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Abstract— Iterative shrinkage/thresholding (IST) algorithms
have been recently proposed to handle a class of convex un-
constrained optimization problems arising in image restoration
and other linear inverse problems. This class of problems results
from combining a linear observation model with a non-quadratic
regularizer (e.g., total variation, or wavelet-based regularization).
It happens that the convergence rate of these IST algorithms
depends heavily on the linear observation operator, becoming
very slow when this operator is ill-conditioned or ill-posed. In
this paper, we introduce two-step IST (TwIST) algorithms, ex-
hibiting much faster convergence rate than IST for ill-conditioned
problems. For a vast class of non-quadratic convex regularizers
(ℓp norms, some Besov norms, and total variation), we show that
TwIST converges to a minimizer of the objective function, for
a given range of values of its parameters. For non-invertible
observation operators, we introduce a monotonic version of
TwIST (MTwIST); although the convergence proof does not apply
to this scenario, we give experimental evidence that MTwIST
exhibits similar speed gains over IST. The effectiveness ofthe
new methods are experimentally confirmed on problems of image
deconvolution and of restoration with missing samples.

Key Words: Inverse problems, deconvolution, convex optimization,
wavelets, total variation, regularization, optimization.

I. I NTRODUCTION

A. Problem Formulation

Inverse problems abound in many application areas of
signal/image processing: remote sensing, radar imaging, tomo-
graphic imaging, microscopic imaging, astronomic imaging,
digital photography [1], [5], [34]. Image restoration is one
of the earliest and most classical linear inverse problems in
imaging, dating back to the 1960’s [1].

In an inverse problem, the goal is to estimate an unknown
original signal/imagex from a (possibly noisy) observationy,
produced by an operatorK applied tox. WhenK is linear, we
have alinear inverse problem(LIP). Although we only report
image restoration experiments, all the results herein presented
are of general applicability in LIPs.

Many approaches to LIPs define a solutionx̂ (e.g., a restored
image/signal) as a minimizer of a convex objective function
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f : X → R = [−∞, +∞], given by

f(x) =
1

2
‖y − Kx‖2 + λΦ(x), (1)

where K : X → Y is the (linear)direct operator, X and
Y are real Hilbert spaces (both with norm denoted as‖ · ‖),
Φ : X → R is a function (whose meaning and role will be
discussed in the next paragraphs),λ ∈ [0, +∞[ is a parameter.

In a regularization framework, minimizingf is seen as a
way of overcoming the ill-conditioned, or singular, natureof
K, which precludes inverting it. In this context,Φ is called
the regularizerandλ the regularization parameter[5].

In a (finite-dimensional) Bayesian setting, the reasoning
behind (1) is as follows. Assume thaty = Kx+w, wherew is
a sample of a white zero-mean Gaussian random vector/field,
of variance σ2; let p(x) be the adopted prior; thus, the
logarithm of thea posteriori density islog p(x|y) = −f(x)
(up to a constant), withλ = σ2 and Φ(x) = − log p(x);
maximum a posterioriestimates are thus minimizers off (see
[2] and references therein). Despite this possible interpretation
of (1), we will refer toΦ simply as the regularizer.

Regardless of the adopted formal framework, the intuitive
meaning off is simple: minimizing it corresponds to looking
for a compromise between the lack of fitness of a candidate
estimatex to the observed data, measured by‖y−Kx‖2, and
its degree of undesirability, given byΦ(x). The regularization
parameterλ controls the relative weight of the two terms.

A more detailed discussion ofΦ will be postponed to
Section II; suffice it to say here that the current state-of-the-art
regularizers for image restoration are non-differentiable. Ex-
amples of such choices are total-variation (TV) regularization
[10], [14], [41] and wavelet-based regularization [12], [21],
[22], [38]. The non-differentiable nature off , together with
the huge dimension of its argument (for a typical512 × 512
image,X = R

262144), place its minimization beyond the reach
of standard off-the-shelf optimization methods.

Of course not all approaches to LIPs lead to convex opti-
mization problems such as (1). For example, some wavelet-
based deconvolution approaches do not lead to an optimization
problem [30], [39]. However, this paper is strictly concerned
with algorithms for minimizing (1), and will not discuss its
relative merits with respect to other criteria, nor the relative
merits of different choices ofΦ.

B. Previous Algorithms

In recent years,iterative shrinkage/thresholding(IST) al-
gorithms (described in Section IV), tailored for objective
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functions with the form (1), were independently proposed
by several authors in different frameworks. IST algorithms
for wavelet-based deconvolution were first derived in [40]
(see also [27]) under the expectation-maximization (EM)
framework and, later [28], using amajorization-minimization
(MM, see [32]) approach. In [20], IST algorithms were placed
on solid mathematical grounds, with a rigorous convergence
proof in an infinite dimensional setting. A proof for the finite
dimensional case was independently presented in [4]. IST
algorithms have been independently proposed in [23], [24],
[44], [45]. Recently, paper [18] brought important contribu-
tions to the understanding of a class of objective functions
which containsf , as well as of a class of algorithms (termed
forward-backward splitting) which includes IST.

A different (not IST) algorithm, proposed in [6], [7], under
a generalizedEM framework [48], was recently shown to also
be an MM scheme [26]. That algorithm, which we will refer to
as IRS (iterative reweighted shrinkage) was shown to be much
faster than IST whenK is strongly ill-conditioned. Conversely,
for mildly ill-conditionedK and medium to strong noise, IST
is faster than IRS [26].

C. Contributions

This paper introduces a new class of iterative schemes,
bringing together the best of IRS and IST. Algorithms in
this class have atwo-step IST (TwIST) structure,i.e., each
iterate depends on the two previous iterates, rather than only
on the previous one. For ill-conditioned (but invertible) linear
observation operators, we prove (linear) convergence of TwIST
to minima of the objective functionf , for a certain range of the
algorithm parameters, and derive bounds for the convergence
factor. As a byproduct of this analysis, we provide a bound
for the convergence factor of IST in the case of invertible
operators which, to best of our knowledge, was not available
in the literature.

Experimental results (in wavelet-based and TV-based de-
convolution) confirm that TwIST algorithms can be tuned to
converge much faster than the original IST versions, specially
in severely ill-conditioned problems. Similarly to the IRS
algorithm [7], [26], the speed gains can reach up two orders
of magnitude in a typical benchmark problem (e.g., 9 × 9
uniform blur). Conversely, in well conditioned LIPs, TwIST
is still faster than IST (although not as much as in severely
ill-conditioned LIPs), thus faster than IRS [26].

The convergence proof mentioned in the previous para-
graph applies only to invertible linear operators. For the
non-invertible case, we introduce a monotonic variant of
TwIST, termed MTwIST. Although we do not have a proof
of convergence, we give experimental evidence that, with a
non-invertible operator, MTwIST also exhibits a large speed
advantage over IST.

