98]. The goal here is
to design receivers which are able to optimally decide which of a possi-
ble set of symbols (for example, 0 or 1, in binary digital communication)
was sent by an emitter, from a possibly noisy and somewhat corrupted
received signal. Here again, S = A is the set of possible symbols (e.g.,
S = A = {“bit 0”, “bit 1”}).

Both classification and estimation scenarios, i.e., those where the goal
is to “guess” the state of nature (thus A = S), may be commonly re-
ferred to as inference problems (although this is a non-standard use if the
term inference). The distinguishing feature is the discrete (classification) or
continuous (estimation) nature of sets S and A. Nevertheless, the naming
convention is not rigid; e.g., many situations where S = A is a discrete set
with a large number of values are referred to as estimation problems.

1.2.2 Frequentist Risk Function and Decision Rules

In the frequentist perspective on decision problems, it is assumed that the
(unknown) state of nature s is always the same (it is usually said that s is
a deterministic, albeit unknown, parameter) and that the possible observa-
tions are generated according to the likelihood function fX(x|s). A decision
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rule is then evaluated by how well it is expected to perform when applied
repeatedly; this is formalized by computing, for each of loss function L(s, a)
and decision rule δ(·), the frequentist risk function, naturally defined as the
average loss, given the state of nature s,

R(s, δ(·)) = Rδ(s) = EX [L(s, δ(x))|s] , (1.1)

where

EX [L(s, δ(x))|s] =






∫

X
L(s, δ(x)) fX(x|s) dx ⇐ X is continuous

∑

xi∈X
L(s, δ(xi)) fX(xi|s) ⇐ X is discrete;

(1.2)
(the notation EX [·|s] stands for the expected value, with respect to the
random variable X, given s; see Appendix A).

The central goal of decision theory is to answer the following question:
what is the optimal decision rule for a certain problem? However, the fre-
quentist risk function depends on the true state of nature s (as is clear from
Eq. (1.2)), and thus is unable to provide a simple answer to this question;
choosing an optimal decision rule that minimizes the frequentist risk would
require knowledge of the unknown s. Moreover, each state of nature may
lead to a different optimal decision rule. In more formal terms, it can be
said that the frequentist risk function does not induce a total ordering in
the set of all decision rules: it does not allow a direct comparison of the
performance of two rules, independently of the (unknown) state of nature.

Nevertheless, the frequentist risk function does induce a partial ordering
which is expressed by the concept of admissibility. This concept, in turn, is
supported by the property of domination: a decision rule δ1(·) is dominated
by another rule δ0(·) if:

(a) for any s ∈ S, Rδ0
(s) ≤ Rδ1

(s), and

(b) there exists at least one s0 ∈ S such that Rδ0
(s0) < Rδ1

(s0).

A decision rule is said to be admissible if there exists no other rule that
dominates it. It is clear that a decision rule which is inadmissible should
not even be considered.

Example 1.2.1
This simple example (adapted from [8]) illustrates the strength and weak-

ness of this concept: consider an estimation problem where S = A = IR
with a quadratic loss function L(s, a) = (s− a)2; let the observation model
be univariate Gaussian; more specifically, each observation consists of a
single sample from a Gaussian random variable with mean s and unit vari-
ance fX(x|s) = N (x|s, 1) (where N (x|µ, σ2) denotes a Gaussian probabil-
ity density function (p.d.f.) with mean µ and variance σ2; see Appendix
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A). Consider that the set of allowed decision rules we are interested in is
D = {δk(x) = k x, k ∈ IR+}. The risk function is

Rδk
(s) = EX

[
(s − k x)2|s

]

= s2(1 − k)2 + k2. (1.3)

What conclusions can be drawn from Eq. (1.3)? First, δ1(x) dominates any
δk(x), for k > 1; notice that Rδ1

(s) = 1 and that Rδk
(s) ≥ 1, for any k ≥ 1.

This fact makes all rules δk(x), with k > 1 inadmissible, and only δ1(x)
admissible. But then, on the negative side, observe that for 0 ≤ k ≤ 1, no
rule δk(x) dominates all the others (see Figure 1.1), thus all are admissible;
in particular, notice that the rather unreasonable rule δ0(x) = 0 is also
admissible, because Rδ0

(0) = 0.
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FIGURE 1.1. Frequentist risk functions for several rules of the type δk(x) = k x,
with a Gaussian observation model and under a quadratic loss function (see
Example 1.2.1).

End of Example 1.2.1

There exists a more powerful frequentist concept which sometimes al-
lows deriving decision rules: the minimax risk (associated with a given loss
function L(s, a)) is defined as

inf
δ∈D

sup
s∈S

Rδ(s), (1.4)
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that is, the infimum over all allowed decision rules, of the supremum over
all possible states of nature of the risk function. Notice that the minimax
risk, if it exists, is a constant independent of s. A decision rule δ(·) is said
to be a minimax rule if, in the worst possible case, it achieves the minimax
risk, i.e., if

sup
s∈S

Rδ0
(s) = inf

δ∈D
sup
s∈S

Rδ(s) (1.5)

The reader should not worry too much about the technicalities involved
in these concepts, but rather understand its simple meaning; if only closed
sets are considered for D and S, “inf” and “sup” can be replaced by “min”
and “max”, revealing the origin of the term “minimax”. The concepts of
minimax risk and minimax rule are well understood under a game theoretic
view of statistical decision. Simply imagine “nature” and the “decision
maker” as being involved in a two-person game: “nature” tries to choose
its state s in such a way that it causes the maximum possible average loss,
i.e., maximum risk (thus the “supRδ(s)”), to its opponent; knowing this,
the “decision maker” tries to devise a decision rule tailored to minimizing
the risk in that worst possible situation (thus the “infδ∈D”).

If a unique minimax decision rule exists, then this rule will clearly be
admissible; if it were inadmissible, that would mean that it would be dom-
inated by some other rule, and this would be in contradiction with the
definition of minimaxity in Eq. (1.5). Of course, the converse is not true.
However, it is important to keep in mind that a minimax decision rule may
not exist. Finally, before presenting an example of a minimax rule, we refer
the reader interested in a more complete treatment of minimax analysis to
[8] (particularly, Chapter 5).

Example 1.2.2
Let us reconsider Example 1.2.1, recalling the expression for Rδk

(s) in
Eq. (1.3). Since

sup
s∈IR

Rδk
(s) = sup

s∈IR

{
s2(1 − k)2 + k2

}

=

{
1 ⇐ k = 1
∞ ⇐ k 6= 1

(1.6)

(see also Figure 1.1 to verify that this is true) the minimax risk is

inf
k∈IR+

sup
s∈IR

Rδk
(s) = 1 (1.7)

and the corresponding minimax rule is δ1(x) = x; this is an intuitively
acceptable rule.

End of Example 1.2.2
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1.3 Bayesian Decision Theory

1.3.1 Subjective Probabilities and Degrees of Belief

The Bayesian approach to decision theory brings into play another ele-
ment: a priori knowledge concerning the state of nature s, in the form of a
probability function, usually referred to as “the prior.” Mainly in statistics
texts, priors are often denoted as π(·), but we will not adopt that con-
vention here. Instead, we will use the conventional notation for probability
functions pS(s).

From a conceptual point of view, the Bayesian approach to decision the-
ory implies viewing probabilities as measures of knowledge or belief, the
so-called personal, or subjective, probabilities [24], [30], [31], [58], [97]. Only
by accepting such a view, is it possible to use probabilities to formalize
a priori knowledge. The classical frequency-based interpretation of proba-
bility is clearly inadequate in many situations: for example, suppose that
the unknown state of nature under which a decision has to be made (e.g.,
whether or not to perform surgery) is the presence or absence (a binary
variable) of some disease in a certain patient. Clearly, there is nothing ran-
dom about it: either the patient does or does not have the disease. Any
(probabilistic type) statement such as “there is a 75% chance that the pa-
tient has the disease” has no frequency interpretation; there is no way we
can have “a sequence of outcomes” of that same patient. Another example
is any statement involving “the probability of there being extra-terrestrial
intelligent life in the known universe”. Since there is only one known uni-
verse, there can be no frequency interpretation of such a probability; it
simply expresses a degree of belief or a state of knowledge. Nevertheless,
the statement is perfectly valid under the perpective of subjective probabil-
ity; it expresses quantitatively a degree of personal belief. Several authors
([24], [30], [31], [48], [58], [97]) undertook the task of building formal theo-
ries for dealing with “degrees of belief”; these theories have to be consistent
with standard (Boolean) logic but involve additional aspects allowing them
to deal quantitatively with degrees of belief. It turns out that the “belief
measures” are subject to the classical rules of probability theory, which it-
self does not depend on any frequency interpretation. This fact legitimates
the use of probabilistic tools to formally deal with degrees of belief. The
reader interested in these foundational aspects is encouraged to consult
[58].

Let us then assume that the available knowledge (set of beliefs) about the
unknown state of nature can be formalized by considering it as a random
variable S, characterized by its probability function pS(s), for s ∈ S; this
will be a probability density or mass function, depending on S being a
continuous or discrete set, respectively. In rare cases it can also happen
that S contains both isolated points and continuous subsets, and thus pS(s)
will have to be a mixed probability function including both point masses
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and densities. The terms prior and a priori are meant to stress that the
knowledge they refer to is not provided by the observations, but is somehow
possessed (a priori) by the decision maker (although possibly resulting
from previous observations or experiments). A Bayesian decision problem is
thus defined by the set of elements {S,A,X , L(s, a), fX(x|s), pS(s)}. Again,
the task of the (now Bayesian) decision maker is to derive a decision rule
δ(x) : X → A under some optimality criterion.

1.3.2 A Posteriori Expected Loss and Bayesian Decisions

Let us recall that the frequentist evaluation of the performance of a deci-
sion rule is given by the frequentist risk in Eq. (1.2); this risk is obtained
by averaging the loss function over all possible observations, thus ignoring
that a specific observation is available, whenever a decision has to be made.
A fundamental disadvantage of that measure, which we have already ad-
dressed, is that it depends on the unknown state of nature and therefore
does not induce a total ordering on the set of allowed decision rules; in
other words, it can not be used to derive an optimal decision rule.

The Bayesian approach, on the other hand, proposes a very different
course of action. First of all, it adopts a conditional perspective under
which all the importance is given to the performance of the decision rule
δ(x) for the actual observed data x, not for other possible observations
that might have occurred but did not (see Section 2.14, below, for the
implications of this choice). Secondly, it states that the loss function should
be averaged over the state space S, according to pS(s), since it is the state of
nature s (not the observation x) that is unknown. This rationale naturally
leads to the a posteriori expected loss, conditioned on observation x, as the
fundamental criterion; it is defined as

ρ (pS(s), δ(x)|x) = ES [L(s, δ(x))|x]

=






∫

S
L(s, δ(x)) pS(s|x) ds ⇐ S is continuous

∑

s∈S
L(s, δ(x)) pS(s|x) ⇐ S is discrete.

(1.8)

In Eq. (1.8), pS(s|x) denotes the a posteriori probability (density or mass)
function (also called the posterior); it is obtained via Bayes theorem (or
law) which states (both in the discrete and continuous case) that

pS(s|x) =
fX(x|s) pS(s)

fX(x)
, (1.9)



16 1. Introduction to Bayesian Decision Theory

where

fX(x) =






∫

S
fX(x|s) pS(s) ds, if S is continuous

∑

s∈S
fX(x|s) pS(s), if S is discrete,

(1.10)

is the marginal (or unconditional) probability (mass or density, depending
on whether X is continuous or discrete) function. In some contexts, the
marginal fX(x) is called the predictive distribution because this would be
the probability (mass or density) assigned (predicted) to the particular
observation x given the information carried by the prior.

The probability functions involved in Eqs. (1.9) and (1.10) should, to
be rigorous, be written as pS(s|H), fX(x|s,H), fX(x|H), and pS(s|x,H),
where H is the set of modeling hypotheses under which the prior pS(s|H)
and the likelihood function fX(x|s,H) were built. This would also stress
that, in fact, there are no such thing as unconditional probabilities (or
probability densities); all probability functions are (at least implicitly) con-
ditioned by the (modeling) assumptions and hypotheses under which they
were built. Having said this, we will still not include any reference to H in
our notation unless we want to focus explicitly on the model assumptions.

Bayes’ theorem plays the central role in Bayesian inference: it provides a
formal tool to invert the roles of the unknown s and the observations x, with
respect to how they appear in the observation model (likelihood) f(x|s). In
a sense, it is the general solution to probabilistic inverse problems, through
which a priori probabilities p(s) are updated into a posteriori ones, once
the observations x have been obtained.

The a posteriori expected loss ρ (pS(s), δ(x)|x) is the basic Bayesian cri-
terion for the evaluation of decision rules; the fact that it depends on x is
not a problem, because every time a decision is to be made, an observation
x is in fact available. We stress again that this is one of the fundamental
differences between frequentist and Bayesian approaches; the frequentist
risk function is obtained by averaging over all possible observations, while
the (Bayesian) a posteriori expected loss is a function of the particular
observation at hand.

Finally, the optimal Bayes’ decision is naturally obtained by looking for
the action that minimizes the a posteriori expected loss

δ(x) = arg min
d∈A

ρ (p(s), d|x) , (1.11)

for each the particular observation x ∈ X .

1.3.3 Bayes Risk

A common way of evaluating a decision rule is by computing the so called
Bayes’ risk or integrated risk, r(p(s), δ(·)); this is simply the frequentist risk
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averaged with respect to the unknown state of nature, i.e., the loss function
averaged over S and X , according to the respective probability functions,

r(pS(s), δ(·)) =

∫

S
Rδ(s) pS(s) ds (1.12)

=

∫

S

∫

X
L(s, δ(x)) fX(x|s) pS(s) dx ds

=

∫

S

∫

X
L(s, δ(x)) p

X,S
(x, s) dx ds, (1.13)

where

p
X,S

(x, s) = fX(x|s) pS(s)

= pS(s|x) fX(x) (1.14)

is the joint probability (density or mass) function of the random variables S
and X. One or both integrations have to be replaced by summations in the
case where S or/and X are discrete sets. Exact conditions for the validity
of interchanging the order of integration are given by Fubini’s theorem and
will not be considered here; see, e.g., [3].

The Bayes risk function has the following properties.

• It yields a real number (not a function of s or x) for each decision
rule, thus inducing a total ordering in the set of decision rules; i.e.
they can be compared directly.

• More importantly, the a posteriori expected loss and Bayes risk are
absolutely equivalent, i.e., they lead to the same decision rule. Con-
sidering (without loss of generality) that L(s, a) ≥ Lmin = 0 (and
recalling Eq. (1.13)),

min
δ(x)

r(pS(s), δ(·)) = min
δ(x)

∫

S

∫

X
L(s, δ(x)) p

X,S
(x, s) dx ds

= min
δ(x)

∫

X

(∫

S
L(s, δ(x)) pS(s|x) ds

)
fX(x) dx

= min
δ(x)

∫

X
ρ (pS(s), δ(x)|x) fX(x) dx

=

∫

X

(
min
δ(x)

ρ (pS(s), δ(x)|x)

)
fX(x) dx (1.15)

because if L(s, a) ≥ 0 then ρ (p(s), δ(x)) ≥ 0, and minimizing the
integral of a non-negative function is equivalent to minimizing the
function at each point. Comparing the function inside parentheses in
Eq. (1.15) with Eq. (1.11) makes it clear that both specify the same
decision rule. If L(s, a) ≥ Lmin 6= 0, we use L′(s, a) = L(s, a)−Lmin ≥
0 since two loss functions differing by a constant obviously lead to
the same decision.
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It should be kept in mind that the truly Bayesian criterion is the posterior
expected loss, and not the integrated risk (or Bayes risk); only the posterior
expected loss respects the conditionality principle (see Section 2.14 below),
that is, only relies on the observed data. Widespread use of the integrated
risk as a criterion for deriving Bayesian decision rules is only ratified by
the equivalence property just described.

1.3.4 Admissibility of Bayesian Rules

It is interesting to see how Bayesian decision rules fare with respect to
frequentist performance measures. In fact, it turns out that Bayesian deci-
sion rules can be shown to be admissible (see Section 1.2.2), that being a
reassuring fact.

To see why this is so, consider that S is a discrete and finite set S =
{s1, s2..., sM} and that the prior assigns strictly positive probability to
each possible state of nature in S. Let δ(x) be a Bayes rule, i.e., one that
minimizes the a posteriori expected loss, according to Eq. (1.11). Now as-
sume that this rule was inadmissible (see Section 1.2.2). This would mean
that δ(x) would be dominated by another rule δ′(x); their frequentist risks
would follow Rδ′(si) ≤ Rδ(si), for all si ∈ S, and there would be at least
one state of nature, say sj , such that Rδ′(sj) < Rδ(sj). Now, recall from
Section 1.3.3, that a Bayes’ rule also minimizes the Bayes risk which, ac-
cording to Eq. (1.12), is simply the average of the frequentist risk over all
possible states of nature. Writing the Bayes’ risk for δ′(x),

r(pS(s), δ′(·)) =
∑

si∈S
Rδ′(si)pS(si)

<
∑

si∈S
Rδ(si)pS(si) = r(pS(s), δ(·)), (1.16)

where the strict inequality results from the existence of one sj for which
Rδ′(sj) < Rδ(sj) and the fact that all pS(si) > 0. But this last expression
clearly contradicts the fact that δ(x) is a Bayes’ rule, our starting hypoth-
esis. This shows, by contradiction, that δ(x) can not be inadmissible.

A similar proof can be used in the case where S is a continuous set. It
suffices to assume the condition that the prior does not give zero probability
to any open subset of S (for the same reason that we assumed that no single
element of a discrete S could have zero probability). That condition allows
performing the same steps as in Eq. (1.16), with the summation replaced
by an integral over S. In this case there is another (technical) condition
which is the continuity of the loss function; the reader interested in further
details is referred to [8], [93].

This relation between the concept of admissibility and the Bayes risk
could be naturally expected. Admissibility characterizes a decision rule
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based on how it performs for all possible states of nature, and so does the
Bayes’ risk although in a different way.

1.3.5 Predictive Problems

In practical problems it is often the case that the consequences of a decision
do not depend directly on the unknown state of nature s but rather on the
outcome of another observable y which depends on s. To be concrete, let us
consider a prior pS(s), and an observation model f

X,Y
(x,y|s). Then, from

some observed outcome x, a decision δ(x) is chosen whose loss is measured
by L(y, δ(x)), where y is the next outcome (unobserved at the time when
the decision was chosen) of the random variable Y.

In a typical instance of this scenario, X and Y correspond to two (possi-
bly consecutive) time instants of some discrete-time random process Z(t),
t = 1, 2, ...; i.e., X = Z(t1) and Y = Z(t2) with t2 > t1, and having observed
a particular outcome x = z(t1), the objective is to predict the outcome of
Y = Z(t2). Notice that this formulation also covers the case where x is
a sequence of, say n, past (dependent or independent and not necessarily
consecutive) observations and y the next still unobserved one; it suffices
to write X = [Z(t1 − k1), ...,Z(t1 − kn)] and Y = Z(t1). Another common
setting is to assume that X and Y are conditionally independent (given
s) and identically distributed, and thus the problem is one of estimating
the next outcome of a random variable, given the present observed one.
All problems of this type are called predictive problems, and can easily be
addressed by the standard tools of Bayesian decision theory.

To deal with predictive problems it is necessary to have a predictive ver-
sion of the a posteriori expected loss; this is easily obtained by following
the Bayesian course of action: conditioning on the observed, in this case x,
and averaging over the unknowns, s and y (see Section 1.3.2). According
to these principles, the predictive a posteriori expected loss is given by

ρp (pS(s), δ(x)|x) = ES,Y [L(y, δ(x))|x]

=

∫

Y

∫

S
L(y, δ(x)) pS,Y(s,y|x) ds dy

=

∫

Y
L(y, δ(x))

∫

S
pS,Y(s,y|x) ds dy

=

∫

Y
L(y, δ(x))p

Y
(y|x) dy (1.17)

where

p
Y

(y|x) =

∫

S
pS,Y(s,y|x) ds =

∫

S

f
X,Y

(x,y|s) pS(s)

fX(x)
ds (1.18)
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is the a posteriori predictive density, and

fX(x) =

∫

Y

∫

S
f
X,Y

(x,y|s) pS(s) ds dy (1.19)

is the marginal density of X. Equivalent expressions, with summations
replacing the integrals, may be written for discrete problems.

Observe the meaning of Eqs. (1.17) and (1.19): since the loss function
does not involve the state of nature directly, it is simply integrated out,
leaving only explicit reference to the relevant quantities: the observed x and
the unknown y. Then, the a posteriori predictive density p

Y
(y|x) becomes

the basis of any Bayesian inference. This is recurrent feature of Bayesian
analysis; anything that is unknown but about which we are not interested in
making inferences (does not appear in the loss function) is simply removed
by marginalization.

A particular important case is the one where X and Y are condition-
ally independent (given s) and identically distributed according to some
common probability function, say fZ(z|s); this allows writing

fX,Y(x,y|s) = fZ(x|s) fZ(y|s); (1.20)

as a consequence, the marginal fX(x) becomes simpler to obtain

fX(x) =

∫

S
fZ(x|s) pS(s)

∫

Z
fZ(y|s)dy

︸ ︷︷ ︸
=1

ds =

∫

S
fZ(x|s) pS(s) ds. (1.21)

Notice that this includes the case where we have only one observation
model, say fZ(z|s), and x = (z1, z2, ..., zn) is a sequence of n independent
samples from that observation model, while the goal is to make some in-
ference involving the next (still unobserved) observation. This scenario is
captured by the independence assumption in Eq. (1.20), together with

fX(x|s) =
n∏

j=1

fZ(zj |s)

which can, in turn, be reinserted in Eqs. (1.20) and (1.21).

1.3.6 Inference versus Decision

Although we have introduced the Bayesian framework from a decision the-
oretic point of view, this may be seen by fundamentalist Bayesians as some-
what heretic. It is often defended that the decision making step is outside
the scope of Bayesian approach, whose role would be complete once it pro-
duced an a posteriori probability function; this is often called inference,
in Bayesian parlance, as opposed to decision. From that perspective, the
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Bayesian statistician should just report the a posteriori probability distri-
bution, and refrain from producing any decisions which should be left to the
final user. In fact, choosing a loss function is a highly problem-dependent
issue which turns out, more often than not, to be dominated by computa-
tional tractability consideration (even if this is rarely acknowledged).

Once the a posteriori probability function is obtained, it can be exploited
in many ways; obtaining an estimate or decision that minimizes some loss
function is just one possibility. Another choice is to somehow report a sum-
mary of its main features. The Bayesian viewpoint advocates that, just as
the a priori knowledge is contained in the a priori probability function, all
the knowledge available about the unknown state of nature after observing
data is expressed in the a posteriori probability function. Any reduction of
this function to a single value (e.g., an estimate) causes an irrecoverable
loss of information.

Having said this, we will proceed into the presentation of specific loss
functions; we stress again that only the full a posteriori probability function
contains all the a posteriori knowledge available. Reporting one decision
may be seen as a way of summarizing this posterior by means of a single
point optimally chosen with respect to the loss function being adopted.

1.4 Bayesian Classification

As was mentioned above, many image analysis and most pattern recogni-
tion problems can be classified as statistical classification problems. The
fundamental characteristic here is the non-numerical, that is, the categori-
cal, nature of the unknown.

1.4.1 Introduction

In classification problems, it is assumed that nature takes values on a dis-
crete set S and that the goal is to decide which is the true state of nature
(i.e., we take A = S), given the observation x. There is also knowledge
of fX(x|s), for s ∈ S, which in this context is usually referred to as the
class-conditional observation model. The actual observations are a sample
of the true one, i.e., of fX(x|strue). The prior here is a probability mass
function (since S is discrete), pS(s), for s ∈ S, and the denominator of
Bayes’ theorem (Eq. (1.9)) then appears in its discrete version

fX(x) =
∑

s∈S
fX(x|s)p(s);

notice that this is true, regardless of fX(x) and fX(x|s) being probability
densities (continuous X ) or mass functions (discrete X ).
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1.4.2 Classification Under The “0/1” Loss Function

The 0/1 loss function, for classification problems, assigns zero cost to any
correct decision, and unit cost to any wrong decision,

L(s, a) =

{
1 ⇐ s 6= a
0 ⇐ s = a.

(1.22)

Inserting this definition into the general expression for the a posteriori
expected loss, Eq. (1.8), and then looking for the Bayes’ optimal decision
as given by Eq. (1.11), leads to (recall that S = A)

δ(x) = arg min
d∈A

∑

s∈S
L(s, d)pS(s|x) (1.23)

= arg min
d∈S

([
∑

s∈S
pS(s|x)

]
− pS(d|x)

)

= arg min
s∈S

(1 − pS(s|x))

= arg max
s∈S

pS(s|x) ≡ δMAP(x), (1.24)

which is referred to as the maximum a posteriori (MAP) classifier. In other
words, the optimal Bayes decision rule is to choose the class presenting the
maximum posterior probability, given the particular observation at hand.

Since, for a given observation x, the marginal fX(x) in the denominator
of Bayes’ theorem (Eq. (1.9)) is a constant, the MAP criterion can be
further simplified to

δMAP(x) = arg max
s∈S

fX(x|s) pS(s), (1.25)

which is equivalent to the maximizer of the joint probability function

δMAP(x) = arg max
s∈S

f
X,S (x, s). (1.26)

It is also common to see the logarithmic version of the MAP criterion

δMAP(x) = arg max
s∈S

{log fX(x|s) + log pS(s)} ; (1.27)

this form, probably even more than Eq. (1.25), makes clear that the MAP
decision rule tries to reach a compromise between the a priori expectations
carried by pS(s) and the evidence provided by the data via the likelihood
function fX(x|s).

In binary (two-class) problems, when A = S = {s1, s2}, it is possible to
go a little further beyond the general form of the MAP classifier and write

δMAP(x) =

{
s1 ⇐ l(x) ≥ t
s2 ⇐ l(x) < t

(1.28)
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with

l(x) =
fX(x|s1)

fX(x|s2)
and t =

pS(s2)

pS(s1)
(1.29)

where l(x) is called a likelihood ratio and t is a decision threshold. Notice the
competition between the data evidence (provided by the likelihood ratio)
and the a priori probability ratio.

Example 1.4.1
A classical example of binary decision, in which the “0/1” loss function is

used (for a reason to be made clear below) is the binary detection problem,
as known in the communications literature. In its simplest form, an emitter
outputs one of two constant values, say s0 and s1, representing, respectively,
the “0” and “1” binary digits; their (known) a priori probabilities are p0

and p1 = 1 − p0, respectively. Each digit is transmitted through a noisy
channel that adds to it a sample of a Gaussian random variable of zero
mean and variance σ2; this is the simplest, but by far the most common,
model for channel noise in digital communications. The corresponding class-
conditionals of the received value x, are then fX(x|s0) = N (x|s0, σ

2) and
f(x|s1) = N (x|s1, σ

2). Due to the exponential nature of the Gaussian p.d.f.
it is more convenient to work here with the logarithmic version of Eq. (1.29),
which, after simple manipulations yields

δMAP(x) =

{
s0 ⇐ l(x) ≥ t
s1 ⇐ l(x) < t

(1.30)

with
l(x) = (x − s1)

2 − (x − s0)
2 (1.31)

and

t = 2σ2 log

(
p(s1)

p(s0)

)
. (1.32)

Notice that l(x) measures the difference between the squared distances
from the observed value to s1 and s2. We will examine this problem in
more detail in Example 1.4.10 below.

End of Example 1.4.1

1.4.3 A Special Case: Gaussian Observations

An exhaustively studied family of classification problems is that where
the class conditionals (the likelihoods) are (possibly multivariate) Gaussian
densities. From a pattern classification perspective, [37] is the classical ref-
erence; more recent texts (of varying technical depth) include [16], [34],
[38], [75], and [87]. References [76], [77], [96], [104], and [109] are classical
and often cited fundamental texts from the communications/signal detec-
tion point of view (for more recent texts, see also, e.g., [53], [64], [68], [84],
or [98]).
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Example 1.4.1 considered the simplest member of that family: univariate
Gaussian observation with a common variance. For an M−class problem,
with S = {s1, s2, ...sM}, if the observations are n-dimensional vectors (i.e.,
X = IRn) the Gaussian likelihoods are

fX(x|si) =
1√

(2π)n det(Ci)
exp

{
−1

2
(x − µi)

T
C−1

i (x − µi)

}
. (1.33)

In Eq. (1.33), (·)T denotes vector transpose and det(·) stands for the de-
terminant of a matrix; each µi is the n−dimensional mean vector corre-
sponding to class si,

µi = EX [x|si]

and each Ci is the covariance matrix associated with the observations from
class si, defined as

Ci = EX

[
(x − µi)(x − µi)

T |si

]
.

This particular form allows rewriting the MAP classifier from Eq. (1.27),
using natural logarithms and dropping constants, as

δMAP(x) = (1.34)

arg max
si∈S

{
2 log pS(si) − log det(Ci) − (x − µi)

T
C−1

i (x − µi)
}

.

This form can be further simplified in the following two special cases:

Independent observations with common variance: A scenario where
only the mean is assumed to differ from one class to another, and the
observations are independent with equal variance σ2, is described by
taking Ci = σ2I, for i = 1, 2, ..,M (where I denotes an identity
matrix). This is a common model in signal processing and commu-
nications where it is known as independent additive white Gaussian
noise (IAWGN) channel (here, independent refers to the fact that the
noise characteristics are independent of the true class); notice that
such a model results if we assume that, given some si, the observa-
tion model is X = µi + N, where N is a n−dimensional vector of
independent zero-mean Gaussian random variables with variance σ2.
Clearly, the terms log det(Ci) are all equal and can be dropped from
Eq. (1.34). Also, C−1

i = I/σ2 which results in the following simpler
classifier:

δMAP(x) = arg max
si∈S

{
2σ2 log pS(si) − (x − µi)

T
(x − µi)

}

= arg min
si∈S

{
−2σ2 log pS(si) + ‖x − µi‖2

}
, (1.35)
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where ‖x − µi‖2
denotes the squared Euclidean distance between x

and µi. This form makes it clear that the classifier is finding a compro-
mise between selecting the class whose mean µi is closest to the ob-
servation x and the a priori probability of that class. Notice how the
criterion derived in Example 1.4.1 is a simple instance of this result.
Although it may not be apparent at first sight, there are still some
constant terms (with respect to the classes) in Eq. (1.35) which can

be dropped; to see this, notice that ‖x − µi‖2
= ‖x‖2+‖µi‖2−2xT µi

and that, in the presence of an observation x, the first term ‖x‖2 is a
constant. We can then reduce the MAP classifier to its simplest form

δMAP(x) = arg max
si∈S

{xT µi + σ2 log pS(si) − ‖µi‖2/2︸ ︷︷ ︸
βi

}; (1.36)

Notice that the classifier has to simply compute the inner product
xT µi of the observed vector x with each of the µi, add a class-
dependent bias βi, and choose the largest result. Classifiers of this
form are called linear classifiers because the only operations involv-
ing the observed data (inner products) are linear ones.

Dependent observations with common covariance: In this next most
simple configuration, it is assumed that although the observations are
not independent of each other, all covariance matrices are the same,
Ci = C, i = 1, 2, ...M . From a signal processing perspective, this
models what is called independent (from the class) additive colored
(non-white) Gaussian noise (IACGN) channel. This model is applica-
ble if, given some si, the observation model is X = µi + N, where N
is now a n−dimensional vector of mutually dependent (or non-white,
or colored) zero-mean Gaussian random variables with covariance
matrix C. Since Ci = C, it is still possible to drop the (constant)
log det(Ci) term and write

δMAP(x) = arg max
si∈S

{
2 log pS(si) − (x − µi)

T
C−1 (x − µi)

}

= arg min
si∈S

{
−2 log pS(si) + ‖x − µi‖2

C

}
(1.37)

where
‖x − µ‖2

C
≡ (x − µ)

T
C−1 (x − µ)

is called the squared Mahalanobis distance. We can then drop con-
stant terms and arrive at

δMAP(x) = arg max
si∈S

{xT
(
C−1µi

)
︸ ︷︷ ︸

αi

+ log pS(si) − ‖µi‖2
C/2︸ ︷︷ ︸

βi

},

δMAP(x) = arg max
si∈S

{xT αi + βi}, (1.38)



26 1. Introduction to Bayesian Decision Theory

which is still a linear classifier (compare it with Eq. (1.36)).

Dependent observations with covariances differing by a scale factor:
This is a slight variation from the last case. Consider that the covari-
ance matrices of the classes only differ from each other by some scale
factor, that is, we can write Ci = γiC. In this case,

log det(Ci) = log det(γiC) = n log γi + log det(C).

Since log det(C) is a constant, we still obtain a linear classifier of the
form

δMAP(x) = arg max
si∈S

{xT αi + βi}, (1.39)

with the αi and βi now given by

αi = C−1µi

βi = γi log pS(si) −
1

2
‖µi‖2

C − 1

2
nγi log γi. (1.40)

Example 1.4.2
Let us recall Example 1.4.1, but now consider that each binary digit is

represented by a previously specified sequence of n values (i.e., a discrete
signal) rather than one single value. Let the sequence representing bit “0”
be {s0(1), ..., s0(n)} and that associated with bit “1” be {s1(1), s1(2), ...s1(n)}.
These values can be collected and stacked into two vectors, µ0 and µ1.
As in example 1.4.1, transmission takes place through a noisy channel
that adds (to all values sent through it) independent samples of a Gaus-
sian random variable of zero mean and variance σ2 (white noise). De-
noting by x the sequence of values observed by the receiver, the class-
conditional probability density functions are fX(x|s0) = N (x|µ0, σ

2I) and
fX(x|s1) = N (x|µ1, σ

2I). The notation N (x|µ,C) now stands for a mul-
tivariate Gaussian with mean vector µ and covariance matrix C. This is
clearly a (binary) classification problem with Gaussian likelihood falling
into the first special category “independent observations with common
variance” and so the optimal Bayesian detector is linear and given by Eq.
(1.36).

If the noise is not white, i.e. if the n consecutive noise samples are not
independent (the covariance matrix C is not a diagonal matrix), the signal
detection problem falls into our second special category “dependent obser-
vations with common covariance”. The optimal Bayes’ detector is then the
one in Eq. (1.38).

End of Example 1.4.2

1.4.4 General Costs

It is obviously possible to consider a more general cost structure than the
simple “0/1” cost function. For any M − class problem, where A = S =
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{s1, s2, ...sM}, an M × M cost matrix L can be defined where element
Li,j = L(si, sj) specifies the cost associated with choosing sj when the
true class was si. Although this does not lead to as simple a criterion as
the MAP, many situations require this additional possibility. A classical ex-
ample of this this type of situation is one of medical decision making: the
unknown state of nature corresponds to the presence or absence of some se-
rious disease (let us write S = {“disease”, “no disease”}), which, if surgery
is not performed becomes terminal; the decision here is whether or not to do
the surgery (so A = {“surgery”, “no surgery”}). It is natural in such a situ-
ation to take L(“disease”, “surgery”) = 0, L(“no disease”, “no surgery”) =
0, and L(“disease”, “no surgery”) ≫ L(“no disease”, “surgery”) expressing
the fact that the consequences of not performing surgery on a patient that
does have the disease are more serious than those of performing it on a
patient that turns out not to have it. In the signal detection literature,
these situations are sometimes called “miss” and “false alarm”.

In the binary case, it is simple to show that the threshold in Eq. (1.29)
can be modified as

t =
pS(s2)

pS(s1)
· L(s2, s1) − L(s2, s2)

L(s1, s2) − L(s1, s1)
. (1.41)

This expression shows how the a priori probabilities and the cost structure
(the consequences) are combined to yield a decision threshold. It is easy
to find this type of reasoning in everyday life, i.e., weighting probabilities
against consequences. The chances of wining a lottery are extremely low;
however, the cost of not wining is also very low, while the consequences
of wining are extremely good; this is why people do buy lottery tickets.
As another example of the weighting of consequences versus probabilties,
who wouldn’t be willing to play some game where the chances of winning
are 5/6? So, why is it so difficult to find people willing to play Russian
roulette?

In general M-ary situations, if no particular structure is assumed for the
cost matrix, it is not possible to further simplify Eq. (1.23).

