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Abstract— Standard formulations of image/signal deconvolu- where the objective function has two terms: a quadratic log-
tion under wavelet-based priors/regularizers lead to veryhigh |ikelihood (or data discrepancy) term plus a (usually non

dimensional optimization problems involving the following dif- : _Ar ;
ficulties: the non-Gaussian (heavy-tailed) wavelet priorslead quadratic) log-prior (also known as regularizer of penalty

to objective functions which are non-quadratic, usually nm- funCt'on)'.ln. adfj't'on to being of very "”}rge dimensionglit
differentiable and sometimes even non-convex; the presesofthe theése optimization problems are also difficult for two other
convolution operator destroys the separability which unddies main reasons: the best performing penalty functions are non
the simplicity of wavelet-based denoising. This paper presits a  differentiable and sometimes even non-convex; the presenc
unified view of several recently proposed algorithms for hadling of a convolution operator (rather than simply additive whit

this class of optimization problems, placing them in a commo G . . dest th bilt hich derli
majorization-minimization (MM) framework. One of the clas ses aussian noise) destroys the separability which underlies

of algorithms considered (when using quadratic bounds on no- the simplicity of wavelet-based denoising. These optimiza
differentiable log-priors) shares the infamous “singulaity issue” tion problems have been recently addressed via expectation
(SI) of “iteratively reweighted least squares” (IRLS) algaithms:  maximization (EM) algorithms [7], [27], [28], as well as
the possibility of having to handle infinite weights, which may by majorization-minimization (MM) methods (also known as

cause both numerical and convergence issues. In this paper, d optimizati t timizati thods:
we prove several new results which strongly support the clan ound optimization or surrogate optimization metnods; see

that the SI does not compromise the usefulness of this clas$ o [36] for a tutorial/review on MM algorithms) [18], [29]. Eter
algorithms. Exploiting the unified MM perspective, we introduce approaches to wavelet-based image restoration were hecent
a new algorithm, resulting from using ¢, bounds for non-convex reviewed in [7] and [28], so we refrain from reviewing them

regularizers; the experiments confirm the superior performance ; s .
of this method, when compared to the one based on quadratic F4e(;]e,[22]d simply indicate some key references: 5], [6]},[21

majorization. Finally, an experimental comparison of the veral |
algorithms, reveals their relative merits for different standard This paper f_OCUSGS on th? class of _MM approa_CheS to
types of scenarios. wavelet-based image restoration by considering threeildess

EDICS: RST-DBLR, "Image & Video Restoration andmajo_rlzatlon strategl_es Ie_admg to th_ree different clas_eé
i - algorithms, as described in the following three subsestion
Enhancement: Deblurring

A. MM Algorithms via Majorizing the Log-Likelihood

~We show that the methods independently introduced by
Wavelet-based methods are the current state-of-the-artgif,eral authors [18], [27], [28], [23], [24], [40], [49], (5
image denoising, both in terms of performance and compgsy all be seen as MM algorithms based on a separable
tational efficiency (seee.g, [26], [42], [43], [45], [47], and quadratic majorizer on the log-likelihood. This class ajcl
the many references therein). However, image restorationyjiyms involve the iterative application of non-linear isik

general €.g, deblurring/deconvolution) is much more chalyge/thresholding denoising operators, thus they are terme
lenging than denoising, and applying wavelets turns outeto Rerative shrinkage-thresholdinglST) or iterative denoising

a much harder task. Unlike most approaches to Wave|et'ba§?§’orithm3. Convergence proofs for this class of algorighm
denoising, which lead to thresholding rules, the optimirat paye peen recently presented in [16], [18].

problems resulting from the wavelet-based formulations of
deconvolution have no simple closed-form solutions (et(ceg
in special circumstances [21]). ) s

Most formulations of image deconvolution under wavelet- When a quadratic separable majorizer on the penalty func-

based priors lead to very large scale optimization problerfign is adopted, the resulting MM algorithm has the struetur
of an iteratively reweighted shrinkagdRS) which is related
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I. INTRODUCTION

. MM Algorithms via Majorizing the Penalty Function
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non-differentiability, the corresponding weight is infinithus where matrixH represents the observation operator, and
locking this variable at that point. This effect raises ndgsd contains samples of independent zero-mean Gaussian random
difficulties (handling infinity) and may prevent convergerd variables of variance2. Matrix H can model many types of
the algorithm. linear observations, but this paper will focus on decontiofu

In this paper, we show several new results concerniiig.g, deblurring) problems. In this case, matkikrepresents a
the infamous “singularity issue”, which strongly suggdsitt 2D convolution and it is block-circulant with circulant loles
this issue doesn’'t compromise the usefulness of this clhss(assuming periodic boundary conditions for the convohitio
algorithms. More specifically, we show that or block Toeplitz with Toeplitz blocks [1]. Multiplying any

a) the algorithm can be written in such a way that iector (image) byH or H” can thus be done using the 2D

dispenses with having to handle infinite values;  fast Fourier transform (FFT) with a cost O NV log V), where

b)  if initialized with all components different from N is the number of image pixels.
zero, then, with probability one, no component will To obtain a wavelet-based formulation, consider tha@an
become zero in a finite number of iterations; be represented on some wavelet basisxas W@, where

c) if the algorithm converges, it does so to a minimizef is the vector of representation coefficients and the set of

of the objective function (with probability one).  columns of W is a wavelet basis or dictionary. In the case
of an orthogonal basisW is a square orthogonal matrix,

C. MM Algorithms via Majorizing Both the Log-Likelihoodhereas for an over-complete dictionary (e.g., a tight #am
and the Penalty Function W has more columns than rows. With this wavelet-based

. . ._representation, the observation model becomes
We introduce a new class of MM algorithms, obtamedep
by combining the separable quadratic majorizer on the log- y =HW®O +n, (2)
likelihood with a majorizer on penalty function, for whichew . _ L
. L . L and the resulting log-likelihood function is

consider two options: with a quadratic majorizer, we recove
a particular instance of the algorithm introduced in [7]thwi log p(y|0) = — 1 ly — HWO|2 + K 3)
an /1 majorizer, which is well suited for non-convex penalty 202 2 ’

functions, we obtain a new class of algorithms which we callhere|| - ||3 denotes the usual squared Euclidean norm&nd

iterative softthresholding (ISoft). is a constant independent 6f
The maximum penalized likelihoo@PL) estimate off is
D. Outline of the Paper given by
The remaining sections of the paper are organized as 6= argnbinL(e)v (4)

follows. Section Il reviews the formulation of wavelet-bds
image restoration as an optimization problem, analyzes twgere 1 )
sources of the difficulties in handling that optimizatiorolpr L(0) = D) ly —HWB®; +AC(8), (®)

lem, and mentions related work. Section |ll contains a br'%\];hereC(H) is a penalty function which has several different