D. Summary of the Paper

In Section II, we review several choices ofΦ in the context
of denoising problems, the solution of which plays a central
role in IST and TwIST. Section III studies the existence and
uniqueness of minimizers off . The IST and IRS algorithms

are reviewed in Section IV, together with previous results on
the convergence of IST. The TwIST algorithm is introduced
in Section V, which also contains the central theorem of the
paper. Finally, experimental results are reported in Section VI.
Appendices contain brief reviews of basic results from convex
analysis and other mathematical tools, as well as the proofs
of the new results presented.

II. REGULARIZERS AND DENOISING

A. Denoising with Convex Regularizers

Denoising problems are LIPs in whichK is the identity,
Kx = x. In this case, the objective function (1) simplifies to

fden = (1/2)d2
y + λΦ,

wheredy : X → R,

dy(x) = ‖x− y‖. (2)

We adopt the following standard assumptions about the reg-
ularizerΦ : X → R: it is convex, lower semi-continuous (lsc),
and proper (see Appendix A for definitions and implications
of these properties).

The fact thatΦ is lsc and proper andd2
y is a continuous, real-

valued, coercive function (lim‖x‖→∞ d2
y(x) = ∞), guarantees

that fden is lsc, proper, and coercive. Consequently, the set of
minimizers of fden is not empty (Theorem 5, Appendix A).
Finally, the strict convexity ofd2

y implies strict convexity of
fden (Theorem 7, Appendix A), thus its minimizer is unique;
this allows defining thedenoising function(also known as the
Moreau proximal mapping[18], [36], [43]) Ψλ : X → X as

Ψλ(y) = argmin
x

{
d2
y(x)

2
+ λΦ(x)

}
. (3)

In the following subsections, we describe in detail the
classes or regularizers considered in this work, as well as the
corresponding denoising functions.

B. Denoising with 1-Homogeneous Regularizers

A function Φ that satisfiesΦ(ζ x) = ζ Φ(x), for all ζ ≥ 0
andx ∈ X , is calledpositively homogeneous of degree 1(phd-
1). Let Υ(X ) denote the set of functionsΦ : X → R that are
convex, lsc, proper, and phd-1.

An important recent result states that denoising with regular-
izers fromΥ(X ) corresponds to the residual of the projection
onto a convex set, as formalized in the following theorem (see
[10], [18], [35] for proofs):

Theorem 1:If Φ ∈ Υ(X ), then the denoising functionΨλ

defined in (3) is given by

Ψλ(y) = y − PλC(y), (4)

where C ⊂ X is a closed convex set depending on the
regularizerΦ, and PA : X → X denotes the orthogonal
projection operator onto the convex setA ⊂ X .
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C. Total Variation

In the original formulation of total-variation (TV) [10],
[14], [41], X is an infinite-dimensional Hilbert spaceL2(I),
whereI is a bounded open domain ofR

2, e.g., Ω =]0, 1[2.
With digital images,X is simply a finite-dimensional space
of pixel values on a 2D lattice, sayX = R

m, equipped with
the Euclidean norm; thus discrete TV regularizers have to be
used [10], [11]. Standard choices are the “isotropic” and “non-
isotropic” discrete TV regularizers, given, respectively, by

ΦiTV (x) =
∑

i

√
(∆h

i x)2 + (∆v
i x)2 (5)

ΦniTV(x) =
∑

i

|∆h
i x| + |∆v

i x|, (6)

where∆h
i and∆v

i denote horizontal and vertical (on the 2D
lattice) first-order local difference operators (omittingbound-
ary corrections). It’s clear from (5) and (6) thatΦiTV , ΦniTV ∈
Υ(Rm). Although there is no closed form for the projection
ontoC, i.e., to solve the TV denoising problem, fast iterative
methods have been recently introduced [10], [11], [19], [29].

D. Weightedℓp Norm

Weightedℓp norms, forp ≥ 1, are defined as

Φℓp
w

(x) = ‖x‖p,w =

(
∑

i

wi|xi|p
)1/p

, (7)

wherew = [w1, w2, ..., wi, ...], with wi ≥ 0 andp ≥ 1. The
underlying Hilbert space is simplyX = R

m, in the finite-
dimensional case (with the sum in (7) extending fromi = 1
to i = m), or X = ℓ2(N), in the infinite-dimensional case
(where the sum in (7) is fori ∈ N). Being a norm,Φℓp

w

clearly belongs toΥ.
The denoising functionΨλ under aΦℓp

w

regularizer cannot
be obtained in closed form, except in some particular cases,
the most notable of which isp = 1; in this case,Ψλ is the
well known soft-thresholding function [22], that isΨλ(z) =
x̂ = [x̂1, ..., x̂i, ...], with

x̂i = soft(zi, λwi) = sign(zi)max {0, |zi| −λwi} . (8)

Next, we discuss some approaches involvingΦℓp
w

regular-
izers.

1) Orthogonal Representations:A classical approach con-
sists in modeling images as elements of some Besov space
Ba

p (Lp(I)), whereI = [0, 1]2 is the unit square. The adopted
regularizer is then the corresponding Besov norm‖·‖Ba

p(Lp(I)),
which has an equivalent weightedℓp sequence norm of wavelet
coefficients on an orthogonal wavelet basis (see [12] for
details). To exploit this equivalence, the problem is formulated
w.r.t. the coefficients, rather than the image itself. Letting
W : X → Ba

p (Lp(I)) denote the linear operator that produces
an image from its wavelet coefficients, the objective function
becomes

f(x) =
1

2
d2
y (HWx) + λΦℓp

w

(x), (9)

where the weights depend on the scale of each coefficient and
on the parameters (p anda) of the Besov norm (see [12]), and

H is the observation operator. In practice, for digital images,
X is finite-dimensional, sayX = R

m, Φℓp
w

is a weightedℓp

norm onR
m, andW ∈ R

m×m is an unitarym × m matrix.
Notice that (9) has the same form as (1), withK = HW and
Φ = Φℓp

w

.
2) Frames and Redundant Representations:Another for-

mulation (in a finite-dimensional setting) leading to an objec-
tive function with the same form as (9) is the following. Let the
columns ofW contain a redundant dictionary (e.g., a frame)
with respect to which we seek a representation of the unknown
image. If the image is directly observed,H is the identity; in
this case, minimizing (9) corresponds to finding a regularized
representation of the observed image on the dictionaryW

[23], [24]. For p = 1, this is the well-knownbasis-pursuit
denoisingcriterion [16]. If the original image is not directly
observed (H is not identity), minimizing (9) corresponds to
reconstructing/restoring the original image by looking for a
(regularized) representation on an over-complete dictionary.
This formulation has been used for shift-invariant wavelet-
based deconvolution [7], [27], [28].