Example 1.4.3
Let us now consider a less technically oriented example. Consider that

someone is betting on the outcomes of coin tosses, owned and tossed by a
friend. The first few outcomes are all heads, and the player starts suspecting
that the coin is double-headed; however, he had some a priori confidence
on the honesty of his friend. Moreover, he must take into account the cost
of a wrong decision; if he says “stop, this is a double-headed coin!”, and
the coin turns out to be a fair one, that will cost him the other person’s
friendship; whereas, if the coin is in fact double-headed and he says nothing,
that will only cost him a small amount of money. The question that has to
be answered is how many consecutive heads should be allowed before the
coin is declared double-headed. Let us see how this can be approached with



28 1. Introduction to Bayesian Decision Theory

Bayesian decision tools. Firstly, the two possible states of nature are simply
S = {s1, s2}, where s1 = “double-headed coin” and s2 = “fair coin”. The
a priori knowledge about the coin owner’s (dis)honesty is expressed by
pS(s1) = p1 (with p2 = pS(s2) = 1 − pS(s1)). A reasonable cost structure,
in view of what was said above, is L(s1, s1) = L(s2, s2) = 0 and L(s2, s1) ≫
L(s1, s2). Now let x = (x1, x2, ..., xn), with each xi ∈ {“heads”, “tails”}, be
the observed sequence of outcomes. The two class-conditional probability
functions are

fX(x|s1) =

{
1 ⇐ x is a sequence of n heads
0 ⇐ x has at least one tail outcome,

(1.42)

and fX(x|s2) = (1/2)n, for any sequence x. The resulting a posteriori
probability function is

pS(s|x) ∝






{
p1 ⇐ x is a sequence of n heads
0 ⇐ x has at least one tail outcome,

}
⇐ s = s1

(1 − p1)
(

1
2

)n ⇐ s = s2,

where we have used “∝” because the expression is not normalized. What
MAP decisions can be obtained from this? Clearly, if the observed sequence
is not all heads, then s1 gets a posteriori zero probability, as would be
expected since a double-headed coin can not produce tail outcomes, and
s2 is the only possible decision. But, returning to the above scenario, what
happens when a sequence of heads is observed? How should this data be
balanced against our prior belief in the fairness of the coin, and the given
cost structure? Denoting as xh(n) a sequence of n heads, we obtain the
following a posteriori expected losses

ρ(pS(s), s1|xh(n)) = L(s2, s1)(1 − p1)

(
1

2

)n

(1.43)

ρ(pS(s), s2|xh(n)) = L(s1, s2)p1; (1.44)

and s1 is chosen if ρ(pS(s), s1|xh(n))/ρ(pS(s), s2|xh(n)) < 1. Simple ma-
nipulation yields the following rule: decide for s1 if

n > log2

p2

1 − p2
+ log2

L(s2, s1)

L(s1, s2)
. (1.45)

This rule quantifies how much “benefit of the doubt” should be granted, as
a function of the amount of a priori belief p2 in the fairness of the coin, and
on how the player weights the money he is loosing against the friendship
which he may loose. Quotients of the type p/(1 − p) are usually known
as odds ratios. Finally, just to get a concrete number, let us assume that
the player was 80% sure about the honesty of his friend, thus p2 = 0.8.
Moreover, he weights his friendship to be worth 8 times more than the
money he may loose, then L(s2, s1)/L(s1, s2) = 8. With this number, the
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player should wait until more than five consecutive heads appear before
declaring that the coin is double-headed.

End of Example 1.4.3

1.4.5 Discriminant Functions and Decision Regions

In classification problems it is quite common to express the decision rule
with the help of the so-called discriminant functions. Let us consider an
M-class classification problem, with S = A = {s1, . . . , sM}, and a decision
rule δ(x) obtained from some (not necessarily Bayesian) criterion. Consider
now a set of M real functions {gi(x) : X → IR, i = 1, 2, ..,M}, which verify
the following relation with δ(x):

δ(x) = si ⇔ gi(x) > gj(x), ∀j 6=i, (1.46)

that is, given x, class si is chosen when the corresponding discriminant
function at that point is greater than all the other ones.

For a classification problem under a “0/1” loss function, the discrimi-
nant functions can obviously be set to gi(x) = pS(si/x), or to gi(x) =
log (pS(si/x)), or, in fact, to any monotonic increasing function of pS(si/x);
any such function will preserve the relative magnitudes of the several p(si/x),
for i = 1, 2, ..M.

The decision rule (or, equivalently, the discriminant functions) partitions
the observation space X into a set of decision regions {Ri, i = 1, . . . ,M},
according to

Ri = {x ∈ X : δ(x) = si} (1.47)

= {x ∈ X : gi(x) > gj(x),∀j 6=i} . (1.48)

These regions are mutually disjoint, i.e.

Ri

⋂
Rj = φ,∀i6=j , (1.49)

with φ denoting the empty set, since δ(x) is a (well defined) function. They
are also exhaustive, i.e.,

M⋃

i=1

Ri = X , (1.50)

because the decision rule is defined for all points of the observation space
X .

Example 1.4.4
The decision rule for the binary detection problem of Example 1.4.1 can

easily be rewritten in such a way that the decision regions appear explicitly.
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After some simple manipulations (assuming s0 > s1) we can rewrite Eq.
(1.29) as

δMAP(x) =

{
s0 ⇐ x ≥ t
s1 ⇐ x < t

(1.51)

with

t =
s0 + s1

2
− σ2 log (p1/p0)

s1 − s0
. (1.52)

Eqs. (1.51) and (1.52) define a splitting of the real line into two regions
R0 = {x : x ≥ t} and R1 = {x : x < t} separated by a threshold value
(see Figure 1.7).

End of Example 1.4.4

Example 1.4.5
Let us now consider a binary decision problem (S = {s1, s2}), where

the two class-conditional likelihoods are bivariate (i.e., X = IR2) Gaussian
with different covariances, i.e., fX(x|s1) = N (x|µ1,C1) and fX(x|s2) =
N (x|µ2,C2) (see Eq. (1.33)). Let µ1 = [3 3]T , µ2 = [6 6]T , and

C1 =

[
1.2 −0.4
−0.4 1.2

]
C1 =

[
1.2 0.4
0.4 1.2

]
. (1.53)

The two corresponding class-conditional densities are plotted in Figure 1.2
(of course these functions are defined for x ∈ IR2, not just on the square
region shown in the plots).
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FIGURE 1.2. The two class-conditional Gaussian densities considered in Example
1.4.5 (see text).

To gain some insight into the aspect of the decision regions and into
how they depend on the a priori probabilities pS(s1) ≡ p1 (notice that
pS(s2) = 1−pS(s1)), Figure 1.3 plots the boundary between R1 and R2 for
several values of p1. The decision region R1 includes all the points below
the boundary while R2 is its complement. Notice how increasing p1 pushes
the boundary away from µ1; observe also that these boundaries are not
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straight lines, which is due to the fact that the two covariance matrices are
different.
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FIGURE 1.3. Boundary between the two decision regions in Example 1.4.5, for
several values of the a priori probability pS(s1).

End of Example 1.4.5

In the case of the linear decision rules for M-ary classification problems
with Gaussian class-conditional densities of common covariance, studied in
Section 1.4.3, the decision regions can be obtained explicitly. Notice that
in these cases, the discriminant functions can be directly identified in Eqs.
(1.36) and (1.38) and have the general form

gi(x) = xT αi + βi. (1.54)

To see how the decision regions look, we start by making the observation
that any M-ary decision problem can be solved by solving all the partial 2-
class problems it contains; in other words, if it is always possible to choose
a winner from any pair of hypotheses, then it is possible to find a final
winner (for example, in a 4-class problem, if a is better than b, and c is
better than d, and c is better than a, then c is better than a, b, and d). So
let us first understand which kind of decision regions are associated with
any 2-class problem of the type: choose si or sj? Clearly, si is chosen over
sj when gi(x) > gj(x), i.e., when

xT (αi − αj) + (βi − βj) > 0. (1.55)

This condition can be rewritten as (see [38])

(αi − αj)
T (x − x0) > 0, (1.56)
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where

x0 =
αi + αj

2
− σ2(αi − αj)

‖αi − αj‖2
log

pS(si)

pS(sj)
. (1.57)

The inequality in Eq. (1.56) splits the observation space X = IRn into two
semi-spaces separated by a hyperplane; this hyperplane is perpendicular to
the straight line from αi to αj and contains point x0 which is somewhere
on that line. Notice that if pS(si) = pS(sj), x0 is located halfway between
αi and αj ; increasing pS(si) pulls the hyperplane away from αi making
the choice for si more likely. Notice that Eq. (1.52) was simply a scalar
version of Eq. (1.57). Finally, putting all these 2-class criteria together to
yield the complete M-ary decision rule, shows that the decision regions are
intersections of semi-spaces separated by hyperplanes, resulting in piece-
wise hyper-planar boundaries. A deeper look at these decision regions and
separating hyperplanes can be found in several pattern recognition refer-
ences; see, e.g., [38] for several very interesting illustrations and examples.
For illustration purposes only, we include some simple examples.

Example 1.4.6
Let us now return to the binary decision problem of Example 1.4.5, but

now letting the class-conditional covariance matrices be equal

C1 = C2 =

[
1.2 0.4
0.4 1.0

]
(1.58)

The corresponding class-conditional densities are now plotted in Figure 1.4.
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FIGURE 1.4. The two class-conditional Gaussian densities considered in Example
1.4.6 (see text).

The boundary between the decision regions (for several values of pS(s1))
is plotted in Figure 1.5. As in Example 1.4.5, R1 includes all the points be-
low the boundary while R2 is its complement. Notice that these boundaries
are now straight lines, as a consequence of the fact that the two covariance
matrices are equal. In higher dimensions, the boundaries are hyper-planes
(straight-lines, in 2 dimensions).
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FIGURE 1.5. Boundary between the two decision regions in Example 1.4.6, for
several values of the a priori probability pS(s1).

End of Example 1.4.6

Example 1.4.7
In M-ary classification problems where all the observations are indepen-

dent and have common variance (that is, all class-conditional covariance
matrices are equal to σ2I), we have seen in Eq. (1.35) that the classifier
finds a compromise between selecting the class whose mean is closer to the
observed data vector and whose a priori probability is higher. In the case
where all the classes are a priori equiprobable, this reduces to a nearest
class, or minimum distance, classification rule; the corresponding decision
regions are in this case defined as

Ri = {x :‖ x − µi ‖<‖ x − µj ‖, j 6= i}.

As we have just seen, since the covariance is the same for all classes,
the boundaries between these regions are hyper-planar and define what is
known as a Voronoi partition; the corresponding regions are called Voronoi
regions. In Figure 1.6, an example of such a partition is shown; it is a 10-
class problem, and the class-conditional means are µ1 = [1, 0]T , µ2 =
[0, 1]T , µ3 = [−1, 0]T , µ4 = [0,−1]T , µ5 = [2, 2]T , µ6 = [−2,−2]T ,
µ7 = [−2, 2]T , µ8 = [2,−2]T , µ9 = [4, 4]T , and µ10 = [−4,−4]T .

End of Example 1.4.7

The Gaussian observation model is not the only one leading to linear
discriminants and linear classifiers; in the next two examples we consider
two other such cases.

Example 1.4.8
Consider the problem of deciding which one among a given set of radioac-

tive substances S = {s1, s2, ..., sM} is contained in a given sample. To this
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FIGURE 1.6. Voronoi regions corresponding to the points listed in Example 1.4.7;
the black dots are located at the class-conditional means.

end, a set of n measurements is performed. In each of these, the number
of emissions xj is counted during a period Tj (seconds), for j = 1, 2, ..., n,
with the intervals Tj being possibly different from each other. Each sub-
stance is characterized by its emission rate λi (emissions/second), and it
is known that the emission process obeys a Poisson distribution (see Ap-

pendix A). Letting x = (x1, x2, ..., xn)
T

denote the vector of counts (the
observed data), assumed mutually independent, the class-conditional prob-
ability functions are

fX(x|si) =

n∏

j=1

e−λiTj (λiTj)
xj

xj !
. (1.59)

Inserting this into the (natural) logarithmic version of the MAP classifier
(Eq. (1.27)) yields (after dropping constants)

δMAP(x) = arg max
si∈S




log(λi)

n∑

j=1

xj − λiT + log pS(si)




 , (1.60)

where T = T1 +T2 + ...+Tn is the total observation time; these are clearly
linear discriminant functions.

End of Example 1.4.8

Example 1.4.9
A final example of a decision problem involving linear discriminants con-

siders a set of M (not necessarily fair) coins S = {s1, s2, ..., sM}; each of
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these coins is characterized by its probability of heads outcomes θi (as-
sumed known). The objective is to decide which of the coins was used
in an observed sequence of n tosses, whose outcomes are denoted as x =
(x1, x2, ..., xn); here xi = 1 and xi = 0 represent heads and tails outcomes,
respectively. The n tosses being independent, the observation model is

fX(x|si) =
n∏

j=1

θ
xj

i (1 − θi)
1−xj = θh

i (1 − θi)
n−h (1.61)

which is a Bernoulli distribution, where h = x1 + x2 + ... + xn is the total
number of heads outcomes. Again using logarithms, we can write the MAP
classifier as

δMAP(x) = arg max
si∈S

{
h log

θi

1 − θi
+ n log(1 − θi) + log pS(si)

}
, (1.62)

which is linear in h (the observed heads count).

End of Example 1.4.9

1.4.6 Error Probabilities

Let us consider the Bayes’ risk (or integrated risk), as defined in Eq. (1.15),
for a binary classification problem (i.e., a problem where A = S = {s1, s2}
and pS(s1) = 1 − pS(s2)) for which a “0/1” loss function is adopted. This
risk can be rewritten as

r(p(s), δ(x)) =

∫

X
[L(s1, δ(x)) p(s1|x) p(x)

+L(s2, δ(x)) p(s2|x) p(x)] dx

=

∫

R2

p(s1|x) p(x) dx +

∫

R1

p(s2|x) p(x) dx

= p(s1)

∫

R2

p(x|s1) dx + p(s2)

∫

R1

p(x|s2) dx, (1.63)

where R1 and R2 are the decision regions associated with s1 and s2, re-
spectively. The two integrals in Eq. (1.63) have the following clear meaning:
they are the probabilities of making incorrect decisions (errors) conditioned
on each of the two possible states of nature. In fact, the first integral in
Eq. (1.63) simply expresses the probability that an observation produced
under s1 will fall inside R2 which is the decision region associated with s2;
the second integral quantifies the probability of the second type of error.
Accordingly, Eq. (1.63) can be rewritten as

r(p(s), δ(x)) = P (“error”|s1) p(s1) + P (“error”|s2) p(s2)

= P (“error”). (1.64)
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This interpretation can be extended to M-ary classification problems,
under the “0/1” loss function, with Eq. (1.63) generalizing to

r(p(s, δ(x))) =

M∑

i=1

p(si)

∫

RC
i

p(x|si) dx

=

M∑

i=1

P (“error”|si) p(si)

= P (“error”), (1.65)

where RC
i denotes the complement of the decision region Ri, i.e.

RC
i =

⋃

j 6=i

Rj . (1.66)

It can then be stated that the Bayes’ risk associated with the “0/1” loss
function equals the probability of error; as an immediate corollary, a de-
cision rule minimizing the Bayes’ risk (and consequently the a posteriori
expected loss) under a “0/1” loss function is also minimizing the probabil-
ity of error. This is, of course, not at all surprising: the “0/1” loss function
can be seen as the indicator function of the “error” event2

“error” = {(s,x) ∈ S × X : δ(x) 6= s} ⊆ S × X , (1.67)

because

L(s, δ(x)) =

{
1 ⇐ (s,x) ∈ “error”
0 ⇐ (s,x) 6∈ “error”,

(1.68)

and the probability of an event is equal to the expected value of its indicator
function (see Appendix A).

For general (not necessarily binary) problems (M ≥ 2), it is some-
times simpler to obtain the probability of error via P (“error”) = 1 −
P (“correct decision”), with

P (“correct decision”) =
M∑

i=1

P (“correct decision”|si) p(si)

=

M∑

i=1

p(si)

∫

Ri

p(x|si) dx

=
M∑

i=1

∫

Ri

p(si|x) p(x) dx

=

∫

X

(
max

i=1,...,M
p(si|x)

)
p(x) dx, (1.69)

2Recall that an event is a subset of the sample space, and that an indicator function
for a given set is one that equals one for points in that set, and zero for points outside

the set.
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where the fact that Ri = {x : p(si|x) > p(sj |x), j 6= i} was used.
The probability of error is an important and useful characterization of the

performance of a decision rule for a given classification problem. However,
the probability of error is very difficult to compute, and exact closed-form
expressions are only attainable in some very simple situations. Closed-form
expressions for P (“correct decision”) can only be obtained (even in the
binary case) in very simple and particular scenarios, with the nonlinear
term (max p(si|x)) being mainly responsible for this difficulty. This has
stimulated a considerable amount of research in the derivation of bounds
and approximations for this term (see standard texts on statistical pattern
recognition, such as [75] or [45], and [4] for more recent results and further
references).

Example 1.4.10
For a scalar Gaussian observation, these probabilities of error can be

easily visualized. Let us return to the the binary detection/classification
problem in Example 1.4.1, with (a priori) probabilities p0 and p1 = 1− p0.
Recall that the likelihood functions are p(x|s0) = N (x|s0, σ

2) and p(x|s1) =
N (x|s1, σ

2); the decision regions in this case are given by (see Example
1.4.4) R0 = {x : x ≥ t} and R1 = {x : x < t}, with the threshold t being
given by Eq. (1.52). It is now easy to write, from Eq. (1.63),

P (“error”) = p1 P (“error”|s1) + p0 P (“error”|s0)

= p1

∫ +∞

t

p(x|s1) + p0

∫ t

−∞
p(x|s0). (1.70)

FIGURE 1.7. Illustration of the probabilities of error for a simple binary classi-
fication problem with Gaussian likelihood functions.

This probability of error is given by the sum of the two shaded areas
depicted in Figure 1.7; the different heights of the two Gaussians means that
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p0 > p1. Notice how any other value of t would lead to a higher probability
of error: for example, if we move t to the left, p0P (“error”|s0) decreases
by some amount but p1P (“error”|s1) increases by a larger amount. It is
simple to show that the optimal threshold given by Eq. (1.52) is the abscissa
where the two Gaussian functions intersect each other, as suggested by the
previous argument.

Notice that even in this very simple case, it is not possible to obtain an
elementary analytical expression for the probability of error; all that can
be done is rewrite Eq. (1.70) as

P (“error”) = p1 erfc

(
t − s1

σ

)
+ p0 erfc

(
s0 − t

σ

)
, (1.71)

where

erfc(x) ≡ 1√
2π

∫ +∞

t

e−
u2

2 du (1.72)

is called the complementary error function. This function, although only
computable through numerical integration, is widely available in tables
and in most mathematical software libraries and packages. One important
particular instance of Eq. (1.71) arises when p0 = p1; in that case (see Eq.
(1.52)) the threshold becomes t = (s0 + s1)/2 which implies that (t− s1) =
(s0 − t) = (s0 − s1)/2 and Eq. (1.71) simplifies to P (“error”) = erfc((s0 −
s1)/2σ) which is plotted in Figure 1.8. Notice how it rapidly plunges to very
small values as soon as its arguments becomes larger than one (i.e., when
the difference between s0 and s1 is larger than twice the noise standard
deviation). Observe also that as the quotient between (s0 − s1) and σ
approaches zero, the probability of error approaches 1/2 (not 1). In the
communications literature, the quotient (s0 − s1)/σ is usually called the
signal to noise ratio (SNR) and measured in dB according to SNRdB =
20 log10(s0 − s1)/σ.

End of Example 1.4.10

Example 1.4.11
We now look once more at the situation described in Example 1.4.2.

Let us consider that bit “0” is represented by a null (length n) sequence,
µ0 = [0, 0, ...0]T , while bit “1” corresponds to a simple constant sequence,
say, µ1 = [A,A, ..., A]T . As before, the channel adds (to all transmitted
values) independent Gaussian noise samples of zero mean and variance σ2,
and the sequence of received values is denoted as x = [x1, x2, ..., xn]T . The
optimal Bayesian detector is linear and is given by Eq. (1.36); some simple
manipulations allows representing this classification rule in a simpler form

δMAP(x) =

{
bit “0” ⇐ l(x) ≤ t
bit “1” ⇐ l(x) > t

(1.73)
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FIGURE 1.8. The erfc(u) function. Left plot: from u = 10−3 to u = 1; on the
right: for u from 1 to 20.

where

l(x) =
1

n

n∑

j=1

xj (1.74)

and the threshold t is

t =
A

2
+

σ2

nA
log

p0

p1
. (1.75)

The meaning of this criterion is clear: if p0 = p1, the sample average of
the observations is being compared with A/2; increasing p0 will increase
this threshold, pushing it away from bit “0”, or vice-versa. To compute
the probability of error, let us assume that p0 = p1; then, the threshold
is simply A/2, and P (“error”) = P (“error”|bit “0”) = P (“error”|bit “1”),
where

P (“error”|bit “0”) = P [l(x) > t|bit “0”] =

∫ ∞

A
2

fT (t|bit “0”)dt. (1.76)

Since t is the sample mean of the observations given that bit “0” was sent,
it is a sample of a Gaussian random variable of zero mean and variance
σ2/n, and Eq. (1.76) can be rewritten as an erfc(·) function

P (“error”) = erfc

(
A
√

n

2σ

)
(1.77)
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(see Figure 1.8), whose meaning is clear: if the length n of the “signal”
increases, the probability of error decreases. This type of problem has been
exhaustively studied in the communications literature, where being able to
compute error probabilities is of extreme importance.

End of Example 1.4.11

Recall that when the class-conditional densities are Gaussian with a com-
mon covariance matrix C1 = C2 = C, the resulting classifier can be ex-
pressed via a scalar linear function of the observations (Eq. (1.36)). This
fact allows obtaining a simple expression for the probability of error in
the two-class (binary) case, exploiting the fact that the linear discriminant
function is, for each class, still a Gaussian random variable. Omitting the
details (see, for example, [45] or [38]), it is easy to show that the probability
of error is given by:

P (“error”) = erfc

(
d

2

)
(1.78)

where d is the Mahalanobis distance between the two classes:

d = ‖µ1 − µ2‖C =
√

(µ1 − µ2)
T C−1(µ1 − µ2).

Notice that Eq. (1.77) is nothing but a particular case of Eq. (1.78) because
with C = σ2I, µ1 = 0, and µ2 = [A,A, ..., A]T (n-dimensional), then

‖µ1 − µ2‖C =
A
√

n

σ
.

1.5 Bayesian Estimation

1.5.1 Introduction

In estimation problems, nature takes values in a continuous set; for now, we
will only consider scalar states of nature, S ⊆ IR. The goal is, of course, to
decide which is the true state of nature (i.e., A = S) from the observed data
x. The prior pS(s) here is a probability density function because S is con-
tinuous, and the denominator in Bayes’ theorem appears in its continuous
version (see Eq. (1.9)); again, this is true regardless of fX(x) and fX(x|s)
being probability density (continuous X ) or mass (discrete X ) functions.
In this section we review the three most widely used (partly for mathe-
matical tractability reasons) and well studied loss functions for estimation
problems: the “0/1” (also called uniform), the “quadratic error”, and the
“absolute error” loss functions. These three loss functions are depicted in
Figure 1.9.
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FIGURE 1.9. The three classical loss functions.

1.5.2 The “0/1” loss function

The “0/1” loss function for estimation problems is defined with the help of
a parameter ε

Lε(s, a) =

{
1 ⇐ |s − a| ≥ ε
0 ⇐ |s − a| < ε,

; (1.79)

see Figure 1.9. The resulting Bayes decision rule (see Eqs. (1.8) and (1.11))
under this loss function becomes

δε(x) = arg min
d∈S

∫

s∈S
Lε(s, d)pS(s|x) ds

= arg min
d∈S

(
1 −

∫

s:|s−d|<ε

pS(s|x) ds

)

= arg max
d∈S

∫ d+ε

d−ε

pS(s|x) ds. (1.80)

The meaning of the integral in this expression is depicted in Figure 1.10
(a); for some finite ε, this estimation criterion returns a value such that the
probability of finding S inside an interval of width 2ε around it is maximal.
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FIGURE 1.10. Illustration of how an estimate under the Lε loss function con-
verges to the higher mode of the a posteriori probability density function, as the
width of the considered interval vanishes (ε′ ≪ ε).

Of special interest is the case of infinitesimal ε,

lim
ε→0

arg max
d∈S

∫ d+ε

d−ε

pS(s|x) ds = arg max
d∈S

pS(d|x) ≡ δMAP(x) (1.81)

which is called the maximum a posteriori (MAP) estimator. Figure 1.10
illustrates what happens as constant ε decreases; from (a) to (b), as ε
decreases, higher modes of the a posteriori density are chosen, and their
widths loose importance. In the limit, as ε goes to zero, the highest mode (or
one of them if there are several with the same height) is chosen, regardless
of its width which may be arbitrarily small.

Since for a given observation x, the marginal fX(x) is a constant (just
as in classification problems), the MAP estimator also often appears under
the following alternative forms

δMAP(x) = arg max
s∈S

{fX(x|s)pS(s)} (1.82)

= arg max
s∈S

{log fX(x|s) + log pS(s)} (1.83)

= arg max
s∈S

{fX,S(x, s)} . (1.84)

all obviously equivalent.

Example 1.5.1
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A classical example that will give some further insight into MAP estima-
tion is the one where both the prior and the likelihood are Gaussian. More
specifically, let us consider the goal of estimating an unknown real quantity
s from a single measurement (an observation) x which is related to s via
a Gaussian model of known variance σ2, fX(x|s) = N (x|s, σ2) (this is a
very common model for measurement errors). Moreover, knowledge about
s is modeled by the prior pS(s) = N (s|s0, φ

2). Simple manipulation allows
showing that the posterior is still a Gaussian with mode and mean at

δMAP(x) =

s0

φ2 + x
σ2

1

φ2
+

1

σ2

=
s0σ

2 + xφ2

σ2 + φ2
; (1.85)

the interpretation of Eq. (1.85) is clear: the estimate is a compromise, in the
form of a weighted mean, between the observed value x and the expected
prior mean s0; the weights are functions of the degree of confidence placed
on each of these two elements, as measured by the inverse of the respective
variances. In order to take one step further this view of the variance as a
measure of how much to trust some belief, let us look at the variance of
the a posteriori p.d.f. which is given by

ES

[
(s − δMAP(x))2|x

]
=

σ2φ2

σ2 + φ2
=

1
1

σ2 + 1
φ2

; (1.86)

The readers familiar with basic electric circuit theory, will recognize that
this expression is similar to the one giving the resistance of two resistors
connected in parallel. One important property of this expression is that

1
1

σ2 + 1
φ2

< min{σ2, φ2} (1.87)

which can be interpreted as follows: the MAP estimate is more trustful
then either the observations or the prior alone.

End of Example 1.5.1

Example 1.5.2
Now consider that, rather than just one, there are n independent and

identically distributed (i.i.d.) observations x = (x1, x2, . . . , xn)T ; the like-
lihood can now be written as

fX(x|s) ∝
n∏

i=1

exp

{
− (xi − s)2

2σ2

}
= exp

{
− 1

2σ2

n∑

i=1

(xi − s)2

}
(1.88)

and the corresponding MAP estimate becomes

δMAP(x) =

s0

φ2
+

x̄n

σ2

1

φ2
+

n

σ2

=
s0

σ2

n + x̄φ2

σ2

n + φ2
, (1.89)
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where x̄ ≡ (x1 + x2 + ... + xn)/n is the sample mean of the observations.
Clearly, as the number of observations increases, the role of the prior de-
creases; it is clear from Eq. (1.89) that lim

n→∞
δMAP(x) = x̄. This fact is illus-

trated in Figure 1.11; there, s = s0 = 0, i.e., the prior mean coincides with
the true parameter value. Two different values for φ2 were considered: 0.1
and 0.01, expressing two different degrees of confidence on the belief that
s should be close to zero. Notice how the MAP estimates are compromises
between the observed data, which determines x̄, and the prior knowledge
that s should be near zero. Also, observe how the MAP estimator with
φ = 0.01 is more strongly tied to the prior mean.
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FIGURE 1.11. Upper plot shows the evolution of x̄ (dotted line) and δMAP(x)
for two values of the prior variance (φ2 = 0.1, solid line, and φ2 = 0.01, dashed
line) versus the total number of observations n. Lower graph shows the evolution
of the a posteriori variances (φ2 = 0.1, solid line, and φ2 = 0.01, dashed line)

Here again we can look at the a posteriori variance, which has a purely
deterministic evolution with n,

ES

[
(s − δMAP(x))2|x

]
=

σ2φ2

σ2 + nφ2
=

1
n
σ2 + 1

φ2

(1.90)

(compare with Eq. (1.86)), as shown in the lower plot in Figure 1.11. The
term n/σ2, which can be interpreted as the degree of confidence of the
observations, grows linearly with n, this being a reasonable property; as
a consequence, as n → ∞, the a posteriori variance goes to zero, which
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means that when we have a very large amount of data we may absolutely
trust the estimate, and the influence of the prior vanishes.

End of Example 1.5.2

Example 1.5.3
Let us now consider a set of n, not necessarily independent, observations

x = (x1, x2, . . . , xn)T , whose possible dependence is expressed by a known
covariance matrix C, with common unknown (to be estimated) mean s:

fX(x|s) = ((2π)n det(C))
−1/2

exp

{
−1

2
(x − su)T C−1(x − su)

}
, (1.91)

where u = [1, 1, ..., 1]T . The adopted prior, as above, is pS(s) = N (s|s0, φ
2).

Some computations lead to the following MAP estimate:

δMAP(x) =

(
uC−1u +

1

φ2

)−1 (
xT C−1u +

s0

φ2

)
. (1.92)

This is still a weighted average of the observations and the prior expected
value s0; to make this fact more obvious, let us denote the inverse of the
covariance matrix as D = C−1, and define a vector w = Du; notice that
the i−th element of w equals the sum of all the elements in row i of matrix
D. With this notation, Eq. (1.92) can be rewritten to clearly show that it
expresses a weighted average:

δMAP(x) =

xT w +
s0

φ2

uT w +
1

φ2

=

n∑

i=1

xiwi +
s0

φ2

n∑

i=1

wi +
1

φ2

. (1.93)

Three special cases help understanding the meaning of these weights:

• Firstly, if C = σ2I then we have the situation studied in the previous
example, since D = I/σ2 and so wi = 1/σ2.

• If C is diagonal but with different elements, C = diag{σ2
1 , σ2

2 , ..., σ2
n},

this means that the observations are independent but each has its
own variance; in this case, D = diag{(σ2

1)−1, (σ2
2)−1, ..., (σ2

n)−1} and
so wi = 1/σ2

i , i.e., each weight is inversely proportional to the variance
of the corresponding observation, which is intuitively reasonable.

• Finally, to study the general case, let us focus on n = 2 for which
simple results can be obtained: the inverse of the covariance matrix
of a bivariate Gaussian can be written as (see Appendix A)

D =
1

1 − ρ2




1

σ2
1

− ρ√
σ2
1

√
σ2
2

− ρ√
σ2
1

√
σ2
2

1
σ2
2



 (1.94)
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where ρ ∈ [−1,+1] is the correlation coefficient which measures the
degree of dependence between the two components of the random
vector. So,

wi =
1

1 − ρ2

(
1

σ2
i

− ρ√
σ2

1

√
σ2

2

)
, i = 1, 2. (1.95)

If the variables are uncorrelated, ρ = 0, the weights coincide with
those of the independent observations case (wi = 1/σ2

i ). To study
the influence of non-zero correlation on these weights, let us further
assume that both observations have the same variance, say σ2

1 = σ2
2 =

σ2; this assumption leads to

δMAP(x) =

x1 + x2

σ2(1 + ρ)
+

s0

φ2

2

σ2(1 + ρ)
+

1

φ2

. (1.96)

Now, if ρ → 1, this means that X2 tends to follow X1 (or vice versa)
deterministically and in the same direction (i.e., when one is larger
than the mean, so is the other); consequently, both observations carry
almost the same information as just one of them, and therefore (in the
limit) each gets one half of the weight it would get in the independent
case. On the other hand, if ρ → −1, this means that X2 still tends to
accompany X1 deterministically but now on opposite directions with
respect to their common mean; i.e., when x1 = s + d, there is high
probability of x2 ≃ s− d and so we know that s ≃ (x1 + x2)/2 (with
exact equality, in the limit) and the prior can be (completely, in the
limit) disregarded. More formally,

lim
ρ→−1

δMAP(x) =
x1 + x2

2
.

End of Example 1.5.3

1.5.3 The “quadratic error” loss function

This loss function, suited to (scalar) estimation problems (A = S = IR), is
defined as L(s, d) = k (s−a)2, where k is an arbitrary constant (see Figure
1.9). Inserting this loss function into the Bayes’ decision rule (Eq. (1.11))
leads to

δPM(x) = arg min
a∈A

ES

[
(s − a)2|x

]

= arg min
a∈A

(
ES [s2|x] + a2 − 2aES [s|x]

)
(1.97)

= ES [s|x] , (1.98)
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which is the posterior mean (PM) or posterior expected value. To go from
Eq. (1.97) to Eq. (1.98), notice that given some x, ES

[
s2|x

]
is a constant;

we can then solve for a by taking the derivative and setting it to zero. If
the a posteriori probability density function is Gaussian, the PM and MAP
estimates coincide because the mean and the mode of a normal density are
at the same location.

This result has a very interesting generalization which makes the PM
estimate particularly notable (see [104], for a proof). If the cost function is
symmetric in the sense that

L(s,−d) = L(s, d)

and strictly convex (see Appendix A), i.e.,

L(s, λd1 + (1 − λ)d2) < λL(s, d1) + (1 − λ)L(s, d2)

and pS(s|x) is symmetric around its mean δPM(x), then the optimal Bayes
estimate is still δPM(x). This shows that for this class of symmetric poste-
riors, not only the quadratic error loss function, but any symmetric strictly
convex loss function (e.g., (s − a)n, with n even) leads to δPM(x) as the
optimal Bayes’ estimator.

Situations where S = A ⊂ IR is a discrete numeric set, rigorously, should
be addressed as classification problems. However, when the cardinality of
set S is large (and so its discrete nature is not very relevant) and s posseses
a clear quantitative meaning, this may still be called an estimation problem
and the quadratic error loss function may be adopted. For examples, think
of S as resulting from the discretization of some intrinsically continuous
quantity, such as gray levels in a digital image which are usually quantized
into, say, S = A = {0, 1, ..., 255}. The optimal decision rule (restarting
from Eq. (1.97) because here it is not possible to obtain a derivative given
that A is a discrete set) is, in this case,

δTPM(x) = arg min
a∈A

(
a2 − 2aE [s|x]

)
(1.99)

= arg min
a∈A

{
(a − δPM(x))

2
}

, (1.100)

which is called thresholded posterior mean (TPM) [74]; notice that a discrete
A is not guaranteed to contain δPM(x) = E [s|x] and so δTPM(x) returns
the closest value from A.

Finally, it is worth mentioning the following fact: consider a weighted
quadratic loss function L(s, a) = W(s) (s − a)2; the optimal Bayes estima-
tor, called the weighted posterior mean (WPM), is

δWPM(x) = arg min
a∈A

(
E [W(s) |x] a2 − 2aE [W(s) s|x]

)
(1.101)

=
E [W(s) s|x]

E [W(s) |x]
. (1.102)
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This fact expresses a duality-type property that the quadratic loss function
enjoys with respect to the prior; in fact, notice that Eq. (1.102) coincides
with the posterior mean that would be obtained with a modified prior
p

′

S(s) ∝ W(s) pS(s). This type of duality between prior and loss function is
typical of Bayesian inference, and a previous instance of it was very clear
in Example 1.4.3 (see Eq. (1.45)).

Note that, since the a posteriori probability density functions in Exam-
ples 1.5.1, 1.5.2 and 1.5.3 are all Gaussian, the PM and MAP estimates
coincide; thus, the same examples also illustrate PM estimation under nor-
mal likelihoods and priors.

Example 1.5.4
This example shows a situation where the MAP and PM produce dif-

ferent estimates. Let us consider again, an unknown real quantity s whose
prior information is expressed by pS(s) = N (s|s0, φ

2). Let us consider that
this unknown is observed through the following mechanism: with probabil-
ity β, a constant ǫ is added to it, while with probability 1 − β, it is left
unchanged. In both cases, the resulting value is additively contaminated
by a Gaussian perturbation of zero mean and variance σ2; this mechanism
can be represented by a so-called mixture (of Gaussians) model, in this case
with two components,

fX(x|s) =
β√

2πσ2
exp

{
− (x − s − ǫ)2

2σ2

}
+

1 − β√
2πσ2

exp

{
− (x − s)2

2σ2

}
,

with parameters ǫ, β, s0, and σ2 considered known. It is a simple task to
verify that the a posteriori density is

pS(s|x) ∝ β exp

{
− (x − s − ǫ)2

2σ2
− (s − s0)

2

2φ2

}

+ (1 − β) exp

{
− (x − s)2

2σ2
− (s − s0)

2

2φ2

}
. (1.103)

To see how such a function looks like, let us consider some specific values:
s0 = 0, β = 0.6, φ2 = 4, σ2 = 1/2, and an observation x = 0.5. With these
values, pS(s|x = 0.5) is as shown in Figure 1.12.

The mean is δPM(0.5) = 1.2, while the mode is at δMAP(x) ≃ 0.4 (see
the arrows in Figure 1.12). This is an instance of the typical behavior of the
MAP and PM criteria in presence of multi-modal a posteriori probability
densities: in general, the PM criterion behaves conservatively and outputs
a compromise solution between the (two, in this case) modes; in contrast,
the MAP criterion chooses the largest mode and outputs the location of its
peak, ignoring all the other modes.

End of Example 1.5.4



1.5 Bayesian Estimation 49

−4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

PM

↓↓
MAP

s

p S
 (

s|
x=

0.
5)

FIGURE 1.12. MAP and PM estimates for Example 1.5.4.