:\r)l';\rﬂodlljcthtnh tO.M(';/I elggn;hms. Ir_ldSe_ctlon I_V’_ a class t(r)]f ossible interpretations, depending on the framework iitivh
algoriihm 1S derlved by considering majorizers on e problem is formulated. In Bayesian decision theoretic

Iog-I|keI|.hood term .Of the objectwe fgneﬂon. Another sia terms, (4) defines the well-knowmaximum a posteriori
of algorithms, obtained by using majorizers on the penalfyys5) o timate withAC(8) = —o?logp(6), where p(6)
function, is presented in Sect|o_n V; that section also dantg prior density (usually heavy-tailed), expressing tharse
new thep retical results_ concerning the properties of tha_ssc nature of the wavelet coefficients of natural images [43f Th
of algorithms. In Section VI, we summarize the algorlthmgstimation criterion (4) can also be seen in a regulariratio

and analyze their computational cost per iteration. Seafidl Spe spective as a way to address the ill-posed problem afinfe

plresetnhts an ﬁxpenmte]nt_al clortnparlsopt O]I thée_ﬁseveral typ])ce iy 6 from y; in that setting(C'(0) is called the regularization
algorithms, showing their relative merits for difterenpgs of ¢ n .o andy is the regularization parameter [3].

scenarios, in_ te.rms of: severity of the blu_r ope_rator; armOL_m Of course the MAP/MPL criterion is not the only possible
of added noise; nature of the adopte_d prior. Finally, Secn%hoice for wavelet-based image denoising/restoratiom an
IX ends the paper with some concluding remarks. several alternatives have been proposed with excellenttses
[33], [44], [45], [48]. In this paper, we are solely concedne
with algorithms for solving the MAP/MPL criterion, and will
A. Wavelet-Based Image Deconvolution not discuss the relative merits of this option with respect t
In this paper, we adopt the standard convention of represeihie possible alternatives.
ing images as vectors, obtained by stacking all the pixels in

some predetermined ordeg.g, lexicographically). In image B. Gaussian Priors / Quadratic Penalties

reconstruction/restoration problems, the goal is to es#énan The simplest version of (4) is obtained when a zero-mean
original imagex from an observatioy, assumed to have beenGaussian prior fod is adopted:

produced by the linear-Gaussian observation model \
y = Hx +n, @) —0?logp(6) =1 C(6) =5 0"PO+ R,

Il. PROBLEM FORMULATION
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whereP is symmetric positive semi-definite aritlis a scalar In this paper, we will describe MM algorithms which are

independent of). In this case, the solution of (4) is obtained by addressing each one (or both) of this difficsiltie
~ s e that is, by using majorizers for the log-likelihood or/ar t
0= (W H'HW+AP) W'H'y. (6)  penalty function.

Of course, this estimate can only be obtained via an iterativ
algorithm, due to the huge size of the matrix being inveried; E. Related Problems and Approaches

fact, it's not even practical_to explicitly compute it or @dt Optimization problems formally close to (4), witH W

(e.g. for 256 x 256 images, it would be 8562 x 256 matrix). replaced by some arbitrary matrix, have been studied in
other contexts and applications. For example, wAthbeing

C. Non-Gaussian (Sparseness-Inducing) Priors the design matrixof some regression problem, the LASSO

It is well accepted that Gaussian densities are not adequ(cll?(‘east absolute shrinkage and selection operator) witeis

models for the statistics of wavelet coefficients of naturaslfmlar to (4), W'”‘C(‘g) — HOHI [51]. Notice, however, that
State-of-the-art algorithms which have been proposed lteso

images; the sparse nature of wavelet-based represemtat&%ré LASSO (such ateast angle regressiof22]) cannot be
(many very small or even zero coefficients together with a few

very large ones) demands heavy-tailed densities [41]. Oneug'ed to address (4) bec‘?‘“?e maI_ﬂiWV can not t_)e (_ax_pllcnly
the distributions most often adopted to model the stasistic computed or stored, nor is .'t possible to access individuasy
wavelet coefficients is the independent generalized Galmss?ommns’ or elements. This _faqt p!aces (4) beyond the reach
density (GGD, see [43]) of most general-purpose optimization methods.
' Another problem formulation leading to an objective func-
»(0) o(exp{ —r > 1o } (7) tion with the same form as (4) is the following. Let the
p columns of W contain a redundant (over-complete) dictionary
with respect to which a representation of the observed image
(or signal) is sought [14], [23], [24]. This representaticem
be obtained by solving (4), withl = I andC(@) being some
— o logp(0) =X C(0) = A ||9H5 + 5, penalty function encouraging sparse solutions [23], [24le
) algorithms considered in this paper can be directly appbed
o of el Imges ons e o 1 e SO0 FOC(0) kS ko a5 tiass
' pursuit denoisingproblem [14].

Another class of heavy-tailed prior densities which hasibee Finally, we should mention that MM algorithms have been
used to model wavelet coefficients (and which contains GGliged for more than a decade in image reconstruction (mainly
with p g 2 as special cases) is that of Qaussmn scale mixtuigstomographic medical imaging, see.g, [20], [25], [39)).
(GSM); see [2], [7], [17], [45], for details. . ~ However, to the best of our knowledge, they have only very

If (4) is hard to solve wherp(@) is a Gaussian prior, it recently been used to tackle the optimization problems that

becomes much harder whe(@) is a heavy-tailed prior, such result from wavelet-based approaches to inverse problems
as a GGD or GSM. In this case, we no longer even have@g, deconvolution) [18], [28], [29].

“closed form” expression (such as (6)).

The logarithm of this prior is proportional to theth power
of an ¢, norm! plus an irrelevant consta, that is,

I1l. M AJORIZATION-MINIMIZATION ALGORITHMS

D. The Sources of Difficulties A majorization-minimization (MM, [36]) iterative algohim
The difficulty of solving (4) has two main sources: for solving (4) has the form
A(t4+1) . )
« Matrix HW, unlike H alone, is not block-circulant (nor o =g HEDQ(O’ ), 8)

block-Toeplitz), thus cannot be efficiently handled usin
FFT-based methods. Even wh#¥ is orthogonal HW
is not. The presence of this matrix makes solving (
even in the Gaussian case examined in II-B, a task t
can only be achieved using iterative algorithms.