E. Thep-th Power of a Weightedℓp Norm

This class of regularizers, defined as

Φp
ℓp
w

(x) = ‖x‖p
p,w =

∑

i

wi|xi|p, (10)

appears in many wavelet-based approaches [7], [20], [27],
[28], [29], [42]. This regularizer can also be motivated as being
equivalent to thep-th power of a Besov norm,‖ · ‖p

Ba
p (Lp(I))

[20], [35].
For p = 1, Φ1

ℓ1
w

= Φℓ1
w

, thus the denoising operator (3) is
given by (8). Forp > 1, Φp

ℓp
w

is not phd-1, and the denoising
operator doesn’t have the form (4). In this case, however, we
can writeΨλ(z) = x̂ = [x̂1, ..., x̂i, ...], with

x̂i = Sλwi,p(zi), (11)

whereSτ,p = F−1
τ,p is the inverse function of

Fτ,p (x) = x + τ p sign(x)|x|p−1. (12)

Notice that, forp > 1, Fτ,p : R → R is one-to-one, thus
Sτ,p = F−1

τ,p is well defined. The functionSτ,p, called the
shrinkagefunction, has simple closed forms whenp = 4/3,
p = 3/2, or p = 2 [15]. For example, the functionSτ,2 is
a simple linear shrinkage,Sτ,2(z) = z/(1 + 2τ). Important
features ofSτ,p (for p > 1) are: it’s strictly monotonic, con-
tinuously1 differentiable, and its derivative is upper bounded
by 1 (since the derivative of its inverseFτ,p is uniformly lower
bounded by 1) [20].

1Continuous differentiability is not claimed in [20], only its differentiability.
However, the continuity (forp > 1) of the derivative ofSτ,p, denotedS′

τ,p,
is easily shown. Firstly, it’s trivial to check thatlimx→0 S′

τ,p(x) = 0,
where S′

τ,p(x) = 1/F ′

τ,p(Sτ,p(x)). Secondly, it’s also easy to show, via
the definition of derivative, thatS′

τ,p(0) = 0.
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III. E XISTENCE AND UNIQUENESS OFSOLUTIONS

The existence and uniqueness of minimizers of (1) are
addressed in the following proposition, the proof of which
can be found in [18, Propositions 3.1 and 5.3].

Proposition 1: Let f : X → R be defined as in (1), where
operatorK : X → Y is linear and bounded, andΦ : X →
R is a proper, lsc, convex function. LetG denote the set of
minimizers off . Then,

(i) if Φ is coercive, thenG is nonempty;
(ii) if Φ is strictly convex orK is injective, thenG

contains at most one element;
(iii) if K is bounded below, that is, if there existsκ ∈

]0, +∞], such that, for anyx ∈ X , ‖Kx‖ ≥ κ‖x‖,
thenG contains exactly one element.

We will now comment on the application of Proposition
1 to the several regularization functions above considered.
If all the weights are strictly positive (wi > 0, ∀i), both
the weightedℓp norm and itsp-th power (for p ≥ 1) are
coercive (see [10, Proposition 5.15 and Problem 5.18], thus
Proposition 1 (i) ensures existence of minimizers off . Under
these regularizers, ifK is injective, the minimizer is unique;
otherwise, the minimizer is unique withΦp

ℓp
w

, with p > 1
(which is strictly convex).

In the finite-dimensional case (X = R
m), injectivity of

K is sufficient to guarantee existence and uniqueness of the
solution (under any convex regularizer, strictly or not, coercive
or not). This results from Proposition 1 (iii), because any finite-
dimensional injective operator is bounded below.

When Φ is a TV regularizer (e.g., ΦiTV or ΦniTV) and
K is not bounded below, Proposition 1 can not be used to
guarantee existence of minimizers of (1). The reason is thatTV
regularizers are not coercive since they equal zero when the
argument is a constant image. However, under the additional
condition that constant images do not belong to the null space
of K, it can still be shown thatG is not empty [13].

IV. PREVIOUS ALGORITHMS

This section reviews algorithms previously proposed for
finding minimizers off . From this point on, we focus on
the finite-dimensional case,X = R

m, Y = R
n, and denote

the standard Euclidean vector norm as‖ · ‖2.

A. Iterative Shrinkage/Thresholding (IST)

IST algorithms has the form

xt+1 = (1 − β)xt + β Ψλ

(
xt + KT (y − Kxt)

)
, (13)

whereβ > 0. The original IST algorithm has the form (13),
with β = 1 [20], [27], [28]. Schemes withβ 6= 1 can be seen
as under (β < 1) or over (β > 1) relaxed versions of the
original IST algorithm.

Each iteration of the IST algorithm only involves sums,
matrix-vector products byK andKT , and the application of
the denoising operationΨλ. In wavelet-based methods,Ψλ

is a coefficient-wise non-linearity, thus very computationally
efficient. WhenK represents the convolution with some kernel

k, the corresponding product can be computed efficiently using
the fast Fourier transform (FFT).

Convergence of IST, withβ = 1, was first shown in [20].
Later, convergence of a more general version of the algorithm
(includingβ 6= 1), was shown in [18]. The following theorem
is a simplified version of Theorems 3.4 and 5.5 from [18];
the simplifications result from considering finite-dimensional
spaces (no difference between strong and weak convergence)
and from (13) being a particular case of the somewhat more
general version studied in [18].

Theorem 2:Let f be given by (1), whereΦ : X → R is
convex2 and ‖K‖2

2 < 2. Let G, the set of minimizers off ,
be non-empty. Fix somex1 and let the sequence{xt, t ∈ N}
be produced by (13), withβ ∈ ]0, 1]. Then, {xt, t ∈ N}
converges to a pointx ∈ G.

B. Iterative Re-weighted Shrinkage (IRS)

The IRS algorithm was specifically designed for wavelet-
based problems of the form (9), whereW contains an or-
thogonal or redundant wavelet basis and the regularizer is not
necessarily a weightedℓp norm [7]. The iterations of the IRS
algorithm are given by

xt+1 = solution{At x = b} , (14)

with b = KTy andAt = λDt +KTK, whereDt is a diago-
nal matrix (of non-negative elements) that depends onxt and
Φ. Observe that matrixDt shrinks the components ofxt+1,
thus the termiterative reweighted shrinkage. Each iteration
of IRS resembles a weighted ridge regression problem, with
design matrixK; algorithms with a similar structure have been
used for sparse regression [25], [31].

The huge size ofAt forces the use of iterative methods
to implement (14). In [7], this is done with a two-step (or
second-order) stationary iterative method [3], which we will
next briefly review.

C. Two-step Methods for Linear Systems

Consider the linear systemAx = b, with A positive defi-
nite; define a so-calledsplitting of A as A = C − R, such
thatC is positive definite and easy to invert (e.g., a a diagonal
matrix). A stationarytwo-step iterative method(TwSIM) for
solvingAx = b is defined as

x1 = x0 + β0 C−1(b− Ax0)

xt+1 = (1 − α)xt−1 + αxt + β C−1(b− Axt) , (15)

for t ≥ 1, wherex0 is the initial vector, andα, β, β0 are
the parameters of the algorithm (more on this below). The
designation “two-step” stems from the fact thatxt+1 depends
on bothxt andxt−1, rather than only onxt.