1.5.4 The “absolute error” loss function

The “absolute error” loss function (also depicted in Figure 1.9), defined as
L(s, a) ∝ |s − a|, is also suited to scalar estimation problems, i.e., when
A = S = IR. Again, from the definition of the Bayes’ decision rule (Eq.
(1.11)),

δ(x) = arg min
a∈A

Es [(|s − a|)|x]

= arg min
a∈A

(∫ a

−∞
(a − s)p(s|x) ds +

∫ +∞

a

(s − a)p(s|x) ds

)
.

By invoking Leibniz’s rule3 to compute the derivative with respect to a,
one is lead to

δMPD(x) = solution
d∈A

{∫ d

−∞
p(s|x) ds =

∫ +∞

d

p(s|x) ds

}
, (1.104)

which is, by definition, the median of the posterior density (MPD) p(s|x),
i.e., δMPD(x) = median [p(s|x)]. As is clear from Eq. (1.104), the median
is the point that splits the total probability in two equal halves.

3Leibniz’s rule states that:

d

dx

(∫ β(x)

α(x)
f(x, t)dt

)
=

∫ β(x)

α(x)

df(x, t)

dx
dt +

dβ(x)

dx
f(x, β(x)) −

dα(x)

dx
f(x, α(x)).
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Finally, notice that for Gaussian a posteriori densities, the MPD estimate
coincides with the PM and MAP estimates, because the mean, the mode
and the median are the same. So, once more, Examples 1.5.1, 1.5.2 and
1.5.3 can also be thought of as utilizing the MPD criterion.

Example 1.5.5
We will compare the behavior of the MAP, PM, and MPD criteria, using

the simplest instance of what are known as change-point location problems.
Consider a sequence of independent observations x = (x1, ..., xs, xs+1, ...xn),
where x1, ..., xs are samples of Gaussian density with mean µA and vari-
ance σ2

A, while xs+1, ..., xn have mean µB and variance σ2
B. Assume that

µA, σ2
A, µB , and σ2

B are known, and the goal is to estimate the “change-
point” s; clearly, S = {1, 2, ..., n − 1}. From the independence assumption,
the likelihood function is

fX(x|s) = (2π)−
n
2 (σ2

A)−
s
2 (σ2

B)−
n−s

2

exp

{
−

s∑

i=1

(xi − µA)2

2σ2
A

−
n∑

i=s+1

(xi − µB)2

2σ2
B

}
(1.105)

Assuming a uniform prior p(s) = 1/n, expressing no preference for any
location, the MAP estimate becomes simply

ŝMAP = arg max
s

pS(s|x) = arg max
s

fX(x|s).

The PM estimate (actually, it is a TPM estimate), is given by

ŝTPM = round




(

n∑

s=1

s fX(x|s)
) (

n∑

s=1

fX(x|s)
)−1



 ,

where the function round[·] returns the closest integer to its real argument.
Finally, the MPD estimate is

ŝMPD = median [pS(s|x)]

= min

{
s :

s∑

i=1

pS(i|x) >
1

2

}
. (1.106)

Notice that the median of a probability mass function is not well defined;
in general, there is no point in S spliting the total probablity mass into
two exact halves. As with the TPM, a thresholding scheme is required; Eq.
(1.106) is one such scheme.

To study the behavior of these three criteria, consider a situation where
µA = 0, µB = 2, σ2

A = σ2
B = 1, n = 80, and s = 40; an example of a

sequence of observations thus generated is shown in Figure 1.13. In Figure
1.14, histograms of the results produced by the three estimation criteria
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FIGURE 1.13. Examples of a sequences of independent Gaussian observations
all with unit variance; the mean (shown by the dashed line) up to i = 40 equals
zero, and from i = 41 to i = n = 80 equals 2.

are shown, for a set of 5000 trials. As can be seen from Figure 1.13, it
is fairly obvious where the change occurs, and the three criteria perform
comparably well; the only noticeable difference is that the TPM criterion
produces fewer correct estimates.

Different behaviors start showing when we choose a more difficult setting
with µB = 0.5; the sequence of observations in Figure 1.15 show that now
it is not very clear where the change is located. This added difficulty is
reflected in the histograms presented in Figure 1.16. Now it is possible
to perceive qualitative differences between the criteria: the MAP produces
many more correct estimates than the other two; this may be traced back to
the “0/1” loss function for which the “price paid” for (any) wrong estimate
is high when compared to the zero cost of a correct decision.

The TPM (or PM) criterion is based on a (quadratic) loss function where
the “cost” does depend on how far the estimate is from the true value. This
makes it a more “conservative” criterion: though it produces fewer correct
decisions than the MAP, the wrong estimates are clustered around the
true value. Finally, the MPD criterion can be placed somewhere between
these two behaviors; its loss function does not penalize wrong estimates
as strongly as the quadratic loss function, but it is still sensitive to the
estimation error.

End of Example 1.5.5

1.6 Summary

Statistical decision theory consists of a set of formal tools to deal with
decision making problems under uncertainty: the state of nature s which is
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FIGURE 1.14. Histograms of the MAP, TPM, and MPD estimates of the change
point location; see text for details.

an unknown element of a configuration space S; a probabilistic model, in the
form of a conditional probability function fX(x|s) (the likelihood function),
of the mechanism by which observations x ∈ X are obtained given the
(unknown) state of nature s; a set A of possible actions or decisions; a
quantification of the consequences of choosing action a ∈ A when the true
state of nature is s ∈ S, by means of a loss function L(s, a). The goal of
decision theory is to propose and evaluate decision rules δ(x), which are
functions that map the observation space into the action set A.

In the frequentist perspective, decision rules are evaluated by measuring
how well (in terms of average loss) they perform when repeatedly used
under the same state of nature for all possible observations. We saw that
this approach does not allow deriving closed form expressions for optimal
decision rules.

The Bayesian approach brings a new element into play: a priori knowl-
edge under the form of a probability function pS(s) defined on S. This a
priori probability, together with the likelihood function, are used by Bayes’
law to yield the a posteriori probability function pS(s|x). This course of
action adheres to one of the fundamental principles of the Bayesian phi-
losophy, conditionality, which advocates that any decision should be based
(conditioned) on what has actually been observed. Candidate decision rules,
according to this principle, must be evaluated by how well they perform on
average, according to pS(s|x), for the given observed data x. In conclusion,
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FIGURE 1.15. Examples of a sequences of independent Gaussian observations
all with unit variance; the mean (shown by the dashed line) up to i = 40 equals
zero, and from i = 41 to i = n = 80 equals 0.5.

the main points to be learned from the material presented in this chapter
can be summarized as follows:

(a) model the available knowledge and uncertainty with probabil-
ities;

(b) use the basic laws of probability theory (namely Bayes’ law);

(c) condition on what is known;

(c) average over what is unknown.
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FIGURE 1.16. Histograms of the MAP, TPM, and MPD estimates of the change
point location; see text for details.
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2
Topics in Bayesian Inference

In the previous Chapter we introduced the basic concepts of Bayesian clas-
sification and estimation theory. To keep the presentation as clear and un-
cluttered as possible, we focused on essential aspects, postponing other (ar-
guably not so essential) topics to the current Chapter. How to specify priors
is the subject that we will address first; then we will look at sufficient statis-
tics and exponential families of probability distributions, two highly inter-
related concepts which are equally important for non-Bayesian approaches.
The Chapter will end with a section on foundational/philosophical aspects
of Bayesian inference.

2.1 Specifying Priors

As we have mentioned in Section 1.3, the Bayesian paradigm generally im-
plies a personal (or subjective) view of probabilities; from this standpoint,
the priors formally (quantitatively) express degrees of personal belief. One
of the main criticisms of Bayesian inference is aimed precisely at the arbi-
trariness which resides in the personal (or subjective) choice of priors. As
an alternative to this subjective prior elicitation, formal (objective) rules
to build priors have been put forward by several authors. The research de-
voted to formal procedures for specifying priors may be divided into two
(not independent) areas:

• In the first area, efforts are made for finding priors which are said
to be non-informative, reflecting a desire to remove subjectiveness
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from Bayesian procedures; a non-informative prior may be seen as a
reference against which any subjective prior can be compared [14].
Non-informative priors obtained from invariance arguments (includ-
ing the so-called Jeffreys’ priors) are arguably the most simple (but
profound) results in this area.

• In the second area, the goal is to obtain (informative) priors which
are compatible with partial a priori knowledge. Here, we find conju-
gate priors, which are obtained by invoking computational/analytical
tractability arguments, and maximum entropy priors. The latter re-
sult from applying information theoretical arguments in building pri-
ors that, while compatible with the partial prior information avail-
able, are as non-informative as possible. Another information the-
oretical approach which, when seen under a Bayesian light, can be
interpreted as yielding objective priors is Rissanen’s minimum de-
scription length (MDL) principle which we will also consider in this
chapter.

We must point out that the issue of prior selection (including the sub-
jective/objective discussion) is one of the most controversial aspects of
Bayesian theory. An interesting and readable overview of the conceptual
and philosophical aspects underlying these issues can be found in [54]. A
recent survey on methods for formal selection of priors, including a very
comprehensive list of references, is [61].

2.2 Improper Priors and Maximum Likelihood
Estimation

For Bayesian inference, the prior knowledge about the quantity of interest
is formalized by considering it a random variable S characterized by its
a priori probability (density or mass) function pS(s). However, it is not
vital to believe in a strict probabilistic interpretation of the prior. In many
circumstances, the prior is just a (technical) way of expressing available
information leading to an inference procedure; in particular, the Bayesian
paradigm (formally) allows considering priors which are not normalized
(nor normalizable), which are then called improper priors. These priors are
characterized by ∫

S
pS(s) ds = +∞, (2.1)

or, in discrete contexts where S is infinite, by

∑

si∈S
pS(si) = +∞, (2.2)
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thus failing to obey one of the basic laws of probability. By inserting an
improper prior into Bayes’ theorem, as given by Eq. (1.9), a conventional
(proper) posterior may still be obtained as long as the marginal in the
denominator is well defined. Although there is some controversy surround-
ing improper priors (see [54]), mainly because they can not be interpreted
as conventional probability functions, their acceptance has important de-
sirable consequences [8], [14], [54], [93]. In practice, most improper priors
of interest can be interpreted as limits of proper ones (e.g., Gaussians of
infinite variance, uniform densities on infinite intervals) thus bringing a
“closure” property to Bayesian inference.

Example 2.2.1
Consider an estimation problem (S = A = IR), with the likelihood func-

tion fX(x|s) = N (x|s, 1) and the prior pS(s) = c 6= 0, which is clearly
improper; nevertheless, since

pS(s|x) =
fX(x|s) pS(s)∫

IR

fX(x|s) pS(s)ds

=

c√
2π

exp
{
− (x−s)2

2

}

∫

IR

c√
2π

exp

{
− (x − s)2

2

}
ds

=
1√
2π

exp

{
− (x − s)2

2

}
≡ fX(x|s), (2.3)

the posterior exists and coincides formally with the likelihood function. Now
assume that pS(s) = N (s|s0, φ

2) as in Example 1.5.1. From Eq. (1.85), it

is clear that δ(x)
φ→∞−→ x, i.e. the improper prior leads to an estimator

coinciding with a limit situation of a family of proper priors. This is how
improper priors can be seen as providing “closure” to the Bayesian inference
setting.

End of Example 2.2.1

Let us generalize the previous example to any estimation problem (S =
A); if fX(x|s) denotes the likelihood function and the prior is uniform
(maybe improper) pS(s) = c 6= 0, then the posterior pS(s|x) is proportional
to the likelihood, as long as the marginal fX(x) is well defined (finite); in
fact,

pS(s|x) =
fX(x|s) pS(s)∫

IR

fX(x|s) pS(s)ds

=
c fX(x|s)

c

∫

IR

fX(x|s) ds

∝ fX(x|s), (2.4)
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as long as the denominator is finite. In particular, with such a uniform
prior, the MAP criterion yields

δMAP(x) = arg max
s∈S

pS(s|x)

= arg max
s∈S

fX(x|s) ≡ δML(x), (2.5)

which is called the maximum likelihood (ML) estimate. Its designation
stems from the decision criterion it stipulates: choose s so that it max-
imizes the probability (or probability density) of the actually observed
data, i.e., the density that is most likely to have generated the observed
data. The use of improper priors allows recovering the ML criterion (which
is a widely used criterion independent of any Bayesian considerations) as
a limit situation (i.e., on the “boundary”) of Bayesian inference.

In classification problems with a finite number M of hypotheses, the
uniform prior is not improper, it is simply p(s) = 1/M , for s ∈ S =
{s1 . . . , sM}. Inserting it into Eq. (1.25) reduces the MAP criterion to

δMAP(x) = arg max
s∈S

p(x|s) ≡ δML(x) (2.6)

which is (naturally) known as the maximum likelihood (ML) classifier.

Example 2.2.2
Considering Example 1.4.1 again, if the two binary digits are a priori

equiprobable, p0 = p1 = 1/2, the threshold becomes 0 (see Eq. (1.32)), and
the decision rule simply checks which of the two values (s0 or s1) is closer
to the observation x. In the communications literature, this is known as
the ML detector.

End of Example 2.2.2

With the a priori equiprobability assumption, the optimal Bayes’ classi-
fiers for the Gaussian observation models in Eqs. (1.34), (1.35), and (1.37),
become simpler since the term containing pS(si) can be dropped. In this
case they become ML classifiers. Particularly interesting are Eqs. (1.35) and
(1.37) which now simply return the class whose mean vector µi is closest
(in Euclidean or Mahalanobis distance, respectively) to the observed vec-
tor x. Two other equations which become particularly meaningful under
the equiprobability assumption are Eqs. (1.52) and (1.57); they represent
simply the mid-point between the two competing hypotheses.

Example 2.2.3
Going back to Examples 1.5.1, 1.5.2, and 1.5.3, if we let the prior variance

go to infinity, φ2 → ∞, we recover the corresponding maximum likelihood
estimators.

End of Example 2.2.3
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2.3 Conjugate priors

There are many situations in which the prior knowledge about the state
of nature is not concrete enough to specify an a priori probability func-
tion; however, to follow a Bayesian approach, one is still needed. In this
cases there is some freedom which can be exploited to allow mathematical
tractability considerations to come into play: given the likelihood function,
one can look for a prior which, on the one hand, is compatible with the avail-
able knowledge and, on the other hand, leads to an a posteriori probability
function satisfying certain (computational convenience) conditions. Notice
that when combining priors and likelihoods via Bayes’ rule, one may often
arrive at intractable a posteriori probability functions for which closed form
expressions may not even exist. These concerns have motivated the study
of the so-called conjugate families, or conjugate priors. The formalization
of this concept is as follows:
Let F = {fX(x|s), s ∈ S} be a class of likelihood functions; let P be a
class (set) of probability (density or mass) functions; if, for any x, any
pS(s) ∈ P, and any fX(x|s) ∈ F , the resulting a posteriori probability
function pS(s|x) ∝ fX(x|s) pS(s) is still in P, then P is called a conjugate
family, or a family of conjugate priors, for F .

Of course, a trivial conjugate family for any class of likelihoods is the
set of all probability functions on S. Interesting conjugate families should
be as small as possible and, more importantly, parameterized; when this
is the case, computing the posterior from the prior is simply a matter of
updating the associated parameters. Some examples will help to elucidate
these ideas.

Example 2.3.1
When estimating s from a set of n i.i.d. normal observations of mean s

and known variance σ2, the likelihood function is

fX(x|s) =

n∏

i=1

1√
2πσ2

exp

{
− (xi − s)2

2σ2

}
; (2.7)

if the prior is normal, p(s) = N (s|s0, φ
2), then the posterior is also normal;

its mean is given by Eq. (1.89) and its variance is ψ2 = σ2φ2/(nφ2 + σ2).
That is, for Gaussian likelihoods (with respect to the mean) the family of
normal priors is a conjugate one since the posterior is also normal. This
fact explains the adoption of Gaussian priors in Examples 1.5.1, 1.5.2, and
1.5.3. As a final note, observe that the a posteriori mean (and consequently
the MAP, PM, and MPD estimates) converges, as n → ∞, to x̄ = (x1 +
x2 + ... + xn)/n (the sample mean) which is the ML estimate.

End of Example 2.3.1



60 2. Topics in Bayesian Inference

With the conjugacy concept in hand, we can venture into considering
other estimation examples, beyond the simple Gaussian prior and Gaussian
likelihood cases studied above.

Example 2.3.2
Let θ and 1 − θ denote the (unknown) probabilities of heads and tails,

respectively, of a given coin under study. The outcomes of an observed
sequence of n tosses is denoted by x = (x1, . . . , xn), with xi = 1 standing
for a head, and xi = 0 for a tail. The likelihood function is then a Bernoulli
distribution; i.e., letting nh(x) = x1 + x2 + ... + xn denote the number of
heads outcomes, it can be written as

fX(x|θ) = θnh(x) (1 − θ)n−nh(x). (2.8)

Ignorance about θ can be modeled by a uniform prior pΘ(θ) = 1, for θ ∈
[0, 1] (notice this is not improper, due to the boundedness of the parameter
space); with this flat prior, the a posteriori density is

pΘ(θ|x) =
f(x|θ)

∫ 1

0

f(x|θ) dθ

=
Γ(2 + n) θnh(x) (1 − θ)n−nh(x)

Γ(1 + nh(x)) Γ(1 + n − nh(x))
(2.9)

which, apart from the normalizing constant (where Γ is the Euler gamma
function1), has the same form as the likelihood. The MAP and ML es-
timates are both simply δML(x) = δMAP(x) = nh(x)/n, while δPM(x) =
(nh(x)+1)/(n+2). Now consider that in a particular experiment, in a total
of, say, 4 tosses, all outcomes are heads, we obtain δML(x) = δMAP(x) = 1,
and δPM(x) = 5/6. These values are incompatible with the common belief
about heads and tails probabilities, a priori expected to be around 1/2. To
formalize this belief, a prior with the maximum at 1/2, symmetric around
1/2, and going to zero as s goes to 0 or 1, has to be used. Of course, many
functions satisfy these conditions, but most of them lead to intractable
posteriors; a convenient conjugate prior turns out to be the Beta density

pΘ(θ|α, β) = Be(θ|α, β)

=
Γ(α + β)

Γ(α)Γ(β)
θα−1 (1 − θ)β−1, (2.10)

1The Euler gamma function is defined as

Γ(z) =

∫
∞

0
tz−1 e−t dt,

valid for any complex number z. For positive integer arguments, Γ(n) = (n− 1)!, and it

may thus be seen as generalizing the factorial function to non-integer arguments.
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FIGURE 2.1. Beta densities for different parameter choices: α = β = 0.75, 1, 2,
and 10. Notice how for α = β ≤ 1, the behavior is qualitatively different, with
the mode at 1/2 disappearing.

defined for θ ∈ [0, 1] and α, β > 0; the main features of this density are

E[θ|α, β] =
α

α + β
(mean) (2.11)

E

[(
θ − α

α + β

)2
∣∣∣∣∣ α, β

]
=

αβ

(α + β)2(α + β + 1)
(variance)

arg max
θ

pΘ(θ|α, β) =
α − 1

α + β − 2
(mode, if α > 1). (2.12)

Accordingly, our desire of “pulling” the estimate towards 1/2 can be ex-
pressed by choosing α = β, while their common magnitude allows control-
ling how “strongly we pull”. Several Beta densities are depicted in Figure
2.1. Notice the uniform density is recovered for α = β = 1, showing that it
is a special case of Beta.

The corresponding a posteriori is still a Beta density, easily identifiable
after multiplying the prior in Eq. (2.10) by the likelihood in Eq. (2.8)

pΘ(θ|x, α, β) = Be (θ|α + nh(x), β + n − nh(x)) (2.13)

which leads to the following Bayesian estimates

θ̂PM = δPM(x) =
α + nh(x)

α + β + n
(2.14)

θ̂MAP = δMAP(x) =
α + nh(x) − 1

α + β + n − 2
. (2.15)
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For example, with α = β = 2, and n = nh(x) = 4 (as above), we have
δPM(x) = 0.75 and δMAP(x) =≃ 0.833. which are more moderate esti-
mates. With α = β = 10, a stronger prior, we would obtain δPM(x) = 0.58
and δMAP(x) ≃ 0.59. In Figure 2.2, we plot a typical evolution of the Beta
a posteriori density for two priors: uniform and Be(θ|5, 5). The observed
data was generated using θ = 0.7. Notice that as the amount of data in-
creases, the influence of the prior decreases and both densities approach
each other. In the limit of an infinitely long sequence of tosses, both es-
timates converge to limn→∞ nh(x)/n; this quantity converges itself to the
true θ, according to the weak law of large numbers. Parameter α (with
α = β) may be seen as a measure of how large nh(x) and n have to be
before the observed data dominates the Bayesian estimates.
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FIGURE 2.2. Typical evolution of the a posteriori Beta densities
(non-normalized, merely scaled to 1) as the number n of Bernoulli trials
increases; the solid line corresponds to a uniform prior (its maximum being thus
the ML estimate), while the dotted line corresponds to a Be(θ|5, 5) prior. Notice
how both densities increasingly concentrate their mass around the true value
θ = 0.7. The horizontal axes of these plots denote θ values.

End of Example 2.3.2

Example 2.3.3
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Consider now, as another example, n i.i.d. zero-mean Gaussian obser-
vations of unknown variance σ2; it happens that it is more convenient to
reparameterize the problem into θ = 1

σ2 (we will see another argument sup-
porting this choice in Section 2.12). Accordingly, the following likelihood
function is obtained

fX(x|θ) =

(
θ

2π

)n
2

exp

{
−θ

2

n∑

i=1

x2
i

}
. (2.16)

It is easy to verify that a Gaussian prior on θ (the same would happen
for σ2, or even σ) does not lead to a Gaussian a posteriori density. For this
particular parameterization, the Gamma density is a conjugate prior

pΘ(θ|α, β) = Ga(θ|α, β)

=
βα

Γ(α)
θα−1 exp {−βθ} (2.17)

defined for θ ∈ [0,∞) (as required by the meaning of θ = 1/σ2) and
for α, β > 0. Had we adopted the original σ2 parameterization, and the
conjugate prior would be the inverse-Gamma distribution, given by

Inv-Ga(σ2|α, β) =
βα

Γ(α)
(σ2)−(α+1) exp

{
−β

θ

}
. (2.18)

The main features of the Gamma distribution are

E[θ|α, β] =
α

β
(mean) (2.19)

E

[(
θ − α

β

)2
∣∣∣∣∣ α, β

]
=

α

β2
(variance) (2.20)

arg max
θ

pΘ(θ|α, β) =
α − 1

β
(mode), (2.21)

where the mode expression is only valid if α ≥ 1, otherwise it has no mode.
Figure 2.3 shows some plots of Gamma priors.

By multiplying together Eqs. (2.16) and (2.17) and identifying the result
with a Gamma density, it becomes clear that

pΘ(θ|x1, x2, ..., xn) = Ga

(
θ|α +

n

2
, β +

1

2

n∑

i=1

x2
i

)
. (2.22)

The above mentioned mean and mode of a Gamma density imply that

θ̂PM =

(
2α

n
+ 1

) (
2β

n
+

1

n

n∑

i=1

x2
i

)−1

(2.23)

θ̂MAP =

(
2α

n
+ 1 − 2

n

)(
2β

n
+

1

n

n∑

i=1

x2
i

)−1

. (2.24)
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FIGURE 2.3. Gamma densities for different parameter choices. For α = β = 1,
2, and 10, the mean equals 1, and the variances are 1, 0.5 , and 0.1, respectively.
For α = 62.5 and β = 25, the variance is 0.1, but the mean is 2.5.

Notice that, as expected, as n becomes larger both the PM and the MAP
estimates approach the maximum likelihood one which is given by

θ̂ML =
n

n∑

i=1

x2
i

;

i.e., the data term becomes dominant over the prior. This fact is illustrated
in Figure 2.4 which is based on a sequence of 50 zero-mean unit-variance
(i.e., θ = 1) observations; two Gamma density priors were considered: α =
β = 1 and α = β = 10. Both have mean equal to 1 (coinciding with
the true θ) but the second one has a variance 10 times smaller than the
first. Notice in the figure how the Bayesian estimates are more stable for
small sample sizes (due to the presence of the prior) and how all three
estimates approach each other and the true parameter value as the number
of observations becomes large.

End of Example 2.3.3

Example 2.3.4
Let us now consider a Poisson observation model, with θ denoting the

unknown rate (in counts/second, for example) of some phenomenon that
follows Poisson statistics (e.g., radioactive emissions, as considered in Ex-
ample 1.4.8). The observed data consist of a sequence of independent

counts x = (x1, x2, ..., xn)
T

registered during a set of observation inter-
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FIGURE 2.4. Evolution of the ML (solid line) and two MAP (for α = β = 1:
dashed line; and α = β = 10: dotted line) estimates of θ versus the number of
observed values.

vals {T1, T2, ..., Tn} (measured in seconds). The likelihood function is then

fX(x|θ) =

n∏

j=1

e−θTj (θTj)
xj

xj !
∝ θt(x)e−Tθ, (2.25)

where all factors independent of θ were dropped from the last expression,
t(x) = x1 + x2 + ... + xn, and T = T1 + T2 + ... + Tn. To proceed with
a Bayesian analysis of this problem, we should find a family of conjugate
priors that allows formalizing any available prior knowledge. As for the
likelihood of the previous example, Gamma densities are conjugate priors
for Poisson likelihoods (see Eq. (2.17)). The posterior is then still a Gamma
density, easily identifiable after multiplying Eq. (2.25) by Eq. (2.17),

pΘ(θ|x) = Ga(θ|α + t(x), β + T ) (2.26)

and the corresponding Bayesian estimates are then

θ̂PM =
α + t(x)

β + T
=

α +

n∑

j=1

xj

β + T
(2.27)

θ̂MAP =
α + t(x) − 1

β + T
=

α − 1 +

n∑

j=1

xj

β + T
. (2.28)

Again, these Bayesian criteria converge to the maximum likelihood; notice
that since the intervals Ti have non-zero length, if n → ∞, then T → ∞ and
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t(x) → ∞ (although some more care is required to establish the validity of
the last limit, because t(x) is a random quantity); as a consequence, both
the MAP and the PM estimates approach the one provided by the ML
criterion,

θ̂ML =

n∑

i=j

xj

T
(2.29)

which is simply the sample average rate.

End of Example 2.3.4

Example 2.3.5
Consider a set of (real non-negative) observations x = (x1, x2, ..., xn)

which are assumed independent and identically distributed according to the
uniform density on the interval [0, θ], with θ the unknown to be estimated.
Formally,

fX(x|θ) =

{
θ−n, max{x1, ...xn} ≤ θ
0, otherwise.

. (2.30)

Notice that the condition max{x1, ...xn} ≤ θ is equivalent to the conjunc-
tion of {x1 ≤ θ, x2 ≤ θ, ..., xn ≤ θ}.

Let us take as prior the so-called Pareto distribution whose density is
given by

pΘ(θ) = Pa(θ|α, β) =

{
αβαθ−(α+1), θ ≥ β
0, θ < β.

(2.31)

Several examples of this density, for different values of the parameters, are
shown in Figure 2.5. Its mode is obviously located at θ = β, while its mean
is given by

E[θ|α, β] =
αβ

α − 1
,

if α > 1, otherwise the mean does not exist.
Multiplication of the likelihood in Eq. (2.30) by the prior in Eq. (2.31)

leads to the following a posteriori probability density function:

pΘ(θ|x) = Pa (θ|n + α,max{β,max{x1, ..., xn}}) . (2.32)

showing that the Pareto density is conjugate with respect to the uniform
observation model. Finally, the MAP and PM estimates are given by

θ̂MAP = max{β,max{x1, ..., xn}} (2.33)

θ̂PM =
(α + n)max{β,max{x1, ..., xn}}

α + n − 1
(2.34)

Notice that, unlike in previous examples, these Bayesian rules do not con-
verge to the maximum likelihood estimate as n approaches infinity.

End of Example 2.3.5
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FIGURE 2.5. Pareto densities for different parameter choices. Notice how the
density is zero for θ < β, and the fact that a larger value of α leads to a narrower
prior.

2.4 Mixtures of Conjugate Priors

It may be the case that the standard conjugate family for the likelihood
function at hand is not expressive enough to model a certain kind of a priori
belief. It is then possible to extend this family through the use of mixtures
of conjugate priors [14], [26], [35], [93]. As we shall see, these mixtures are
still conjugate with respect to the given likelihood function, and can be used
to achieve more freedom and flexibility in formalizing prior knowledge.

Let F be some class of likelihood functions, and P a family of conjugate
priors for F . Consider a family Q(m) of m-dimensional finite mixture models
supported on P, i.e.

Q(m) =

{
qS(s) =

m∑

i=1

λi p
(i)
S (s) :

m∑

i=1

λi = 1; p
(i)
S (s) ∈ P

}
.

Notice that the a posteriori probability function qS(s|x) resulting from a
prior qS(s) verifies

qS(s|x) ∝ qS(s)fX(x|s) = fX(x|s)
m∑

i=1

λi p
(i)
S (s)

=

m∑

i=1

λi p
(i)
S (s)fX(x|s);

moreover, each p
(i)
S (s)fX(x|s), adequately normalized, does belong to P.

So, qS(s|x) is a mixture of densities from P, thus still belonging to Q(m).
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In conclusion, if P is a conjugate family for the class of densities F , so is
any class of m-dimensional mixture priors Q(m) built from elements of P.

An important feature of the families of finite mixtures of conjugate priors
is their universal approximation property. As shown in [26], [35], any a
priori probability density function (verifying some weak constraints) can
be approximated arbitrarily well by a mixture of conjugate priors (of course,
if the function has a complex behavior, we may need a large m to obtain
a good approximation). Unfortunately, the proofs of this fact in [26] and
[35] are not constructive and so we are left without a formal procedure to
construct such mixtures.

If the likelihood is a mixture of elements from F , the a posteriori density
which results from combining this mixture likelihood with a prior from
P does not belong to P. This fact was evident in Example 1.5.4, where
a mixture likelihood and a Gaussian prior led to a mixture a posteriori
density.

However, it is still possible to consider mixture likelihoods and find an in-
teresting conjugate family for them: let G be the family of all finite mixture
likelihoods whose components are members of F , i.e.

G =

{
gX(x|s) =

m∑

i=1

λi f
(i)
X

(x|s) : m < ∞;
m∑

i=1

λi = 1; f
(i)
X

(x|s) ∈ F
}

.

Now consider the family M of all finite mixture priors whose components
are members of P,

M =




qS(s) =

n∑

j=1

αj p
(j)
S (s) : n < ∞;

n∑

j=1

αj = 1; p
(j)
S (s) ∈ P




 .

An a posteriori density resulting from multiplying a prior in M by a like-
lihood in G has the form

qS(s|x) ∝
m∑

i=1

n∑

j=1

αj λi f
(i)
X

(x|s)p(j)
S (s),

which is, of course, still a finite mixture, specifically of dimension mn. Each
of its components clearly belongs to P and so this a posteriori mixture does
belong to M, showing that this is in fact a conjugate family for G.

Example 2.4.1
This example illustrates how a mixture of conjugate priors can be used to

model a kind of prior knowledge out of the reach of a simple conjugate prior.
Let s be an unknown quantity which is observed n times contaminated
by independent additive Gaussian perturbations (noise) of zero mean and
known variance σ2; the corresponding likelihood function is the one in
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Eq. (1.88) (Example 1.5.2). Now let us suppose that we want to express
the prior knowledge that s should be close to zero with high probability,
but, with lower probability, it can be very far from zero. This type of
behavior calls for what is known as a heavy-tailed density; i.e., one that
is concentrated around its mean, but does not fall to zero as fast as a
Gaussian does. One way to achieve such a behavior is through the adoption
of a mixture prior involving a low variance and a high variance Gaussian
densities, as has been recently proposed for signal processing applications
in [25]; specifically,

pS(s) = w0N (s|0, φ2
0) + (1 − w0)N (s|0, φ2

1) (2.35)

An example of such a mixture density (with w0 = 0.2, φ0 = 1, and φ1 =
20)is shown in Figure 2.6. The a posteriori density turns out to be
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FIGURE 2.6. Mixture of conjugate priors: (a,b) the two components of the mix-
ture; (c) the mixture. See text for parameters.

pS(s|x) =

[
w0N (s|0, φ2

0) + (1 − w0)N (s|0, φ2
1)

] ∏n
i=1 N (xi|s, σ2)

w0

∏n
i=1 N (xi|0, φ2

0 + σ2) + (1 − w0)
∏n

i=1 N (xi|0, φ2
1 + σ2)

which, after some straightforward computations, can be given a mixture
form

pS(s|x) = w′
0(x)N

(
s| x̄φ2

0

φ2
0 + σ2

n

,
σ2φ2

0

nφ2
0 + σ2

)
+

(1 − w′
0(x))N

(
s| x̄φ2

1

φ2
1 + σ2

n

,
σ2φ2

1

nφ2
1 + σ2

)
(2.36)

where x̄ = (x1 + x2 + ... + xn)/n is the observed sample mean. Notice
that each of the Gaussian components of this a posteriori density is similar
to the one that would be obtained with a single Gaussian prior with the
corresponding parameters (see Example 1.5.2). The (a posteriori) weight
w′

0(x), which is a function of the observations, is given by

w′
0(x) =

w0

∏n
i=1 N (xi|0, φ2

0 + σ2)

w0

∏n
i=1 N (xi|0, φ2

0 + σ2) + (1 − w0)
∏n

i=1 N (xi|0, φ2
1 + σ2)

.
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From Eq. (2.36) it is now possible to obtain the PM and MAP estimates.
The PM estimate is (since the mean of a mixture is simply the weighted
average of the means of its components) simply

ŝPM = w′
0(x)

x̄φ2
0

φ2
0 + σ2

n

+ (1 − w′
0(x))

x̄φ2
1

φ2
1 + σ2

n

.

The MAP estimate is not so simple to obtain due to the complex modal
behavior of mixtures of Gaussians. Specifically, the probability density of
the mixture of two Gaussians can be either unimodal or bimodal, depending
on the particular arrangement of the involved parameters (for details, see
[103]). In any case, it can be obtained numerically by a simple line search
algorithm.

Unlike what was obtained with a single Gaussian prior, both the PM
and MAP estimates are now non-linear functions of the observations (due
to the dependence of w′

0(x) on x. Further insight into these estimators is
obtained from plots of ŝPM and ŝMAP versus x (for simplicity, we take n = 1,
thus x̄ = x), shown in Figure 2.7. In both cases, φ0 = 1, φ1 = 10, w0 = 0.5,
and σ = 4. Looking first at the MAP criterion, its switching nature is very
evident; it behaves as if the data chose one of the two modes of the mixture
as prior. For small values of x, the low variance component dominates, and
the estimate is a strongly shrunk version of the observation (the slope of the
curve near the origin is small); when the observation is large enough, the
situation is reversed and the resulting estimate is a slightly shrunk version
of the observation (far from the origin, the slope of the curve is close to
one).

The response of the PM criterion can be seen as a “smoothed” version of
the MAP. Rather than a hard choice of one of the modes of the posterior
(as in the MAP), it simply recomputes the weights as functions of the ob-
servation. This is another manifestation of the more “conservative” nature
of the PM criterion.
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FIGURE 2.7. MAP and PM estimates versus observed value, for the mixture
prior considered in Example 2.4.1.
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End of Example 2.4.1

2.5 Asymptotic Behavior Of Bayes’ Rules

An important conclusion that seems to result from most of the examples
presented in the last section is that Bayesian estimates converge to max-
imum likelihood ones as the amount of observed data increases. In fact,
as we shall see below, this is a reasonably general property for the MAP
estimate, and also (although not so general) for the PM estimate (as, in
fact, Example 2.5.1 seems to suggest).

The asymptotic behavior, when the amount of observed data goes to
infinity, of Bayes’ estimation rules was first studied by Laplace and more
recently by von Mises [105] and Bernstein (see also [70]). The main re-
sults concern consistency and asymptotical efficiency, concepts that we will
now briefly review. Let θ0 be the true (but unknown) parameter, and x(n)

an observed data vector, containing n observations, which is a sample of
the observation model fX(x|θ0). An estimator θ̂ = δ(x(n)) is said to be
consistent if

lim
n→∞

δ(x(n)) = θ0, (2.37)

where the convergence we are referring to is in probability. Notice that
δ(x(n)) is a random quantity because x(n) is itself a sample from a ran-
dom variable whose probability function is fX(n)

(x(n)|θ0). The concept of
convergence in probability, used in defining consistency, is as follows: if Yn

is a sequence of random variables, we say that this sequence converges, in
probability, to some y, if, for any (arbitrarily small) ε > 0,

lim
n→∞

P {|Yn − y| ≥ ε|} = 0. (2.38)

Without going into technical details (for a deeper look at this subject
see, e.g., [14], [70]), the key ideas can be captured as follows: As long as
the prior is continuous and not zero at the location of the ML estimate,
then, the MAP estimate converges to the ML estimate. Accordingly, to
establish the consistency of the MAP estimate, it is necessary to guarantee
consistency of the ML estimate. Conditions for this are more technical and
the interested reader is again referred to [70]. To show the convergence of
the PM estimate to the ML estimate, it is generally required that some
other conditions hold. Namely, the observation models fX(x|θ) must have
common support, i.e., {x : fX(x|θ) > 0} must not be a function of θ
(it happens that this is also a condition necessary to prove consistency of
the ML estimate). Next, we present a simple example where this result
applies, but where a similar convergence property does not hold for the
PM criterion.
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Example 2.5.1
Let us get back to uniform observation model studied in Example 2.3.5.