\%hereQ(O;O’) > L(0), for any @, 8', andQ(6;0) = L(6),
4ke- Q(0;0") upper bounds (majorized)(), touching it for
|,?6’at: @’. It's well known that this property of the Q-function
implies monotonicity of the algorithm, since

~(t+1) ~(t+1)

~t+1) ~t) ~t+1) 1)

o When the penaltyC'(@) (equivalently, the log prior L(® ) = L(éi(tﬂ)) :(52(0 10)+ Q0 16
—logp(@)) is not a quadratic function o, there is, in < Q0 ;0°)

genera, no close-form solution to (4). < Q(ﬁ(t)- §<t)) _ L(§(t)) )

where the first inequality results fro)(0;0') > L(6), the

Recall that the¢, norm is defined ad|v|, = (3, \vi\P)l/p, thus . ~(t
[v[[Z = 32, Jui]?. Although forp < 1, [|v|l is not a norm, we will (as is S€cond one from the fact that, according to @)6;6 ")
commonly done) still refer to it as a norm. attains its minimum fo® = é‘(“rl).

20f course, ifH = I and W is orthogonal, (4) may have closed-form L
solution for some choices ¢f(8); however, in this case, we would be in the The MM approach opens the door to the derivation of EM-

presence of a pure denoising problem, not a deconvolutiohlgm. type algorithms [19], where thé&-function (the majorizer)
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doesn't have to result from a model with missing-data, as which is, of course, an equality fér= 6’. This suggests using
standard EM. Any convenient inequality and any property @he r.h.s. of (13) asQ(g;é(t)), with 8’ = §<t)_ According

L(6) can be invoked to obtain a vali@-function [36]. o [36], this quadratic bounding approach to obtaining a
MM aIgonth_ms have_ three properties (which have trivighonotonic algorithm was first introduced in [8].
proofs), of which we will make use later: A choice of D leading to a simple algorithm is a matrix

. ) ) proportional to identity. In fact, as stated by the follogin
Property 1: The functionQ.(0;6") = AQ(0;0') + B, proposition (shown in Appendix A.1Y = WTHTHW,
where A > 0 and B are constants independent®f meaning that we can udd = I in (13).

_(posslbly dependfant of) defines exactly the same Proposition 1: Let the set of columns oW correspond to
iteration asQ)(6; 6"). a normalized tight frame, that4sWW?7 = I and H be
_ normalized such thatH||> = 1. Then,I = WTHTHW.
Property 2: Let L(@) = L1(0) + L2(0); consider _ . . .
two majorizers, Q,(6:0') > L.(8) and InsertingD =T into (13), we can write (after some simple

Q+(6;0') > L(6), both with equality forg — ¢/, Manipulation)

i i iori 1
Th_en, all t_he followmgl Tunctlonsl majorlzeL(?) Le(0) <= 1|0 — |2 + K, (14)
(with equality for@ = 0'): Q1(0;0') + Q2(6;86’), 2
L1(0) + Q2(6;0"), andQ1(6;0") + L2(6). where K is a constant independent 8fand
(1) (1)
Property 3: The monotonicity property of MM is kept if, o =6 +WT'H" (y —HW6 ) : (15)
t
instead of exactly minimizing)(0;0 ) (as in (8)),
the following weaker condition is satisfied: B. Update Rule
~(t+1) A(t+1) (1) (1) A(t) With a majorizer forL, in hand, we invokéProperty 1 to
0 is such thatQ(6 10 )=<Q6 50 ). drop K andProperty 2 to use (14) to build a majorizer for

_(t+1) the complete objective functioh,(0) + AC(0). The resulting
Notice that this is the only property & that ypdate equation is thus

was invoked in showing the monotonicity of MM. A

similar reasoning underliegeneralizedEM (GEM) 6" = argmin {1 10 — @W||2 + A C(G)} . (18)
algorithms [53]. Algorithms defined by iteration (10), 6 (2
instead of (8), are thus calledeneralized MM Notice that (16) corresponds to a pure denoising problem
(GMM) algorithms. (same as (4)-(5), wittHW = I), under a penalty/log-prior
C(8), and with “noisy coefficients»*). Denoting as®
IV. MM A LGORITHM VIA MAJORIZATION OF THE the function which returns the solution of (16), which is a
LOG-LIKELIHOOD so-called “denoising rule”, we can write (16) as
A.LMaJonzmg the Log LIEe“hOOd i é<t+1): Doy (¢(t))
et us denoteL,(0) = (1/2)|ly — HW®@|*, the log-
likelihood term of the objective function in (5). This is _ W, <§(t) L WTHT <y_HWé%t))> an
a quadratic function with positive semi-definite Hessian '

WTH'HW, tf}USTCOHVGX (though not necessarily strictly so), The algorithm defined by (17), terméirative shrinkage-
and gradienW ™ H” (HW6—y). We can write a second orderthresholding(IST), coincides with those previously presented
Taylor expansion of this function (which is exact, becaus tijn [18], [28], and [29]. Theoretical results concerning the

function is quadratic) about some pofit convergence of this iterative procedure can be found in,[18]
Lo0) = L)+ (6—60)" WTHT(HWO' —y) fo_r the case of convex GGI_D priors, that is, 10(0) = ||0]2,
with 1 < p < 2. The results in [18] were recently extended and
gradient at9’ generalized in [16]. Similar algorithms were also proposed

[49] and [50], without any formal support or analysis, buttwi

1 NT TyxT !
+ 2 (6-6) w(" -0)- 1D excellent practical results. Algorithms of the same classew

Hessian also proposed in [23] and [24], to find sparse representation
Now let D be a symmetric matrix such that on redundant dictionaries.
D - W/ HTHW, (12) For a few choices of’(0), there are closed-form expres-

- o sions for®¥ ¢ . We focus only on decoupled penalty functions
where>- denotes matrix inequality SinceA = B = v/'(A~  ofthe formC(6) = 3, C(6,). In this case, (16) can be solved
B)v >0, for anyv, we can obtain a majorizer fat,(6) as separately w.r.t. each component:

Ly(0) < ngo’) +(0-0)"WTHT (HWO' —y) ém) _ argmin {1 0, — 6 + AC(&_)} | (18)
+5(0-0)"D(©O -6, (13) o 2