The main result concerning TwSIM is given in following
theorem [3, Theorem 5.9]:

Theorem 3:Let {xt, t ∈ N} be the sequence produced by
(15), with arbitraryx0. Let λ1 and λm denote the smallest

2In a finite-dimensional space, every real convex function iscontinuous, so
we can drop the lsc condition.
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and largest eigenvalues of matrixC−1A, andκ = λ1/λm be
its inverse condition number. Then,{xt, t ∈ N} converges
to the solution ofAx = b if and only if 0 < α < 2 and
0 <β <2 α/λm. The optimal asymptotic convergence factor3

is ρ ≡ (1−√
κ)/(1 +

√
κ), obtained forα = ρ2 + 1 andβ =

2 α/(λ1+λm). With α = 1, the two-step method (15) becomes
a one-step method for which the best asymptotic converge
factor isρ ≡ (1 − κ)/(1 + κ).

D. Comparing IST with IRS

It was shown in [7] that, for ill conditioned systems, IRS
is much faster than IST. This fact can be traced to the use
of the TwSIM in each step of IRS. On the other hand, when
noise is the main factor, and the observation operator is nottoo
ill-conditioned, IST outperforms IRS because it uses a closed-
form (usually non-linear) denoising step in each iteration[26].
In fact, in a pure denoising problem (K = I or K orthogonal),
IST (with β = 1 and initialized with a zero image) converges
in one step, while IRS does not.

V. TWO-STEP IST (TWIST)

A. Motivation and Definition

The TwIST method proposed in this paper aims at keeping
the good denoising performance of the IST scheme, while still
being able to handle ill-posed problems as efficiently as the
IRS algorithm.

Taking C = I + λDt and R = I − KTK in the splitting
A = C−R of matrixA = λDt+KTK, the two-step iteration
(15) for the linear systemAx = KTy becomes

xt+1 = (1 − α)xt−1 + (α − β)xt

+β C−1
(
xt + KT (y − Kxt)

)
. (16)

Observe the relationship between (13) and (16): the former can
be obtained from the latter by settingα = 1 and replacing the
multiplication by matrixC−1 by the denoising operatorΨλ.
This similarity suggests a two-step version of IST (TwIST) as

x1 = Γλ(x0) (17)

xt+1 = (1 − α)xt−1 + (α − β)xt + β Γλ(xt), (18)

for t ≥ 1, whereΓλ : R
m → R

m is defined as

Γλ(x) = Ψλ

(
x + KT (y − Kx)

)
. (19)

A key observation is that TwIST, IST, and the original IST
with β = 1 all have the same fixed points. In fact, elementary
manipulation allows showing that the three following equa-
tions are equivalent:

x = (1 − α)x + (α − β)x + β Γλ(x)

x = (1 − β)x + β Γλ(x)

x = Γλ(x).

3See Appendix B for a brief review of convergence factors.

B. Convergence of TwIST

Fundamental questions concerning TwIST are: for what
values ofα andβ does it converge? How does the convergence
rate depend ofα andβ? The main theorem of this paper par-
tially characterizes the convergence of the TwIST algorithm,
whenf has a unique minimizer.

Theorem 4:Let f be given by (1), whereΦ is a convex
regularizer. Letξ1 andξm be two real numbers such that0 <
ξ1 ≤ λi(K

T K) ≤ ξm, whereλi(·) is the i-th eigenvalue of
its argument, letκ = ξ1/ ξm, whereξm ≡ max(1, ξm), and

ρ̂ ≡ 1 −√
κ

1 +
√

κ
< 1. (20)

Let x̂ be the unique (becauseK is injective) minimizer off
and define the “error vector” aset = xt − x̂ and the “stacked
error vector” as

wt =

[
et+1

et

]
. (21)

(i) There exists a matrix setQ such thatwt+1 can be
written aswt+1 = Qt wt, whereQt ∈ Q, for t ∈ N

(Qt may depend onwt); moreover, if 0 < α < 2
and 0 < β < 2 α/ξm, then ρ(Qt) < 1, for any
Qt ∈ Q, whereρ(Qt) is the spectral radius ofQt

(see Appendix B).

(ii) Setting

α = α̂ ≡ ρ̂ 2 + 1 (22)

β = β̂ ≡ 2 α̂/(ξm + ξ1) (23)

guarantees thatρ(Qt) = ρ̂ .

(iii) Setting α = 1 (i.e., the IST algorithm) and

β = β ≡ 2/(ξm + ξ1), (24)

guarantees that

ρ(Qt) ≤ ρ ≡ 1 − κ

1 + κ
< 1. (25)

(iv) If ξm < 1, 0 < α ≤ 1, and 0 < β < 2 α, then
limt→∞ wt = 0.

Theorem 4 extends the results about the convergence of the
linear TwSIM (see Section IV-C and [3]) to the non-linear/non-
differentiable case. While the proof in [3] uses linear algebra
tools, the possible non-linear/non-differentiable nature of Ψλ

demands non-smooth analysis techniques [17], [43]. The proof
of Theorem 4 can be found in Appendix C.

If matrix Qt is not time dependent,i.e. Qt = Q, the con-
dition ρ(Q) < 1 would be sufficient for convergence to zero
of wt. However, in TwIST,Qt is in general not constant, thus
ρ(Qt) < 1, ∀t, is not a sufficient condition for convergence
to zero ofwt. Convergence of a non-stationary linear iteration
wt+1 = Qt wt, whereQt belongs to some set of matricesQ,
depends on the so-calledjoint spectral radius(JSR) ofQ [47,
Proposition 3.2]. Computing (or bounding) the JSR of (even
very small) matrix sets is a hard problem, currently under
active research (see [47] and the many references therein).
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The convergence stated in Theorem 4 (iv) results from the
following fact: for α ≤ 1, there exists a matrix norm, say
‖ · ‖a, for which ‖Qt‖a ≤ ε < 1, for any Qt ∈ Q, which is
a sufficient condition for convergence to zero of the iteration
wt+1 = Qt wt.

Although, whenα > 1, Theorem 4 does not guarantee
convergence, we have observed, in a large number of image
deconvolution experiments, that the algorithm always con-
verges for a wide range of choices of parametersα and β.
In Section VI, we will discuss practical rules for choosing
these parameters.

As in linear stationary algorithms, we have experimentally
verified thatρ̂ andρ, respectively, are good indicators of the
relative speed of TwIST and IST. Seeing the algorithms as
linear stationary, quantities−1/ log10 ρ̂ and −1/ log10 ρ are
approximately the numbers of iterations needed to reduce
the error norm by a factor of 10 (see Appendix B). For
example, withκ ≃ 10−4 (common in image restoration),
−1/ log10 ρ̂ ≃ 102 and−1/ log10 ρ ≃ 104; i.e., in this case,
TwIST is expected to be roughly two orders of magnitude
faster than IST, as confirmed in our experiments. To the best
of our knowledge, the bound on the convergence factor of IST
given by (25) has not appeared previously in the literature.