With an arbitrary continuous prior pΘ(θ) (not the Pareto, which is not
continuous), the a posteriori probability density function becomes

pΘ(θ|x) ∝ pΘ(θ) fX(x|θ) = pΘ(θ)

{
θ−n, θ ≥ max(x)
0, otherwise

(2.39)

where max(x) stands for the maximum of all observations. The correspond-
ing MAP and PM estimates are

θ̂MAP = arg max
θ≥max(x)

{
pΘ(θ) θ−n

}
(2.40)

θ̂PM =

∫ ∞

max(x)

pΘ(θ) θ−n+1 dθ

∫ ∞

max(x)

pΘ(θ) θ−n dθ

. (2.41)

This MAP estimator converges to the ML criterion as n approaches infinity;
in fact,

lim
n→∞

θ̂MAP = lim
n→∞

arg max
θ≥max(x)

{log pΘ(θ) − n log θ}

= lim
n→∞

arg min
θ≥max(x)

{n log θ} = max(x) = θ̂ML.

As seen in Example 2.3.5, this is not true under the conjugate Pareto prior.

End of Example 2.5.1

Another very important characteristic that may be present is asymptotic
normality. When the necessary conditions are met (see, e.g., [14]), this
means that the a posteriori probability density function will tend to a
Gaussian, as the amount of data grows to infinity. Although this is a fairly
technical subject, and the reader interested in further studying the subject
is referred, for example, to [14] and the references therein, we will have
something more to say about it in Section 2.7.2.

2.6 Non-informative Priors and Invariance

In Example 2.2.1, we have used a uniform (improper) prior to express
ignorance about the (unknown) mean of a Gaussian observation; this prior
led to the maximum likelihood criterion. This may seem an obvious choice
but it in fact touches on one of the delicate points of Bayesian theory: non-
informative priors [8], [14], [27], [93]. The goal of non-informative priors
(pioneered by Jeffreys [59], [60] although used, in simpler forms, as early
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as by Bayes and Laplace) is to formalize the concept of “ignorance”. The
key idea is that, associated with each parametric observation model (a
likelihood function), there is a certain prior expressing ignorance about
the involved parameter(s), i.e., which is non-informative. Non-informative
priors do not describe a priori beliefs; rather, they should be seen as a
way of letting the data “speak for itself”, while staying inside a Bayesian
approach [54]. For this reason they are often termed non-subjective priors.

What may not be obvious at a first thought is that the non-informative
nature of a prior does depend strongly on the meaning and role of the
unknown parameter, i.e., it depends on how the likelihood function is pa-
rameterized. To illustrate this fact, let us refer again to Example 2.2.1: it
seemed rather obvious that the flat prior pS(s) = c expresses “total igno-
rance” about s. Now, let the problem be reparameterized in terms of, say,
u = exp{s} (a one-to-one transformation which should not influence the
estimation results); since we are as ignorant about u as we were about s, we
are tempted to also adopt a uniform (flat) prior for it. However, the prior
probability density function on u, resulting from pS(s) = c, and from the
application of the transformation rule for densities of functions of random
variables2, is

fU (u) = pS(exp−1{u}) 1

|exp ′{exp−1{u}}| =
c

u
∝ 1

u
. (2.43)

because pS(·) = c, the inverse function of the exponential is the natu-
ral logarithm exp−1{·} = log{·}, and its derivative is still an exponential
exp

′{x} = exp{x}; thus exp ′{exp−1{u}} = u. In conclusion, the non-
informative prior for u resulting from a uniform prior for s is not uniform,
which means that ignorance is not necessarily expressed by a uniform prior.
Moreover, it also became clear that the uniform prior is not invariant un-
der an exponential transformation; but is it invariant under any class of
parameter transformations? And is this class relevant? These questions are
still surrounded by some controversy. In fact, for many problems, different
considerations may lead to different non-informative priors, and it may not
be clear which is the relevant invariance that should be imposed. However,
there are three cases that are less controversial: discrete problems (e.g.,
classification), location parameters, and scale parameters. We next briefly
address these three classes of problems to illustrate the type of reasoning
involved in designing non-informative prior densities through invariance

2Recall that if X is a continuous r.v. with p.d.f. fX(x) and g(·) is a one-to-one
continuous function, then Y = g(X) has p.d.f. given by

fY (y) = fX(g−1(y))
1∣∣g′

(g−1(y))
∣∣ , (2.42)

where g−1(·) denotes the inverse function of g(·) (which exists because g(·) is one-to-one)

and g
′

(·) is its derivative.
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arguments. For a more complete treatment of this topic, see the excellent
review in [27] or more advanced Bayesian theory textbooks such as [14] or
[93].

2.6.1 Discrete Problems

For discrete finite (e.g., classification) problems, the (one-to-one) transfor-
mations under which it is natural to require invariance are index permuta-
tions. In simpler words, if one knows nothing a priori, permutations of the
set S should add no knowledge or in any way influence the result of the
inference procedure. The only probability mass function that is invariant
under permutations is the uniform one p(s) = 1/|S| (where, recall, |S| is
the number of elements in S). When S is discrete but infinite, the argument
is more elaborate, but the same conclusion is still valid [14].

There are, however, some difficulties with uniform priors on discrete sets
when we consider non one-to-one transformations. Consider that the set of
possible states of nature is initially believed to be S = {s1, s2}; complete
ignorance is modeled by equiprobability, pS(s1) = pS(s2) = 1/2. Suppose
that it is then found that s2 is in fact composed of two sub-states, say
sa
2 and sb

2, so that now S = {s1, s
a
2 , sb

2}; now ignorance about this new
set of possible states of nature would be expressed by pS(s1) = pS(sa

2) =
pS(sb

2) = 1/3 which is not compatible with pS(s2) = pS(sa
2) + pS(sb

2).

2.6.2 Location Parameters

Consider an estimation problem (S = A = IR) where the likelihood func-
tion has the form fX(x|s) = φ(x − s), for some function φ(·); s then is
called a location parameter. A simple example is fX(x|s) = N (x|s, σ2),
with known σ2. Now, suppose that rather than observing one outcome of
X, say x, a shifted version y = x + k (with k known) is observed, the new
goal being to estimate u = s + k; clearly, the likelihood function for this
new problem is still fY (y|u) = φ(y − u). Obviously, estimating u from y
or s from x are equivalent problems and none of them should be privi-
leged with respect to the other; accordingly, there is no reason why the
non-informative prior density would not be the same for both of them. De-
noting as pS(s) the non-informative prior density for the (x, s) problem,
and as pU (u) the one for the (y, u) problem, we are then forced to require
that, for any interval [α1, α2],

∫ α2

α1

pS(s) ds =

∫ α2

α1

pU (u) du. (2.44)

But
∫ α2

α1

pU (u) du =

∫ α2

α1

pS(u − k) du =

∫ α2−k

α1−k

pS(s) ds. (2.45)
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Equality between the left hand side of Eq. (2.44) and the third integral in
Eq. (2.45) is clearly a translation invariance condition, i.e. pS(s) = pS(s −
k), for any s and k. The only solution is pS(s) = a, with arbitrary a
(the same would, of course, be concluded about pU (u)). In summary, for
a location parameter, translation invariance arguments lead to a uniform
(improper) non-informative prior density (see Figure 2.8).

2.6.3 Scale Parameters

Consider now that s is a scale parameter, i.e., the likelihood function has
the form fX(x|s) = s−1ψ(x/s), for some function ψ(·). For example, if
fX(x|s) = N (x|0, s2), the standard deviation s is a scale parameter; of
course now S = A = (0,+∞). In this case, it is natural to expect the non-
informative prior density to express “scale ignorance”, and so the relevant
reparameterization is y = kx which corresponds to u = ks, i.e., a change
of scale. Scale invariance means that the units in which some quantity are
measured should not influence any conclusions drawn from it. Using the
same line of thought as above, since the two problems are equivalent, the
two non-informative prior densities have to coincide; so, for any (α1, α2)

∫ α2

α1

pS(s) ds =

∫ α2

α1

pU (u) du. (2.46)

But

∫ α2

α1

pU (u) du =

∫ α2

α1

pS(u/k)
1

k
du =

∫ α2/k

α1/k

pS(s) ds. (2.47)

which obviously expresses scale invariance (as shown in Figure 2.8). Now,
the equality between the left hand side of Eq. (2.46) and the second inte-
gral in Eq. (2.47) requires that pS(s) = pS(s/k)(1/k) for any s and k; in
particular, since it also has to be true for s = k, it requires that pS(s) =
pS(1)(1/k) ∝ (1/k). In conclusion, a scale invariant non-informative prior
density is not uniform, though it is still improper.
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FIGURE 2.8. Non-informative priors for location (left) and scale (right) param-
eters.
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At this point, the following question seems to be relevant: since the use
of conjugate priors was advocated on the basis of analytical and computa-
tional feasibility, what about this non-informative scale-invariance prior we
just studied? Does it exhibit any kind of conjugacy? We will now take a brief
look at this issue by revisiting previous examples for which we considered
conjugate priors. We shall see that in all three cases, the non-informative
prior density belongs to the family of conjugate densities; possibly, lying at
the “boundary” of the family as a limit case.

A similar fact was already verified for location parameters: simply note
that the uniform prior may be seen as the limit of a family of Gaussian
densities, as the variance goes to infinity.

Example 2.6.1
In Example 2.3.2, we took the uniform density on the interval [0, 1] as

a non-informative prior for the Bernoulli parameter, which led to its ML
estimate. Now we can notice that by inserting α = β = 1 in the Beta prior
we do obtain this uniform prior showing that it is, in fact, a particular
instance of the conjugate family. In this case, because the parameter space
is bounded (it is the interval [0, 1]), this prior density is not improper.

Example 2.6.2
Let us now take another look at Example 2.3.3. How can we obtain a

non-informative conjugate prior? In other words, is there a Gamma density
(recall Eq. (2.17)) which expresses ignorance about the unknown parameter
θ. Recall that the mean, the variance, and the mode of a Gamma density,
Ga(θ|α, β), are equal to α/β, α/β2, and (α−1)/β, respectively (as expressed
in Eqs. (2.19), (2.20), and (2.21)). Moreover, the mode only exists if α ≥
1. By letting α → 0 and β → 0, the mean becomes indeterminate, the
variance goes to +∞ and the limit density has no mode, which seems to be
a reasonably vague prior. This limit Gamma density is improper; in fact,
the inverse of the normalizing constant in Eq. (2.17) verifies

lim
α,β→0

βα

Γ(α)
= 0. (2.48)

To obtain the “shape” of this improper prior, one simply ignores the nor-
malizing constant,

lim
α,β→0

θα−1e−βθ =
1

θ
(2.49)

which is our improper non-informative prior (notice in Figure 2.3, how
for α = β = 1 the Gamma density starts resembling the 1/θ function).
Recalling that θ = 1/σ2, i.e., σ = θ−1/2, we obtain the corresponding prior
for σ simply by using the transformation rule (Eq. (2.42)); the result is a
similar prior pΣ(σ) ∝ 1/σ, which interestingly agrees with the one obtained
via scale invariance arguments.
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Another way to look at this prior is by considering the transformation
ω = log(σ), i.e., parameter ω represents scale in logarithmic units. By a
direct application of the density transformation rule, we obtain pΩ(ω) ∝ 1,
a uniform prior over IR; notice that the ω = log(σ) transformation maps
σ ∈ (0,+∞) onto ω ∈ (−∞,+∞). An intuitively appealing explanation
for this fact is that it is more natural to think of scale parameters in log-
arithmic terms; with respect to that (most natural) parameterization, the
non-informative prior becomes uniform.

Finally, to obtain the Bayesian rules corresponding to this non-informative
prior, let α, β → 0 in Eqs. (2.23) and (2.24):

lim
α,β→0

θ̂PM = n

(
n∑

i=1

x2
i

)−1

= θ̂ML (2.50)

lim
α,β→0

θ̂MAP = (n − 2)

(
n∑

i=1

x2
i

)−1

< θ̂ML. (2.51)

The PM and ML estimates become coincident, but the MAP criterion out-
puts a smaller value (in what may be seen as the effect of the 1/θ prior
“pulling-down” the estimate).

Example 2.6.3
Is it possible to follow the line of thought of the previous example, but

now for the Poisson observation model of Example 2.3.4? We saw that
the conjugate family for the Poisson likelihoods (parameterized as in Eq.
(2.25)) is also the set of Gamma priors (see Eq. (2.17)). So, the natural
thing to do in order to obtain a non-informative prior density is again to
consider the limit α, β → 0. As in the previous example, the limit prior
thus obtained is

lim
α,β→0

θα−1e−βθ =
1

θ
(2.52)

which seems to suggest that the rate parameter of a Poisson distribution
should also be treated as a scale parameter; i.e., a non-informative prior
for θ should express scale invariance. But what kind of scale invariance is
being invoked? The answer is clear if one notices that θ is a “rate” and so its
units are “counts/time-interval” (where “time-interval” may be replaced by
some “length”, “area”, or “volume” if we are talking about a spatial Poisson
process, rather than a time one). Of course, the units used to measure time
intervals should not influence the results of any inference procedure and so
the relevant reparameterization is in fact a change of scale; the 1/θ prior
does express this scale invariance.
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The Bayesian estimators of θ under this non-informative prior are ob-
tained as the limits when α, β → 0 of those in Eqs. (2.27) and (2.28),

lim
α,β→0

θ̂PM =

n∑

j=1

xj

T
= θ̂ML (2.53)

lim
α,β→0

θ̂MAP =

−1 +

n∑

j=1

xj

T
< θ̂ML. (2.54)

As in the previous example, the PM estimate converges to the ML one. The
limit of the MAP estimate is slightly smaller than the ML estimate but this
difference naturally vanishes as the amount of data (and T ) increases.

2.7 Jeffreys’ Priors and Fisher Information

A common criticism of the invariance approach to obtaining non-informative
priors is that it relies on the choice of an invariance structure; although for
discrete problems and for location and scale parameters there seems to
be no controversy (probably because most approaches lead to the same
results), this may not be the case for other types of parameters. An al-
ternative technique which does not rely (explicitly) on the choice of an
invariance structure (although it often leads to similar results) is the one
proposed by Jeffreys [60].

2.7.1 Fisher Information

Before addressing the central topic of this section, the so-called Jeffreys’
non-informative priors, the underlying concept of Fisher information has
to be introduced. If an estimation problem is characterized by the likelihood
function fX(x|θ), the associated Fisher information is defined as

I(θ) = EX

[(
∂ log fX(x|θ)

∂θ

)2
]

. (2.55)

The Fisher information is a very important concept introduced by Fisher
in 1922 [42]. Its best known use is in the Cramer-Rao (lower) bound (see,
e.g., [63], [98] or [104]) which relates to basic frequentist concepts which
we will now briefly review. Let θ be a real (deterministic) parameter to
be estimated from observations x which are generated according to some
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likelihood function fX(x|θ), and let θ̂(x) be some estimator of θ. If this
estimator verifies

EX

[
θ̂(x)

]
=

∫ +∞

−∞
θ̂(x) fX(x|θ) dx = θ (2.56)

it is said to be unbiased. Notice the frequentist nature of this concept; it is
an average with respect to all possible observations, with fixed θ. Also, com-
pare this with Eq. (1.2). The most important (frequentist) characterization
of a (unbiased) parameter estimator is its variance,

EX

[(
θ̂(x) − θ

)2
]

=

∫ +∞

−∞

(
θ̂(x) − θ

)2

fX(x|θ) dx, (2.57)

which has been very widely used to support optimality criteria in statistical
signal processing [63], [98]. A particularly important relation involving the
variance of an unbiased estimator and the Fisher information is the Cramer-
Rao bound3 which states that, if θ̂(x) is an unbiased estimator,

EX

[(
θ̂(x) − θ

)2
]
≥ 1

I(θ)
. (2.58)

Estimators verifying Eq. (2.58) with strict equality are called efficient. In
order to have an intuitive interpretation of the Cramer-Rao inequality, it is
convenient to rewrite the Fisher information in its alternative form; in fact,
it is not difficult to verify that the Fisher information can be rewritten as
(see, e.g., [104])

EX

[(
∂ log fX(x|θ)

∂θ

)2
]

= −EX

[
∂2 log fX(x|θ)

∂θ2

]
. (2.59)

Now this form has a clearer meaning: it can be roughly described as the
“average concavity” (second derivative) of the logarithm of the likelihood
function, i.e., it measures how prominent its maximum is; it is intuitively
acceptable that a parameter can be more accurately estimated if the asso-
ciated log-likelihood has a clear maximum.

At this point, let us go back and compute Cramer-Rao bounds for some
of the previous examples, in order to further clarify this concept.

Example 2.7.1
Recalling Example 2.3.1, when θ is the common mean of a set of n i.i.d.

normal observations of known variance σ2, the log-likelihood function is

log fX(x|θ) = −n

2
log(2πσ2) − 1

2σ2

n∑

i=1

(xi − θ)2. (2.60)

3See, e.g., [63], [98], or [104] for derivations; see also [23] for a different approach from

an information theoretical viewpoint
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Now consider the ML estimator of θ, i.e., θ̂ML(x) which is easily seen to
be unbiased:

EX

[
1

n

n∑

i=1

xi

]
=

1

n

n∑

i=1

EXi
[xi] = θ.

The Fisher information can be found by applying Eq. (2.59),

I(θ) =
n

σ2
(2.61)

which can be read as: the amount of information about θ carried by the
likelihood function is proportional to the size of the observation set and
decreases as the observation variance increases; this is an intuitively pleas-
ing result. The Cramer-Rao bound, in this case, will state that no unbiased
estimator can have a variance less than σ2/n; moreover, the fact that I(θ)
in Eq. (2.61) is not a function of θ says that the estimation precision is
not expected to depend on the true θ. Some further simple manipulations
allow us to show that the ML estimator is in fact efficient, i.e., its variance
equals σ2/n.

End of Example 2.7.1

Example 2.7.2
Let us revisit Example 2.3.2; there, θ and 1 − θ denoted the (unknown)

probabilities of heads and tails, respectively, of a given coin under study.
The outcomes of an observed sequence of n tosses are denoted by x =
(x1, . . . , xn), with xi = 1 standing for a head, and xi = 0 for a tail. The
likelihood function is then a Bernoulli distribution; i.e., letting nh(x) =
x1 + x2 + ... + xn denote the number of heads outcomes, it can be written
as

fX(x|θ) = θnh(x) (1 − θ)n−nh(x). (2.62)

The maximum likelihood estimate of θ was seen to be θ̂(x) = nh(x)/n;
to check that this is an unbiased estimate, let us compute its frequentist
expected value

EX[nh(x)/n] =
1

n

∑

x∈X
nh(x) θnh(x) (1 − θ)n−nh(x)

where X is the space of all possible sequences of heads and tails. This sum
can be rearranged by counting how many sequences have each possible
number of heads outcomes, i.e.

1

n

∑

x∈X
nh(x)θnh(x) (1 − θ)n−nh(x) =

1

n

n∑

nh(x)=0

nh(x)

(
n

nh(x)

)
θnh(x) (1 − θ)n−nh(x) = θ (2.63)
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FIGURE 2.9. The Fisher information and the corresponding Cramer-Rao bound
for the problem of estimating the parameter of a Bernoulli sequence of 20 trials.

because the summation on the right hand side can be easily identified as the
mean of a Binomial random variable of “sample size” n and “probability
of success” equal to θ (see Appendix A), which is nθ.

Obtaining the Fisher information I(θ) via Eq. (2.59) leads (after some
computations) to

I(θ) =
n

θ(1 − θ)
(2.64)

which is plotted in Figure 2.9. Here we have a different situation: I(θ) does
depend on θ. This means that some values of the parameter θ will be more
difficult to estimate than others, with θ = 0.5 being the value for which
estimators are expected to have higher variance.

End of Example 2.7.2

Example 2.7.3
In Example 2.3.3 we looked into the problem of estimating the inverse of

the common variance of a set of zero mean i.i.d. Gaussian random variables.
Let us now parameterize the problem directly on the variance σ2. Here
again, it is easy to check that the ML estimator is unbiased, and some
further computations yield

I(σ2) =
n

2σ4
. (2.65)

Again, this is not a surprising result; it is natural that the variance of
a variance estimate will depend on the fourth moment of the underlying
variable.

End of Example 2.7.3
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The expressions for the Fisher information found in the previous three
examples (see Eqs. (2.61), (2.64), and (2.65)) seem to exhibit a common
feature: they are proportional to n, the size of the observed data set. In
fact, this is a general result for sets of i.i.d. observations; it is a simple
consequence of the use of logarithm in the definition of Fisher information
and of the important fact

EX

[
∂ log fX(x)|θ)

∂θ

]
=

∫
∂ log fX(x)|θ)

∂θ
fX(x|θ) dx = 0, (2.66)

whose proof is simply (recall that for any function u, d log(u(x))/dx =
(1/u(x))du(x)/dx)

∫
∂ log fX(x)|θ)

∂θ
fX(x|θ) dx =

∫
∂fX(x|θ)

∂θ

fX(x|θ)
fX(x|θ) dx

=
∂

∂θ

∫
fX(x|θ) dx

︸ ︷︷ ︸
1

= 0. (2.67)

Now, let the elementary (i.e., for one observation) likelihood be fX(x|θ),
with the corresponding Fisher information being denoted as I(1)(θ). Given
n i.i.d. observations x = (x1, . . . , xn), all obtained according to this same
likelihood function, i.e., fX(x|θ) =

∏n
i=1 fXi

(xi|θ) (fXi
(xi|θ) = fX(xi|θ),

for any i), the associated Fisher information, denoted I(n)(θ), is

I(n)(θ) = EX




(

∂

∂θ

n∑

i=1

log fX(xi|θ)
)2





=

n∑

i=1

EXi

[(
∂ log fXi

(xi|θ)
∂θ

)2
]

︸ ︷︷ ︸
I(1)(θ), independently of i

+
∑

i6=j

EXi,Xj

[
∂ log fXi

(xi|θ)
∂θ

∂ log fXj
(xj |θ)

∂θ

]

︸ ︷︷ ︸
0

(2.68)

= n I(1)(θ), (2.69)

where the second term in Eq. (2.68) is zero as a consequence of the inde-
pendence of Xi and Xj and of Eq. (2.66).

Let us conclude these few paragraphs devoted to the Fisher information
with a final example involving a Poisson likelihood function.

Example 2.7.4
For the Poisson observation model, according to Eq.(2.25), the log-likelihood

function is (up to irrelevant additive constants)

log fX(x|θ) = t(x) log θ − Tθ;
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see Example 2.3.4 to recall the notation. The ML estimate of θ is given by
Eq. (2.29). Checking that it is unbiased is simple,

EX

[∑n
i=1 xi

T

]
=

1

T

n∑

i=1

EXi
[xi] =

1

T

n∑

i=1

θTi = θ,

since the expected number of counts of a Poisson process of rate θ during
an observation interval Ti is simply θTi (see Appendix A).

Now, some straightforward computations allow obtaining the Fisher in-
formation for this observation model, which turns out to be

I(θ) =
T

θ
; (2.70)

this expression is clearly similar to Eq. (2.61), if we recall that the variance
(which coincides with the mean) of the number of Poisson counts during
a unit interval is θ. Here, the total observation time T plays the role of
“size of data set” n in the previous examples. In addition, this expression
suggests that smaller values of θ can be estimated with less variance; this
is a natural consequence of the fact that the mean and the variance of a
Poisson distribution coincide.

End of Example 2.7.4

2.7.2 Fisher Information in Asymptotic Normality

Following [14], let us briefly see what can be stated about the asymptotic
properties of the a posteriori probability density function, pS(θ|x) (with
θ a real parameter), obtained from a likelihood function fX(x|θ) together
with a prior pΘ(θ). Let us assume that the n observations are independent
and identically distributed, i.e.,

log fX(x|θ) =

n∑

i=1

log fX(xi|θ)

and write the a posteriori density as

pΘ(θ|x) ∝ exp {log pΘ(θ) + log fX(x|θ)} . (2.71)

Now, let θ0 be the maximum of pΘ(θ) (assumed to exist and be unique) and

θ̂ML
(n) be the maximum likelihood estimate obtained from the n observations,

that is, the maximum of log fX(x|θ) with respect to θ. Performing Taylor
expansions of the logarithmic terms in Eq. (2.71), we can write

log pΘ(θ) = log pΘ(θ0) −
1

2
(θ − θ0)

2 ∂2 log pΘ(θ)

∂θ2

∣∣∣∣
θ=θ0

+ R0

log fX(x|θ) = log fX(x|θ̂ML
(n) ) − 1

2
(θ − θ̂ML

(n) )2
∂2 log fX(x|θ)

∂θ2

∣∣∣∣
θ=θ̂ML

(n)

+ R(n)
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where R0 and R(n) are remainder terms. Now, these expansions, if they are
accurate, allow us to look at the prior and the likelihood as Gaussian; this
is so if we can treat R0 and R(n) as constants, which of course they are
not. Observing that (see Eq. (2.69))

∂2 log fX(x|θ)
∂θ2

∣∣∣∣
θ=θ̂ML

(n)

= I(n)
(
θ̂ML
(n)

)
= n I(1)

(
θ̂ML
(n)

)

we obtain

pΘ(θ|x) ∝ exp

{
−1

2
(θ − θ̂n)2

(
n I(1)

(
θ̂ML
(n)

)
+

∂2 log pΘ(θ)

∂θ2

∣∣∣∣
θ=θ0

)}

where (compare with Eq. (1.85))

θ̂n =

n I(1)
(
θ̂ML
(n)

)
θ̂ML
(n) +

∂2 log pΘ(θ)

∂θ2

∣∣∣∣
θ=θ0

θ0

n I(1)
(
θ̂ML
(n)

)
+

∂2 log pΘ(θ)

∂θ2

∣∣∣∣
θ=θ0

.

Now, as the amount of data increases, n → ∞, the prior term looses im-

portance, i.e., the term n I(1)
(
θ̂ML
(n)

)
dominates over the second derivative

of the log-prior; consequently,

lim
n→∞

pΘ(θ|x) = lim
n→∞

N
(

θ|θ̂ML
(n) ,

(
n I(1)

(
θ̂ML
(n)

))−1
)

. (2.72)

Of course, we have omitted all the detailed technical conditions required,
and what we have presented is not a formal proof but only an heuristic
view. It serves mainly the purpose of briefly showing the kind of results
that are obtained in asymptotic analysis. There is a large body of work on
this issue, and a comprehensive list of references can be found, for example,
in [14].

2.7.3 Jeffreys’ Priors

After this brief view of the Fisher information and Cramer-Rao bound,
which was followed by a few examples, let us return to the Jeffreys’ prior.
We begin by considering an estimation problem supported on the likelihood
function fX(x|s). A reparameterization of the problem into u = g(s), where
g(·) is any one-to-one continuous function, corresponds to a new likelihood
function4, say f

′

X
(x|u). Because g(·) is a one to one mapping, these two

4It is important to use a notation f
′

X
(x|u) that distinguishes this new likelihood

because its functional dependence on u is not the same as the functional dependence of

fX(x|s) on s.
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likelihoods are of course related through

f
′

X(x|u) = fX(x|g−1(u)) (2.73)

where g−1(·) is the inverse function of g(·). Then, by the chain rule of the
derivative

∂ log f
′

X
(x|u)

∂u
=

∂ log fX(x|s)
∂s

∣∣∣∣
s=g−1(u)

· dg−1(u)

du

=
∂ log fX(x|s)

∂s

∣∣∣∣
s=g−1(u)

· 1

g′(g−1(u))
. (2.74)

Now, squaring both sides, taking expected values with respect to X (notice
that 1/g

′

(g−1(u)) is not a function of X), and then extracting square roots,
leads to √

I(u) =
√
I(g−1(u))

1

|g′(g−1(u))| . (2.75)

The reader should notice how this equation is similar to the random vari-
able transformation rule in Eq. (2.42)). The implication of this similarity is
clear: if s has a prior p(s) ∝

√
I(s), which is called the Jeffreys’ prior, then

any (one-to-one and continuous) reparameterization u = g(s) will automat-
ically lead to the prior p(u) ∝

√
I(u), still the Jeffreys’ prior. This shows

how the Jeffreys’ prior generalizes the location and scale invariance-based
non-informative priors to arbitrary (continuous and one-to-one) reparame-
terizations.

Finally, notice that, in passing, we also derived the transformation rule
for the Fisher information; removing the square roots from Eq. (2.75),

I(u) = I(g−1(u))

(
1

|g′(g−1(u))|

)2

. (2.76)

Example 2.7.5
In Example 2.7.1, where θ is the common mean of a set of n i.i.d. normal

observations of known variance σ2, we saw that the Fisher information is
expressed in Eq. (2.61); accordingly, Jeffreys’ prior will be

pΘ(θ) ∝ k (2.77)

where k is an arbitrary constant (since this prior is improper, it is only
defined up to an arbitrary multiplicative factor). Notice that this prior
coincides with the one obtained in Section 2.6.2 through the use of location
invariance considerations.

End of Example 2.7.5

Example 2.7.6
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For a set of n Bernoulli trials studied in Example 2.7.2, the Fisher in-
formation for the parameter θ was found to be as given in Eq. (2.64).
Consequently, the non-informative prior according to Jeffreys’ principle is

pΘ(θ) ∝ 1√
θ(1 − θ)

. (2.78)

The first interesting thing to notice about this prior, is that it is still a conju-
gate prior; notice (see Eq. (2.10)) that this is a Beta density, more precisely,
pΘ(θ) = Be(θ|1/2, 1/2). The next thing to notice is that Be(θ|1/2, 1/2)
is not uniform on [0, 1], as could be intuitively expected from a non-
informative prior for this problem (recall Example 2.7.2); see [56] for an
interesting discussion of this Jeffreys’ prior. However, a look at the Bayesian
estimation rules in Eqs. (2.14) and (2.15) reveals that, even for moderately
large samples, the impact of this difference is small.

End of Example 2.7.6

Example 2.7.7
For the problem of estimating the common variance σ2 of a set of zero

mean i.i.d. Gaussian random variables, the Fisher information was found
(see Example 2.7.3) to be I(σ2) = n/σ4. The resulting Jeffreys’ prior is
then

pΣ2(σ2) ∝ 1

σ2
; (2.79)

at first look, this may seem different from the scale-invariant non-informative
prior for σ, obtained in Example 2.6.2, which was pΣ(σ) ∝ 1/σ. To shorten
the notation, let us write s = σ2; direct application of the transformation
rule in Eq. (2.42), with s = g(σ) = σ2, leads to pS(s) = 1/s, in accordance
with Eq. (2.79). Once more, the priors based on invariance and obtained
by Jeffreys’ principle coincide. The resulting a posteriori density is

p(σ2|x) ∝
(

1

σ2

)n
2 +1

exp

{
− 1

2σ2

n∑

i=1

x2
i

}
(2.80)

which is always normalizable but only has mean if n > 2 (because otherwise
the integral of σ2 p(σ2|x) from 0 to ∞ does not converge); the PM and MAP
estimates are

σ̂2
MAP =

1

n + 2

n∑

i=1

x2
i (2.81)

σ̂2
PM =

1

n − 2

n∑

i=1

x2
i , for n > 2. (2.82)

The MAP estimate obtained under the Jeffreys’ prior for this problem
has an interesting property, from a frequentist point of view. Consider
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all (linear) estimators of the form σ̂2
k = k

∑n
i=1 x2

i , and let us take the

quadratic loss function L(σ̂2
k, σ2) = (σ̂2

k − σ2)2. The frequentist risk (see
Section 1.2.2) is found to be, after some computations (involving the fact
that the fourth moment of a zero mean Gaussian of variance σ2 equals
3(σ2)2)

EX




(

σ2 − k
n∑

i=1

x2
i

)2
∣∣∣∣∣∣
σ2



 = (σ2)2 [k2(n2 + 2n) − 2kn + 1].

Computing the derivative with respect to k, and equating to zero, leads
to k = 1/(n + 2). In conclusion, the MAP criterion under the Jeffrey’s
prior coincides with the minimum (frequentist) risk estimator. Notice that
in this case there is no minimax estimator (see Section 1.2.2), because
[k2(n2 + 2n) − 2kn + 1] > 0, for any k, and so the supremum of the risk
with respect to σ2 is always equal to infinity.

End of Example 2.7.7

Example 2.7.8
Finally, the Poisson observation model was seen in Example 2.7.4 to have

Fisher information I(θ) = T/θ. The corresponding Jeffreys’ prior is then

pΘ(θ) ∝ 1√
θ

(2.83)

which is different from the one obtained in Example 2.6.3, and which had a
scale-invariance interpretation. Notice that θ is not a pure scale parameter
because both the mean and the variance of a Poisson random variable are
proportional to θ. Nevertheless, this is still a conjugate prior in the Gamma
family; notice that, ignoring the normalization factors as in Eq. (2.52),

lim
β→0

Ga(θ|1/2, β) ∝ lim
β→0

θ−1/2e−βθ =
1√
θ
. (2.84)

End of Example 2.7.8

The Jeffreys’ prior approach is by no means universally accepted in all
situations; many times it yields non-informative priors with which many
people do not agree and/or that lead to poor parameter estimates; this is
specially true when rather than a single scalar parameter, a set of parame-
ters is being estimated [14], [93] (see Section 3.5.3). Other approaches have
been proposed and the interested reader is referred to [61] for pointers to
the relevant literature. A very comprehensive catalog of non-informative
priors is avalaible in [110].

Finally, we would like to stress again that the Fisher information (and
consequently the Jeffreys’ prior, from a Bayesian perspective) is a fun-
damental concept. It plays the central role in the development of modern
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differential geometric theories of statistical inference [1], [62], [79], [94]; it is
also a fundamental link in the interplay between statistics and information
theory [23], [67], [91].

2.8 Maximum Entropy Priors

In many situations, a priori knowledge of a quantitative nature is available
which can guide the building of the prior; nevertheless, this knowledge
may be insufficient to uniquely specify a prior. A defensible and intuitively
appealing criterion to be used in such situations is that the prior should
be as non-informative as possible, while keeping compatibility with the a
priori available information. This idea can be formalized via the maximum
entropy (ME) criterion proposed by Jaynes (see [56], [57], [58]) which we will
briefly review in this section. It is important to mention that, in addition
to its intuitive appeal, entropy maximization can be formally shown to be
the unique criterion satisfying a set of consistency axioms [100].

Entropy maximization has also been widely used as an estimation crite-
rion per se [57], namely for image restoration/reconstruction [20], [44], [50],
[112]; that approach (which is not the same as using the ME criterion to
obtain priors for Bayesian inference) will not be covered in this section.

2.8.1 Maximum Entropy Priors for Discrete Problems

As its name implies, the maximum entropy criterion is supported on the
concept of entropy; this is arguably the basic building block of information
theory, the formal body of knowledge devoted to the mathematical study
of information; comprehensive references on this subject are [17] and [23].

In a classification problem, the prior is a probability mass function pS(s),
for s ∈ S = {s1, s2, ..., sM}. In this case, the entropy of this probability mass
function is a quantity defined as

H (S) =
∑

si∈S
pS(si) log

(
1

p(si)

)

= ES

[
log

(
1

pS(s)

)]
= ES [− log (pS(s))] . (2.85)

Notice that this definition does not depend on the particular elements of
S, but only on their probabilities; the entropy is not a feature of a random
variable, but of its probability distribution. This fact would justify the no-
tation H (pS(s)), but we settle for the conventional H(S). The entropy is
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the expected value of the function5 − log(pS(s)), which can be interpreted
as the information content of the elementary event s, in the following sense:
a highly probable event carries little information while a rare event carries
a lot of information (as seems to be well known by journalists and other
news people). In passing, notice that since pS(s) ≤ 1, then − log pS(s) ≥ 0
and so H(S) ≥ 0 (the expected value of a non-negative function is neces-
sarily non-negative) is true for any probability mass function. This average
information interpretation is in accordance with, and is made clearer by,
the following facts:

• For some (finite) configuration set S, the probability mass function
that maximizes the entropy is uniform p(s) = 1/|S|, where |S| denotes
the number of elements of S. In fact, it is intuitively acceptable that
the state of highest ignorance about a random variable occurs when
that variable is uniformly distributed. The corresponding maximal
entropy is

max
pS(s)

{H (S)} = log |S|, (2.86)

where the maximization is, of course, under the normalization con-
straint

∑
i pS(si) = 1. This result can be obtained in several different

ways; the most direct, probably, is simply to use Lagrange multipliers
(see Appendix A) to combine the entropy being maximized with the
normalization constraint; this leaves us with the minimization of the
following function

−
∑

si∈S
pS(si) log pS(si) + λ

∑

si∈S
pS(si), (2.87)

where λ is the Lagrange multiplier. Computing the derivative with
respect to pS(si) and equating to zero yields pS(si) = exp{λ−1} (the
same for any si ∈ S); finally, invoking the normalization constraint
to solve for λ results in pS(si) = 1/|S|, as expected.