4If the columns of a matrix correspond to a normalized tighinfe, then
SRecall thatA > B (for two symmetric matrices) means that matrixWW7 = I, but WTW may be different from identity, becaud® may
A — B is positive semi-definite. not be orthogonal; see [10], [41], for an introduction tonfies.
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where ¢; denotes thei-th component of¢!). There are to be tangent to\C'(d) at ¢’, that is, their derivatives a’
two standard cases for which (18) has simple closed-formust coincide. This condition leads to

solutions. For a zero-mean Gaussian pr(;) = (1/2)62, c'(@)

the solution is simply n=2A o = (), (22)
At+1) Pi 10y i Nt
9, =T (19) whereC’(0) is the derivative of’(-) atf. Of course, we could

also solve forv to have the majorizer touchC(6) at ¢’, but
For a Laplacian priorife., C(6;) = |6;|? with p = 1), we have this value is irrelevant for the algorithm (s@eoperty 1).
Notice that when the penalty corresponds to a log-prior,

@Etﬂ) = soft(¢;, A) = sign(¢;) max{0, |¢;| — A}, AC(0) = —o?logp(f), equation (22) can be written as
the well-known soft threshold(ST) function [43]. Closed TO) = - o? 1 dlogp(®)| _ _ . P()
form solution of (18), withC(6;) = |6;|?, also exist for 0’ ag |, 0" p(6")’

p € {4/3,3/2, 3,4} [13]. Finally, the also popular hard-

threshold (HT) function can be seen as the limit of (18), wit\’q'hICh comudgs W'.th equation (18) in [7]; this shows the
C(6;) = 6,7, whenp goes to zero (see [43] for details) method therein derived under an EM framework, also has an

A shrinkage/thresholding function which was shown in [7 M interpretation, based on quadratic majorizers for GSM

and [28] to be very effective for wavelet-based deconvohuti . g-priors. This q_uadratlc bo_”r_‘d'”g techmqu_e IS we_II "'"‘?W
is the non-negative garrotéNNG), in robust regression, where it is used to derive the itezitiv

reweighted least squares (IRLS) method [35].
max {0, ¢7 — A} Notice thatY (¢’) in (22) is not defined fop’ = 0. If C(6)
bi+lg—0 (20) ' has finite second derivative at the origin, we can defit{)
by continuity. Noticing that, in this cas€;’(0) = 0, we have
wherel,—g is the indicator function of the conditiom = 0.

As shown in [7], the NNG corresponds to the solution of (18) i &0 _ o, €70) — C7(0)
under a prior which does belong to the GSM family. 0—0 0 6—0 0—-0

étﬂ) = garrote(¢;, \) =

= C/I(O)a

by definition of second derivative, which is by hypothesis

V. MM A LGORITHM VIA MAJORIZATION OF THEPENALTY finite. In this case, the objective function is strictly cemv
L . and twice differentiable, and the Q-function
A. Majorizing the Penalty/Log-Prior

In this section we derive MM algorithms by considering Q(6; 6') = [ly —HW9|* + 67 D9, (23)
majorizers for GGD (for0 < p < 2) and GSM log-priors. . _ .
: : . - \ where D = diagY(¥}),7 = 1,2,...), is smooth. Thus,
We consider only independent priors, whes®) = [1, p(0:) convergence of the resulting MM algorithm can be easily

Egiu“gzl_?nélgl’gnw)t: azégl\(/leimzzz{rnvi\llhe(r(; t\;‘/ﬁi g\aggglsd:rn:;shown, following the same line of reasoning used to show
DAY g y convergence of EM [53].

particular case). Even in denoising problems (whHre- I) H h ; d lties i let-based
with an orthogonal wavelet basisNTW — WWT — 1), owever, the most often used penalties in wavelet-base

which allows decoupling the solution of (4), most priors ii"29¢ restoration are non-differentiable at the originjolvh

this class do not lead to closed-form solutions (except in"_ﬁa sufficient condition for leading to sparse estimateq. [43
few cases mentioned in Subsection IV-B) or these penalties, we have to follow a different route. The

Let us take note of some properties of GSMs which wiﬁ“
be needed below. Any (univariate) GSM densjtyd) is { 2YO)/24+r <= 040

nctiong(-; -) : R? = R =R U {—o0, +oo}, given by

necessarily even, since it's a convex combination (maybeq(o;of) +00 = 0=0N04£0 (24)
infinite) of even functions (zero-mean Gaussian densities) 0 e 0 =0A0=0

For the same reason, any (univariate) GSM density) is a

decreasing function gf|, thus\ C(0) = — o2 logp(#) is an is well defined for alh and¢’, and is a valid majorizer because
increasing function off|, of course also even. Since GSMst satisfiesq(6, 6’) > AC(0), with equality ford = ¢’. Finally,
have heavier tails than a pure Gaussian, the correspondsinice C'(0) = >, C(6;), we invokeProperty 2 to add the

penalty\C'(#) = — o2 log p(#) necessarily grows slower thanindividual majorizers yielding the majorizer

a quadratic function. Finally, singg#) is a GSM, bothp(9)

and C(0) are C™, except maybe at the origin [32], [46]. > q(0::60;) > AC(6) (25)
SinceC'(0) is even and subquadratic, it is majorized by an i

even quadratic functioni;e, we seek; andv such that with equality for@ = @’. Adding this majorizer to the log-

n o likelihood termL,(8) = (1/2) ||y — A8||?>, whereA = HW,
AC() < 92 0" +v, (21) yields the@-function
with equality for@ = ¢, wheret/ = §(t) denotes the previous Q(6; 0') = |y — AO|* + Z q(0;; 05). (26)
iterate, all throughout this section. This requiteg2) 6% + v i
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B. Update Rule Finally, the pair of update equatioﬂg“) =0 and(34) can
The updated iterat§t+l), denoted simply a®”, is the be written compactly as
minimizer of Q(8; @'). The bound defined in (24) implies 8™ = (a— 50" + (1 - )" + (35)
that the updating rule satisfies BE[E+1"" {9(1‘)Jr AT (y _ Ag(i))} ’
(07 =0) = (0;=0), (27)  which is the form used in [7]. Parametetisand 5 can be

m adjusted to maximize the speed of the SOSIM (see [7]).

meaning that it can be stated as the constrained proble : ) i
In summary, the resulting method is a GMM algorithm

0" = argmin{ [y — A6|*+ 2Zq(9i;9;) } where each step consists of computing maiix followed
6 i by a number of SOSIM steps, large enough to guarantee the
subject tofz = 0, (28) decrease of thé)-function.