C. Monotonic Version: MTwIST

Monotonicity underlies the derivation of many algorithms
and is instrumental in several convergence proofs;e.g., the
proof of convergence of IST (which is monotonic forβ = 1)
in [20]. Monotonicity is not used in our convergence proof of
TwIST (which is not necessarily monotonic), but the proof re-
quires the condition that the observation operator is invertible.
To handle non-invertible operators, we introduce a monotonic
version of TwIST (MTwIST); the rationale is that, even though
we can’t guarantee convergence of the estimate, monotonicity
combined with the fact that the objective function is bounded
below guarantees convergence of the objective function values
f(xt). Although this is a weaker result, we have observed in
many experiments that MTwIST always converges and still
does so much faster than IST.

The structure of MTwIST is very similar to that of TwIST,
with a single difference. Formally, fort > 1, let z be given
by (18); then

xt+1 =

{
z ⇐ f(z) ≤ f(xt)
Γλ(xt) ⇐ f(z) > f(xt).

Notice that settingxt+1 = Γλ(xt) corresponds to taking a
TwIST step withα = β = 1, that is, a (monotonic) IST step.

VI. EXPERIMENTAL RESULTS

In this section, we present image restoration results illus-
trating the convergence speed of TwIST in comparison with
IST. Our goal is not to assess the performance of image
restoration criteria of the form (1); this has been carried out
in several other publications, in comparison with other state
of the art criteria (see [7], [24], [27], [27], [30], [33]). It’s
clear that the performance of such criteria (e.g., in terms
of SNR improvement) does not depend on the optimization

algorithms used to implement them, but only on the choice
of the type of regularizerΦ. On the other hand, the relative
convergence speed of the algorithms is essentially dependent
on their structure.

We consider two classes of regularizers:i) Φ(x) = ‖x‖1,
where x denotes wavelet coefficients of the image to be
inferred, and ii) Φ(x) = ΦiTV(x), i.e., isotropic TV. See
Sections II-C and II-D for further details. In the casei) we use
the simplest possible choice of wavelet: Haar discrete wavelet
transform (DWT). We are well aware that this does not lead
to state-of-the-art performance in terms of SNR improvement;
however, the conclusions obtained concerning the relative
speed of the algorithms are valid for other choices of wavelets
and penalty functions. To implementΨλ corresponding to the
regularizerΦiTV (x), we use the algorithm introduced in [10].

TABLE I

EXPERIMENTAL SETTING (W IS THE INVERSE DISCRETE WAVELET

TRANSFORM).

Exp Image Linear OperatorK Φ(x) BSNR

1 Camera H1 (9 × 9 uniform) ΦiTV 40dB

2 Camera H1W ‖x‖1 40dB

3 Lena H2

�
[1,4,6,4,1]T [1,4,6,4,1]

256

�
ΦiTV 17dB

4 Lena H2W ‖x‖1 17dB

5 Camera 40% missing samples ΦiTV 40 dB

Table I shows the setting used in each of the five experi-
ments conducted. Experiments 1 and 2 correspond to a strong
blur with low noise, whereas experiments 3 and 4 correspond
to mild blur with medium noise. Our aim in choosing these
two scenarios is to illustrate that TwIST converges much faster
than IST in severely ill-conditioned LIPs and still faster than
IST in mildly ill-conditioned LIPs. In all the experiments,the
operatorK is normalized to haveξm = 1, thus κ = ξ1,
which we simply denote asξ. Finally, experiment 5 considers
a problem in which matrixK models the loss of40% of
the image pixels (at random locations); matrixK is thus
0.6 m × m, thus non-invertible (40% of its singular values
are zero). This experiment illustrates the behavior of MTwIST
on an severely ill-posed (ξ1 = 0) problem.

Inspired by Theorem 4 (ii), the TwIST parameters are
initially set to

α = ρ̂ 2 + 1 (26)

β = 2 α/(1 + ξ), (27)

whereρ̂ is given by (20) andξ is set according to a qualitative
classification:ξ = 10−1 or ξ = 10−3 for, respectively,
mildly or severely ill-conditioned LIPs. This choice may be,
of course, far from optimal; we have observed, however, that
it leads to speeds of convergence very close to the best ones
obtained by hand tuning(α, β). The reason for this is that,
as illustrated below, TwIST is very robust with respect to the
parameters(α, β), namely for severely ill-conditioned LIPs.
Another alternative is to run a few TwIST iterations, sayt0,
for eachξ = 10−i, with i = 1, 2, . . . and choose the value that
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Fig. 1. TV-based deconvolution in a severely ill-conditioned problem
(experiment 1). Evolution of the objective functionf(xt) produced by TwIST,
ISTopt, and IST1.
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Fig. 2. TV-based deconvolution in a severely ill-conditioned problem
(experiment 1). Evolution of the SNR improvement (ISNR) produced by
TwIST, ISTopt, and IST1.

leads to lowest value off(xt0). In the experiments reported
below, we use this procedure witht0 = 5.

The parameterβ of IST is set according to Theorem 4 (iii);
i.e., β = 2/(1 + ξ). This setting, yields the optimal spectral
radiusρ(Qt) associated to the one-step iterative method. We
will refer to this particularoptimalversion of IST as ISTopt and
to the original IST (i.e., β = 1) as IST1. Notice that since, in
ill-conditioned problems,ξ1 ≪ 1, the optimalβ is very close
to the maximum allowed value that guarantees convergence;
for example, forξ1 = 10−3, we haveβ = 1.998.

In all the examples, the algorithms are initialized withx0

given by a Wiener filter and the parameterλ is hand tuned for
the best SNR improvement.

Experiments 1 and 2:Fig. 1 shows the evolution of the
objective function along the iterations4 confirming that TwIST
converges much faster than ISTopt and IST1, which take,
respectively, 2400 and 5800 iterations to reach the value
of f obtained with TwIST just after 100 iterations. Notice

4Arguably, the horizontal axes should represent CPU time instead of number
of iterations; however, we have verified that the CPU time periteration differs
by less than 1% between TwIST and IST, so this change would only imply a
change of scale of these horizontal axes.
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Fig. 3. TV-based deconvolution in a severely ill-conditioned problem
(experiment 1). Evolution of the objective functionf(xt) produced by TwIST,
for different parameters(α(ξ), β(ξ)), and by IST1. Notice the low sensitivity
of TwIST with respect to(α(ξ), β(ξ)).

also that ISTopt converges approximately twice as fast as
IST1. This pattern of behavior was systematically observed
in severely ill-conditioned LIPs. Fig. 2 shows the evolution
of the SNR improvement (ISNR) produced by TwIST, ISTopt

and IST1. As expected5, ISNR(t) also converges much faster
with TwIST than with IST1 and ISTopt. Fig. 3 shows the
evolution of the objective functionf(xt) produced by TwIST,
for different parameters(α(ξ), β(ξ)), and by IST1. Notice the
low sensitivity of TwIST with respect to(α(ξ), β(ξ)). This is
a relevant characteristic of TwIST, because the optimal setting
for (α, β) is rarely know.