• Consider now a probability mass function pS(s) such that pS(si) =
1 − ε with ε =

∑
k 6=i p(sk), where ε is a small (≪ 1) positive real

number; i.e., we are considering that si is almost certain to occur (its
probability is almost 1). If ε goes to zero, so must all the p(sk), for
k 6= i, since they are non-negative quantities; then, we have that

lim
ε→0

H (S) = lim
ε→0

{(ε − 1) log (1 − ε)}

−
∑

k 6=i

lim
p(sk)→0

{p(sk) log (p(sk))} = 0

5The logarithm base only affects the units in which the entropy is measured. The
classical choice is base 2, yielding entropies measured in bits; alternatively, base e leads

to a unit called nat [23].



90 2. Topics in Bayesian Inference

since x log x → 0, as x tends to zero6. This means that as one of the
possible events becomes increasingly probable (certain), the entropy
(uncertainty) approaches zero.

With the entropy concept in hand, we can now formally state what a
maximum entropy (discrete) prior is. It is a probability mass function which
maximizes the entropy (uncertainty) among all those satisfying the a priori
available information. Of course, for this criterion to be applicable, the
available information has to be formally expressed; the most common and
often studied form is a set of m + 1 equalities

∑

si∈S
pS(si)gk (si) = µk, for k = 0, 1, ...,m, (2.88)

where g0(s) = 1 and µ0 = 1 (the zero-th constraint is always present and
simply imposes normalization,

∑
p(si) = 1). Under this type of constraint,

the maximum entropy (ME) probability mass function has the form

pME

S (s) = exp{λ0 +
m∑

k=1

λkgk (s)} for s ∈ S (2.89)

where the parameters λk are obtained so that pME

S (s) satisfies the con-
straints in Eq. (2.88); this result can be obtained by the technique of La-
grange multipliers (see, e.g., [23]).

Example 2.8.1
Let S = {0, 1, 2, 3, ...}, the set of non-negative integer numbers, and

consider a single (m = 1) restriction (apart from the zero-th one), on the
expected value, i.e., g1(s) = s, which is supposed to be µ1. Then, according
to Eq. (2.89),

pME

S (s) = exp{λ0 + λ1s} = exp{λ0} (exp{λ1})s
. (2.90)

Invoking the normalization condition, we easily obtain that exp{λ0} =
1 − exp{λ1}. Then the maximum entropy probability mass function is a
so-called geometric distribution,

pME

S (s) = (1 − θ) θs, (2.91)

with θ = exp{λ1}, whose expected value is θ/(1 − θ). The additional re-
striction (referred above) on the expected value finally leads to exp{λ1} =
θ = µ1/(1 + µ1).

End of Example 2.8.1

6This is an indeterminate limit, since limx→0 x log x = 0(−∞), which can be easily

solved by L’Hôpital’s rule leading to limx→0 x log x = 0.
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2.8.2 The Kullback-Leibler Divergence

Discrete Variables

When maximizing the discrete entropy, although this was not explicit in Eq.
(2.85), one was in fact looking for the prior pS(s) which is “most similar”
to a non-informative one qS(s). The “dissimilarity” measure being used is
the (discrete version of the) Kullback-Leibler divergence (also called relative
entropy), denoted as D[pS(s)‖qS(s)], and given by

D[pS(s)‖qS(s)] =
∑

s∈S
pS(s) log

(
pS(s)

qS(s)

)
. (2.92)

Since in discrete problems the non-informative prior is qS(s) = 1/|S|, the
Kullback-Leibler divergence between any candidate prior pS(s) and this
non-informative one is

D

[
pS(s)

∥∥∥∥
1

|S|

]
=

∑

s∈S
pS(s) (log pS(s) + log |S|)

= −H (S) + log |S|; (2.93)

thus, minimizing the Kullback-Leibler divergence with respect to pS(s) is
in fact equivalent to maximizing the entropy H(S)

The Kullback-Leibler divergence (notice that D[pS(s)‖qS(s)] may be dif-
ferent from D[qS(s)‖pS(s)], precluding it from being called a distance) is
a very important information theoretical concept. It verifies an inequality
(known as the information inequality or the Gibbs inequality, depending
on the context in which it is being used) which justifies its adoption as
a dissimilarity measure and which has many important consequences and
implications; specifically,

D[pS(s)‖qS(s)] ≥ 0 (2.94)

D[pS(s)‖qS(s)] = 0 ⇔ pS(s) = qS(s),∀s∈S . (2.95)

Notice that it is being assumed that7 0 log(0/q) = 0, while p log(p/0) = ∞;
i.e., an event s that has zero probability under pS(s) has a zero contribution
to the total divergence, while any event s with non-zero probability under
pS(s), but zero under qS(s), makes the divergence go to infinity. The proof
of this fundamental inequality is sufficiently simple to be shown here. First,
start by noticing that

D[pS(s)‖qS(s)] =
∑

s∈S
pS(s) log

(
pS(s)

qS(s)

)
=

∑

s∈S:pS(s) 6=0

pS(s) log

(
pS(s)

qS(s)

)

7This agrees with lim
x→0

x log x = 0.
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because 0 log(0/q) = 0. Then, Eq. (2.94) results directly from

−D[pS(s)‖qS(s)] =
∑

s∈S:pS(s) 6=0

pS(s) log

(
qS(s)

pS(s)

)

≤
∑

s∈S:pS(s) 6=0

pS(s)

(
qS(s)

pS(s)
− 1

)
(2.96)

=
∑

s∈S:pS(s) 6=0

qS(s) −
∑

s∈S:pS(s) 6=0

pS(s)

≤ 0. (2.97)

Eq. (2.96) is based on the fact that log x ≤ (x− 1), while the inequality in
Eq. (2.97) results from

∑

s∈S:pS(s) 6=0

qS(s) ≤ 1 and
∑

s∈S:pS(s) 6=0

pS(s) = 1. (2.98)

Strict equality in Eq. (2.96) is only valid if qS(s) = pS(s), whenever pS(s) 6=
0, because log x = (x− 1) if and only if x = 1. Strict equality in Eq. (2.97)
is true if qS(s) = 0, whenever pS(s) = 0. Consequently, both are true if and
only if pS(s) = qS(s), for any s.

Example 2.8.2
As an illustration of the power of the information inequality, consider the

inequality H (S) ≤ log |S|; in the previous section we showed it by means
of Lagrange multipliers. Now, let qS(s) = 1/|S| be the uniform distribution
over S. The Kullback-Leibler divergence between pS(s) and this qS(s) is
(see Eq. (2.93))

D [pS(s)‖qS(s)] = log |S| − H (S) ;

then, log |S| ≥ H (S) is a direct consequence of the information inequal-
ity. Also the ME distribution in Eq. (2.89) can be obtained by Lagrange
multipliers; a much simpler and more elegant derivation supported on the
information inequality can be found in [23].

End of Example 2.8.2

Continuous Variables

For a continuous S, the Kullback-Leibler divergence between two probabil-
ity density functions pS(s) and qS(s) is defined as

D[pS(s)‖qS(s)] =

∫

S
pS(s) log

(
pS(s)

qS(s)

)
ds. (2.99)

Let us briefly study the properties of this continuous version of the Kullback-
Leibler divergence (also not symmetrical). Its key property is again its non-
negativity, i.e., D[pS(s)‖qS(s)] ≥ 0, with equality if and only if pS(s) =
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qS(s) almost everywhere. The proof of this property parallels that of the
discrete case, with integrals replacing the summations.

If qS(s) = 1/|S| is a uniform density over S, where now |S| denotes the
volume of S, i.e., |S| =

∫
S ds (for now, assumed finite), the Kullback-Leibler

divergence reduces to

D[pS(s)‖qS(s)] =

∫

S
pS(s) log pS(s) ds + log |S| = −h (S) + log |S|,

where h (S) is called the differential entropy of the r.v. S whose probabil-
ity density function is pS(s). Now, as in the discrete case, the informa-
tion inequality implies that h (S) ≤ log |S|, with equality if and only if
pS(s) = log |S| (almost everywhere). Unlike the discrete entropy, however,
its differential counterpart is not necessarily non-negative; for example, if
pS(s) = 1/a, the uniform density on the interval [0, a], the differential en-
tropy is h(S) = log a, which may well be negative (if a < 1).

Example 2.8.3
An example of the use of the Kullback-Leibler divergence, relevant in the

context of Bayesian inference, is in the asymptotic analysis of classification
problems [14]. Let us consider a classification problem, where the set of pos-
sible states of nature is a discrete set S. The class-conditional observation
models are {fX(x|s), s ∈ S}, and let the true state of nature be strue ∈ S.
If the observations are independent, the class-conditional densities can be
factored as

fX(x|s) =

n∏

i=1

fX(xi|s).

The posterior probability function, according to Bayes law, is

pS(s|x) ∝ pS(s)

n∏

i=1

fX(xi|s)

∝ pS(s)

n∏

i=1

fX(xi|s)
(

n∏

i=1

fX(xi|strue)

)−1

∝ exp {log pS(s) − K(s)} (2.100)

(notice that, with respect to s,
∏n

i=1 fX(xi|strue) is a constant), where

K(s) =

n∑

i=1

log
fX(xi|strue)

fX(xi|s)
.

Now, conditionally on strue, the terms of the summation defining K(s) are
independent and identically distributed random variables, so, by the strong
law of large numbers (see Appendix A), as n grows,

lim
n→∞

K(s)

n
=

∫
fX(x|strue) log

fX(x|strue)

fX(x|s) dx = D [fX(x|strue)‖fX(x|s)] .
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The crucial condition for the result we are seeking is

D [fX(x|strue)‖fX(x|s)] > 0, for s 6= strue; (2.101)

if this is true, and since D [fX(x|strue)‖fX(x|strue)] = 0, then

lim
n→∞

K(s) =

{
0, if s = strue

+∞ if s 6= strue

and, consequently,

lim
n→∞

pS(s|x) =

{
1, if s = strue

0 if s 6= strue

showing that the probability of any wrong decision goes to zero as the
amount of observed data increases.

The condition in Eq. (2.101) can be seen as an indentifiability condition;
of course, if one (non true) class has a conditional observation model which
is indistinguishable with respect to the true class, it can not be guaranteed
that the a posteriori probability function will asymptotically concentrate
on the true class.

End of Example 2.8.3

2.8.3 Maximum Entropy Priors for Estimation Problems

Obtaining maximum entropy priors when the configuration set S is contin-
uous is not as simple as in the discrete case because there is no such thing
as the uncontroversial non-informative prior serving as global reference. To
leave that issue aside, for now, let us consider that we have agreed on some
non-informative prior qS(s). The available information is of the same type
as expressed in Eq. (2.88), with the summations necessarily replaced by
integrals, ∫

S
pS(s)gk(s) ds = µk, for k = 0, 1, ...,m. (2.102)

The maximum entropy (ME) prior (or better, the least informative prior)
becomes

pME

S (s) = qS(s) exp{λ0 +
m∑

k=1

λkgk (s)} for s ∈ S, (2.103)

where the parameters λk are again obtained from the constraints; this result
can (as in the discrete case) be derived by Lagrange multipliers or via
the information inequality [23]. If there are no explicit constraints apart
from normalization, i.e., if m = 0, then it is obvious that the ME prior
coincides with the adopted non-informative density qS(s). The important
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conclusion is that, in the continuous case, everything becomes specified up
to a reference prior qS(s) which has to be chosen a priori.

A technical issue may arise here if the non-informative reference prior
is improper; for example, let S = IR, and qS(s) = k, where k is an arbi-
trary constant (since this prior is not normalizable, anyway). The Kullback-
Leibler divergence becomes D[pS(s)‖k] = −h (S) + log k, which is only de-
fined up to an arbitrary additive constant. Nevertheless, one can still look
for the density that minimizes D[pS(s)‖k], as long as k is kept constant;
the resulting least informative prior is really, in this case, a maximum (dif-
ferential) entropy one.

Example 2.8.4
Let s be a location parameter (thus with uniform non-informative prior,

say equal to 1) which is known to be non-negative, i.e. S = [0,+∞);
moreover, it is a priori known to have mean equal to µ1 (since we have
a constraint on the mean, g1(s) = s). The ME prior is, according to Eq.
(2.103), pME

S (s) = exp{λ0 + λ1s}. The normalization constraint leads to
exp{λ0} = −λ1 (of course, as long as λ1 < 0), while the constraint on the
mean leads to λ1 = −1/µ1; putting these two results together yields

pME

S (s) =
1

µ1
exp

{
− s

µ1

}
, (2.104)

an exponential density.

End of Example 2.8.4

Example 2.8.5
Suppose that s ∈ S = IR is real valued location parameter (thus with

uniform non-informative prior, say equal to 1). Consider again that the
mean has to be equal to µ1 (then g1(s) = s); additionally, it is also now
required that the variance be equal to σ2. This means that we now also
have g2(s) = (s − µ1)

2 and µ2 = σ2. The resulting ME prior, according to
Eq. (2.103), is

pME(s) = exp{λ0 + λ1s + λ2(s − µ1)
2}. (2.105)

Invoking the constraints, some simple manipulations lead to pME(s) =
N (s|µ1, µ2); i.e., the least informative prior for a location parameter, with
given mean and variance, is Gaussian; this is one of the several frequently
invoked arguments for the ubiquity of Gaussian densities. The entropy of
the resulting Gaussian density,

h(S) =
1

2
log(2πeσ2), (2.106)

is, naturally, only a function of its variance (not of its mean).

End of Example 2.8.5
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2.9 Mutual Information, Data Processing
Inequality, and Jeffreys’ Priors

2.9.1 Conditional Entropy and Mutual Information

The information theoretical concepts introduced in the previous section
allow an alternative perspective on some aspects of Bayesian inference that
we believe is enlightening. Let us start by defining two quantities which
will be needed in the sequel: conditional entropy and mutual information.

Given two continuous random variables S and U , with joint probability
density function pS,U (s, u), the conditional entropy of S, given U , is defined
as

H(S|U) =

∫

U
H[S|u]pU (u) du

= −
∫

U

∫

S
[pS(s|u) log pS(s|u)] ds pU (u) du

= −
∫

U

∫

S
pS,U (s, u) log pS(s|u) ds du (2.107)

and can be interpreted as the average uncertainty about S in the presence
of U . Of course, a similar definition exists for discrete random variables
with the integrations adequately replaced by summations. Letting H(S,U)
denote the joint entropy of S and U , which is simply the entropy associated
with their joint probability density function, we can write an information
theoretical equivalent to Bayes theorem,

H(S,U) = H(S|U) + H(U) = H(U |S) + H(S). (2.108)

The concept of mutual information between two random variables, say
S and U , denoted I[S;U ], has a simple definition supported on the notion
of conditional entropy:

I[S;U ] = H(S) − H(S|U) = H(U) − H(U |S). (2.109)

As is clear from its definition, the mutual information between S and U can
be thought of as the amount of information about S carried by U (or vice-
versa). Some simple manipulation allows rewriting the mutual information
as

I[S;U ] =

∫

U

∫

S
pS,U (s, u) log

pS,U (s, u)

pU (u)pS(s)
ds du

= D [pS,U (s, u)‖pU (u)pS(s)] (2.110)

that is, it coincides with the Kullback-Leibler divergence between the joint
density pS,U (s, u) and the product of the corresponding marginals. This
fact also has a clear interpretation: the mutual information measures how
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far the two random variables involved are from being independent (recall
that independence between S and U would be expressed by pS,U (s, u) =
pU (u)pS(s)). An immediate consequence of the information inequality (Eqs.
(2.94) and (2.95)) is then I[S;U ] ≥ 0, with strict equality if only if U and
S are independent. Notice that this, in turn, implies that H(S) ≥ H(S|U)
and H(U) ≥ H(U |S) which can be read as “conditioning can not increase
uncertainty”.

Finally, before going into the main results we wish to present in this
section, we need to introduce one more concept: that of conditional mutual
information. This is a simple modification of above definition: the mutual
information between S and U , given a third variable V , is

I[S;U |V ] = H(S|V ) − H(S|U, V ). (2.111)

Of course, the conditional mutual information also verifies the informa-
tion inequality, i.e., I[S;U |V ] ≥ 0, with strict equality if and only if S
and U are conditionally independent, given V (that is, if pS,U (s, u|v) =
pS(s|v)pU (u|v)). The conditional mutual information also allows a decom-
position that parallels the one for joint entropy expressed in Eq. (2.108).
Specifically, the mutual information between a random variable S and a
pair of random variables U and V , denoted I[S;U, V ], can be decomposed
(invoking Eqs. (2.109) and (2.108)) in two ways

I[S;U, V ] = H(U, V ) − H(U, V |S)

= H(U |V ) + H(V ) − H(U |V, S) − H(V |S)

= I[S;V ] + I[S;U |V ] (2.112)

and

I[S;U, V ] = H(U, V ) − H(U, V |S)

= H(V |U) + H(U) − H(V |U, S) − H(U |S)

= I[S;U ] + I[S;V |U ]. (2.113)

2.9.2 The Data Processing Inequality

The data processing inequality formally captures a fact that can almost
be considered as common sense: no processing can increase the amount of
information contained in observed data. To be specific, let us assume that s
is an unknown real quantity, with a prior pS(s), that is to be estimated from
observations x obtained according to the likelihood function fX(x|s). Now,
in the presence of x, we compute some quantity that is a (deterministic
or random) function of x; let the result of this data processing be denoted
as z. Of course, since z is exclusively a function of x, not of s (which is
unknown to this data processor), we can write

pZ(z|x, s) = pZ(z|x).
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An immediate consequence of this is that S and Z are conditionally inde-
pendent, given X:

pS,Z(s, z|x) =
pZ(z|x)pS,X(s,x)

pX(x)
= pZ(z|x)pS(s|x).

According to the results in the last section, the conditional mutual infor-
mation between S and Z, given X, is then zero, I[S,Z|X] = 0. The two
different decompositions of I[S;X,Y] expressed in Eqs. (2.112) and (2.113)
allow writing

I[S;X] + I[S;Z|X]︸ ︷︷ ︸
=0

= I[S;Z] + I[S;X|Z]︸ ︷︷ ︸
≥0

, (2.114)

leading to the data processing inequality

I[S;Z] ≤ I[S;X]; (2.115)

no matter how you process your observations, the result will have no more
information about S than the observations themselves.

2.9.3 An Information Theoretic View of Jeffreys’ Priors

Let us consider an unknown quantity s, about which prior information is
expressed by pS(s), and data x obtained according to an observation model
fX(x|s). Suppose we interpret s as a message that is transmitted through
some communication channel whose output is x, thus characterized by the
likelihood function fX(x|s).

A natural way to measure how much information about s is carried by
the observations is the mutual information I[S;X]. However, as is clear
from its definition, I[S;X] not only depends on the likelihood fX(x|s), but
also on the prior pS(s). The fundamental concept of channel capacity [23]
is then defined as

C (fX(x|s)) = sup
pS(s)

I[S;X],

the maximal attainable mutual information. Interestingly, the prior that
achieves the channel capacity is, asymptotically, Jeffrey’s prior [91]. In other
words, we can say the Jeffreys’ prior is the one that best adjusts itself to the
observation model (channel). This is the type of path followed by Bernardo
[14] to obtain the so-called reference priors. In the scalar case, and under
regularity conditions, reference priors coincide with Jeffreys’ priors. In the
discrete case, reference priors are simply maximum entropy priors. For other
information-theoretical aspects of Jeffreys’ priors and Bayesian inference in
general, see, .e.g., [5] and references therein.
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2.10 Minimum Description Length Priors

The minimum description length (MDL) principle is an information theo-
retical approach introduced by Rissanen (see [5], [88], [90], and also [28]).
While MDL is not rooted on Bayesian considerations, it may be seen as a
way to (objectively) obtain priors.

To present the MDL principle, let us consider a typical communication
scenario. Imagine a sender whose role is to transmit some observed data x
to a receiver, by using a channel that supports error-free transmission of
binary digits. Both sender and receiver are aware of the fact that x is a
sample of a random (possibly vector) variable characterized by a paramet-
ric statistical model (or likelihood function) fX(x|s); moreover, both are
temporarily assumed to know the true s.

To use the binary channel, the sender has to encode the observations x
into a sequence of binary digits. He does so by designing a coder, denoted
C, which is a (necessarily injective) mapping from X into the set of all
finite binary strings (usually denoted as {0, 1}∗), i.e. C : X → {0, 1}∗. The
code-word for observation x is then denoted C(x).

Naturally, the goal of the code designer is that the binary messages pro-
duced are (on average) as short as possible, while being, of course, decod-
able by the receiver. However, in order for the sender to be able to use
the same coder to transmit, not just one observation x, but a sequence
of observations (x1,x2, . . .), the code has to have the prefix property; this
means that no codeword can be the prefix (initial segment) of another one.
Such a code is also called instantaneous, because as soon as one particular
code word has been fully received, the receiver recognizes it immediately
without the need to look at any subsequent bits (see, e.g., [23]). Letting
L(x) = l(C(x)) denote the length (in binary digits, or bits) of the code-
word associated with observation x, it is well known that any code with
the prefix property has to verify

∑

x∈X
2−L(x) ≤ 1, (2.116)

the Kraft-McMillan inequality [23]. Two observations are in order here.
First, there is nothing particular about binary digits or binary channels,
and Eq. (2.116) would be valid for code words on any other finite alphabet
if the powers of 2 are replaced by the powers of the alphabet size, say m;
moreover, all the base-2 logarithms to be used below, would have to be
replaced by base-m ones. Secondly, if the observation space X is continu-
ous, it has to be somehow discretized so that the set of possible messages
becomes countable; it is easy to show that the effect of this discretization
is (asymptotically) irrelevant to all the issues to be addressed in the sequel
[91].

The requirement of having the shortest possible code length has to be
imposed on its expected value, since the sender and the receiver do not
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know a priori which observation will have to be encoded (this brings a
frequentist flavor to the obtained criterion). If the average code length

EX[L(x)|s] =
∑

x∈X
fX(x|s)L(x) (2.117)

is minimized with respect to all possible coders which satisfy the Kraft-
McMillan constraint (Eq. (2.116)), the result is as follows: optimality is
achieved by any coder whose length function L(x) = l(C(x)) verifies

L(x) = L(x|s) = − log2 fX(x|s), (2.118)

which are known as the Shannon code-lengths. In Eq. (2.118), the notation
L(x|s) was introduced to stress the fact that this length function is under
the assumption of a certain s. Of course, − log2 fX(x|s) may not be an
integer and so this length function may not be achievable by a practical8

code; this is a technical detail which will not be considered here because
it is (asymptotically) irrelevant. Notice that these lengths (if we ignore the
integer length requirement) clearly satisfy the Kraft-McMillan condition
with equality. The average length achieved by this optimal code is

EX[L(x)|s] = −
∑

x∈X
fX(x|s) log2 (f(x|s)) = H (fX(x|s)) , (2.119)

i.e., precisely the entropy of fX(x|s) (recall Eq. (2.85)). It can also be
shown that any instantaneous code (i.e., one which verifies Eq. (2.116))
has average length greater than or equal to the entropy [23]. It is worth
pointing out that the optimal code-lengths in Eq. (2.118) can be easily
derived by the information inequality [23].

To return to our inference problems, let us admit now that s is un-
known; when some x is observed, the first step that has to be taken is
to estimate s from this observation. If nothing else is known a priori, the
natural coding-oriented criterion is to find that s that leads to a code in
which that particular observation has the shortest possible code length. Or
putting it in a different way, suppose that all possible coders (for all pos-
sible values of s) were previously designed and are available to the sender;
in the presence of x which is to be communicated to the receiver via the
channel, the obvious coder is the one yielding the shortest code-length for
that x. Formally, the best choice is then

ŝ = arg min
s

L(x|s) = arg min
s

{− log2 fX(x|s)}
= arg max

s
{fX(x|s)} ≡ δML(x) (2.120)

8There are practical techniques to design codes whose expected length is close to the

optimal, the best known being, by far, the Huffman procedure [23].
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which coincides with the maximum likelihood criterion (see Eq. (2.5)). Once
this estimate ŝ is obtained, the corresponding coder C(·|ŝ) can be built, and
x can be encoded into an L(x|ŝ) bits long code word, C(x|s), which is then
sent to the receiver. However, and this is the key observation behind the
MDL principle, for the receiver to be able to decode C(x|ŝ), it needs to know
ŝ so that it can use the corresponding decoder. This requirement leads to
the concept of a two-part code [89]: a preamble, carrying a particular s
(whose length is denoted L(s)) based upon which the observation x was
coded; and a body, which consists of C(x|s). Notice that this scheme works
regardless of the value of s; the only constraint is that the same s is used
to define the coder and the decoder. The total length of this two-part code
is then

L(x, s) = L(x|s) + L(s); (2.121)

now, the natural (coding-oriented) goal is to minimize the (total) code
length, and the resulting optimal value of s is

ŝ = arg min
s

{L(x|s) + L(s)}
= arg min

s
{− log2 f(x|s) + L(s)} ≡ δMDL(x) (2.122)

called the minimum description length (MDL) estimate. This is formally
equivalent to a MAP criterion corresponding to the prior pS(s) ∝ 2−L(s)

which is then called an MDL prior.
The MDL criterion may be seen as involving an alternative interpretation

of prior probabilities; rather than subjective (or personal) degrees of belief,
we now have what can be called a coding approach to probability [28]. In
essence, it may be formalized as follows: given a sample space X and a coder
C : X → {0, 1}∗ whose length function L(x) meets the Kraft-McMillan
inequality (i.e., it generates a prefix code), this code defines a probability
function over X given by

f
C

X(x) =
2−L(x)

∑
x∈X 2−L(x)

. (2.123)

In this framework, code lengths rather than probabilities are the fundamen-
tal concepts. Another implication of this approach is regarding the choice
of the loss function; when dealing with code lengths, there is only one nat-
ural optimality criterion: minimize code lengths. In conclusion, MDL can
be seen as an alternative (though a closely related one) to the Bayesian
approach: it still needs a parametric probabilistic model fX(x|s) for the ob-
servations, although it reinterprets it in terms of code lengths; it requires
a coding scheme for the unknown s which plays the role of prior; it adopts
a unique optimality criterion, which is to minimize the total code length.

Example 2.10.1
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Suppose S = {0, 1, 2, ...} is the set of positive integers. An optimal way
of encoding any s, devised by Elias [40], proceeds as follows: Take some
integer s; its binary expansion is of order ⌈log2(s + 1)⌉, where ⌈x⌉ denotes
“the smallest integer not smaller than x”; let us use the shorter notation
λ(x) ≡ ⌈log2(x + 1)⌉. For example, s = 1998 is written as the 11 bit
binary sequence 11111001110, and λ(s) = 11. To detect this sequence,
possibly immersed in a longer one, the receiver must be told in advance
how many bits to expect; this can be done by including as prefix the length
information 1011 (eleven, in binary), yielding 101111111001110 which is
15 = λ(s) + λ(λ(s)) bits long. But now the same problem reemerges: how
to distinguish the two parts of the codeword? Let us include yet another
preamble stating that the next 4 bits encode the length of the following
bit sequence; this new preamble is 100 (4, in binary) which has length 3 =
λ(4) = λ(λ(11)) = λ(λ(λ(1998))). Of course, the procedure is reiterated
until we have only 2 bits; which for s = 1998 happens in the next step; i.e.,
3 in binary notation is 11. Noticing that all the binary numbers referred
above (101111111001110, 1011, 100, 11) start with a one, provides a way of
signaling when a sequence is the final one and not the length of the next:
just append a zero to the end of the message. The final complete codeword
would be 11, 100, 1011, 11111001110, 0 (of course, without the commas).
The total number of bits required to encode an arbitrary integer s is then
1+λ∗(s) = λ(s)+λ(λ(s))+ · · ·+λ(λ(· · ·λ(s))), where the recursion is only
carried out until the the result first equals 2. Noting that λ(s) ≃ log2 s,
which in a relative sense is asymptotically true, leads to L(s) ≃ log∗2 s
where log∗2s = log2 s + log2 log2 s + · · · + log2 log2 · · · log2 s, where only
positive terms are kept. Table 2.10.1 shows some examples of codes for
integers obtained by this procedure and the corresponding 1 + λ∗ and log∗2
functions. Since this is clearly a prefix code, it satisfies the Kraft-McMillan
inequality and Rissanen used it to define a probability mass function over
S,

pS(s) ∝ 2− log∗

2 s (2.124)

which he called the universal prior for integers [88]. It is a proper proba-
bility mass function, although it has infinite entropy.

End of Example 2.10.1

When S is a continuous set, designing finite codes requires S to be
discretized; let s′ ∈ S ′ denote the discretized values. A delicate trade-
off is at play: if the discretization is very fine, L(s′) will be large while
− log2 fX(x|s′) will be small because s′ will be close to the optimal s; a
coarse discretization will imply a smaller L(s′) but a larger − log2 f(x|s′)
since s′ can be far from the optimal value of s. The best compromise is not
easy to obtain in a closed form; a now well known expression, valid when
s is a real parameter and asymptotically in n (the dimension of x) is (in
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s C(s) 1 + λ∗
2(s) log∗2 s

0 0 1 −∞
1 1.0 2 0

2 10.0 3 1

4 11.100.0 6 3

500 11.100.1001.111110100.0 19 14.5

1998 11.100.1011.11111001110.0 20 16.21

216 11.101.10001.1000000000000000.0 28 23

106 11.101.10100.11110100001001000000.0 46 27.54

2128 11.100.1000.10000001.1(128 zeros).0 147 ≃ 142

2216

11.101.10001.1(15 zeros)1.1(216 zeros).0 ≃ 216 ≃ 216

TABLE 2.1. Some integers, their codes, true code lengths, and approximate code
lengths given by the log∗

2 function.

bits)

L(s) =
1

2
log2 n (2.125)

(more accurate and recent results can be found in [5] and [91]). This being
a constant with respect to s, we can conclude that if s is an unknown
real quantity, the MDL and ML criteria will coincide. This seems to be a
disappointing result, and in fact it is; the MDL criterion will only reveal
all its usefulness in situations where s is a vector of unknown dimension.

2.11 Sufficient Statistics

There is clearly a common feature to all the examples considered above:
inference procedures are based on a function of the observed data, rather
than on the data itself. Let us denote this function as t(x).

In Examples 1.5.2 and 2.3.1, where the problem was that of estimating
the mean of a Gaussian from a set of independent observations {x1, x2, ..., xn},
the relevant function was t(x) = x1+x2+...+xn. When the samples are not
independent, recall Example 1.5.3, the function of the data on which the
estimates depend is t(x) = xC−1u. To estimate the probability of success
(heads outcomes, when tossing coins as in Example 2.3.2) from a set of n
Bernoulli trials, all that matters is t(x) = nh(x) = “number of successes”.
Estimates of the variance of a Gaussian density, from a set of n independent
samples, depend on t(x) = x2

1 + x2
2 + ... + x2

n. In the Poisson observation
model, the appropriate function is again t(x) = x1 + x2 + ... + xn. Finally,
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even in the uniform distribution case from Example 2.5.1, any inference
procedure depends on a simple function, t(x) = max{x1, x2, ..., xn}.

The general concept behind all these examples is that of sufficient statis-
tic, introduced by Fisher [42]. Formally, let t(x) be a (possibly vector) func-
tion of the observations; such a function is called a statistic. If t(x) is such
that

fX(x|t(x), s) = fX(x|t(x)), (2.126)

i.e., if the likelihood function, when conditioned on some particular value of
the statistic, does not depend on s, then t(x) is called a sufficient statistic.

The key implication of this definition is that t(x) preserves all the infor-
mation carried by observed data x, with respect to the likelihood function
fX(x|s). To see why this is true, imagine some particular observation x;
after computing t(x), we obtain another sample x′ but now under the con-
straint that t(x′) = t(x). According to Eq. (2.126),

fX(x′|t(x′) = t(x), s) = fX(x′|t(x′) = t(x)) (2.127)

which means that this new sample is independent of s and so carries no
further information about it. This fact is formalized by the sufficiency prin-
ciple.

2.11.1 The Sufficiency Principle

The sufficiency principle states that if t(x) is a sufficient statistic with
respect to the likelihood function fX(x|s), and x1 and x2 are two observa-
tions such that t(x1) = t(x2), then both the observations must yield the
same decision.

It is usually difficult to directly obtain fX(x|t(x)). In many situations,
such as the ones referred above, it is easy to identify sufficient statistics by
a simple inspection of the likelihood function. The common alternative is
to rely on the following factorization-based criterion: if we can write the
likelihood function as

fX(x|s) = φ(x) gT(t(x)|s) (2.128)

where φ(x) is a function that does not depend on s, and gT(t(x)|s) is a
probability (density or mass) function, then t(x) is a sufficient statistic.
The reciprocal is also true; that is, if t(x) is a sufficient statistic, then the
original likelihood can be factored as in Eq. (2.128). There are, of course,
many trivial sufficient statistics; e.g., the complete data itself, t(x) = x,
is obviously a sufficient statistic. Useful sufficient statistics have smaller
dimension than the data (as is the case in the examples mentioned in
the second paragraph of this section); this requirement is captured by the
concept of minimal sufficient statistic: let fX(x|s) be a likelihood function;
a minimal sufficient statistic is any sufficient statistic t(x) ∈ IRn such
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that there is no m < n for which it is possible to find a sufficient statistic
t′(x) ∈ IRm. Furthermore, notice that any invertible function of a sufficient
statistic is also a sufficient statistic.

We conclude this introduction to the concept of sufficiency with a sim-
ple example. The other examples referred at the beginning of this section
(Bernoulli, Gaussian, Poisson) will be considered in the next section, which
will be devoted to the so-called exponential families.

Example 2.11.1
Consider the observation model of Example 2.5.1, expressed in Eq. (2.30).

Notice that it can be rewritten as

fX(x|θ) =

{
1

θn
, max{x1, x2, ..., xn} ≤ θ

0, otherwise
(2.129)

revealing that t(x) = max{x1, x2, ..., xn} is in fact a sufficient statistic.
Concerning the factorization in Eq. (2.128), we simply have φ(x) = 1.

End of Example 2.11.1

2.11.2 An Information Theoretic Perspective

The data processing inequality (see Section 2.9.2) allows looking at sufficient
statistics from an information theoretic point of view. Like in Section 2.9.2,
let us assume that s, characterized by a prior pS(s), is to be estimated from
observations x obtained according to the likelihood function fX(x|s). Now,
in the presence of each x, we compute a statistic t(x); this, of course, defines
a new random variable T = t(X) which is a function of X. Let us recall
Eq. (2.114) that leads to the data processing inequality:

I[S;X] + I[S;T|X]︸ ︷︷ ︸
=0

= I[S;T] + I[S;X|T]; (2.130)

if all we can state is that I[S;X|Z] ≥ 0, we obtain the data processing
inequality. When T = t(X) is a sufficient statistic, then

I[S;X|T] = H(X|T) − H(X|S,X) = 0 (2.131)

because of the equality expressed by Eq. (2.126). Consequently, the mutual
informations between S and T, and S and X, satisfy

I[S;T] = I[S;X], (2.132)

meaning that the sufficient statistic T and the observed data X contain
the same amount of information about the unknown S.
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2.12 Exponential Families

2.12.1 Fundamental Concepts

Some probability (density or mass) functions allow a factorization of the
type expressed in Eq. (2.128) of a more particular kind

fX(x|θ) = φ(x)ψ(θ) exp{ξ(θ)T t(x)}

= φ(x)ψ(θ) exp






k∑

j=1

ξj(θ)tj(x)




 , (2.133)

where t(x) is a k-dimensional statistic and ξ(θ) is a (also k-dimensional)
function of the parameter θ. A family of probability functions which can be
written under this form is called an exponential family of dimension-k [19],
[93]. Usually, when θ is a single parameter (a scalar), both ξ(θ) and t(x)
are scalar (i.e., k = 1); however, there are situations where there is only one
unknown parameter, but still k > 1 (see Example 2.12.5 below). Notice that
ψ(θ) must guarantee that each member of the family is normalized to one
(see Eq. (2.139), below). The fact that Eq. (2.133) is a particular case of Eq.
(2.128) (with gT(t(x)|θ) = ψ(θ) exp{ξ(θ)T t(x)}) immediately shows that
t(x) is in fact a sufficient statistic. The ξ(θ) and t(x) that allow writing the
likelihood function under the exponential family form are called the natural
(or canonical) parameter and sufficient statistic, respectively. It is always
possible to use the change of variables t = t(x) and the reparameterization
ξ = ξ(θ) to cast an exponential family into its so-called natural form

fT(t|ξ) = φ(t)ψ(ξ) exp{ξT t}, (2.134)

where these φ(·) and ψ(·) functions may be different from the ones in
(2.133). Finally, it is important to be aware that many of the most com-
mon probabilistic models, continuous and discrete, do belong to exponen-
tial families, which makes their manipulation particularly convenient; e.g.,
Gaussian, Poisson, Bernoulli, binomial, exponential, gamma, and beta.