where Z = {i : 6, = 0}, and 8z is the subvector o®
corresponding to the indices i. Letting Z = {i : 0, #+ 0},
we denote ad ; the matrix formed by the columns & with
indices inZ. Problem (28) is equivalent to

D. Singularities and Convergence

The main difficulty in studying convergence of the algo-
rithm defined by (29) and (30) is caused by the following
feature: if a component reaches zero, it stays zero foreeer (
0, = 0 (29) (21.)), _possibly_preventing convergence to a minimizer @& th
o' . _A-0|2+0"D-0 30 objective function.

z argnbm{ Iy 2l z }’ (30) A similar difficulty appears in the IRLS algorithm for robust
regression and has caused serious problems in charaagerizi
its convergence behavioge,g, the convergence proof in [11]
includes a finiteness condition on the weights which, in

1 our problem, would require using a penalty function with

"o Z _ _ fZ_:

07 = (AZ Az DZ) AZY (31) second derivative at the origin. As noted above, this would

As shown Appendix A.1, the update rule which combines (2‘{)?"9 out most sparseness inducing penalties, which are not

and (31) can be written compactly as ifferentiable at the origin. _ _
A related issue occurs in the so-called Weiszfeld algorithm

0" =EAT(AEAT + I)f1 Y, (32) (WA, [52)]) for the Fermat-Weber problem, which consists in
finding the point minimizing the sum of the distances to a set
of given points (see [9] for recent results and referencEs.
b { (T(eg))fl e 040 (33) WA_ can glso be seen as an MM algorithm based on quadratic
i = 0 —0. majorization and also has an IRLS flavor [12]. The proof of
! convergence of that algorithm requires that all weights are
This form of the update equation shows that it is nevejways finite, and most of the work thereafter was focused on
necessary to handle infinite values, which is usually pdintgtudying conditions under which this is true.
out as a weakness of IRLS type algorithms. If a componentThe observations in the previous paragraph clearly beg
becomes zero, the corresponding elementEoélso simply the following question: if the algorithm is initialized it
becomes zero. Of course, this will lock this Componentabzeﬁ” Components different from zero, does it converge to a
forever, which may impact the convergence of the algorithfinimizer of the objective function? Although we do not have
to a minimizer of the objective function. This issue will b% proof of convergence, we will next present results (th@tm'o

whereD; = diag Y (¢;), i € Z). Since (30) is quadratic, the
minimizer is simply given by

whereE is a diagonal matrix with the”; ; entry given by

analyzed in detail below, in Subsection V-D. of which can be found in Appendix A) which strongly suggest
that this IRLS-type zero locking behavior does not seem to
C. Solving the Update Equation compromise the convergence of the algorithm.

To implement each update step, one can simply keep af€finition 1: Let Z(0) = {i : 6; = 0} and Z(0) = {i :
zero the components that were zero and compute the rem&inZ 0} _be two functions that return the sets of indices of the,
ing ones by solving (31). Of course this does not requhrgspectlvely, zero and nonzero components of a vector.
inverting the matrix, but just solving the correspondingtsyn ~ Proposition 2: Consider thaty is generated according to
(Ag A; +D;)0 = Ag. y. Due to its size, this system (1) and the update equation is given by (32). Then
can qnly _be sqlved iteratively. The approach proposed in [7] o' Z(0)) =0, P ({y: Z(6") £0}) =0, (36)
consists in using aecond-order(also known astwo-step

stationary iterative metho@SOSIM) [4], which is defined by that is, with probability one with respect to the (Gaussian)
density governing the generation gf if the algorithm is

) _ () (i-1)
b2 = lam oz U@y T (34) initialized such thatz(8'") = 0, then, z(8"”) = 0, for any
5Dy 0+ AL (y - az0)|.  finitet

The following proposition characterizes the minima of the
Notice that the iteration counteiin (34) defines an inner loop objective function (5) and extends to arbitrary convex GSM
(the SOSIM scheme) which is nested inside the MM iteratiopriors recent results shown in [30], [31] fat(0) = ||0]|:.
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Proposition 3: Consider the objective functiod.(6) = The penalty|d|?, for 0 < p < 1 and ¢’ # 0, satisfies the
ly — A6|*/2 + \C(0) where C(8) = > .C(6;) is a inequality
sum of convex (not necessarily strictly so) even functions, P ,
continuously differentiable everywhere except maybe at th o1 < 10lp|0'IP~" + (1 —p) |07, (41)

origin. Then,®" is a global minimum ofZ() if and only if with equality foré = #’. Of course, forp < 1, the majorizer

its components satisfy the following set of conditions: (41) is undefined for’ = 0. Proceeding as for the quadratic
a;; (y—A0%) = XC'(60), if 0540 (37) majorizer, we define the functior(-, -) : R? — R as
2l (y — A8")| < AJ, if 0r=0 (38) L@E)0[+¢ <= 0 #0
: . ' r(0;0") = { +oo < 0=0AN0+#£0 (42)
wherea; is the j-th column of matrixA andd = C’(01) = 0 = 0=0N0=0,

1im9‘>0+ C”(@)
Y)vherel“(e’) = A\ pl0'|P~1, while¢ = (1—p) |#'|? is a constant

Finally, the following proposition uses the previous one tgelevant for the resulting algorithm. Usirf@roperty 2, we
characterize the points to which the algorithm may conver . ) '
'z pol wh! gon y v inally have the following bound for a GGD penalty

Proposition 4: Let the iterative algorithm defined by the
update equation (32) be initialized with all nonzero compo- Allofs < Zr(@i, o). (43)
nents,i.e, Z(@ ') = (. If the algorithm converges to some i
point 8, then, with probability one, this point satisfies th€Combining (43) with the majorizer in (13), finally leads teth
necessary and sufficient conditions (NSC) of optimality){37Q-function
(38), thus is a global optimum. 1

In summary, we have shown that if the algorithm is ini- Q(6; 0') = 5 16— oI5+ r(6:, 0). (44)
tialized with all components different from zero, then (wit i
probability one) no component will become zero in a finitdlinimizing with respect to each;, leads to the update rule
number of steps; moreover, if the algorithm converges, then " =
(also with probability one) it does so to a global optimum of 0; = SOft(@’ 1“(91-)) ’ (45)
the convex objective function. where

= { +oo & 0,=0
VI. MM A LGORITHMS BY MAJORIZING BOTH THE VoL ). = o #0.
LOG-LIKELIHOOD AND THE PENALTY

(46)