In order to assess the impact of the initialization on the rel-
ative performance of the algorithms, we considered two other
initialization methods: an all zeros image and the observed
image. Table II shows the average (over 10 runs) number of
iterations required by IST1 and ISTopt to reach the value of the
objective obtained by 100 iterations of TwIST. Initialization
with zeros or the observed image decreases the advantage of
TwIST by roughly 50%; however, the Wiener initialization
leads (after 100 iterations) to a final value off and an ISNR
which are a little better than the other two methods.

TABLE II

AVERAGE NUMBER OF ITERATIONS REQUIRED BYIST1 AND ISTOPT TO

REACH THE SAME VALUE OFf OBTAINED BY 100 ITERATIONS OFTWIST.

Initialization ISTopt IST1

Wiener filter 2.4 × 103 5.8 × 103

Zeros 1.1 × 103 2.1 × 103

Observed image 1.1 × 103 2.0 × 103

Figs. 4 and 5 plot wavelet based deconvolution results
obtained with the setting of experiment 2. The comments to
this figures are similar to those made for Figs. 1 and 3: TwIST
converges much faster than IST1 and ISTopt; TwIST has low
sensitivity with respect toξ.

Experiments 3 and 4:Figs. 6 and 7 plot results obtained in
mildly ill-conditioned LIP. The first aspect to note is that (as

5ISNR(t) = 10 log10(‖y−x‖/‖xt −x‖), wherex is the original image.
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Fig. 4. Wavelet-based deconvolution in a severely ill-conditioned problem
(experiment 2). Evolution of the objective functionf(xt) produced by TwIST,
ISTopt, and IST1.
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Fig. 5. Wavelet-based deconvolution in a severely ill-conditioned problem
(experiment 2). Evolution of the objective functionf(xt) produced by TwIST,
for different parameters(α(ξ), β(ξ)), and by IST1. Notice the low sensitivity
of TwIST with respect to(α(ξ), β(ξ)).
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Fig. 6. TV-based deconvolution in a mildly ill-conditionedproblem (ex-
periment 3). Evolution of the objective functionf(xt) produced by TwIST,
ISTopt, and IST1.
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Fig. 7. Wavelet-based deconvolution in a mildly ill-conditioned problem
(experiment 3). Evolution of the objective functionf(xt) produced by TwIST,
ISTopt, and IST1.
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Fig. 8. TV-based image restoration from 40% missing samples(experiment
5). Evolution of the objective functionf(xt) produced by TwIST, ISTopt, and
IST1.

expected) all the algorithms converge much faster than in the
severely ill-conditioned case. The limit situation is a denoising
LIP (i.e.,K = I or unitary) in which the solution is obtained in
just one step (withα = β = 1 andx0 = 0). The other aspect
to note is that although the behavior of all the algorithms is
almost identical, TwIST is still slightly faster than IST.

Experiment 5:In this example, the goal is not to present a
state-of-the-art method for restoration from missing samples,
but simply to illustrate the behavior of the algorithms with
a non-invertible observation model. The evolution of the
objective function in Figure 8 shows that MTwIST converges
considerably faster than IST1 and IST with β = 1.998. In
line with the results reported in 3 and 5, MTwIST is again
rather insensitive to the choice ofξ1 (which in this case can
no longer be related to the minimum singular value ofK,
which is zero) Figure 9 shows the observed image (the missing
samples are set to the mid level gray value) and the restored
image produced by MTwIST.
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Fig. 9. TV-based image restoration from 40% missing samples(experiment
5); top: observed image; bottom: restored image.

VII. C ONCLUDING REMARKS

In this paper we have introduced a new class of iterative
methods, called TwIST, which have the form oftwo-step iter-
ative shrinkage/thresholding (TwIST) algorithms. The update
equation depends on the two previous estimates (thus the term
two-step), rather than only on the previous one. This class
contains and extends the iterative shrinkage/thresholding (IST)
methods recently introduced.

We proved convergence of TwIST to minima of the objec-
tive function (for a certain range of the algorithm parameters)
and derived bounds for the convergence factor as a function of
the parameters defining the algorithm. Experimental results (in
wavelet-based and TV-based deconvolution) have shown that
TwIST can in fact be tuned to converge much faster than the
original IST, specially in severely ill-conditioned problems,
where the speed up can reach two orders of magnitude
in a typical deblurring problem. We have also introduced
MTwIST, a monotonic variant of TwIST, conceived for non-
invertible observation operators; the performance of MTwIST
was illustrated on a problem of image restoration from missing
samples.

APPENDIX A: CONVEX ANALYSIS

We very briefly review some basic convex analysis results
used in this paper. For more details see [43], [49].

Consider a functionf : X → [−∞, +∞] = R, whereR is
the extended real line, andX is a real Hilbert space.

The functionf is convexif f(αu + (1 − α)v) ≤ αf(u) +
(1−α)f(v), for anyu,v ∈ X and anyα ∈ [0, 1]. Convexity

is said to be strict if the inequality holds strictly (<) for any
u,v ∈ X and anyα ∈ ]0, 1[.

The functionf is proper if f(x) < ∞, for at least one
x ∈ X , andf(x) > −∞, for all x ∈ X .

The functionf is lower semi-continuous(lsc) atv if

lim
δց0

inf
x∈B(v,δ)

f(x) ≥ f(v),

whereB(v, δ) = {x : ‖x − v‖ ≤ δ} is the δ-ball aroundv,
and‖ · ‖ is the norm in the Hilbert spaceX .

A function f is called coercive if it verifies
lim‖x‖→∞ f(x) = +∞.

Proper, lsc, coercive functions play a key role in optimiza-
tion because of the following theorem (see [43]):

Theorem 5:If f is a proper, lsc, coercive, convex function,
then infx∈X f(x) is finite and the setarg minx∈X f(x) is
nonempty.

The next theorems concern strictly convex functions.
Theorem 6:If f is a strictly convex function, the set

argminx∈X f(x) possesses at most one element.
Theorem 7:If f1 is a convex function,f2 is a strictly

convex function, and0 < λ < ∞, then λ f2 and f1 + λf2

are strictly convex.

APPENDIX B: MATRIX NORMS, SPECTRAL RADIUS,
CONVERGENCE, CONVERGENCEFACTORS AND

CONVERGENCERATES

Given a vector norm‖ · ‖, ‖A‖ = max‖x‖=1 ‖Ax‖ is the
matrix norm ofA induced by this vector norm. A vector norm
and the corresponding induced matrix norm areconsistent, i.e.,
they satisfy‖Av‖ ≤ ‖A‖ ‖v‖.