Consider a set of observations x = {x1,x2, ...,xn} that are indepen-
dent and identically distributed according to an exponential family (see
Eq. (2.133)); then, the resulting joint likelihood belongs to an exponential
family with the same natural parameter. In fact,

fX(x|θ) =
n∏

i=1

φ(xi)ψ(θ) exp{ξ(θ)T t(xi)}

= ψ(θ)n

(
n∏

i=1

φ(xi)

)
exp{ξ(θ)T t(x)}, (2.135)
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automatically defining the (joint) natural sufficient statistic as the summa-
tion of the individual ones,

t(x) = t(x1) + t(x2) + ... + t(xn), (2.136)

which is still k-dimensional.
The most important aspect of this property is the fact that the sufficient

statistic is of constant dimension, regardless of the sample size. A reciprocal
of this result (with an additional constraint) has also been shown to be
true and is known as the Pitman-Koopman theorem; basically it states
that if a family of probability functions fX(x|θ) has a sufficient statistic
of constant dimension, and if the support of fX(x|θ) (i.e., the set {x :
fX(x|θ) > 0}) does not depend on θ, then this is necessarily an exponential
family [93]. As a counter-example (showing why it is necessary to include
the additional condition on the support of the likelihood), consider the
uniform likelihood model from Example 2.5.1; although there is a constant
dimension sufficient statistic t(x) = max{x1, x2, ..., xn}, the fact that the
support of the likelihood does depend on θ prevents the Pitman-Koopman
theorem from classifying it as an exponential family (which in fact it is
not).

Finally, notice that the definition of exponential families in Eq. (2.133)
makes clear that the maximum entropy priors in Eqs. (2.89) and (2.103)
have the exact same form. That is, maximum entropy probability distribu-
tions constitute exponential families. The gk(·) functions used to express
the constraints for the maximum entropy distributions, appear as statistics
in the resulting exponential families.

2.12.2 Partition Function, Free Energy, and Entropy

It is possible to express an exponential family (in natural form, see Eq.
(2.134)) as

fT(t|ξ) =
1

Z(ξ)
φ(t) exp

{
ξT t

}
(2.137)

= φ(t) exp
{

ξT t − log Z(ξ)
}

(2.138)

where the logarithm is natural, and Z(ξ) = 1/ψ(ξ) is the normalizing
constant given by

Z(ξ) =
1

ψ(ξ)
=

∫
φ(t) exp{ξT t} dt. (2.139)

The common name for this constant is imported from statistical physics
where it is called the partition function (see, e.g., [22], [81]). If we put
in evidence a common factor β in the canonical parameter, i.e., writing
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ξ = βξ′, then, Eq. (2.138) can be written as

fT(t|ξ′, β) = φ(t) exp

{
β

[
ξ′T t − 1

β
log Z(ξ)

]}
. (2.140)

Again importing designations from statistical physics, the quantity

F (ξ) ≡ − 1

β
log Z(ξ) (2.141)

is known as the Gibbs free energy, while 1/β is called the temperature.
Means, variances, covariances, or any other moments of the natural

statistics can be computed directly from the derivatives of log Z(ξ). Tech-
nically, this is made possible by the fact (which is proved, for example, in
[71]) that any integral of the form

∫
g(x) exp

{
ξT t(x)

}
φ(t(x)) dx, (2.142)

where g(x) is integrable, is a continuous function of ξ, with derivatives of
all orders which can be obtained under the integral. Using this fact,

∂ log Z(ξ)

∂ξi
=

∂Z(ξ)

∂ξi

1

Z(ξ)

=

∫
ti φ(t) exp{ξT t} dt

∫
φ(t) exp{ξT t} dt

≡ ET [ti| ξ] (2.143)

and, after some additional work,

∂2 log Z(ξ)

∂ξj ∂ξi
= ET [tj ti| ξ] − ET [tj | ξ]ET [ti|ξ] ≡ CovT [tj , ti| ξ] , (2.144)

which is the conditional covariance (given ξ) between random variables Ti

and Tj . An important implication of these equalities, together with Eq.
(2.135), is that for a set of n independent and identically distributed ob-
servations, any moment of a natural sufficient statistic is simply n times
what it is for a single observation.

Finally, notice that for exponential families it is also easy to compute
the entropy. Writing H(ξ) to stress the fact that the entropy is a function
of the canonical parameter. we have

H(ξ) = E [− log fT(t|ξ)] = βξT E[t|ξ] + log Z(ξ) + E[log φ(t)|ξ].

If φ(t) = 1, this leads to a expression (well known in statistical physics)
relating the entropy with the free energy,

ξT E[t|ξ] = F (ξ) + TH(ξ),

where T = 1/β is the temperature.
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Example 2.12.1
Consider the coin-tossing example, characterized by the Bernoulli model

in Eq. (2.8), fX(x|θ) = θnh(x) (1 − θ)n−nh(x). This can be rewritten in the
exponential family form as

fX(x|θ) = exp {n log(1 − θ)}︸ ︷︷ ︸
ψ(θ)n

exp

{
nh(x) log

θ

1 − θ

}
, (2.145)

where the natural sufficient statistic is t(x) = nh(x) and the natural pa-
rameter is ξ(θ) = log[θ/(1 − θ)]; the inverse reparameterization is θ =
exp(ξ)/(1 + exp(ξ)). In natural exponential form,

fNh
(nh|ξ) =

1

(1 + exp ξ)n
exp {nh ξ} (2.146)

revealing that Z(ξ) = (1 + exp ξ)n and, as expected,

ENh
[nh|ξ] =

∂n log(1 + exp ξ)

∂ξ
= n

exp ξ

1 + exp ξ
= nθ. (2.147)

End of Example 2.12.1

Example 2.12.2
When estimating the mean, say µ, from independent Gaussian observa-

tions of known variance σ2, the likelihood function fX(x|µ) = N (x|µ, σ2)
for one observation can be put in the exponential family form as

fX(x|µ) = exp

{
− x2

2σ2

}

︸ ︷︷ ︸
φ(x)

1√
2πσ2

exp

{
− µ2

2σ2

}

︸ ︷︷ ︸
ψ(µ)

exp
{xµ

σ2

}
, (2.148)

revealing that ξ(µ) = µ is the canonical parameter, and t(x) = x/σ2 is
the natural sufficient statistic (of course, we could instead have associated
the 1/σ2 factor with the parameter and chosen ξ(µ) = µ/σ2 and t(x) =
x). Then, for n independent observations, the natural sufficient statistic is
simply t(x) = (x1 + x2 + ... + xn)/σ2. The partition function is Z(µ) =√

2πσ2 exp{µ2/(2σ2)}, which leads to

ET [t|µ] =
∂

(
µ2/(2σ2)

)

∂µ
=

µ

σ2
, (2.149)

for one observation, or nµ/σ2 for n observations.

End of Example 2.12.2
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Example 2.12.3
Concerning the Poisson likelihood, for one single observation interval of

duration T , the probability function for a count x is fX(x|θ) = e−θT (θT )x/x!.
This can be cast into exponential family form according to

fX(x|θ) =
1

x!︸︷︷︸
φ(x)

exp{−θ T}︸ ︷︷ ︸
ψ(θ)

exp {x log(θT )} (2.150)

showing that the natural parameter is ξ = log(θT ), and the natural statistic
is x itself. From this, it can immediately be concluded that the sufficient
statistic for a set of n counts is simply their sum t(x) = x1 + x2 + ... + xn.
The partition function is Z(ξ) = exp(exp(ξ)), from which the mean can be
obtained as

EX [x|ξ] =
∂ log(exp(exp(ξ)))

∂ξ
=

∂ exp(ξ)

∂ξ
= exp(ξ) = θT. (2.151)

End of Example 2.12.3

Example 2.12.4
Let us look at the problem of estimating the unknown variance σ2 of zero

mean Gaussian observations. The likelihood function for one observation is

fX(x|σ2) =
1√

2πσ2
︸ ︷︷ ︸
ψ(σ2)

exp

{
− x2

2σ2

}
(2.152)

(with φ(x) = 1), which shows that the natural parameter is ξ(σ2) =
−1/(2σ2) and the natural statistic is t(x) = x2. Accordingly, the natu-
ral sufficient statistic for a set of observations is t(x) = x2

1 + x2
2 + ... + x2

n,
as expected. Notice that the 1/2 factor in the exponent can be associated
either with t(x) or with ξ(σ2). Again, it is easy to check via the derivative
of the logarithm of the partition function that the expected value of the
natural statistic is σ2, for one observation, or nσ2 for n observations.

End of Example 2.12.4

Example 2.12.5
Finally, we consider an example where we are still estimating a scalar

parameter, but ξ(θ) and t(x) are vector valued. Suppose we have inde-
pendent and identically distributed observations of a Gaussian likelihood
of mean θ and variance θ2. This is sometimes known as the multiplicative
model because it can arise from the following observation model: given θ,
each observation is obtained by multiplying it by a sample of a unit mean
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and unit variance Gaussian random variable. In exponential form, each
observation is characterized by

fX(x|θ) =
1√

2πθ2
exp

{
− (x − θ)2

2θ2

}
=

1√
2πθ2

exp

{
−1

2

}

︸ ︷︷ ︸
ψ(θ)

exp

{
− x2

2θ2
+

x

θ

}
,

which shows that the natural (vector) parameter is ξ(θ) = [1/θ2 1/θ]T

and the natural sufficient statistic is t(x) = [−x2/2 x]. Accordingly, the
natural sufficient statistic for a set of n observations is

t(x) =

[
−1

2

n∑

i=1

x2
i

n∑

i=1

xi

]T

. (2.153)

End of Example 2.12.5

2.12.3 Conjugate Priors

Having a likelihood written in the exponential family form brings an addi-
tional important advantage: it makes it very easy to write conjugate priors.
For a likelihood in exponential form as in Eq. (2.135), any family of priors
of the form

P =
{
pΘ(θ) = ψ(θ)ν exp

{
ξ(θ)T γ

}}
(2.154)

is a conjugate one. Simply notice that the a posteriori probability function
resulting from multiplying any element of P by a likelihood of the form in
Eq. (2.135) results in

pΘ(θ|x) ∝ ψ(θ)(ν+n) exp
{
ξ(θ)T (γ + t(x))

}
(2.155)

which clearly still belongs to P. From the simple parametric form of the
priors in P, the a posteriori probability functions are obtained by simple
parameter updates: ν becomes ν +n and γ is updated to γ +t(x). Another
consequence of this form of conjugate prior is that its effect is similar to
observing additional independent data: Eq. (2.155) is similar to a likelihood
(Eq. (2.135)) in which ν more data points were observed and that data
produced the sufficient statistic γ. We will now show how this approach
could have been used to obtain previously considered conjugate priors. It
is important to keep in mind that the notion of conjugacy is not limited to
likelihoods in the exponential class; however, for non-exponential families,
the conjugate priors are often difficult to obtain and/or impractical to use.

Example 2.12.6
As we saw in Example 2.12.1, the Bernoulli probability function can be

put in exponential form using ψ(θ) = (1 − θ) and ξ(θ) = log(θ/(1 − θ)).
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According to Eq. (2.154), the resulting conjugate priors have the form

pΘ(θ) ∝ exp{ν log(1 − θ)} exp

{
γ log

θ

1 − θ

}
= θγ (1 − θ)(ν−γ), (2.156)

which are, in fact, Beta densities Be(θ|γ + 1, ν − γ + 1) (recall Example
2.3.2).

End of Example 2.12.6

Example 2.12.7
For the Poisson likelihood (see Example 2.12.3), the natural parameter

is ξ(θ) = log(θT ), while ψ(θ) = exp{−θT}. Then, conjugate priors have
the form

pΘ(θ) ∝ exp{−ν θ T} exp {γ log(θT )} = exp{−ν T θ}(θ T )γ (2.157)

which is, as expected (see Example 2.3.4), a Gamma prior Ga(θ|γ, ν) with
respect to the normalized parameter θT .

End of Example 2.12.7

Example 2.12.8
As a last example, we return to the problem of estimating the unknown

variance σ2 of a zero mean Gaussian density. As seen in Example 2.12.4,
the natural parameter can be ξ(σ2) = 1/σ2 while ψ(σ2) = (2πσ2)−1/2 =
(ξ/2π)1/2. The resulting conjugate prior (in terms of the natural parameter
ξ) is then

pΞ(ξ) ∝ (ξ)ν/2 exp{γξ} (2.158)

which is a Ga(ξ|ν/2 + 1,−γ) density (only proper for γ < 0).

End of Example 2.12.8

2.12.4 Fisher Information and Jeffreys’ Priors

For exponential families in canonical form, the Fisher information (and,
consequently, the Jeffreys’ prior) has a particularly simple form. With a
likelihood of the form of Eq. (2.137) inserted in the definition of Fisher
information (Eq. (2.55)), considering a scalar parameter ξ,

I(ξ) = E

[(
∂ log φ(t)

∂ξ
+ t − ∂ log Z(ξ)

∂ξ

)2
∣∣∣∣∣ ξ

]

= E[t2|ξ] − E[t|ξ]2 = var[t|ξ]; (2.159)

that is, the Fisher information equals the variance of the natural statistic.
An alternative form, from Eq. (2.144), is

I(ξ) =
∂2 log Z(ξ)

∂ξ2
. (2.160)
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Finally, Jeffreys’ priors for canonical parameters of exponential families are
given by

pΞ(ξ) =
√

var[t|ξ] =

√
∂2 log Z(ξ)

∂ξ2
, (2.161)

the standard deviation of the corresponding canonical statistic.

Example 2.12.9
Consider the the Bernoulli model fX(x|θ) = θnh(x) (1 − θ)n−nh(x). We

saw in Example 2.12.1 that the natural statistic is t(x) = nh(x) and the
natural parameter is ξ(θ) = log[θ/(1− θ)]. From the results in this section,

I(ξ) = var[nh(x)|ξ] = nθ(ξ)(1 − θ(ξ)) (2.162)

where θ(ξ) = exp(ξ)/(1 + exp(ξ)), and the variance of nh(x) is the cor-
responding Binomial distribution. To obtain the Fisher information with
respect to the original parameter θ, we use the rule for transforming Fisher
informations (see Eq. (2.76)) and obtain, as expected, I(θ) = n/(θ(1− θ)).

End of Example 2.12.9

Example 2.12.10
For the mean µ of a Gaussian observation of known variance σ2, ξ(µ) = µ

is a canonical parameter, and t(x) = x/σ2 is the corresponding sufficient
statistic (see Example 2.12.2). Then

I(µ) = var[x/σ2|µ] =
σ2

σ4
=

1

σ2
, (2.163)

as we have seen in Example 2.7.1.

End of Example 2.12.10

Example 2.12.11
For the Poisson likelihood (see Example 2.12.3), for one single observa-

tion interval of duration T , the natural parameter is ξ = log(θT ), and the
natural statistic is x itself. The Fisher information is

I(ξ) = var[x|ξ] = θ(ξ), (2.164)

where θ(ξ) = exp{ξ}/T . Using Eq. (2.76), we obtain the Fisher information
with respect to θ, I(θ) = 1/θ.

End of Example 2.12.11

Example 2.12.12
Finally, consider the unknown variance σ2 of a zero mean Gaussian ob-

servation x. The natural parameter is ξ(σ2) = −1/(2σ2) and the natural
statistic is t(x) = x2 (see Example 2.12.4). The Fisher information is

I(ξ) = var[t|ξ] = var[x2|ξ] = 2σ4(ξ), (2.165)
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where σ4(ξ) = 1/(4ξ2). As in the previous examples, invoking Eq. (2.76),
we obtain the Fisher information with respect to σ2, I(σ2) = 1/(2σ2).

End of Example 2.12.12

2.13 Intrinsic Loss Functions and Density
Estimation Problems

The problem we have been addressing is that of obtaining an estimate ŝ of
an unknown parameter s, from observations x obtained according to a like-
lihood fX(x|s), in the presence of a prior pS(s) and a specified loss function
L(s, ŝ). As we have seen, both the prior and the loss function determine the
optimal Bayes’ decision rule. In an attempt to remove the subjectiveness
involved in creating priors, several approaches have been proposed to au-
tomatically “extract” non-informative priors from the likelihood functions
(see Section 2.6). However, only recently has the same goal been pursued
concerning loss functions [93], [92].

It may make sense in many situations to evaluate the performance of
some estimate ŝ of s by measuring how “close” fX(·|ŝ) is to fX(·|s) (where
the argument is omitted to stress that the evaluation is with respect to the
whole function and not for a particular point). In the situations where these
performance measures make sense, there is usually a different perspective:
rather than producing an estimate ŝ of s, the (equivalent) goal is to come
up with an estimate fX(·|ŝ) of the unknown (probability) density (func-
tion) fX(·|s) that is assumed to have generated the data. These are called
(parametric) density estimation problems (see, e.g., [33], [101]). Usually,
in density estimation problems, the observed data consists of a set of, say
n, independent observations x = {xi, i = 1, 2, ..., n}, which are identically
distributed according to an unknown density to be estimated; then

fX(x|s) =

n∏

i=1

fXi
(xi|s);

there is, however, no conceptual constraint stopping us from considering
any other observation models. Such a density estimation perspective for
Bayesian parameter estimation problems clearly demands loss functions
that directly compare the involved likelihoods fX(·|ŝ) and fX(·|s); this
provides a natural solution to the above mentioned desideratum of having
loss functions objectively derived from the likelihoods, which may then be
called intrinsic [92].

Although other choices are possible (specially in non-parametric settings
[101]), [33]), we will consider here the two proposed in [92]: the Kullback-
Leibler divergence (recall its definition in Section 2.8.2)

LK-L(s, ŝ) ≡ D [fX(·|s) ‖ fX(·|ŝ)] (2.166)
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and the (squared) Hellinger-2 distance

LH(s, ŝ) ≡ H2
2 (fX(x|s), fX(x|ŝ)) ≡ 1

2
EX




(√

fX(x|ŝ)
fX(x|s) − 1

)2
∣∣∣∣∣∣
s



 .

(2.167)
The main feature of these likelihood related loss functions is that (as non-

informative priors) they are independent of the parameterization chosen.
If the likelihood functions are somehow reparameterized, say into η(s),
these loss functions retain their behavior. The same is, of course, not true
about loss functions which explicitly involve the parameters and parameter
estimates themselves. The unfortunate disadvantage of this type of loss
functions is that they usually do not allow deriving closed-form Bayes’ rules;
exceptions occur for some special likelihood models (in fact for exponential
families, see [92], for details), as illustrated in the following examples.

Example 2.13.1
Consider a Gaussian likelihood function, i.e., fX(x|s) = N (x|s, σ2), with

known variance σ2. The Kullback-Leibler divergence loss function is given
by

L(s, ŝ) = EX


 log




exp

{
− (x − s)2

2σ2

}

exp

{
− (x − ŝ)2

2σ2

}




∣∣∣∣∣∣∣∣
s




=
1

2σ2
EX

[
(x − ŝ)2 − (x − s)2

∣∣ s
]

=
1

2σ2
(ŝ − s)2,(2.168)

which coincides with a quadratic loss function and thus leads to the same
Bayesian rules.

Example 2.13.2
For a similar Gaussian likelihood fX(x|s) = N (x|s, σ2), of known vari-

ance σ2, the Hellinger distance loss function is

L(s, d) = 1 − exp

{
− (ŝ − s)2

8σ2

}
(2.169)

which has the aspect shown in Figure 2.10. Notice how it can be interpreted
as a smoothed version of the “0/1” loss function. In fact, this loss function
converges to the “0/1” when σ2 goes to zero; an intuitive interpretation
of this fact is that as the observation variance approaches zero, the loss
function becomes less forgiving.
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FIGURE 2.10. Hellinger loss function for three different likelihood variances.

2.14 Foundational Aspects: The Likelihood,
Conditionality, and Sufficiency Principles

The fact that all Bayesian rules are based on the posterior probability
function, which in turn is computed via Bayes’ theorem, has an important
consequence: they will automatically obey the so-called likelihood principle.
This principle, which is due to Fisher [43] and was formalized by Birnbaum
[15], can be stated as follows:
Likelihood principle (first part): The information about the state of
nature s contained in the observation x can only be carried via the likelihood
function fX(x|s), for that observed x.

In fact, it is clear from Eqs. (1.9) and (1.10) that the only dependence
of the posterior pS(s|x) on the observation x is, in fact, mediated by the
likelihood fX(x|s), as required by the likelihood principle. Notice that once
plugged into Bayes’ theorem, fX(x|s) stops being seen as a function of x
and begins playing its role as a function of s. This observation underlies
the second part of the likelihood principle:
Likelihood principle (second part): If two observations x1 and x2 are
obtained according to two likelihood functions fX(x1|s) and gX(x2|s) such
that there exists a function ψ(x1,x2) (not a function of s) verifying

gX(x2|s) = ψ(x1,x2) fX(x1|s), (2.170)

then, both observations should necessarily lead to the same decision.
Notice that this simply formalizes the fact that all that matters is the

“shape” of the likelihood, as a function of s. Again, this property is au-
tomatically verified by the a posteriori probability function obtained via
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Bayes’ law,

pS(s|x2) =
gX(x2|s)pS(s)∫

S
gX(x2|s)pS(s) ds

=
ψ(x1,x2)fX(x1|s)pS(s)∫

S
ψ(x1,x2)fX(x1|s)pS(s) ds

=
fX(x1|s)pS(s)∫

S
fX(x1|s)pS(s) ds

= pS(s|x1), (2.171)

and, consequently, by any Bayesian decision rule.

Example 2.14.1
Let us look back at Example 2.3.2; imagine that rather than knowing the

particular sequence x of outcomes observed, we are only informed about
the total number of heads, nh(x); recall from Section 2.11 that this is a
sufficient statistic. In this case, we should have to redefine the observation
model to be a binomial distribution

fNh
(nh(x)|θ) =

(
n

nh(x)

)
θnh(x)(1 − θ)n−nh(x). (2.172)

According to the likelihood principle, this is an irrelevant change because
the Bernoulli and the binomial distributions only differ by a multiplicative
factor (in this case the binomial coefficients), thus having the same shape
as functions of θ.

End of Example 2.14.1

The likelihood principle, although intuitively satisfactory, can be shown
to be equivalent to the conjunction of two other (arguably more universally
accepted and self-evident) principles: the sufficiency principle and the con-
ditionality principle. The proof is beyond the scope of this text and any
interested reader should consult [10] or [93]. The sufficiency principle (to-
gether with the concept of sufficient statistic) was addressed in Section 2.11.
The conditionality principle can be understood by imagining the following
situation. In some decision problem, there are two observation mechanisms
available, characterized by two different likelihood functions fX(x|s) and
gX(x|s); before acquiring any data, one of these is chosen at random, with
probabilities pf and pg = 1− pf , respectively. The conditionality principle
states that:
Conditionality Principle: Any inference concerning s must only depend
on the particular observation mechanism that was used, and not on any
other one that could have been, but was not, used.
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Notice that frequentist criteria clearly violate this principle since they in-
volve averaging (see Eq. (1.2)) over all possible experimental outcomes, i.e.,
with respect to the global likelihood function which is a mixture h

x
(x|s) =

pf fX(x|s) + pg gX(x|s).
The equivalence between the conjunction of the sufficiency and condi-

tionality principles and the likelihood principle has extremely important
implications: it means that rejecting the likelihood principle implies deny-
ing either the sufficiency principle (which is equally accepted by Bayesian
and non-Bayesian statisticians) and/or the conditionality principle, which
is so self-evident. We conclude by presenting an example (adapted from [8])
of how not following the likelihood principle (or the conditionality princi-
ple) may lead to some strange situations.

Example 2.14.2
An engineer wishes to study the stability of some new transistor fabrica-

tion process. To do so, gain measurements from a randomly chosen sample
are taken, using a high precision meter, and reported to the company’s
statistician. The statistician performs his classical (frequentist) analysis
whose output is a confidence interval for the mean gain. Later that day,
the engineer and the statistician meet for coffee, and the engineer says: “I
was lucky that none of the measured transistors showed a gain above 1000;
the meter I was using only measures gains up to 1000.” The statistician
suddenly looks upset and says “but that is bad news! The fact that your
meter’s range is only up to 1000 means that your data is censored. I’ll have
to repeat my analysis taking that into account”. But the engineer replies:
“well, but I have another equally precise meter that measures gains up to
10000, which I would have used if any gain had been greater than 1000”.
“Oh! So your data was not censored, after all, and my analysis is still valid”
says the statistician. One week later the engineer calls the statistician: “Re-
member that gain meter that measures up to 10000? It was being repaired,
the day I took the measurements; after all, I could not have used it”. When
the statistician tells the engineer that he will have to repeat his analysis,
the engineers replies: “but the data I gave you is exactly the same as if the
meter had been working; how can it make any difference? What if I now tell
you that although our high-range meter was being repaired, I could have
borrowed one from another laboratory, if necessary? Would you change
your mind once more and tell me that after all the initial conclusions are
again valid?”

End of Example 2.14.2
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2.15 Summary

In this Chapter we have considered various aspects surrounding Bayesian
inference. A considerable part of it was devoted to the issue of how to
specify priors. We started by looking at the concept of improper priors and
how it allows recovering the maximum likelihood criterion as a particular
Bayesian decision rule. Conjugate priors, i.e., priors designed to match the
likelihood function in the sense that the resulting a posteriori probability
function is easily obtained, were considered next. Non-informative priors
are conceived in an attempt to remove some of the subjectiveness from
Bayesian inference; we saw, in particular, how invariance arguments come
into play and how they lead to Jeffreys’ priors. Finally, we concluded our
study of priors with two design criteria rooted in information-theoretic
concepts: maximum entropy and minimum description length; in passing,
we introduced and studied the important concepts of entropy, Kullback-
Leibler divergence, and mutual information. These concepts were used to
provide an information theoretical view of some issues addressed (namely,
Jeffreys’ priors and sufficient statistics).

Sections 2.11 and 2.12 were devoted to two highly interrelated issues:
sufficient statistics, and exponential families. In particular, it was seen how
exponential families allow a very convenient manipulation including how
conjugate priors can be easily obtained in that case.

Section 2.13 was devoted to intrinsic loss functions (in the sense that they
are derived from the likelihood, rather than chosen arbitrarily), which are
the counterpart of non-informative priors. A density estimation perspective
was seen to be adequate for this purpose.

The last section focused on some foundational aspects of Bayesian infer-
ence: the likelihood, conditionality, and sufficiency principles.



120 2. Topics in Bayesian Inference



This is page 121
Printer: Opaque this

3
Compound Decision Theory and
Contextual Decision Making

3.1 Introduction

The previous Chapters have not dealt with problems (either of estimation
or classification) where the unknown quantities are vectors, i.e., have sev-
eral elements. Although the Bayesian approaches described are very general
and by no means restricted to scalar problems, some issues deserve special
attention. Problems where a set of (possibly dependent) decisions (rather
than a single one) are to be taken fall in the general category of compound
decision theory. Another common term is contextual decision making, which
emphasizes the idea that each decision should take into account its con-
textual information, i.e. the other decisions that can influence the current
decision making task. Contextual information is extremely important in
many application areas such as pattern recognition, and image analysis;
context often allows us to reduce or eliminate ambiguities or errors, and to
recover missing information, as pointed out by Haralick [51].

To formalize compound decision theory, it is required that the states of
nature be described by d-dimensional vectors1 s = [s1, s2, . . . , sd]

T ∈ S =
S1 ×S2 × · · · × Sd, with × denoting Cartesian product. In many problems,
all the elements of s belong to the same configuration space and thus the
configuration space is simply a Cartesian power, S = Sd

0 . When the vector

1The notation si used here should not be confused with the one used in previous
Chapters to enumerate all the elements of set S.
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nature of s is not relevant, we can simply write s = (s1, s2, ..., sd) and view
it simply as an ordered set.

For compound problems, the role of the prior pS(s) is now, not only to
express prior knowledge concerning each si, but also about their (prob-
abilistically modeled) mutual interdependencies; this is arguably the key
point in compound/contextual inference since it is this joint prior that for-
malizes how each si is expected to be influenced and to influence the other
states (i.e., its context).

Let us consider a Bayesian inference problem with A = S, where the goal
is to design a decision rule δ(x) : X → S by minimizing the a posteriori
expected loss associated with a given loss function L(s,a). As in the non-
compound case, observed data x is obtained according to the likelihood
function fX(x|s) which is considered known.

Sometimes, the observation model has a particular feature that allows
simplifying some of the results ahead; this is called conditional indepen-
dence and applies to problems where the likelihood function can be factored
according to

fX(x|s) =

d∏

i=1

fX(i)
(x(i)|si), (3.1)

where x(i) stands for a subset of data exclusively associated with the com-
ponent si of s, which is assumed conditionally independent (conditioned on
s) from the other subsets. Each x(i) can be interpreted as an observation
of si.

It is convenient to separately treat loss functions that can be decomposed
according to

L(s,a) =

d∑

i=1

Li(si, ai), (3.2)

which we will call additive, from those that do not allow such a decomposi-
tion, named non-additive. Before proceeding, we conclude this introduction
by pointing out that, in the compound case, the definition of the marginal
fX(x) (see Eq. (1.10)) now involves multiple integrals or summations. In
mixed situations, where some of the Si’s may be discrete while others are
continuous, computing fX(x) involves nested summations and integrals.

3.2 Non-additive Loss Functions

Non additive loss-functions are those that can not be written as Eq. (3.2).
This is the most general situation and naturally leads to decision rules
formally equivalent to those obtained for non-compound problems. Next,
we will look at some instances of non-additive loss functions.
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3.2.1 The “0/1” Loss Function

The non-additive “0/1” loss function for compound classification problems
is the natural extension of the non-compound one in Eq. (1.22):

L(s,a) =

{
1 ⇐ s 6= a
0 ⇐ s = a.

(3.3)

Clearly, this loss does not allow a decomposition as the one in Eq. (3.2).
By observing that there is absolutely nothing in Eqs. (1.22) to (1.25) that
makes them specific to univariate problems, we conclude that the MAP
decision rule

δ(x) = arg max
s∈S

pS(s|x) = arg max
s∈S

fX(x|s)pS(s), (3.4)

is still the optimal Bayes’ criterion for classification problems under this loss
function. This (joint) MAP rule looks for the configuration (ŝ1, ŝ2, . . . , ŝd)MAP

that jointly globally maximizes the a posteriori (joint) probability function
pS(s|x). As in the non-compound case, if the prior is uniform, the resulting
rule is called the maximum likelihood (ML) classifier.

For estimation problems, the “0/1” loss function is also similar to Eq.
(1.79). Again, Eqs. (1.79) to (1.81) apply equally well to compound sit-
uations, leading to a compound MAP estimation rule formally similar to
Eq. (3.4), except for the fact that pS(s|x) and pS(s) are now (multivariate)
probability density functions rather than probability mass functions. Since
the MAP classifier and estimator are formally similar, the same expression
also applies to mixed problems.

A special situation allows simplifying the general MAP rule of Eq. (3.4):
if conditional independence (see Eq. (3.1)) is assumed for the observation
model and, in addition, the prior can be factored into

pS(s) =

d∏

i=1

pSi
(si) (3.5)

i.e., it models the components of S as a priori independent, then the com-
pound MAP rule reduces to a non-interacting set of scalar MAP rules

δMAP(x) = arg max
(s1,...,sd)

{(
d∏

i=1

fX(i)
(xi|si)

) (
d∏

i=1

pSi
(si)

)}

= arg max
(s1,...,sd)

{
d∏

i=1

fX(i)
(xi|si)pSi

(si)

}

=

[
arg max

s1

{pS1
(s1|x(1))}, . . . , arg max

sd

{pSd
(sd|x(d))}

]T

.

Finally, it is worth mentioning that Eq. (3.4) is probably, as we shall see,
the most widely used criterion in Bayesian image analysis applications,
such as restoration, reconstruction, segmentation, and classification.
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3.2.2 Quadratic Loss Function

A general quadratic loss function for vectors (A = S = IRn) is

L(s,a) = (s − a)T Q(s − a); (3.6)

only in the particular case of Q being diagonal, say Q = diag(q1, q2, ..., qd)
do we get

L(s,a) =
d∑

i

qi(si − ai)
2 (3.7)

which is an additive loss function. However, a general result which covers
both cases can be obtained: for any symmetric positive-definite Q, the
optimal Bayes’ estimator is always the posterior mean [93]. To see that
this is true, notice that the a posteriori expected loss can be written as

ρ (pS(s), δ(x)|x) = E
[
(s − δ(x))T Q(s − δ(x))|x

]

= E
[
sT Qs|x

]
+ δ(x)T Qδ(x) − 2δ(x)T QE [s|x] ,

because Q is symmetric. Now, since Q is positive-definite this is a convex
function of δ(x) and so we can find its minimum by computing the gradient
and equating it to zero; this yields

δPM(x) = ES [s|x] . (3.8)

Finally, notice that it is quite natural to demand that Q be positive-definite.
In fact, if Q is not positive-definite it is possible to have cases where ‖s−a‖2

is arbitrarily large, but (s − a)TQ(s − a) = 0, which does not (in general)
seem reasonable for a loss function.

3.2.3 Likelihood Related Loss Functions

The likelihood related loss functions considered in Section 2.13 are non-
additive, and, in general, no explicit expressions can be found for the
resulting Bayes’ criteria. Worth mentioning is the particular case of the
Kullback-Leibler divergence loss function in the presence of a likelihood
function that has the conditional independence property (see Eq. (3.1)); in
that case, because of the linearity of the expected value,

L(s,a) = EX

[
log

fX(x|s)
fX(x|a)

∣∣∣∣ s
]

= EX

[
d∑

i=1

log
fX(i)

(x(i)|si)

fX(i)
(x(i)|ai)

∣∣∣∣∣ s
]

=

d∑

i=1

EX

[
log

fX(i)
(x(i)|si)

fX(i)
(x(i)|ai)

∣∣∣∣∣ si

]
(3.9)

which is clearly an additive loss function.
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3.3 Linear-Gaussian Observations and Gaussian
Priors

One of the most simple and important classes of compound estimation
problems is that where the likelihood is multivariate Gaussian; despite its
simplicity, it provides an extremely rich and versatile family of models
which is widely used in many image and signal analysis applications, not
to mention its many other uses in statistical analysis.

Formally, let the unknown be a d-dimensional vector be denoted as s.
Let x be the n-dimensional observed vector which is linearly related to s
through the observation equation

x = Hs + n (3.10)

where H is a n × d (possibly non-invertible) matrix, and n, usually called
noise, is a sample of a zero mean Gaussian random vector N, independent
of S, with covariance matrix C. The resulting likelihood function is

fX(x|s) = N (x|Hs,C) =
(2π)−n/2

√
det(C)

exp

{
−1

2
(x − Hs)

T
C−1 (x − Hs)

}
.

(3.11)
This is, for example, the standard observation model in image restora-
tion/reconstruction problems; in that case, H models the degradation or
observation process (e.g., blur or tomographic projections) and the goal is
to estimate the uncorrupted image s.

3.3.1 Regression Models

In the statistics literature, Eq. (3.10) is called a linear regression model
and is one of the most common and studied statistical analysis tools; see
recent specialized accounts in [86] and [99], and Bayesian perspectives in
[18], [46], and [93]. In the regression context, it is assumed that some vari-
able2 x, called the response (here assumed real-valued) can be explained as
a function (usually deterministic, but not necessarily so) of the so-called
explanatory variables y = [y1, y2, ..., yd]. There are, of course, many possible
interpretations for the word explain; the simplest one, leading to standard
linear regression models is that, given y, x is a linear combination of the
elements of y

x = yT s = y1 s1 + y2 s2 + ... + yd sd. (3.12)

The problem here is to estimate the weights of this linear combination,
after having observed a set of, say n, examples or subjects {(xi,yi), i =

2We are not using standard regression notation to stay compatible with Eq. (3.10).
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1, 2, ..., n}, with yi = [yi1, ..., yid]
T , where yij is the j-th explanatory vari-

able of the i-th subject. Moreover, it is assumed that the xi’s are observed
with noise. The joint observation model for the set of examples is

x = Hs + n (3.13)

(see Eq. (3.10)) where x = [x1, ..., xn], matrix H (often called the design
matrix) collects the explanatory variables, that is Hij = yij , and n is a
sample of a zero mean Gaussian random vector with known covariance
matrix C. An alternative view, leading to the exact same equations, is that
the underlying function is itself random; for example, given y, x is a sample
of a Gaussian random variable whose mean is a linear combination yT s. If
the noise in the response variable of each subject has a common variance σ2

and is independent of the other subjects, we have C = σ2I; in the regression
literature this is called a homoscedastic model. In a heteroscedastic model,
C is also diagonal, but its elements are not equal.

What about when the underlying function (whose parameters we seek)
is non-linear? The answer is that, even in this case, it is possible to end up
with a linear regression problem; all that is necessary is that we look for
a representation of that function in terms of a fixed basis (not necessarily
orthogonal); this may be called generalized linear regression. To be more
specific, let the underlying function to be estimated be written as x =
ξ(y; s), where s are the coefficients of its representation with respect to
some (fixed) set of (linear independent) functions

ξ(y; s) =
d∑

j=1

sj φj(y). (3.14)

Classical examples of such representations are Fourier-type (complex ex-
ponentials, cosines, sines) series, B-spline bases (see [41], [29], [36], and
Example 3.3.1 below), polynomials, wavelet bases [73], or radial basis func-
tions (RBF) (see [83], [85], references in [52] and [87], and Example 3.3.2).
Notice that the linear regression model in Eq. (3.12) is a particular case
of Eq. (3.14) with φj(y) = yj . Consider again a set of n observations,
{(xi,yi), i = 1, 2, ..., n}, such that xi is a noisy observation of ξ(yi; s).
The observation model for this set of data can again be written as in Eq.
(3.13), where the elements of matrix H are now given by Hij = φj(yi).