Notice that softz, +o0) = 0, for any .
A. Quadratic Majorizers As with the quadratic penalty majorizer, if a component

Itis clear fromProperty 2 (see Section IIl) that a third classPecomes zero, it will be stuck at zero forever, which may
of MM algorithms can be obtained by combinirigg( adding) Prevent convergence to a minimizer. It isn't possible teext
the majorizers (13) and (25) derived in the two previod® this majorizer the results presented in Section V-D fer th

sections, yielding th&)-function qguadratic majorizer. Furthermore, notice that whea 1, the
. ) ) objective function is non-convex, thus no monotonic aldoni
Q(0:0') =116 — ¢ll5+ > _q(6;:0)) (39) can be guaranteed to converge to a global optimum. Never-

theless, in practice, we have never observed any convexgenc
Notice thatQ(;6’) can be minimized separately w.r.t. eacproblems: as long as all components are initialized far away
componeny;, leading to a simple linear shrinkage operatiorgnough from zero, the algorithm always yields high quality
image restorations.
v FEii ¢
e ) VIl. SUMMARY OF ALGORITHMS AND COMPUTATIONAL
whereE; ; depends on the previous estimate according to (33). COSTANALYSIS
Observe (see (35)) that this update rule coincides with glesin
SOSIM iteration fora = =1 (with a = 1, the SOSIM is

in fact a first-order method).

In this section, we briefly summarize all the algorithms
presented in this paper. The algorithm presented in Section
IV (Equation (17)) is calledterative shrinkage-thresholding
) o (IST), since it proceeds by iteratively applying a non-éine
B. Non-Quadratic Majorizer for the Penalty shrinkage-thresholding functioh . The class of algorithms

The fact that the majorizer on the log-likelihood makes thidefined in Section V are termétgratively reweighted shrink-
term separable opens the door to the use of majorizers on #ge (IRS), because Equation (32) can be seen as a shrinkage
penalty which need not be quadratic. In fact, what is delratoperation, in which the shrinkage weights ¥ are updated
is that the penalty majorizer, when added to a separable I@j-each iteration. When aecond-order stationary iterative
likelihood majorizer, yields &-function with a closed-form method(SOSIM), defined in (35), is used to solve (31), we
minimizer. In view of this, ar/; majorizer is a natural choice refer to the resulting algorithm as IRS-2. When we take a
for 4, penalties with0 < p < 1, for two reasons: it's tighter single step of a first-order method to solve (31), the result-
than a quadratic majorizer; the minimizer of the resulting Qng update equation is given by (40) and the corresponding
function is given by a simple soft thresholding rule. algorithm is called IRS-1. Finally, the algorithm introdhtin
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Section VI-B, defined by (45), is designated as ISoft (stagdi wavelets. We are well aware that this does not lead to sfate-o
for iterative softthresholding). the-art performance in terms of SNR improvement; however,
It Worth pointing out that all the algorithms involve com-the conclusions obtained concerning the relative speeteof t

puting ), as given by (15), which is nothing more than thalgorithms are valid for other wavelets and penalty funeio

current est|mat<9() minus the gradient of the log-likelihood The experiments reported in this section were designed

term. Defining the function to evaluate the algorithms considered in this paper in three
typical image restoration scenarios: strong blur with Iavise
®0)=60+W'H" (y - HWO) (47) (experiment 1), mild blur with medium noise (experiment 2),
) and no blur with strong noise (experiment 3). The details

we can writegp® = ®(8 ). With this function in hand, we of each of these scenarios are shown in Table II. All the
summarize the algorithms considered in this paper in Tablealgorithms were initialized with allo; equal to a small
constant (notice that this does not correspond to a constant

TABLE | image) and parametex was hand tuned for the best SNR
SUMMARY OF THE ALGORITHMS: FOR EACH ALGORITHM, THE improvement.

COMPUTATIONS INVOLVED IN EACH ITERATION ARE SHOWN

IsT || 8" = we (2 (é‘“)) TABLE Il
EXPERIMENTAL SETTING.
IRS-1/| ComputeE by equation (33) and = E [E + I}’l;
Y _ pa (§<t)) Experiment | image blur kernel | c(0) | BSNR |
1 Cameraman| 9 x 9 uniform [18]]1 40 dB
IRS-2|| If ¢ is multiple of M, computeF as in IRS-1; 2 Lena —[174’674’1]2;?74’674’1] el 17 dB
gttt (a—13) §<t)+ (1—a) ot 1)+ BF & ( (t)) 3 Cameraman| [1] (no blur) 16113:2 | 10 dB

ISoft || Computey = [T(egt)), W T(O),
S(t+1) ¢ Experiment 1: In this case we consider a strong blur,
0 = solt (@ (e< )) ’7) corresponding to a very ill-conditioned matrid. The
objective functionZ(6) is plotted in Figure 1. IRS-2 is
In each iteration, the costs of computiflg- , in IST, the clearly faster than IRS-1 and IST: IRS-1 and IST require
vector additions, the diagonal product and inverdigR+I]—! roughly 3700 iterations to reach the objective functioruesl
in IRS-1 and IRS-2, all the multiplications by scalars anthat IRS-2 reaches after 300 iterations. This was already
sums in IRS-2, and the soft threshold function in ISoft, aiustrated in [7] and is due to the ability of the SOSIM to
all O(N), i.e, they grow linearly with the dimension @f. handle ill-conditioned systems. The slowness of IST in this
Therefore, the leading term of the cost per iteration offadl t problem can be traced to the matrix bound in (12), with
algorithms comes from computing. The multiplications by D = I, which is very loose becaud# is very ill-conditioned.
H and H”, in (47), can be done efficiently via FFT, withIn this problem, ISoft coincides with IST, because the pignal
O(N log N) cost, since these matrices represent convolution$.C(0) = [|@]1. In conclusion, of the algorithms described
For the multiplications byW and W7, when these matricesin this paper, IRS-2 should be chosen for problems involving
correspond to orthogonal or redundant wavelet bases, theegerely ill-conditioned blurs.
are efficient algorithms withO(N) and O(NN log N) cost,
respectively [41]. Consequently, the global cost per ftera Experiment 2: This experiment is targeted at assessing
of all the algorithms iSO(N log N). the behavior of the algorithms for mild blur and medium
noise. The evolution of the objective function (in Figure
2) shows that IST is faster than both IRS-1 and IRS-2.
This is again a understandable result: with mild blur and
The goal of the experiments reported in this section is not eedium noise, the problem is closer to denoising than to
assess the performance of the image restoration critetizeof deblurring, and IST takes advantage of the fact that, in each
form (4). This has been carried out in several other publicieration, it uses an exact denoising rule. Again, in thiseca
tions, in comparison with other state of the art criterianely 1Soft coincides with IST, because the adopted penalty is
in [7], [24], [28], [29], [33], [37]. In those papers, the @ar C(0) = ||8||;. In conclusion, in problems involving mild blur
can also find examples where the visual quality of the redtorand medium to strong noise, IST should be the chosen method.
images may be assessed. It's clear that the performance of
such criteria €.g, in terms of SNR improvement) does noExperiment 3: Finally, the third experiment aims at assessing
depend on the optimization algorithm used to implement the speed of the 1Soft algorithm. Because 1Soft only differs
but only on the type of wavelets and of the penalt§f). On from IRS-1 and IST in the way it handles the penalty (not
the other hand, the relative convergence speed the algwritithe likelihood), we consider a simple denoising problém,
is essentially independent of these choices. In this papeith H = I, with the penaltyC'(8) = ||0]|} with p = 1/2.