When the vector norm is the Euclidean norm (denoted‖·‖2),
the induced matrix norm (also denoted‖·‖2) is calledspectral
norm. If A is Hermitian, ‖A‖2 = maxi |λi(A)| = ρ(A),
called spectral radius [3]. Key results involvingρ(·) are

lim
k→∞

Ak = 0 ⇔ ρ(A) < 1, (28)

lim
k→∞

‖Ak‖1/k = ρ(A), (29)

∀A,ε ∃‖·‖a
: ‖A‖a ≤ ρ(A) + ε. (30)

Consider the linear systemBx = b, with solutionx̂ and an
iterative scheme yielding a sequence of iterates{xt, t ∈ N}.
For a linear stationary iterative algorithm, the erroret = xt−x̂

evolves according toet = Aet−1, thus et = At e0. From
(28), the error goes to zero if and only ifρ(A) < 1. Because
of (29),ρ(A) is also called theasymptotic convergence factor.
Theasymptotic convergence rate, given byr = − log10 ρ(A),
is roughly the number of new correct decimal places obtained
per iteration, while its inverse approximates the number of
iterations required to reduce the error by a factor of 10.

APPENDIX C: PROOF OFTHEOREM 4

Before proving Theorem 4, we introduce several results on
which the proof is built, one of them being Clarke’s mean
value theorem for non-differentiable functions [17]. Other
preliminary results are presented and proved in SubsectionC.2.
Finally, Subsections C.3, C.4, C.5 and C.6 contain the proofs
of parts (i), (ii), (iii), and (iv) of Theorem 4, respectively.
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C.1. The Non-Smooth Mean Value Theorem

Definition 1: Let F : R
m → R

m be such that each of
its components is Lipschitz andΩF the set of points at
which F is non-differentiable. LetJF (x) denote them × m
Jacobian matrix ofF at x, whenx 6∈ ΩF . The (Clarke’s [17])
generalized Jacobianof F at x is given by

∂ F (x) = co

{
lim

xi→x, xi 6∈ΩF

JF (xi)

}
, (31)

where co(A) denotes the convex hull ofA. If F is continu-
ously differentiable atx, then∂ F (x) = {JF (x)} [17].

Theorem 8:(Mean value theorem [17]) LetF be as in
Definition 1 andu, v ∈ R

m be any two points. Then,

F (u) − F (v) ∈ co∂ F ([u, v])(u − v), (32)

where co∂ F ([u,v]) denotes the convex hull of the set{A :
A ∈ ∂ F (r), r ∈ [u, v]} , with [u, v] denoting the line
segment betweenu andv. Expression (32) means that there
exists a matrixB ∈ co∂ F ([u, v]), such thatF (u)−F (v) =
B(u − v).

C.2. Preliminary Results

The two following propositions characterize the elements of
the generalized Jacobian of denoising functions,∂ Ψλ, and of
co∂ Ψλ([u,v]).

Proposition 2: For any x ∈ R
m, any D ∈ ∂ Ψλ(x) is

symmetric, positive semi-definite (psd), and‖D‖2 ≤ 1.

Proof: The proof distinguishes two classes of regulariz-
ers. Consider first thatΨλ results from a regularizer in class
Υ(Rm) (see Section II-B);e.g., iTV, niTV, or Φℓp

w

. From
Theorem 1 in Section II-B,Ψλ(x) = x − PλC(x). Thus,
∂ Ψλ(x) = I − ∂ PλC(x), that is, any element, sayD, of
∂ Ψλ(x) can be written asD = I−A, whereA ∈ ∂ PλC(x).
Theorem 2.3 in [46] guarantees thatA is symmetric, psd, and
‖A‖2 ≤ 1. Thus,D = I − A is also symmetric, psd, and
‖D‖2 ≤ 1.

Consider now thatΨλ results from aΦp
ℓp
w

regularizer,
with p > 1 (see Section II-E). Due to the component-wise
structure ofΨλ, shown in (11), and sinceSτ,p is continuously
differentiable (see footnote 1),∂ Ψλ(x) contains a single
diagonal (thus symmetric) matrix, sayD. As shown in [20],
Sτ,p (for p > 1) is strictly monotonic and its derivative is upper
bounded by 1, which implies that each entry ofD belongs to
]0, 1]. This implies thatD is psd and‖D‖2 ≤ 1.

Proposition 3: For any pair of pointsu,v ∈ R
m, anyB ∈

co∂ Ψλ([u,v]) is symmetric, psd, and‖B‖2 ≤ 1.

Proof: From Proposition 2, for anyr ∈ R
m, any

A ∈ ∂ Ψλ(r) is symmetric, psd, and has‖A‖2 ≤ 1. Thus
co∂ Ψλ([u,v]) is the convex hull of a set matrices which are
all symmetric, psd, and have norm no larger than 1. Therefore,
any matrixB ∈ co∂ Ψλ([u,v]) is also symmetric, psd, and
has‖B‖2 ≤ 1.

C.3. Proof of Theorem 4 (i)

Recalling thatet = xt − x̂ and using (18), we write

et+1 = (1−α)et−1 +(α−β)et +β [Γλ(xt) − Γλ(x̂)] . (33)

Using the definition ofΓλ given in (19) and the mean value
theorem (Theorem 8), we may write

Γλ(xt) − Γλ(x̂) = Ψλ(xt + KT (y − Kxt)︸ ︷︷ ︸
zt

)

−Ψλ( x̂ + KT (y − Kx̂)︸ ︷︷ ︸bz )

= Bt

[
xt − x̂ + KT K(xt − x̂)

]

= Bt

[
I− KTK

]
et, (34)

whereBt ∈ co∂ Ψλ([zt, ẑ]). Recall that Proposition 3 states
thatBt is symmetric, psd, and has‖Bt‖2 ≤ 1. Inserting (34)
into (33),

et+1 = (1 − α)et−1 + α et − β
[
I − Bt[I − KTK]

]
et

= (1 − α)et−1 + [α I − β Mt ] et, (35)

where
Mt = I − Bt[I − KTK]. (36)

Recalling that thestacked errorvectorwt ∈ R
2m is

wt =

[
et+1

et

]
,

we can use (35) to writewt = Qt wt−1, where

Qt =

[
(α I − β Mt) (1 − α) I

I 0

]
. (37)

Thus,Q is the set of matrices with the form (37), whereMt is
given by (36) andBt is symmetric, psd, and has‖Bt‖2 ≤ 1.