Example 3.3.1
Splines are a very powerful and popular function approximation tool; in

particular, they have been used in computer graphics and, more recently,
in computer vision and image analysis (see [41] and references therein).
In this example, we will briefly see how fitting univariate spline models
to observed data leads to linear regression problems. For more detailed
accounts on splines see [29], [36], and [106].
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Let {y0 < y1 < y2 < ... < yk} ⊂ [y0, yk] ⊂ IR be a set of points, called
knots 3. By definition, spline functions are polynomial inside each interval
[ti−1, ti] and exhibit a certain degree of continuity at the knots. The set of
all splines on [tm, tk−m] with Cm−1 continuity at the knots (that is, that
have m − 1 continuous derivatives) is a linear space of dimension (k−m).
The set of B-splines, denoted {Bm

k (t), k=0, .., k−m−1}, and which can be
defined by the Cox-deBoor recursion,

Bm
i (y) =

(y − yi)Bm−1
i (y)

yi+m − yi
+

(yi+m+1 − y)Bm−1
i+1 (y)

yi+m+1 − yi+1
,

with

B0
i (y) =

{
1, yi ≤ y < yi+1

0, otherwise,

constitute a basis of this space, though a non-orthogonal one. Accordingly,
each spline function ξ(y) in this space has a unique representation as a
linear combination with weights s = {s0, s1, ..., sk−m−1}:

ξ(y) =

k−m−1∑

j=0

sj Bm
j (y), y ∈ [ym, yk−m]. (3.15)

Now, given m and a set of knots {y0 < y1 < ... < yk} (which in turn
define a fixed B-spline basis), consider the problem of estimating the spline
function that best fits a set of n (possibly noisy) samples {(xi, yi), i =
0, ..., N − 1}. The resulting observation model is similar to Eq. (3.13), with
the elements of matrix H now given by Hij = Bm

j (yi). If the knots are
unknown, thus also having to be inferred from the data, we no longer have
a linear problem; that more general case is called the free-knot problem and
it is considerably more difficult.

End of Example 3.3.1

Example 3.3.2
Another approach which has been widely advocated to represent func-

tions (and arguably better suited than splines to high dimensional cases)
is based on radial basis functions (RBFs) (see [83], [85], and references in
[52] and [87]). A radial basis function is any function that is characterized
by a center c and a width h in such way that

ψ(y, c, h) = ψ

(‖ y − c ‖
h

)
,

3For simplicity, we exclude here the possibility of multiple knots, i.e., one or more

knots at the same location; see, e.g., [36] for the consequences of this option.
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where ‖ · ‖ denotes (usually but not necessarily) the Euclidean norm.
Examples of RBFs include Gaussian functions, ψ(r) = exp(−r2), multi-
quadratic ψ(r) = (r2 + a2)1/2, and the so-called thin-plate-spline func-
tion, ψ(r) = r2 log r [87]. Let a set of basis functions with fixed centers
{cj , j = 1, ..., d} and widths {hj , j = 1, ..., d} be given, {φj(y), j =
1, ..., d}, where φj(y) = ψ(y, cj , hj). In this case, we fall exactly in a gener-
alized linear regression problem, with the elements of matrix H again given
by Hij = φj(yi). Of course, if the centers and widths are also unknown,
the problem looses its linear regression nature.

End of Example 3.3.2

3.3.2 Gaussian Prior: General Solution

Consider a Gaussian prior of mean µ and covariance matrix A, i.e.,

pS(s) = N (s|µ,A) =
(2π)−d/2

√
det(A)

exp

{
−1

2
(s − µ)

T
A−1 (s − µ)

}
. (3.16)

The a posteriori probability density function can be obtained via Bayes’
law, pS(s|x) = fX(x|s)pS(s)/fX(x). Somewhat lengthy but straightforward
manipulations eventually lead to a Gaussian a posteriori density

pS(s|x) = N (x|̂s,P) , (3.17)

showing that multivariate Gaussians are conjugate priors for Gaussian like-
lihoods. The mean and covariance matrix are given, respectively, by

ŝ = µ + AHT
(
C + HAHT

)−1
(x − Hµ), (3.18)

and

P = A − AHT
(
C + HAHT

)−1
HA =

[
A−1 + HT C−1H

]−1
. (3.19)

Equality between the two alternative forms for P springs directly from
the matrix inversion lemma (see, for example, [98]). Of course, since the a
posteriori density is Gaussian, both the MAP and PM estimates are equal
to ŝ (this being why we called it ŝ, in the first place). This result appears
under several names and has many disguised equivalents; the best known
of these, at least in the signal processing literature, is the Gauss-Markov
theorem [98].

If the a posteriori covariance matrix is not of interest, ŝ can be more di-
rectly obtained as a MAP estimate from Eq. (1.83); after dropping additive
constants, we are left with

ŝ = arg min
s

{
sT

[
A−1 + HT C−1H

]
s − 2sT

(
A−1µ + HT C−1x

)}
. (3.20)
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Then, since the function being minimized is convex (in general4) with re-
spect to s, ŝ is found by looking for the zero gradient configuration, leading
to

ŝ =
[
A−1 + HT C−1H

]−1 (
A−1µ + HT C−1x

)
. (3.21)

Although seemingly different, Eqs. (3.21) and (3.18) are perfectly equiva-
lent; observe that Eq. (3.21) can be seen as the multidimensional version
of Eq. (1.85). It is also interesting to compare Eq. (3.21) with Eq. (1.92).
Finally, notice that Eq. (3.21) suggests that it would be convenient to di-
rectly specify the inverse of the covariance A−1 rather than A itself. As
we shall see, this “more convenient” nature of the inverse of the covariance
matrix will emerge in several situations. The inverse covariance is known
as the concentration or precision matrix [2], [107]; it is also called potential
matrix in [78].

Another interesting appearance for this estimate is obtained with the
help of the Mahalanobis distance (see Eq. (1.37)). Eq. (3.20) can be rewrit-
ten as

ŝ = arg min
s

{
‖x − Hs‖2

C
+ ‖s − µ‖2

A

}
, (3.22)

clearly showing that a compromise between prior information and data ev-
idence is being sought. Similar criteria appear in non-statistical approaches
where Eq. (3.10) is called an inverse problem (usually without explicit ref-
erence to the presence of noise); the best known of these approaches is
Tikhonov’s regularization theory [102]. Furthermore, notice that the ML
estimate obtained by maximizing the likelihood in Eq. (3.11) with respect
to s is

ŝML = arg min
s

{
‖x − Hs‖2

C

}
. (3.23)

Comparing Eqs. (3.23) and (3.22) makes it clear why criteria with the
form of Eq. (3.22) are often (in non-Bayesian terms) known as penalized
maximum likelihood estimators.

3.3.3 Particular Cases

Several particular situations deserve special attention and help to give a
better understanding of the general case.

Independent and identically distributed noise: When the noise com-
ponents are independent and identically distributed (often called white

4The function being minimized in Eq. (3.20) is not convex if
[
A−1 + HT C−1H

]

is not positive-definite; i.e., if there are any vectors v, such that ‖v‖2 > 0, but
vT

[
A−1 + HT C−1H

]
v = 0. Such vectors belong to the null-space of the matrix[

A−1 + HT C−1H
]

[47]. Rewriting the condition, we get vT A−1v+vT HT C−1Hv = 0,
which is only possible for some v such that ‖v‖ > 0 if the null spaces of A and H have a
non-empty intersection. In most problems of interest, such as in image restoration, this

is not the case.
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noise), the covariance matrix of N becomes diagonal C = σ2I and
its inverse is simply C−1 = I/σ2. The first Mahalanobis norm in Eq.
(3.22) becomes an Euclidean norm while Eq. (3.21) turns into

ŝ =
(
σ2A−1 + HT H

)−1 (
σ2A−1µ + HT x

)
. (3.24)

No noise: The absence of noise corresponds to σ2 = 0 which implies sim-
plifying Eq. (3.24) into

ŝ =
[
HT H

]−1
HT x (3.25)

= arg min
s

{
‖Hs − x‖2

}
, (3.26)

where
[
HT H

]−1
HT ≡ H† is known as the Moore-Penrose pseudo

(or generalized) inverse of matrix H (see, e.g., [7] or [21]). If H−1

exists, then H† = H−1; if H is not invertible, then H† provides its
least-squares sense pseudo-solution (see Eq. (3.26) and references [21],
[7]). Notice that, due to the absence of noise, this estimate does not
depend on the prior parameters A and µ because the observed data
is considered absolutely trustworthy. Finally, the similarity between
Eqs. (3.26) and (3.23) shows that the least squares solution coincides
with the maximum likelihood estimate when the noise components
are assumed zero mean Gaussian, independent, and identically dis-
tributed (regardless of the variance). In the regression literature, this
scenario is called least squares regression.

Prior covariance up to a factor: If the prior covariance matrix is writ-
ten with a multiplicative factor, i.e., A = φ2B, then φ2 can be seen
as (proportional to) the “prior variance”. Matrix B (as A) is positive
definite, thus having a unique symmetric square root D (in the ma-
trix sense, i.e., DD = DT D = B); this allows rewriting Eq. (3.22),
still with C = σ2I and using Euclidean norms, as

ŝ = arg min
s

{
‖x − Hs‖2

+
σ2

φ2
‖D(s − µ)‖2

}
. (3.27)

In regularization theory parlance, ‖D(s − µ)‖2
is called the regular-

izing term, and σ2/φ2 the regularization parameter. Concerning Eq.
(3.24), it becomes

ŝ =

(
σ2

φ2
B−1 + HT H

)−1 (
σ2

φ2
B−1µ + HT x

)
, (3.28)

which clearly reveals how the ratio σ2/φ2 controls the relative weight
of the prior and the observed data. In a regression context, Eq. (3.28)
is called a ridge estimator.
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Flat prior: Letting the prior variance approach infinity, i.e., φ2 → ∞,
we obtain the non-informative prior; notice from Eq. (3.11) that s is
clearly a (multidimensional) location parameter. From Eq. (3.28) it is
clear that this is equivalent to taking σ2 to zero and the corresponding
estimate is again the one in Eq. (3.25). This is the maximum likelihood
estimate, as can be confirmed by maximizing Eq. (3.11) with respect
to s.

Flat prior, different noise variances: Finally, we consider the situa-
tion where we have flat prior (φ2 → ∞), and where each obser-
vation is contaminated by noise with different variance, i.e., C =
diag(σ2

1 , ..., σ2
n) (the so-called heteroscedastic model). In this case,

the estimate is given by

ŝ =
[
HT C−1H

]−1
HT C−1x, (3.29)

which is known as the weighted least squares (WLS) estimate. This
designation stems from the fact that it is the solution of

ŝ = arg min
s

n∑

i=1

((Hs)i − xi)
2

2σ2
i

, (3.30)

which is a least squares estimation problem where each observation
has its own weight.

3.4 Additive Loss Functions

3.4.1 General Result: Marginal Criteria

Let us now consider the loss functions that can be written as

L(s,a) =

d∑

i=1

Li(si, ai), (3.31)

those we called additive. It will be assumed (without loss of generality, since
arbitrary constants can be added to loss functions) that each individual loss
function satisfies Li(si, ai) ≥ 0. We start by considering the discrete case,
i.e., a pure classification problem where S = S1×S2×· · ·×Sd, with all the
Si’s being discrete sets. Invoking the definition of optimal Bayes’ estimator
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(Eqs. (1.11) and (1.8)) and using the fact that the loss function is additive,

δ(x) = arg min
a∈S

∑

s∈S

d∑

i=1

Li(si, ai)

︸ ︷︷ ︸
L(s,a)

pS(s|x) (3.32)

= arg min
a∈S

d∑

i=1

∑

s∈S
Li(si, ai) pS(s|x) (3.33)

= arg min
a∈S

d∑

i=1

∑

s′∈Si

Li(s
′, ai)

∑

s∈S:si=s′

pS(s|x). (3.34)

In Eq. (3.34), the notation s ∈ S : si = s′ indicates that the corresponding
summation sweeps all the configurations s ∈ S such that the i-th compo-
nent equals a certain value, si = s′. Of course, this is simply the posterior
marginal probability function, i.e.,

∑

s∈S:si=s

pS(s|x) = pSi
(s|x); (3.35)

then, we can write

δ(x) = arg min
a∈S

d∑

i=1

∑

si∈Si

Li(si, ai) pSi
(si|x) (3.36)

=

[
arg min

a1∈S1

∑

s1∈S1

L1(s1, a1) pS1
(s1|x), . . . ,

arg min
ad∈Sd

∑

sd∈Sd

Ld(sd, ad) pSd
(sd|x)

]T

=

[
arg min

a1∈S1

ES1
[L1(s1, a1)|x] , . . . ,

arg min
ad∈Sd

ESd
[Ld(sd, ad)|x]

]T

(3.37)

because minimizing a sum of independent (each term of the outer summa-
tion in Eq. (3.36) is only a function of one ai) non-negative (recall that
Li(si, ai) ≥ 0) functions is equivalent to minimizing each one individually.
This important result, first brought to the attention of the computer vi-
sion/image analysis communities by Marroquin [74], simply states that in
the presence of a loss function that is the sum of individual (non-negative)
loss functions, the optimal Bayes’ rule consists of a (parallel) set of non-
interacting Bayes’ rules, each relative to the corresponding a posteriori
marginal probability function. Each individual term ESi

[Li(si, ai)|x] can
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be called the a posteriori marginal expected loss. In the continuous case, an
equivalent result can be derived by replacing the summations over the Si’s
by the appropriate integrals. The general result in Eq. (3.37) can now be
particularized to the common loss functions considered in Chapter 2.

3.4.2 Application to the common loss functions

Quadratic Error Loss Function

For the quadratic loss function, there is already the result in Eq. (3.8),
which also covers the additive case (obtained when matrix Q is chosen to
be diagonal). This is a simple consequence of the fact that the mean of
a random vector is computed separately with respect to each marginal; it
is an intrinsically marginal concept. If the sets Si are discrete, then the
resulting estimates will have to be thresholded (as in Eq. (1.100)), leading
to what are called the thresholded posterior marginal means (TPMM).

Absolute Error Loss Function

The compound version of the absolute error loss function (with A = S =
IRn) is naturally additive and defined as

L(s,a) =

d∑

i=1

|si − ai|; (3.38)

Then, the optimal Bayes’ estimator of each si is the median of the respective
posterior marginal, called median of posterior marginal density (MPMD).

“0/1” Loss Function

For estimation problems, the additive version of the “0/1” loss function
is written as Eq. (3.2) with each Li(·, ·) being a “0/1” loss function of
scalar argument. Concerning classification problems, the additive “0/1”
loss function is called total error loss function because it equals the number
of incorrect classifications. In both cases, according to the general result
for additive loss functions, the optimal Bayes’ decision rule is

δMPM(x) =

[
arg max

s1∈S1

pS1
(s1|x), . . . , arg max

sN∈Sd

pSd
(sd|x)

]T

. (3.39)

This corresponds to the MAP criterion applied to each posterior marginal,
and was designated in [74] as the maximizer of posterior marginals (MPM).

Example 3.4.1
This example illustrates, with a toy problem, the difference between

the MPM criterion just presented and the joint MAP in Eq. (3.4). Let
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S = {0, 1}2, that is, the unknown is a pair of binary variables s = (s1, s2).
Prior information states that it is more probable that s1 = s2 than not;
specifically, pS(0, 0) = pS(1, 1) = 0.4 and pS(0, 1) = pS(1, 0) = 0.1. Ob-
servations x = (x1, x2) are obtained according to a very simple Gaussian
likelihood, with the conditional independence property:

fX(x|s) = N (x1|s1, σ
2)N (x2|s2, σ

2)

For the joint MAP criterion,

(ŝ1 MAP, ŝ2 MAP) = arg max
(s1,s2)∈{0,1}2

pS(s1, s2|x1, x2),

with pS(s|x) ∝ pS(s|x)fX(x|s). Actually, this is a quaternary classification
problem, of the type studied in Section 1.4.3; in the notation there used,
µ1 = [0, 0]T , µ2 = [0, 1]T , µ3 = [1, 0]T , µ4 = [1, 1]T , and Ci = σ2I, for
i = 1, 2, 3, 4.

For the MPM criterion, the a posteriori marginals have to be separately
maximized:

ŝ1 MPM = arg max
s1=0,1

{
N (x1|s1, σ

2)
∑

s2=0,1

N (x2|s2, σ
2)pS(s1, s2)

}

ŝ2 MPM = arg max
s2=0,1

{
N (x2|s2, σ

2)
∑

s1=0,1

N (x1|s1, σ
2)pS(s1, s2)

}

To study the difference between the two criteria, we generated 2000 sam-
ple from pS(s) and the corresponding observations according to the model
described. Those observations were then used by the two criteria and the
following results were collected: number of correct patterns (ı.e., ŝ = s),
denoted n0, number of patterns with one error (ı.e., ŝ and s differing in
exactly one position), denoted n1, and number of patterns with two errors
(ı.e., ŝ1 6= s1 and ŝ2 6= s2), denoted n2. Another interesting number is
n1 + 2n2 which counts the total number of wrong “bits”.

For σ2 = 0.2, we have a low-noise situation and both criteria give similar
results:

MAP

n0 = 1975 n1 = 25 n2 = 0 n1 + 2n2 = 25

MPM
n0 = 1976 n1 = 24 n2 = 0 n1 + 2n2 = 24

When the noise increases to σ2 = 0.8, differences between MPM and
MAP arise:
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MAP

n0 = 1334 n1 = 385 n2 = 281 n1 + 2n2 = 947

MPM

n0 = 1281 n1 = 503 n2 = 216 n1 + 2n2 = 935

The MAP criterion yields a larger number of fully correct patterns (1334
versus 1281), which is a natural result since the underlying loss function
“insists” in that the estimate be exactly equal to the true s. However, the
MAP criterion produces more estimates that are completely wrong (error
in both “bits”) than MPM does (281 versus 216); this is again a natural
consequence of the underlying loss functions. The additive “0/1” loss counts
the number of wrong positions, while the non-additive one, once a position
is wrong, does not care about the other. A final consequence of this effect
is that MPM achieves a smaller number of “bit” errors (935 versus 947).
This is a natural result, because of the additive nature of the loss function
underlying the MPM criterion.

Reference [74] contains other examples where MPM is compared against
MAP in the context of image restoration/reconstruction problems.

End of Example 3.4.1

Example 3.4.2
Another interesting example of the difference between the MPM and

MAP concerns the joint estimation of the mean and variance of a set of
Gaussian observations. Consider n real-valued observations x = {x1, ...xn}
obtained according to the likelihood function

fX(x|µ, σ2) =

n∏

i=1

N (xi|µ, σ2) =
1

(2πσ2)n/2
exp{− 1

2σ2

n∑

i=1

(xi − µ)2}.

Let us concentrate on maximum likelihood estimates by adopting flat priors
for both parameters: p(µ, σ2) ∝ “constant”. Accordingly, the a posteriori
probability density function is

p(µ, σ2|x) ∝ fX(x|µ, σ2)

which, despite the use of improper priors, turns out to be integrable. The
MAP/ML estimate of the unknown parameters yields

(
µ̂MAP, σ̂2

MAP

)
= arg max

µ,σ2

1

(2πσ2)n/2
exp{− 1

2σ2

n∑

i=1

(xi − µ)2}

=

(
1

n

n∑

i=1

xi,
1

n

n∑

i=1

(xi − µ̂MAP)
2

)
. (3.40)
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It is well known that this variance estimate is biased (see section 2.7.1, for
the definition of an unbiased estimate). In fact, it easy to check that

E




1

n

n∑

i=1



xi −
1

n

n∑

j=1

xi




2
∣∣∣∣∣∣∣
µ, σ2


 =

n − 1

n
σ2,

with the unbiased estimate thus being

σ̂2 =
1

n − 1

n∑

i=1

(xi − µ̂MAP)
2

=
n

n − 1
σ̂2

MAP

To obtain the MPM estimates of µ and σ2 we need to compute the
corresponding posterior marginals.

p(µ|x) =

∫ ∞

0

p(µ, σ2|x) dσ2 ∝
(
n σ̂2

MAP + n (µ − µ̂MAP)
2
) 2−n

2

p(σ2|x) =

∫ ∞

−∞
p(µ, σ2|x) dµ ∝ (2πσ2)−

n−1
2 exp

{
− n

2σ2
σ̂2

MAP

}

Maximization of these marginals leads to

µ̂MPM = µ̂MAP (3.41)

σ̂2
MPM =

n

n − 1
σ̂2

MAP; (3.42)

that is, the mean estimate is the same as the one obtained under the MAP
criterion, while the variance estimate appears with correction needed to
make it unbiased. Of course, the difference between the two criteria vanishes
when the number of data points increases, but for small samples this may
be a significant effect.

End of Example 3.4.2

3.5 Priors for Compound Problems

Most of Chapter 2 was devoted to studying techniques for building priors in
a formal way. From a conceptual point of view, most of what we saw there
carries over unchanged to the compound inference scenario; usually, only
computational and/or analytical difficulties will emerge. In this section,
we will revisit each topic covered in Chapter 2 concerning prior building
(improper priors, exponential families, conjugate priors, non-informative
priors, and maximum entropy priors), examining the impact of the multi-
variate nature of the unknown. Minimum description length (MDL) priors
will be considered in the next chapter where the problem of estimating
parameter vectors of unknown dimension is addressed.
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3.5.1 Improper Priors and Maximum Likelihood Inference

Just as for an univariate s, a (joint) prior pS(s) for a multivariate unknown
s is called improper if the corresponding integral fails to converge, i.e., if

∫
· · ·

∫
pS(s1, ..., sd) ds1 · · · dsd = ∞,

or a similar property involving summations in the discrete case. As for
a scalar unknown, as long as the a posteriori probability function is well
defined, valid Bayesian rules can still be obtained.

However, a new issue arises which was not present in univariate problems:
a prior can be proper for some aspects of the unknown vector and improper
for others. To clarify this statement, let us consider a very simple example:

Example 3.5.1
Consider an estimation problem where S = IR2, s = [s1, s2]

T ; the ob-
served vector is also bidimensional x = [x1, x2]

T and the likelihood func-
tion is simply fX(x|s) = N (x|s, σ2I). This problem is in the class consid-
ered in Section 3.3 with H = I and C = σ2I. Now, consider the prior

pS(s1, s2) ∝ exp

{
− (s1 − s2)

2

2φ2

}
= exp

{ −1

2φ2
sT

[
1 −1

−1 1

]
s

}
;

this prior can be used to express the knowledge that s1 and s2 are expected
to be “close” to each other, although it clearly says nothing about “where”
they are expected to be (because pS(s1, s2) = pS(s1 + k, s2 + k), for any
k). Notice that this is a Gaussian prior, although of a particular kind since
the corresponding covariance matrix does not exist. Nevertheless, we can
still obtain the a posteriori joint probability density function which is

pS(s|x) = N (s|̂s,P)

where, letting α = σ2/φ2,

ŝ =

[
ŝ1

ŝ2

]
=

1

1 + 2α

[
1 + α α

α 1 + α

] [
x1

x2

]
.

The key aspect of this example is the following. The average of the two
estimates,

ŝ1 + ŝ2

2
=

(1 + α)x1 + αx2 + αx1 + (1 + α)x2

2(1 + 2α)
=

x1 + x2

2

is the same as the average of the observations. However, the difference

ŝ1 − ŝ2 =
(1 + α)x1 + αx2 − αx1 − (1 + α)x2

(1 + 2α)
=

x1 − x2

1 + 2α
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is smaller than the difference between the observations (x1 − x2), because
α = σ2/φ2 ≥ 0 and thus (1 + 2α) > 1. These facts are in accordance with
the previous interpretation of the prior: it is flat with respect to the location
of the unknowns, but informative with respect to their relative difference.

Another way to look at this prior is to notice that the matrix that appears
in the exponent as a zero eigenvalue whose corresponding eigenvector is
(any vector proportional to) [1 1]T ; its other eigenvalue is 2 associated
with eigenvectors of the form [−1 1]T . In other words, this prior, behaves
as having infinite variance along the direction of [1 1]T , yielding a maximum
likelihood estimate, and finite variance along the orthogonal direction. Of
course, this example can be generalized to dimensions higher than two, as
we shall see concerning Gauss Markov random fields.

From a technical point of view, as we mentioned concerning the scalar
case, such a prior can be viewed as the limit of a family of proper priors.
For example, we could have started with

pS(s1, s2) ∝ exp

{ −1

2φ2
sT

[
1 + ε −1
−1 1 + ε

]
s

}
,

for ε > 0, which is a perfectly proper Gaussian density with a valid co-
variance matrix (as can be seen by inverting the matrix in the exponent).
We could have done all the derivations above keeping ε > 0, and in the
end found limits for ε → 0; our conclusions would, of course, have been the
same. For example, the eigenvalues of this matrix are ε and 2+ ε, with the
same eigenvectors as above.

End of Example 3.5.1

3.5.2 Exponential Families and Conjugate Priors

The concept of conjugate prior can be carried absolutely unchanged from
the univariate to the compound scenario. Only a slight generalization of
notation appears in the following definition:
Let F = {fX(x|s), s ∈ S} be a class of likelihood functions; let P be a
class (set) of probability (density or mass) functions; if, for any x, any
pS(s) ∈ P, and any fX(x|s) ∈ F , the resulting a posteriori (joint) proba-
bility function pS(s|x) ∝ fX(x|s) pS(s) is still in P, then P is a conjugate
family (a family of conjugate priors), for F .

For example, the multivariate Gaussian priors studied in Section 3.3
are conjugate priors for Gaussian observation models with respect to a
multidimensional location parameter (mean).

As we have seen in Section 2.12, deriving conjugate priors for likelihoods
in an exponential family is a straightforward task. The concept of expo-
nential families in the case of multidimensional parameters is also a simple
generalization (mostly of notational nature) of the unidimensional case.
Specifically, a parameterized family of probability functions which can be
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written as

fX(x|θ) = φ(x)ψ(θ) exp{ξ(θ)T t(x)} (3.43)

where t(x) is a k-dimensional sufficient statistic and ξ(θ) is a k-dimensional
function of the parameter vector θ; fX(x|θ) is called an exponential family
[19], [93]. The role of ψ(θ) is to ensure that each member of the family is
adequately normalized. As in the scalar parameter case, ξ(θ) and t(x) are
called the natural (or canonical) parameter vector and sufficient statistic,
respectively. The change of variables t = t(x) and the reparameterization
ξ = ξ(θ) allow casting an exponential family into its natural form, shown
in Eq. (2.134).

As in the unidimensional case, in the presence of a set of i.i.d. observa-
tions x = {x1, ...,xn}, the resulting joint likelihood belongs to an exponen-
tial family with the same natural parameter. The (joint) natural sufficient
statistic is the summation of the individual ones,

t(x) = t(x1) + t(x2) + ... + t(xn), (3.44)

which is still k-dimensional. The importance of this property is that it
decouples the dimension of the sufficient statistic from the sample size.
The Pitman-Koopman theorem, referred in Section 2.12, is of course still
valid for multidimensional parameters.

Recall that a natural exponential family (regardless of the dimensionality
of its parameter) can be written as in Eq. (2.138)), explicitly revealing the
normalizing constant (partition function) Z(ξ) = 1/ψ(ξ). As referred in
Section 2.12, this has the important consequence that means, variances,
covariances, or any other moments of the natural statistics can be computed
directly from the derivatives of log Z(ξ).

We will now look at some representative exponential families with mul-
tidimensional parameters, and corresponding conjugate priors.

Example 3.5.2
The Bernoulli and binomial distributions (which we have considered in

several examples in the previous chapter) are used to model situations
where each trial has one of two possible outcomes; the classical example is
coin tossing. The multinomial distribution generalizes the binomial to cases
where each observation is one of a set of k possible outcomes; for example,
dice tossing, where k = 6.

Let us consider a sequence of m tosses of a die; each outcome is denoted
as xi and belongs to X = {1, 2, 3, 4, 5, 6}, so k = 6. The die is characterized
by the probabilities of each of its 6 faces θ1, θ2, ..., θ6; of course, θ1 + θ2 +
... + θ6 = 1 must hold, which is equivalent to saying that there are only 5
free parameters, e.g., θ = (θ1, θ2, ..., θ5), with θ6 = 1−θ1−θ2−θ3−θ4−θ5.
Now, let ni be the number of face i outcomes observed in some sequence of
m tosses; the probability of a particular configuration n = (n1, n2, ..., n6)
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(of course with n1 + n2 + ... + n6 = m, so n6 = m− n1 − · · · − n5) is given
by the multinomial probability function

fN(n|θ) =

(
m

n1 n2 ... n6

) 6∏

i=1

θni

i , (3.45)

where the multinomial coefficients are given by
(

m
n1 n2 ... n6

)
=

m!

n1!n2! · · ·n6!
.

Notice that the particular case where k = 2 is precisely the binomial dis-
tribution.

The multinomial can be written in exponential family form as

fN(n|θ) =

(
m

n1...n6

)

︸ ︷︷ ︸
φ(n)

(1 − θ1− . . .− θ5)
m

︸ ︷︷ ︸
ψ(θ)m

exp

{
5∑

i=1

ni log
θi

1 − θ1− · · · −θ5

}

revealing that the natural parameter is

ξ(θ) =

[
log

θ1

1 − θ1− · · · −θ5
, . . . , log

θ5

1 − θ1− · · · −θ5

]

= [ξ1, ξ2, ξ3, ξ4, ξ5]
T (3.46)

and the natural sufficient statistic is t(n) = [n1, n2, n3, n4, n5]
T . We can

conclude that multinomial distribution with k possible outcomes constitute
a k − 1 dimensional exponential family (a natural consequence of the fact
that there are only k − 1 degrees of freedom).

As we saw in Section 2.12, it is now possible to write conjugate priors as

pΘ(θ) ∝ ψ(θ)ν exp
{
ξ(θ)T γ

}
. (3.47)

In the current case, we have

pΘ(θ) ∝ (1 − θ1− . . .− θ5)
ν exp

{
5∑

i=1

γi log
θi

1 − θ1− · · · −θ5

}

∝ (1 − θ1 − · · · − θ5)
ν−γ1−...−γ5

5∏

i=1

θγi

i . (3.48)

This is called a 6−dimensional Dirichlet distribution; usually it is written
in a slightly different way (with γ6 = ν −γ1 − ...−γ5 and αi = γi +1), now
including the normalization factor, as

D6(θ1, ..., θ6|α1, ..., α6) =
Γ(α1 + ... + α6)∏6

i=1 Γ(αi)

6∏

i=1

θαi−1
i 1(

∑6
i=1 θi=1)
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where 1A is an indicator function, i.e., it is equal to one if A is true, and
equal to zero if A is false. Such a prior has the clear interpretation of
additional data: ν = γ1 + ...+γ6 additional trials, with γ1 face 1 outcomes,
γ2 face 2 outcomes, and so on. Notice that, naturally, a D2(θ1, θ2|α1, α2)
density coincides with a beta Be(θ|α1, α2) prior.

Finally, the resulting a posteriori probability density function is again
Dirichlet,

pΘ(θ|n) = D6(θ1, ..., θ6|n1 + α1, ..., n6 + α6). (3.49)

The MPM and PM estimates are simple functions of the parameters of the
a posteriori density (see, e.g., [46]):

θ̂iPM =
αi + ni

6∑

j=1

αj + nj

=
αi + ni

m +

6∑

j=1

αj

, (3.50)

θ̂iMPM =
αi + ni − 1

m − 6 +
6∑

j=1

αj

. (3.51)

Notice that in the limit (infinitely long sequence of tosses), these estimates

converge to those dictated by the ML criterion, which are simply θ̂iML =
ni/m, for i = 1, .., 6.

End of Example 3.5.2

In the following set of examples we will focus on the important and ubiq-
uitous Gaussian likelihood. We will start by considering the case of univari-
ate Gaussian likelihoods where both the mean and variance are unknown
parameters; after that, the multivariate Gaussian will be addressed.

Example 3.5.3
In Section 2.12 we only considered two separate cases: unknown mean but

known variance, and unknown variance but known mean. In this example
we will look at the more general situation where both the mean µ and
variance σ2 are unknown, i.e., θ = [µ, σ2]T . If x = (x1, ..., xn) is a sequence
of i.i.d. observations such that fXi

(xi|µ, σ2) = N (xi|µ, σ2),

fX(x|µ, σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑

i=1

(xi − µ)2

}

=
(√

2πσ2
)−n

exp

{
−nµ2

2σ2

}

︸ ︷︷ ︸
ψ(θ)n

exp

{
µ

σ2

n∑

i=1

xi −
1

2σ2

n∑

i=1

x2
i

}
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showing that ξ = [µ/σ2, −1/(2σ2)]T is a natural parameterization corre-
sponding to the sufficient statistic

t(x) =

[
n∑

i=1

xi,

n∑

i=1

x2
i

]T

.

The standard approach to obtaining a conjugate family for this class of
likelihoods can now be adopted:

pΘ(θ|ν, γ1, γ2) = ψ(θ)ν exp
{
γ1µ/σ2 − γ2/(2σ2)

}
.

Interestingly, this joint prior can be decomposed as (after changing into a
more meaningful parameterization; see, e.g., [46]),

p(µ, σ2|ν0, µ0, σ
2
0 , κ0) = p(µ|µ0, σ

2, κ0)p(σ2|ν0, σ
2
0)

where

p(µ|µ0, σ
2, κ0) ∝ N

(
µ|µ0,

σ2

κ0

)
(3.52)

p(σ2|ν0, σ
2
0) ∝ (σ2)−(ν0/2+1) exp

{
−ν0σ

2
0

2σ2

}
. (3.53)

The prior on µ depends on σ2; this is a natural feature since a high σ2

value suggests a high variance on the prior for µ [46]. Densities with the
form of Eq. (3.53) are called inverse-gamma, and are conjugate priors with
respect to Gaussian likelihoods of unknown variance. The a posteriori joint
density of µ and σ2 is still (due to conjugacy) the product of a Gaussian
with respect to µ and an inverse-gamma for σ2, from which the estimates
can be explicitly obtained (see [46] for more details).

End of Example 3.5.3

Example 3.5.4
The multivariate Gaussian probability density function plays a central

role in many areas of applied statistics, this being particularly true in sta-
tistical signal and image analysis. In Section 3.3, we studied the problem
of estimating an unknown mean of a multivariate Gaussian likelihood with
known covariance matrix (in fact we studied a more general problem, but
this simpler case can be obtained with H = I). We saw there that multi-
variate Gaussian priors are conjugate for that class of likelihoods. In this
example we will look at a scenario where the unknown is the covariance
matrix. Consider n i.i.d. vector observations x = {x1, ...,xn} drawn from
a d-dimensional Gaussian density of mean µ and covariance matrix A

fX(x|µ,A) = (2π)−
n d
2 |A|− 1

2 exp

{
−1

2

n∑

i=1

(xi − µ)T A−1(xi − µ)

}
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where |A| denotes the determinant of A. The key step to writing this like-
lihood in exponential family form is the well known equality for quadratic
forms, vT Mv = tra(MvvT ), where tra(·) denotes the trace operator (the
sum of the elements in the main diagonal). With this in hand,

fX(x|µ,A) ∝
√
|A−1| exp{−n

2
µT A−1µ}

exp

{
µT A−1

n∑

i=1

xi −
1

2
tra

(
A−1

n∑

i=1

xix
T
i

)}
(3.54)

Notice that the argument of the second exponential is linear on the ele-
ments of the inverse of the covariance matrix A−1 (the concentration or
precision matrix, see Section 3.3.2), but not with respect to the elements of
A itself. This shows that the natural parameter is A−1 rather than A (see
the discussion in the paragraph following Eq. (3.21)). The other natural pa-
rameter is µT A−1. Finally, the corresponding vector of natural sufficient
statistics is

t(x) =

[
n∑

i=1

xi,
n∑

i=1

xix
T
i

]T

.

We already saw that a Gaussian prior on µ is a conjugate prior for that
parameter. Let us now focus on the prior for B ≡ A−1, by taking µ = 0.
Using the standard approach, we obtain (where Γ has to be a positive
definite d × d matrix)

p(B|ν,Γ) ∝
(√

|B|
)ν

exp

{
−1

2
tra (BΓ)

}
, (3.55)

for B positive definite, and zero elsewhere, which is known as a Wishart dis-
tribution; actually, in a more standard notation, Eq. (3.55) would be called
a Wishart Wd (ν + d + 1,Γ) density; a detailed study of this multivariate
density can be found in [2].

The resulting a posteriori density is of course again Wishart; specifically,
it is Wd

(
ν + n + d + 1,

(
Γ +

∑n
i=1 xix

T
i

))
. The PM estimate obtained from

this a posteriori density is the mean of the Wishart density (see [2]), which
is

B̂ = (ν + n)

(
Γ +

n∑

i=1

xix
T
i

)−1

explicitly revealing the usual “additional data” nature of the conjugate
prior.

End of Example 3.5.4

3.5.3 Non-informative Jeffreys’ Priors

When estimating a single parameter, we saw in Section 2.6 that non-
informative priors allow formalizing the concept of “ignorance” by relying
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on invariance arguments. In the compound case, there may be different
invariance criteria involved since the parameters may play different kinds
of roles; e.g., when estimating the mean and the standard deviation from
a set of Gaussian observations, one of the unknowns is a location parame-
ter while the other is a scale parameter. Another important new question
arising when dealing with sets of unknowns concerns the choice of a de-
pendence structure (among the variables) expressing prior ignorance. This
point raises even more controversy than non-informative priors for single
parameters. For example, in the multidimensional case, Jeffreys’ priors may
lead to incoherent criteria (however, it should be kept in mind that Jeffreys
proposed his approach mainly for the one-dimensional case) [14], [93]. As
stressed in [14]: “In continuous multiparameter situations there is no hope
for a single, unique, non-informative prior, appropriate for all the inference
problems within a given model”. We conclude this introductory paragraph
by pointing out that a very comprehensive catalog of non-informative pri-
ors, for both one-dimensional and multidimensional parameters, is available
in [110].