we use GGD priorsj.e, C(8) = [|0|b, and simple Haar Notice that, in this case, the denoising rule \ (see (16)-

VIIl. EXPERIMENTS
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Fig. 1. Evolution of the objective functior.(6" ) produced by the

algorithms IST, IRS-1, and IRS-2 in experiment 1 (see texd &able Il

1 Fig. 3.  Evolution of the objective functiorL(@m) produced by the
for details). algorithms IST, IRS-1, and ISoft in experiment 3 (see texd @able Il for
details).
07
10X 1 : IX. CONCLUDING REMARKS
7-7-7:22_2 In this paper, we have shown that several recently pro-
or —rs-1/  posed algorithms for wavelet-based image deconvolution ca
8,

| all be seen as members of the MM family, resulting from
different choices of majorizers. The IST class of algorithm

] (recently proposed by several authors) results from bawndi
the Hessian of the log-likelihood term with an identity nivatr

. By using a quadratic majorizer on the penalty function, we
obtain IRS methods. This class is further divided into IRS-1

and IRS-2, when first- or second-order iterative algorithms

objective function
S

respectively, are used to address the linear system thdsnee
ar ’ to be solved at each iteration. These algorithms share some
features with the IRLS family, namely in that both involve
weights which, in principle, and if handled naively, can
ol TT==- === - PRI ‘ ‘ ‘ become infinite if some component(s) of the iterate becomes

0 2 4 6 itera8tions 10 12 14 16 zero. Moreover, once a component becomes zero, it remains

there forever, possible compromising the convergence ®f th
Fig. 2. Evolution of the objective functiorL(g(t)) produced by the algorithm to a minimizer _of the objective function. We have
algorithms IST, IRS-1, and IRS-2 in experiment 2 (see texd @mble I Shown several results which strongly suggest that thisifeat
for details). of IRS algorithms does not destroy their usefulness: if priyp
initialized, the algorithm never (i.e., with probabilityem)
produces zeros in a finite number of steps; if the algorithm

converges, then it does so to a minimum of the objective
(17)) of IST does not have a closed-form; thus, we ha¥anction. We have also shown how to write the algorithm in

implemented¥ ¢ , via a numerical solution of (16). Of course,such a way that, even if some components become zero, no
each iteration of the resulting IST scheme is computatlgnalnfinite weights have to be handled.

much heavier than each iteration of 1Soft or ISR-1. Given the Finally, we have introduced a new class of methods, ob-
absence of blur, and the fact that we are using orthogortained by combining a bound on the log-likelihood with an
wavelets,c = 3 = 1 is the optimal parametrization of IRS-2,¢; majorizer on the penalty. For non-convex penalties, the
making it similar to IRS-1. The results in Figure 3 show thanajorizer is tighter than the quadratic one, leading toefast
ISoft is almost as fast as IST (which converges in one itemati algorithms.

because this is a denoising problem) without involving the We have experimentally compared these algorithms in typ-
expensive numerical implementation ¥ ». 1Soft is faster ical image restoration benchmark scenarios. The conelasio
than IRS-1 because the quadratic bound used by the lattéithis comparison can be summarized as follows: algorithm
algorithm is not as tight as th§ majorizer used by ISoft. IRS-2 is the best for problems involving severe blurs; in
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problems involving mild blur and medium to large noise, IS&re nonzero (because, by hypothegisd’) = ) for 0 to be
outperforms the other methods; in problems with GGD priogero it is necessary that

with exponent less than one, I1Soft performs better than IRS, - - -1

while IST can not be directly used because the necessary aj (AEA +I) y =0, (50)

denoising rule does not have a closed-form expression.  \herea; denotes thg-th column of matrixA. This condition
Current research work is aimed at obtaining methods whighe5ns that the vectc(rAEAT + 1)~y must belong to the
perform as well as IRS-2 under strong blur and as well as '%ﬂbspace orthogonal tg.. But matrix(AEAT+I) is positive

in weak blur and medium to high noise situations. definite (becausa EA” is positive semi-definite), so it maps
a subspace into a subspace, meaning that the condition)n (50
APPENDIXA: PROOFS is equivalent toy belonging to some subspace, which has

A. A.1. Proof of Proposition 1 zero measure, thus_ zero prqbability uqder the Gaussiaritgens
assumed in (4). Finally, this conclusion can be extended to
Proof: The spectral norm of a symmetric matrR, the complete vecto”, and to any finite number of iterations,
denoted|B||2, is its largest absolute eigenvalue.{l;} are since any finite union of subspaces has zero measure.m
the eigenvalues oB, the eigenvalues of — B are {1 —¢;},

thus||B||2 < 1 implies thatI = B. It turns out that A.4. Proof of Proposition 3
IWTHTHW|, = |[HWHW)T|, Proof: Recall that the subgradiéntat x, of a convex
TesT function f : R — R, denoted ag)f(x), is a set of vectors
= [HWW H" | defined by
= IHE =1 (48)

vedf(x) & [f(y)=f(x)+vi(y—x), vyeR"
because: by hypothesis, the convolution operator is nermﬁl f is differentiable atx, then df(x) = {Vf(x)}. A

pea il ) .
ized, i.e, [HI||3 = 1; by hypothesis, the columns of matrix,gcegsary and sufficient condition (NSC) #f8) to have a

i i ; T _
W correspond to a no_rmahzed t}ght fram?., WW= =1, global minimum at™ is for zero to belong to the subgradient
[10], [41]; for any matrixB, ||BB" || = |B* B]s. B i ie