To prove the second statement in Theorem 4 (i), we need
to study how the choice ofα and β affects ρ(Qt) =
maxi |λi(Qt)|, for any possibleMt. We begin by considering
the following facts:(a) I−KTK is symmetric and1− ξm ≤
λi

(
I− KT K

)
≤ 1 − ξ1 (becauseξ1 ≤ λi

(
KTK

)
≤ ξm);

(b) according to Proposition 3,Bt is symmetric, psd, and
‖Bt‖2 ≤ 1, thus0 ≤ λi(Bt) ≤ 1. Consequently, using results
on bounds of eigenvalues of products of symmetric matrices,
one of which is psd, [37, Theorem 2.2],

min(0, 1 − ξm) ≤ λi

(
Bt[I − KTK]

)
≤ 1 − ξ1; (38)

finally, sinceMt = I− Bt[I − KTK],

0 < ξ1 ≤ λi(Mt) ≤ max(1, ξm) ≡ ξm. (39)

Following [3], let (µ, z) denotes any eigenpair ofQt, i.e.,
Qtz = µ z; writing z = [zT

a , zT
b ]T , we have

[
α I − β Mt (1 − α) I

I 0

][
za

zb

]
= µ

[
za

zb

]
. (40)

The bottomm rows of (40) giveza = µ zb; inserting this
equality into the top half of (40), we obtain

[ µ(α I− β Mt) + (1 − α) I ] zb = µ2 zb. (41)



SUBMITTED FOR PUBLICATION; 2007. 11

Since the matrix in the l.h.s. of (41) can be written as(µ α +
1−α) I−µ β Mt, its eigenvectors coincide with those ofMt.
Thus, withλ denoting some eigenvalue ofMt, µ has to be a
solution of the following second degree equation

(µ α + 1 − α) − µ β λ = µ2. (42)

Let
ρ̃(α, β, λ) = max{|µ1|, |µ2|}, (43)

where µ1 and µ2 are the two solutions of (42). We
thus need to study how̃ρ(α, β, λ) behaves for λ ∈
[λmin(Mt), λmax(Mt)] ≡ [τ1, τm], for each choice ofα andβ.
Notice that (39) does not provideτ1 andτm (all it guarantees
is that [τ1, τm] ⊆ [ξ1, ξm]). It is shown in [3, Lemma 5.8]
that ρ̃(α, β, λ) < 1, for any λ ∈ [τ1, τm], if 0 < α < 2
and 0 < β < 2 α/τm. Since τm ≤ ξm, any β satisfying
β < 2 α/ξm also satisfiesβ < 2 α/τm.

Finally, notice thatρ(Qt) = maxi{ρ̃(α, β, λi(Mt))}; thus
ρ̃(α, β, λ) < 1 implies thatρ(Qt) < 1, concluding the proof
of Theorem 4 (i). �

C.4. Proof of Theorem 4 (ii)

We begin by re-writing (42), forα = α̂ andβ = β̂, as

µ2 + (λ β̂ − α̂)µ + (α̂ − 1) = 0, (44)

and proving that the solutions of (44) are complex conjugate
for any λ ∈ [τ1, τm]. From the classical formula for the
solutions of a second degree equation, it’s clear that the two
roots of (44) are complex conjugate if and only if(λβ̂−α̂)2 ≤
4(α̂− 1), for anyλ ∈ [τ1, τm]; this inequality is equivalent to

β̂ 2λ2 − 2 α̂ β̂ λ + α̂ 2 − 4 (α̂ − 1) ≤ 0. (45)

It’s easy to show that the two roots of l.h.s. of (45) areξ1 and
ξm; thus, sinceβ̂ 2 > 0, inequality (45) is satisfied whenλ
is between these two roots. Therefore, whenλ ∈ [τ1, τm] ⊆
[ξ1, ξm], the roots of (44) are indeed complex conjugate.

Recall that the product of the two roots of a second order
polynomial equals its independent term; applying this factto
(44) yieldsµ1 µ2 = (α̂ − 1). For λ ∈ [τ1, τm], we haveµ1 =
µ∗

2, thusµ1 µ2 = |µ1|2 = |µ2|2 = (α̂ − 1); thus ρ̃(α̂, β̂, λ) =
max{|µ2|, |µ1|} =

√
α̂ − 1 = ρ̂, for any λ ∈ [τ1, τm], as

stated in Theorem 4 (ii).

C.5. Proof of Theorem 4 (iii)

Insertingα = 1 andβ = β in (42) leads to the equation

µ(1 − β λ) = µ2, (46)

which has solutionsµ1 = 0 andµ2 = (1−β λ). Consequently,
ρ̃(1, β, λ) = max{|µ1|, |µ2|} = |1 − β λ|. To show part (iii)
of the theorem, we need to show that

max
λ∈[τ1, τm]

ρ̃(1, β, λ) ≤ 1 − κ

1 + κ
.

Becausẽρ(1, β, λ) and(1−κ)/(1+κ) are positive, both sides
of the previous inequality can be squared. Simple manipulation
allows showing that

ρ̃ 2(1, β, ξ1) = ρ̃ 2(1, β, ξm) =

(
1 − κ

1 + κ

)2

.

Finally, sinceρ̃ 2(1, β, λ) = (1−βλ)2 is a convex function of
λ, and [τ1, τm] ⊆ [ξ1, ξm],

max
λ∈[τ1, τm]

ρ̃ 2(1, β, λ) ≤ max
λ∈[ξ1, ξm]

ρ̃ 2(1, β, λ) ≤
(

1 − κ

1 + κ

)2

,

concluding the proof of Theorem 4 (iii).

C.6. Proof of Theorem 4 (iv)

A sufficient condition for convergence to zero of the
switched linear systemzt+1 = Tt zt, whereTt ∈ T , and
T is a bounded set of matrices, is the existence of a matrix
norm ‖ · ‖, such that‖Tt‖ ≤ ε < 1, for any Tt ∈ T . Our
proof uses the matrix norm‖ · ‖A, defined as

‖B‖A = ‖ABA−1‖2, (47)

where A is a symmetric positive definite matrix, which is
induced by the vector norm‖ · ‖A = ‖Av‖2 [9].

We split the proof into two cases:

(a) With α = 1, the erroret evolves according to the one-step
iteration

et+1 = (I − β Mt ) et; (48)

matrixMt (see (36)) can be written asMt = I−Bt U, where
U = I − KTK is a symmetric positive definite matrix, thus
so isU1/2. Computing the‖ · ‖U1/2 norm of (I − β Mt ),

‖I − β Mt ‖U1/2 = ‖U1/2(I − β Mt )U−1/2‖2

= ‖I− β (I − U1/2Bt U
1/2)‖2

= ρ(I − β Mt) (49)

where we have used the following facts: for a real symmetric
matrix A, ‖A‖2 = ρ(A) and, for any pair of square matrices
A andB, ρ(AB) = ρ(BA).

Finally, notice that, as shown in Section C.5,

ρ(I − β Mt) = max
λ∈[τ1, τm]

ρ̃(1, β, λ) ≤ 1 − κ

1 + κ
< 1,

concluding the convergence proof, forα = 1.

(b) With α < 1, let us define the matrix

V =

[
U 0

0 (1 − α)U

]
. (50)

With Qt given by (37), it is simple to conclude that

V1/2QtV
−1/2 =[

(α − β)I + β U1/2BtU
1/2

√
1 − α I

√
1 − α I 0

]
, (51)

which is a real symmetric matrix. This allows writing

‖Qt‖V1/2 = ‖V1/2QtV
−1/2‖2

= ρ
(
V1/2QtV

−1/2
)

= ρ (Qt)

= max
i

{ρ̃(α, β, λi(Mt))} (52)

≤ max
λ∈[τ1, τm]

{ρ̃(α, β, λ)} (53)

< 1, (54)

where the equality in (52) and the inequalities (53) and (54)
were shown in Section C.3. �
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