For multi-parameter likelihood functions, the Fisher information (see
Section 2.7) is a matrix function of the vector parameter θ, which we will
still denote as I(θ). Its definition is the natural generalization of Eq. (2.59);
accordingly, each element Iij(θ) is given by

Iij(θ) = −E

[
∂2 log fX(x|θ)

∂θi ∂θj

]
. (3.56)

The Fisher information matrix also verifies the linear dependence on the
size of the data set (for i.i.d. observations) studied in Section 2.7 (see Eq.
(2.69)).

There is, of course, a multiparameter version of the Cramer-Rao bound
referred in Section 2.7. If θ̂(x) is an unbiased estimator of an unknown
parameter vector θ, that is, if

EX

[
θ̂(x)

∣∣∣ θ
]

=

∫
· · ·

∫
θ̂(x) fX(x|θ) dx = θ, (3.57)

then, the covariance matrix of the estimator verifies

EX

[
θ̂(x)

(
θ̂(x)

)T
∣∣∣∣ θ

]
− I−1(θ) ≥ 0 (3.58)

where “≥ 0” here means “is a positive semidefinite matrix”. In particular,
since the diagonal elements of a positive semidefinite matrix can not be
negative,

EX

[(
θ̂i(x) − θi

)2
∣∣∣∣ θ

]
≥

[
I−1(θ)

]
ii

. (3.59)

In Eq. (3.59), θ̂i(x) and θi denote the i-th components of vectors θ̂(x) and
θ, respectively, while [I−1(θ)]ii stands for element ii of I−1(θ), the inverse
of Fisher matrix.
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The same line of thought described in Section 2.7 can be followed to
derive a Jeffreys’ non-informative prior for the multiparameter case, al-
though we will now face a more complex notation. Consider the likelihood
function fX(x|θ), with θ ∈ IRn, and a reparameterization φ = g(θ) (i.e.,
φ = [φ1, . . . , φn]T = g(θ1, . . . , θn) = [g1(θ1, . . . , θn), . . . , gn(θ1, . . . , θn)]T is
a one-to-one continuous mapping) whose associated likelihood function is
f

′

X
(x|φ). We start with a relation similar to Eq. (2.73), again a simple

consequence of the fact that g(·) is invertible:

f
′

X(x|φ) = fX(x|θ), for θ = g−1(φ). (3.60)

Applying the chain rule of the derivative (now more complicated due to
the multivariate nature of the variables) twice in a row, we can write

∂2 log f
′

X
(x|φ)

∂φj∂φi
=

n∑

l=1

∂

∂θl

(
n∑

k=1

∂ log fX(x|θ)

∂θj

∂θk

∂φi

)
∂θl

∂φj
, (3.61)

where all derivatives w.r.t. elements of θ are computed at θ = g−1(φ).
Now, rearranging terms, and computing expected values on both sides,

Iij(φ) =

n∑

l=1

n∑

k=1

Ikl(θ)
∂θk

∂φi

∂θl

∂φj

+

n∑

l=1

n∑

k=1

EX

[
∂ log fX(x|θ)

∂θj

]

︸ ︷︷ ︸
0, (see Eq. (2.66))

∂2θk

∂θl∂φi

∂θl

∂φj
. (3.62)

The set of all these equalities, for i, j = 1, .., n, can be written compactly
in matrix notation as

I(φ) = G I(θ = g−1(φ))GT , (3.63)

where G (which should be written as G(θ), but we simplify the notation)
is a matrix given by

G =




∂θ1

∂φ1
. . . ∂θ1

∂φn

...
. . .

...
∂θn

∂φ1
. . . ∂θn

∂φn


 for φ = g(θ). (3.64)

Finally, obtaining determinants on both sides and then extracting square
roots leads to

√
|det [I(φ)]| = |det [G]|

√
|det [I(θ = g−1(φ))]| (3.65)

which is the multidimensional version of Eq. (2.75). As a conclusion, it
follows that the prior suggested by Jeffreys,

p(θ) ∝
√
|I(θ)| (3.66)
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remains unchanged under any one-to-one continuous reparametrization (i.e.,
change of variable5) φ = g(θ) in the sense that if p(θ) ∝

√
|I(θ)| (called

the Jeffreys’ prior), then, according to Eq. (3.65),

p(φ) = p(θ = g−1(φ)) |det [G]|
∝

√
|det [I(θ = g−1(φ))]| |det [G]|

∝
√

|det [I(φ)]|. (3.69)

Naturally, also in the multivariate case, there is a particular form of
Fisher information for exponential families (see Section 2.12.4). For an
exponential family in canonical form,

fT(t|ξ) = φ(t)ψ(θ) exp{ξT t}, (3.70)

the Fisher information with respect to the canonical parameter is simply
the multivariate generalization of Eqs. (2.144) and (2.160),

I(ξ) = E[ttT |ξ]

or

I(ξ) = ∇2 log Z(ξ),

meaning

Iij(ξ) =
∂2 log Z(ξ)

∂ξi ∂ξj
.

Before showing some examples, we would like to stress again the impor-
tance of the concept of Fisher information. Like we pointed out in Chapter
3, it plays the central role in the differential geometric theories of statis-
tical inference [1], [62], [79], [94] and is the key for the interplay between
statistics and information theory [23], [67], [91].

5Recall the rule for performing a change of variable on a multivariate proba-

bility density function: let X be a continuous (IRn valued) random vector with
p.d.f. fX(x); now, let Y = g(X), where g(x1, . . . , xn) = [y1, . . . , yn]T =
[g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)]T is a one-to-one continuous mapping. Then

fY(y) = fX(g−1(y))
∣∣∣det

(
Jg−1 (y)

)∣∣∣ , (3.67)

where g−1(·) denotes the inverse function of g(·) (which exists because g(·) is one-to-one)
and Jg−1 (·) is its Jacobian determinant

Jg−1 (y) =

∣∣∣∣∣∣∣∣

∂x1
∂y1

. . .
∂x1
∂yn

.

..
. . .

.

..
∂xn
∂y1

. . . ∂xn
∂yn

∣∣∣∣∣∣∣∣
(3.68)
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Example 3.5.5
Let us go back to Example 3.5.3, where the data x is a single sample (ex-

tension to several observations is straightforward) from a Gaussian random
variable of mean µ = θ1 and variance σ2 = θ2.

For the log-likelihood in hand, log fX(x|θ1, θ2) = (−1/2) log(2πθ2)−(x−
θ1)

2/(2θ2), the Fisher information matrix is

I(θ) = −E

[
− 1

θ2
−x−µ

θ2

−x−µ
θ2

1
2 θ2 − (x−µ)2

θ3

]

=

[
1
θ2

0

0 1
2θ2

2

]
=

[ 1
σ2 0
0 1

2(σ2)2

]
, (3.71)

with the corresponding Jeffreys’ prior being

p(µ, σ2) ∝
√

1

(σ2)3
=

1

(σ2)3/2
. (3.72)

This prior is usually criticized by arguing that in an “ignorance” situa-
tion, µ and σ2 should be considered a priori independent; then, one should
take p(µ, σ2) = p(µ)p(σ2) with each of the factors derived from invariance
arguments [93]. In this case, the resulting joint prior, according to the re-
sults seen in Section 2.7, would be p(µ, σ2) = 1/σ2 rather than the one
in Eq. (3.72). An alternative way to obtain this prior p(µ, σ2) = 1/σ2 is
through Bernardo’s reference analysis [14]; although this approach is be-
yond the scope of this text, a point worth mentioning is that it is the type
of information theoretical approach briefly reviewed in Section 2.9.3 that
leads to reference priors.

End of Example 3.5.5

Example 3.5.6
Let us now consider the problem of estimating an unknown covariance

matrix of a p-variate Gaussian likelihood with known mean (for simplicity
taken as zero). In this example we follow the approach in [18]. The log-
likelihood function (for one observation) is

log fX(x|A) ∝ 1

2
log det

[
A−1

]
− 1

2
tra

[
A−1xxT

]
. (3.73)

Since A is necessarily symmetric, it only has p(p + 1)/2 distinct (i.e., free)
elements. Computing derivatives of the two terms w.r.t. the elements Bij

of the concentration matrix B = A−1, we have:

1

2

∂ log det
[
A−1

]

∂Bij
=

1

2

1

det [B]

det [B]

∂Bij

−1

2

∂tra
[
A−1xxT

]

∂Bij
= −1

2

∂tra
[
BxxT

]

∂Bij
= −xi xj

2
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We start by noticing that the second derivative of the second term is zero,
because the first is a constant with respect to any Bkl. If we now recall
that a determinant can always be written as

detB =

n∑

j=1

Bijcij , (3.74)

where cij (called the cofactor) equals (−1)i+j times the determinant of the
submatrix of B obtained by deleting row i and column j, it results that
∂ det [B] /∂Bij = cij . But cij/detB is simply the element Aij of A = B−1.
Now the second derivative becomes

∂2 log fX(x|A)

∂Bkl∂Bij
=

1

2

∂2 log det
[
A−1

]

∂Bkl∂Bij
=

1

2

∂Aij

∂Bkl
, (3.75)

for i, j, k, l = 1, . . . , p, with j ≥ i and l ≥ k; consequently, in compact
notation,

det [I(B)] =
1

2
det

[
∂A

∂B

]
, (3.76)

where ∂A/∂B denotes a matrix of partial derivatives of the type ∂Aij/∂Bkl.
It can be shown (see [2], [18]) that since we only have p(p + 1)/2 free pa-
rameters (recall that matrices B and A have to be symmetric), then

det

[
∂A

∂B

]
= det [A]

(p+1)
. (3.77)

Finally, invoking the transformation rule in Eq. (3.63) leads to

det [I(A)] = det [I(B)] det

[
∂A

∂B

]−2

=
1

2
det [A]

−(p+1)
(3.78)

and to the corresponding Jeffreys’ prior

p(A) ∝ det [A]
− 1

2 (p+1)
.

Notice that when p = 1, A ≡ σ2, this naturally reduces to p(σ2) ∝ 1/σ2,
coinciding with Eq. (2.79). Of course we also derived, in passing, a Jeffreys’
prior for B, which has the same form as the one for A, specifically

p(B) ∝ det [B]
− 1

2 (p+1)
.

Notice how this prior for the precision matrix can be seen as the limit of a
Wishart density shown in Eq. (3.55),

det [B]
− 1

2 (p+1) ∝ lim
ν→−(p+1)

lim
Γ→0

(√
|B|

)ν

exp

{
−1

2
tra (BΓ)

}
(3.79)
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i.e. a Wishart Wp (0, 0)) density. From this observation, the PM estimate
of B, given n observations, and under the Jeffreys’ prior, can then easily
be found to be

B̂PM = (−p − 1 + n)

(
n∑

i=1

xix
T
i

)−1

.

End of Example 3.5.6

3.6 Maximum Entropy Priors

There is nothing specifically univariate in the information theoretic con-
cepts and techniques described in Section 2.8. The quantities there de-
scribed, namely the entropy, the Kullback-Leibler divergence, and the mu-
tual information can be easily extended to multivariate versions. However,
some aspects do deserve special attention and will be considered in this
section.

3.6.1 Independence Maximizes Entropy

We start by referring an important inequality that is relevant for the design
of maximum entropy priors. This inequality is supported on an intermediate
result known as the chain rule for entropies which we now review [23].
Let S = [S1, ..., Sd]

T be a vector random variable (i.e., a set of random
variables) whose probability function is pS(s); then, the joint entropy of
S1, ..., Sd, that is, the entropy of S, can be decomposed according to

H(S) = H(S1, ..., Sd) =
d∑

i=1

H(Si|Si−1, ..., S1)

which is a simple consequence of Bayes law. The conditional entropies
involved in this decomposition are of course bounded above by the fact
that conditioning can not increase entropy (see Section 2.9.1); that is
H(Si|Si−1, ..., S1) ≤ H(Si). This inequality, applied to the chain rule, leads
to

H(S1, ..., Sd) ≤
d∑

i=1

H(Si) (3.80)

with equality if and only if the Si’s are independent of each other, in which
case H(Si|Si−1, ..., S1) = H(Si).

A consequence of this fact, that is relevant for the derivation of maximum
entropy priors, is: in the absence of any specific prior information regarding



150 3. Compound Decision Theory and Contextual Decision Making

the dependency structure of the unknowns S1, ..., Sd, a maximum entropy
prior is one that specifies independence, that is,

pS(s) = pS1
(s1) · pS2

(s2) · · · pSd
(sd).

3.6.2 Discrete Problems

When the elements of S = [S1, ..., Sd]
T are discrete variables, the prior has

to be a probability mass function pS(s). Like in the scalar situation, the
available information has to be formally expressed; the multivariate version
of Eq. (2.88) is, naturally, a set of m + 1 equalities now with the form

∑

s

pS(s) gk(s) = µk, for k = 0, 1, ...,m, (3.81)

where g0(s) = 1 and µ0 = 1 (the zero-th constraint simply imposes that∑
p(s) = 1). With this type of constraints, the ME probability mass func-

tion is

pME

S (s) = exp{λ0 +
m∑

k=1

λk gk(s)} for s ∈ S, (3.82)

where the parameters λk are solved for by requiring that pME

S (s) satisfies
the constraints in Eq. (3.81) [23].

Example 3.6.1
Let us look at a multivariate version of Example 2.8.1, by letting S = INd

0 ,
that is, s = [s1, s2, ..., sd]

T with si ∈ IN0 = {0, 1, 2, ...}. Consider that, in
addition to the zero-th constraint, there are d other constraints defined by
a set of d functions such that

gi(s) = si

and the corresponding parameters µ1, µ2, ..., µd. Then, according to Eq.
(3.82),

pME

S (s) = exp{λ0 +

d∑

i=1

λi gi(s)} = exp{λ0}
d∏

i=1

(exp{λi})si (3.83)

The normalization condition allows us to write the following equality

exp{λ0} =

d∏

i=1

(1 − exp{λi}) .

In conclusion, the maximum entropy probability mass function is the prod-
uct of d univariate geometric distributions,

pME

S (s) =

d∏

i=1

(1 − θi) θsi

i , (3.84)
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with θi = exp{λi}. Invoking the constraints on the expected values leads
to exp{λi} = θi = µi/(1 + µi).

The interesting point in this example is the following: due to the par-
ticular form of the functions gi(·), the constraints only concern marginal
properties of the unknowns. As a consequence, and in accordance to what
we just saw in Section 3.6.2, the obtained ME distribution expresses inde-
pendence among the components of S.

End of Example 3.6.1

Example 3.6.2
Consider that s ∈ S = {0, 1}d, the set of all binary sequences of length

d. Let us take a single (m = 1) restriction (apart from the zero-th one), on
the expected value of the number of ones, g1(s) = n1(s), required to be µ1.
Then, according to Eq. (2.89),

pME

S (s) = exp{λ0} (exp{λ1})n1(s) . (3.85)

Invoking the normalization condition

exp{λ0}
∑

s∈S
(exp{λ1})n1(s) = exp{λ0}

n∑

n1(s)=0

(
n

n1(s)

)
(exp{λ1})n1(s)

= exp{λ0} (1 + exp{λ1})n
= 1,

we get exp{λ0} = (1 + exp{λ1})−n
. Now, by similarity with Eq. (2.146),

we immediately conclude that this is a Bernoulli probability distribution
with cannonical parameter equal to λ1 and natural parameter n1. In the
usual Bernoulli form,

pME

S (s) = θn1(s)(1 − θ)n−n1(s),

with θ = exp{λ1}/(1 + exp{λ1}) = µ1/n.

End of Example 3.6.2

3.6.3 Estimation Problems

Let us generalize the results of Section 2.8.3 to multivariate situations.
Consider that we have agreed on some non-informative prior qS(s) and
that the available information is expressed by a set of integral equalities

∫

S
pS(s)gk(s) ds = µk, for k = 0, 1, ...,m. (3.86)

Again, g0(s) = 1 and µ0 = 1, which are necessary to normalize pS(s). The
maximum entropy (ME) prior (or better, the least informative prior with
respect to qS(s)) is

pME

S (s) = qS(s) exp{λ0 +

m∑

k=1

λk gk(s)} for s ∈ S, (3.87)
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where the λk’s must be obtained from the constraints; this result can (as
in the discrete case) be derived by Lagrange multipliers or through the
information inequality [23]. As in the univariate case, in the absence of
additional constraints apart from normalization, i.e., if m = 0, then, the
ME prior coincides with the adopted non-informative density qS(s). As for
scalar unknowns, in the continuous case the ME prior is specified up to a
reference density qS(s) which has to be chosen a priori. In all the examples
below, we take qS(s) to be the uniform density.

Example 3.6.3
Let s = [s1, s2, ..., sd]

T with each si being real and non-negative. Suppose
that the constraints are specified by a set of functions gi(s) = si, and the
corresponding expected values µi > 0, for i = 1, ..., d. The ME probability
density function is, according to Eq. (3.87),

pME

S (s) = exp{λ0 +

d∑

i=1

λigk(s)} = exp{λ0}
d∏

i=1

exp{λisi}.

The normalization constraint (possible if all λi’s are smaller than zero)

requires that exp{λ0} =
∏d

i=1(−λi), while the other constraints lead to
λi = −1/µi (thus compatible with λi < 0). Putting these two results
together yields

pME

S (s) =

d∏

i=1

1

µi
exp

{
− si

µi

}
, (3.88)

that is, a product of exponential densities. Just like in Example 3.6.1, since
the constraints only concern marginal properties, the obtained ME distri-
bution expresses independence among the components of S.

End of Example 3.6.3

Example 3.6.4
This example shows that the maximum entropy nature of the Gaussian

distribution is still valid in the multivariate case. Let the configuration
space be S = IRd and consider two sets of constraints: one involving only
single variables, expressing constraints on their expected values, E[gi(s)] =
E[si] = µi, for i = 1, 2, ..., d; another one involving pairs of variables, that
is, hij(s) = sisj with expected values γij (with, necessarily, γij = γji), for
i, j = 1, 2, ..., d. Once more, the resulting ME prior, according to Eq. (3.87),
is

pME

S (s) = exp{λ0} exp






d∑

i=1

µisi +

d∑

i=1

d∑

j=1

γijsisj




 (3.89)

Some manipulation allows writing this density with the form

pME

S (s) = N (s|µ,C), (3.90)
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a d-variate Gaussian density, with µ = [µ1, ..., µd]
T and C = Γ − µµT ,

where Γ is the matrix with γij in the (i, j) position.

End of Example 3.6.4

3.6.4 Maximum Entropy and Exponential Families

As we pointed out at the end of Section 2.12.1, maximum entropy dis-
tributions constitute exponential families, as is clear from the similarity
between Eqs. (3.82) and (3.87), and Eq. (3.43). Although we could have
looked at the consequences of this fact for the univariate scenario, in the
compound/multivariate case it is far more interesting and useful.

Recall that the constraints for the maximum entropy formalism specify
the expected values of certain functions of the random variable at hand
(see Eqs. (3.81) and (3.86)),

EX [gk(x)|pX(x)] = µk, for k = 0, 1, ...,m, (3.91)

where Ex [·|pX(x)] denotes expected value with respect to the probability
function pX(x). With C denoting the set of constraints imposed, i.e., C =
{gk(·), µk, k = 1, ...,m}, we follow [111] by writing

ΩC = {pX(x) : EX [gk(x)|pX(x)] = µk, for k = 0, 1, ...,m}

as the set of probability functions that verify the set of constraints C. Of
course, with this notation, the maximum entropy prior can be written as

pME

X (x) = arg max
pX(x)∈ΩC

H(X)

(here it would make more sense to use the notation H[pX(x)], because
the entropy strictly depends on the probability function). The resulting
probability functions can be written as (see Eqs. (3.82) and (3.87), with
respect to a flat non-informative distribution qX(x))

pME

X (x) =
1

Z(λ)
exp

{
m∑

k=1

λk gk(x)

}
=

1

Z(λ)
exp

{
λT g (x)

}
, (3.92)

that is, in exponential family form, where λ = [λ1, ..., λm]T is the natural
parameter and g (s) = [g1(x), ..., g1(x)]T the associated statistic. The spe-
cific values of the parameters are obtained from the constraints and depend
on the µk.

Now, consider a slightly different scenario where, rather than having
expected value constraints (Eq. (3.91)), one has a set of n independent
and identically distributed observations x(n) = {x1, ...,xn}; consider that
the goal is to estimate the probability function fX(x). Given a set of m
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statistics {gk(x), k = 1, ...,m} (in some contexts, called features [82]), it
is possible to compute their sample averages:

gk(x) =
1

n

n∑

i=1

gk(xi), for i = 1, ...,m.

The set of probability functions that agree with the data is ΩC , with C =
{gk(·), µk, k = 1, ...,m}, where µk = gk(x). In the absence of any other
information, the maximum entropy criterion dictates that the maximum
entropy distribution from ΩC be chosen, as the one which is the least
informative [56], [57], [58]; in other words, it is the one that assumes less.
As we have a seen above, the resulting probability function is given by
Eq. (3.92), with the specific values of the parameters obtained from the
constraints in Eq. (3.91) together with the µk = gk(x).

Another possible approach to the problem of estimating the probability
function fX(x) is to assume that it belongs to an exponential family with
a certain (given) set of natural statistics {gk(x), k = 1, ...,m}, that is

fX(x|λ) =
1

Z(λ)
exp

{
λT g (x)

}
. (3.93)

or, for the full data set,

fX(n)
(x(n)|λ) =

n∏

i=1

1

Z(λ)
exp

{
λT g (x)

}
=

1

Z(λ)n
exp

{
λT

n∑

i=1

g (xi)

}
.

By the maximum likelihood criterion,

λ̂ML = arg max
λ

[
−n log Z(λ) + λT

n∑

i=1

g (xi)

]
. (3.94)

Computing derivatives, invoking the fact that

∂ log Z(λ)

∂λi
= E [gi(x)|λ]

(see Eq. (2.143)), and equating to zero leads to

EX

[
gk(x)|fX(x|λ̂ML)

]
=

1

n

n∑

i=1

g (xi) , for k = 1, ...,m. (3.95)

But this last set of equations is precisely the one that is solved to find the
parameters in the maximum entropy approach. This shows that finding
maximum likelihood estimates of parameters of exponential families and
looking for maximum entropy distributions, both based on the same set of
statistics, are dual problems that lead to the same solution [67]. Of course,
a more difficult problem is how to select the best set of statistics; in the
context of Markov random fields, this has been explored in [82], [111].
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3.7 Summary

This chapter extended most of the ideas presented in previous ones to
situations where rather than a single unknown there is a set of unknowns,
or an unknown vector.

For sets of unknowns, we divided the possible loss functions in those
that can be expressed as a sum of individual loss functions, one for each
unknown, which we called additive, from those that do not allow such a
decomposition. The non-additive loss functions lead to joint criteria, that
is, inference rules that have to be solved simultaneously with respect to
all the unknown variables. On the other hand, additive losses lead to what
we called marginal criteria; these are characterized by depending on the
marginal a posteriori probability function of each unknown. These general
results were particularized to the common loss functions studied in Chapter
1. The scenario with Gaussian prior and linear-Gaussian observation, which
is a classical setup for many problems and applications, was given special
attention.

The remaining sections of this chapter were devoted to extending prior
design techniques reviewed in Chapter 2 to the multivariate case. Specif-
ically, we started by looking at improper priors and maximum likelihood
inference, exponential families and how they allow a simple derivation of
conjugate priors, and Jeffreys’ non-informative priors. These topics were
illustrated with examples of specific models: multivariate Gaussian of un-
known mean with the corresponding Gaussian prior, multinomial likelihood
and Dirichlet prior, univariate Gaussian of unknown mean and variance,
multivariate Gaussian with unknown mean and covariance matrix.

The maximum entropy principle for multivariate variables was the topic
of the last section. Several classical probability functions were shown to
result from this criterion under simple constraints. Finally, we studied the
intimate relation that exists between maximum entropy distributions and
exponential families, which is relevant and will be used in latter chapters
in the context of Markov random fields.
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Appendix A
Notation

Although the reader is assumed to be familiar with the elementary concepts
of probability theory, we will briefly present the notational conventions
to be used throughout this book. A random variable (r.v.) is a function
(denoted by a capital letter, e.g. X, Y , or S) from an event space into a
sample space (denoted by caligraphic style, e.g., X , Y, or S). Particular
outcomes of a r.v. will be denoted by the corresponding lower case (e.g., x,
y, or s, respectively). In the case of sets of random variables, e.g. processes
and vectors (1-D) or fields (2D), boldface will be used (e.g., X or x). If
the sample space is continuous, e.g. X = IR or X = IRn, the respective
(continuous) r.v. is characterized by its probability density function (p.d.f.)
denoted as fX(x) (or fX(x), for a vector or field); a p.d.f. fX(x) is a function
fX(x) : X → IR such that

∫
X fX(x)dx = 1. We will usually drop the

subscript and write simply f(x) or p(x). For a discrete (i.e., countable,
finite or infinite) sample space, e.g. X = {x1, x2, ..., xN}, the (discrete) r.v.
is characterized by its probability mass function (p.m.f.), still denoted as
f(x); this is still a function f(x) : X → IR which can also be seen as a set
of probability values, one for each outcome, e.g., f(x) = {f(x) : x ∈ X};
the constraint

∑
x∈X f(x) = 1 must obviously also be met. Exceptions to

these conventions will be individually pointed out and justified.
Subsets of sample spaces are called events, e.g. if X is a r.v. taking

values in X then any A ⊆ X is an event. The notation P (A) will denote
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the probability of event A which is given by1

P (A) =






∫

A

fX(x) dx, if X is a continuous r.v.

∑

x∈A

f(x), if X is a discrete r.v.
(A.1)

The expected value (or expectation) of a function g(x) with respect to a
random variable X ∈ X is denoted E[g(x)] and defined to be

E[g(x)] =






∫

X
g(x)fX(x) dx, if X is a continuous r.v.

∑

xi∈X
g(xi)f(xi), if X is a discrete r.v.

(A.2)

Sometimes (to avoid possible confusions) the r.v. with respect to which the
expectation is being computed will be indicated by a subscript, e.g., EX [·].

1For the sake of simplicity, and to make it readable by a wider audience, this tutorial
will exclude any measure theoretic aspects [3]; all subsets/events will be considered as

having a well defined probability.
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Appendix B
Markov Processes and Chains: a Brief
Review

The theory of Markov processes is a branch of the study of stochastic pro-
cesses that underlies much of statistical signal processing and many areas
of applied statistics. It is a fairly standard topic covered in many textbooks
devoted to the study of random processes, and in many specialized texts.
A few examples are [6], [39], [49], [55], [65], [80]; a usefull review paper is
[32].

B.1 Discrete-Index Stochastic Processes

A discrete-time (or discrete-index) random (or stochastic) process is simply
a sequence of random variables indexed by a (discrete) parameter (which
may or may not possess some temporal meaning),

S = (S1,S2, ...,Sn, ...) .

Full knowledge of a random process implies the ability to write the joint
probability function of any set of random variables in the process, in par-
ticular,

pS1,...,Sn
(s1, ..., sn).

A stochastic process is said stationary if the joint probability functions are
invariant under index shifs, i.e.,

pSk+1,...,Sk+n
(s1, ..., sn) = pS1,...,Sn

(s1, ..., sn).
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A sequence of independent and identically distributed (according to some
probability function pS(s)) random variables is the simplest example of a
stationary process; in that case,

pS1,...,Sn
(s1, ..., sn) =

n∏

i=1

pS(si),

which is clearly stationary.

B.2 Markov Processes

Arguably the simplest type of dependency that can be exhibited by the
variables of a random process is the one found in first-order Markov pro-
cesses: each variable Si dependes only the preceding one, Si−1; moreover,
conditionally on Si−1, it is independent of all other preceding variables.
Formally, the process is called a first-order Markov process when

pSn
(sn|sn−1, sn−2, ..., s1) = pSn

(sn|sn−1). (B.1)

The joint probability function of any process (of any set of random vari-
ables) can be factored as

pS1,...,Sn
(s1, ..., sn) =

pSn
(sn|sn−1, ..., s1) pSn−1

(sn−1|sn−2, ..., s1) · · · pS2
(s2|s1) pS1

(s1),

which is a trivial chain application of p(A|B)p(B) = p(A,B).
One of the most important consequence of the Markovianity of a process

is that its factorization becomes simply

pS1,...,Sn
(s1, ..., sn) =

pSn
(sn|sn−1) pSn−1

(sn−1|sn−2) · · · pS2
(s2|s1) pS1

(s1). (B.2)

Accordingly, a Markov process is completely characterized (i.e., it is pos-
sible to compute any joint probability function) once the initial probabil-
ity function pS1

(s1), and the sequence of transition probability functions
pSi

(si|si−1) are given.
Consider a Markov process such that each Si can take values on a finite

set (the i-th state space) Si = {1, 2, ...,Mi} (without loss of generality here
identified with sets of integers; notice that these are merely labels). In
this case, the process is called a finite Markov process, pS1

(s1) is a set of
M1 probability values, and the transition probability functions pSi

(si|si−1)
define Mi−1 × Mi transition matrices P(i) = [Pkl(i)] according to

Pkl(i) = pSi
(si = l|si−1 = k) ≥ 0. (B.3)
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Given their meaning, these matrices must verify

Mi∑

l=1

Pkl(i) =

Mi∑

l=1

pSi
(si = l|si−1 = k) = 1,

and are called stochastic matrices. If everything in the previous definitions
is index-invariant, i.e., Si = S (the state space, of course with Mi = M)
and P(i) = P, we have a so-called time-invariant or homogeneous Markov
chain.

If the probability function of variable Sn is pSn
(sn), then that of the

“next” variable, Sn+1, can easily be obtained by noting that

pSn+1
(sn+1) =

∑

sn∈Sn

pSn,Sn+1
(sn, sn+1)

=
∑

sn∈Sn

pSn+1
(sn+1|sn)pSn

(sn) (B.4)

(with integrals taking place of the summations in the case of continuous
state spaces).

If we are the presence of a time invariant chain (or process), then a
probability function that remains unchanged from index n to the next
index n + 1, i.e., such that

pSn+1
(b) =

∑

sn∈Sn

pSn+1
(b|sn)pSn

(sn) = pSn
(b) (B.5)

(again, with integrals instead of summations in the case of continuous state
spaces), is called a stationary distribution.

B.3 Irreducibility and Stationary Distributions

A Markov chain is called irreducible if

pSn
(sn = l|si = k) > 0,

for all l 6= k ∈ S and all ∞ > n > i ≥ 1. This means that if the chain is in
(any) state k, at time i, then it can reach (any other) state l in finite time
n.

In the finite discrete case (homogeneous finite Markov chain), the sta-
tionarity condition can be compactly written in matrix notation by letting

pn ≡ [pSn
(sn = 1) pSn

(sn = 2) . . . pSn
(sn = M)]T ;

then, Eq. (B.5) becomes
pn = pn P. (B.6)
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This is of course only possible if matrix P possesses a unit left eigen-
value, called the Perron-Frobenius eigenvalue. The Perron-Frobenius the-
orem (simply put) states that if matrix P corresponds to an irreducible
Markov chain, then it will have a unit left eigenvalue; moreover, to this
eigenvalue corresponds a one dimensional eigenspace αv, i.e., αvP = αv.
By choosing α such that α

∑M
i=1 vi = 1, then αv can be identified with the

stationary distribution of the Markov chain.

B.4 Chapman-Kolmogorov Equations

The dependence relationship between non-adjacent variables of any discrete
time process may be obtained according to

pSn
(sn|sn−i) =

∫
p(sn, sn−1, . . . , sn−i+1|sn−i) dsn−1 · · · dsn−i+1 (B.7)

(with the integral replaced by summations in the case of discrete configu-
rations spaces). In the case of a Markov process, the integrand is simply

p(sn, sn−1, . . . , sn−i+1|sn−i) =

pSn
(sn|sn−1) pSn−1

(sn−1|sn−2) · · · pSn−i+1
(sn−i+1|sn−i).

Of course, these relations can be chained,

pSn
(sn|si) =

∫
pSn

(sn|sk) pSk
(sk|si) dsk, (B.8)

for any n > k > i > 1; in these form these are usually called Chapman-
Kolmogorov equations.

B.5 Other Properties of Markov Processes

A Markov process S is also Markovian if the “time” direction is reversed;
i.e., if the Markov property in Eq. (B.1) holds, then so does

pSn
(sn|sn+1, sn+2, ..., sn+k) = pSn

(sn|sn+1). (B.9)

In fact, omitting the subscripts from the probability functions,

p(sn|sn+1, sn+2, ..., sn+k) =
p(sn, sn+1, sn+2, ..., sn+k)

p(sn+1, sn+2, ..., sn+k)

=
p(sn+k|sn+k−1) · · · p(sn+1|sn) p(sn)

p(sn+k|sn+k−1) · · · p(sn+2|sn+1) p(sn+1)

=
p(sn+1|sn) p(sn)

p(sn+1)
= p(sn|sn+1)
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where the last equality is simply Bayes law.
In a Markov process, the “past” and the “future” are independent when

conditioned on the “present”, that is, for any integers k, l > 0,

p(sn+k, sn−l|sn) =
p(sn−k, sn+l, sn)

p(sn)

=
p(sn+k|sn, sn−l)p(sn|sn−l)p(sn−l)

p(sn)

= p(sn+k|sn) p(sn−l|sn), (B.10)

because, again by Bayes law, p(sn|sn−l)p(sn−l)/p(sn) = p(sn−l|sn).
Finally, and in close relation with Markov random fields, Markov pro-

cesses also exhibit a bilateral Markov property stated as: if S is a Markov
process, then, on each interval {1, 2, ..., n}, and for any k 6= 1,

pSk
(sk|{si ; 1 ≤ i ≤ n, i 6= k}) = pSk

(sn|sk−1, sk+1) (B.11)

The proof of this property follows the same lines as the previous two and
is left as an exercise to the reader or may be found, e.g., in [108].
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able at ftp.ensae.fr.

[93] C. Robert. The Bayesian Choice: A Decision Theoretic Motivation.
Springer-Verlag, New York, 1994.

[94] C. Rodriguez. Bayesian robustness: a new look from geometry. Avail-
able at http://omega.albany.edu:8008/robust.ps, 1995.

[95] R. Rozenkrantz. Inference, Method, and Decision: Towards a
Bayesian Philosophy of Science. Reidel, Boston, 1977.

[96] D. Sakrison. Communication Theory: Transmission of Waveforms
and Digital Information. John Wiley & Sons, New York, 1968.

[97] L. Savage. The Foundations of Statistics. Dover, New York, 1954.

[98] L. Scharf. Statistical Signal Processing. Addison Wesley Publishing
Company, Reading, Massachusetts, 1991.

[99] A. Sen and M. Srivastava. Regression Ananlysis: Theory, Methods,
and Applications. Springer Verlag, New York, 1997.

[100] J. Shore and R. Johnson. Axiomatic derivation of the principle of
maximum entropy and the principle of minimum cross-entropy. IEEE
Transactions on Information Theory, 26:26–37, 1980.

[101] B. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman & Hall, London, 1986.



172 References

[102] A. Tikhonov, A. Goncharsky, and V. Stepanov. Inverse problems
in image processing. In A. Tikhonov and A. Goncharsky, editors,
Ill-Posed Problems in the Natural Sciences, pages 220–232. Mir Pub-
lishers, Moscow, 1987.

[103] D. Titterington, A. Smith, and U. Makov. Statistical Analysis of
Finite Mixture Distributions. John Wiley & Sons, Chichester (U.K.),
1985.

[104] H. Van Trees. Detection, Estimation and Modulation Theory, vol-
ume I. John Wiley, New York, 1968.

[105] R. von Mises. Mathematical Theory of Probability and Statistics.
Academic Press, New York, 1964.

[106] G. Wahba. Spline Models for Observational Data. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, 1990.

[107] J. Whittaker. Graphical Models in Applied Multivariate Statistics.
John Wiley & Sons, Chichester, UK, 1990.

[108] G. Winkler. Image analysis, random fields, and dynamic Monte
Carlo systems. Springer-Verlag, Berlin, 1995.

[109] J. Wozencraft and I. Jacobs. Principles of Communications Engi-
neering. John Wiley & Sons, New York, 1965.

[110] R. Yang and J. Berger. A catalog on noninformative priors. Techni-
cal Report ISDS Discussion Paper 97-42, Institute of Statistical and
Decision Sciences, Duke University, Durham, NC, 1997. Available at
http://www.isds.duke.edu/ berger/papers/catalog.html.

[111] S. Zhu, Z. Wu, and D. Mumford. Minimax entropy principle and its
application to texture modelling. Neural Computation, 9(8):1627–
1660, 1997.

[112] X. Zhuang, E. Østevold, and R. Haralick. The principle of maximum
entropy in image recovery. In H. Stark, editor, Image Recovery. The-
ory and Applications, pages 157–193. Academic Press, 1987.