A2 Proof of E on (32) 0€dL(0") & L(O)>L(O"),V0 +06". (51)
.2. Proof o uation
a For our objective function,

Proof: Applying the matrix inversion lemma to (31), as

well as the fact that all elements & > are nonzero, OL(0) = —A"(y — AB) + 1> 9C(6:),
—1 K3
. . . I N
0’,2'. = (AZAZ +D2) Aly thus the NSC in (51) can be written in a coordinate-wise
manner as

—1
_ —1 AT —1 AT —1 AT —1 AT
—[Dz Az -D3 Az (A‘z‘Dz Az“) AzD5 Az] Y. Ju; €0C(07): al(y — Af) — Au; =0, forallj. (52)

. AT . . For those coordinateg; # 0, since away from the ori-
Putting the factoD -~ A~ in evidence on the left, and addmggin C() is continuously differentiable, we haveC'(8?) —

and subtractinQAZDg. Ag + 1) inside the square brackets,{c,w;)} and the NSC condition have the form (37).

1 The subgradient at zero BC'(0) = [—4, d]; this is true
0% = D;'AT [I— (AZD§1A§+I) (AZD§1A§+I) both if C(9) is differentiable at the origin, in which case
. d = 0, or otherwise, because sin€g#) is an even function

I (AzD:lAZ +1) } y limg_ - C(8) = —limg_o+ C(6) = —46. Thus, for zero

z z X coordinates¢; = 0, (52) can be written as in (38). [ ]

= E;AL(A;E;AL+1 49

z Z( A ) v 49 A.5. Proof of Proposition 4

whereE; = D; is a diagonal matrix. Notice now that matrix Proof: From Proposition 2, with probability one,
E; is simply obtained fromE (defined in (33)) by keeping Z(§(t))

= (), for any finitet. Under this conditionA; = A
only the nonzero elements; thus

and (31) can be written as
T T ~
AzEzAZ = AEA". (ATA+D)8"" = ATy, (53)

Finally, it's clear that combining’; = 0 and the definition of gi\.o ) is diagonal andD;; — /\C’(égt))/éft), (53) is

0’—Z’~ given by (49) into a single equation yields (32). equivalent to

C’(é(-t)) ~(t+1) ~(t+1)
=6 =aly-Ag ), foralli. (54)
0.

K2

A.3. Proof of Proposition 2 A

Proof: Without loss of generality, consider one particular
component ofd”, say 6‘;-'. Since all diagonal elements & 5See [34] for a comprehensive coverage of convex analysis.
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If the algorithm converges t@*, the non-zero components[16] P. Combettes and V. Wajs, “Signal recovery by proximatward-

of 8% must be fixed points of (54)_ Inserting this fixed point backward splitting,"SIAM Journal on Multiscale Modeling & Simulatipn
vol. 4, pp. 1168-1200, 2005.

L. NEFL) At .
conditiond, =6, =6 (for 0 +# 0) into (54) shows that [17] M. Crouse, R. Nowak, and R. Baraniuk. “Wavelet-basetistcal signal
these components satisfy the NSC (37). processing using hidden Markov model$ZEE Transactions on Signal

i . . Processing vol. 46, pp. 886—902, 1998.
For components that converge to Ze?lé’_ 0, a fixed point [18] I. Daubechies, M. De Friese, and C. De Mol. “An iteratiheesholding

argument can't be used, because zero components are neceSdgorithm for linear inverse problems with a sparsity comist.” Com-
sarily fixed by construction of the algorithm (see (27)). For munications in Pure and Applied Mathematio®l. 57, pp. 1413-1457,

these components, we have to eXpIICIE'%,)StUdy the condatlng] A. Dempster, N. Laird, D. Rubin. “Maximum likelihood dm incom-

t t
under whichlim;_, @f ) = 0. Given thaty, " is different from plete data via the EM algorithmJournal of the Royal Statistical Society
zero, we can rewrite the update equation (54), as (B). vol. 39, pp. 1-38, 1977. o
[20] A. de Pierro. “A modified expectation maximization atiglom for penal-
(1) ized likelihood estimation in emission tomographyEEE Transactions
~t+1) ) aZT(y — A6 ) on Medical Imagingvol. 14, pp. 132-137, 1995.
91‘ = 91‘ - .. (55) [21] D. Donoho. “Nonlinear solution of linear inverse prebis by wavelet-
C’(Gi )/\ vaguelette decompositions,” Journal of Applied and Computational
Harmonic Analysisvol. 1, pp. 100-115, 1995.
~(t) [22] B. Efron, T. Hastie, |. Johnstone, R. Tibshirani. “Leasgle regression,”
7, ) The Annals of Statisticsol. 32, pp. 407-49, 2004.
[23] M. Elad, “Why simple shrinkage is still relevant for nasbant
Under the hypothesis théin, §(t) =0~ then|T(?t))| representations?”,IEEE Transactions on Information Theoryol. 52,
—00 - ’ i

=" - pp. 5559-5569, 2006.
converges imR: in fact, the numerator converges to some f|n|t94] M. Elad, B. Matalon, and M. Zibulevsky, ‘Image denoigirwith
~(t) : oy ' : X C
numberaz-T (y—AOX) and\ |C/(0i )| converges t@ \ (reca” shnnkage_and redundant representatlorﬁ%foc_eedmgs of the IEE_I_E Com-
+ puter Society Conference on Computer Vision and Patterrodretgon —
thatd = limy_.o+ C’(6)). If 6 > 0, then|T'(9, )| converges CVPR’2006 New York, 2006.
. . ao e t [25] H. Erdogan and J. Fessler. “Monotonic algorithms faansmission
t%? finite quantity, Wh"e_ If(? =0, |T(9i )| goes to+oc. For tomography.”IEEE Transactions on Medical Imagingol. 18, pp. 801—
9,” to converge to zero it is thus necessary a9, )| < 1. 814, 1999.
Finally, notice that this condition is the same as (38). m [26] M. Figueiredo and R. Nowak. "Wavelet-based image eafion: an
empirical Bayes approach using Jeffreys’ noninformativierp IEEE
Transactions on Image Processjngl. 10, pp. 1322-1331, 2001.
[27] M. Figueiredo and R. Nowak, “Wavelet-based adaptivags deconvo-
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