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A New TwlIST: Two-Step Iterative
Shrinkage/Thresholding
Algorithms for Image Restoration

José M. Bioucas-Diasviember, IEEE and Mario A. T. FigueiredoSenior Member, IEEE

Abstract— Iterative shrinkage/thresholding (IST) algorithms ~ f : X — R = [—o0, +00], given by
have been recently proposed to handle a class of convex un- 1
constrained optimization problems arising in image restoation f(x) = 3 ly — Kx||* + A ®(x), 1)

and other linear inverse problems. This class of problems sults ; ] ]

from combining a linear observation model with a non-quadraic wWhere K : X — ) is the (linear)direct operator X and
regularizer (e.g, total variation, or wavelet-based regularization). ) are real Hilbert spaces (both with norm denoted|ad]),

It happens that the convergence rate of these IST algorithms ¢ . ¥ — R is a function (whose meaning and role will be

depends heavily on the linear observation operator, becomg . . ;
very slow when this operator is ill-conditioned or ill-posel. In discussed in the next paragraphisk. [0, +oof is a parameter.

this paper, we introduce two-step IST (TwIST) algorithms, - In a regularization framework, minimizing is seen as a
hibiting much faster convergence rate than IST for ill-condtioned ~way of overcoming the ill-conditioned, or singular, naturfe
problems. For a vast class of non-quadratic convex regulazers K, which precludes inverting it. In this contex®, is called

(¢? norms, some Besov norms, and total variation), we show that the regularizerand A the regularization parametef5].

TwIST converges to a minimizer of the objective function, fo In a (finite-dimensional) Bayesian setting, the reasoning

a given range of values of its parameters. For non-invertitg . . - -
observation operators, we introduce a monotonic version of behind (1) is as follows. Assume that= Kx+w, wherew is

TwIST (MTwIST); although the convergence proof does notappy @ Sample of a white zero-mean Gaussian random vector/field,
to this scenario, we give experimental evidence that MTwIST of variance o?; let p(x) be the adopted prior; thus, the
exhibits similar speed gains over IST. The effectiveness dhe |ogarithm of thea posteriori density islogp(xly) = —f(x)
new metho_ds are experlmente_llly co_nflrm_ed_on problems of imag (up to a constant), with\ = o2 and d(x) = —logp(x);
deconvolution and of restoration with missing samples. . A L

maximum a posteriomestimates are thus minimizers ff(see
Key Words: Inverse problems, deconvolution, convex optimizatio2] and references therein). Despite this possible in&tgtion

wavelets, total variation, regularization, optimization of (1), we will refer to® simply as the regularizer.
Regardless of the adopted formal framework, the intuitive
|. INTRODUCTION meaning off is_simple: minimizing it corrgsponds to Iooking
. for a compromise between the lack of fitness of a candidate
A. Problem Formulation estimatex to the observed data, measured|jyy— Kx||?, and

Inverse problems abound in many application areas i$ degree of undesirability, given B(x). The regularization
signal/image processing: remote sensing, radar imagimp+ parameter\ controls the relative weight of the two terms.
graphic imaging, microscopic imaging, astronomic imaging A more detailed discussion ob will be postponed to
digital photography [1], [5], [34]. Image restoration is eon Section Il; suffice it to say here that the current statehet-art
of the earliest and most classical linear inverse problems regularizers for image restoration are non-differengaiix-
imaging, dating back to the 1960’s [1]. amples of such choices are total-variation (TV) regulditzea

In an inverse problem, the goal is to estimate an unknoW0], [14], [41] and wavelet-based regularization [12]1]2
original signal/imagex from a (possibly noisy) observatign [22], [38]. The non-differentiable nature of, together with
produced by an operat® applied tox. WhenK is linear, we the huge dimension of its argument (for a typiéak x 512
have alinear inverse problenfLIP). Although we only report image,X’ = R*%2!4), place its minimization beyond the reach
image restoration experiments, all the results hereinemtesl  Of standard off-the-shelf optimization methods.
are of general applicability in LIPs. Of course not all approaches to LIPs lead to convex opti-

Many approaches to LIPs define a solutiote.g, a restored mization problems such as (1). For example, some wavelet-

image/signal) as a minimizer of a convex objective functio@sed deconvolution approaches do not lead to an optimizati
problem [30], [39]. However, this paper is strictly concedn

This work was partially supported bljundagao para a Ciéncia e Tec- with algorithms for minimizing (1), and will not discuss its

nologia (FCT), Portuguese Ministry of Science and Higher Educatiorder ; ; ; A ;
project POSCIEEA.CPS/61271/2004. relative merits with respect to other criteria, nor the tieta

Both authors are with thelnstituto de Telecomunicacgesand the Merits of different choices ob.
Department of Electrical and Computer Engineerinipstituto Supe- ) .
rior Técnicg 1049-001 Lishoa, Portugal. Email: jose.bioucas@t.iapd B. Previous Algorithms
mario.figueiredo@Ix.it.pt . . . .
A preliminary, much shorter version of this paper was suteditto the In recent yearsjterative Sh”nkage/threShOIdmgST) al-

IEEE International Conference on Image Processing — ICOR2 gorithms (described in Section V), tailored for objective



SUBMITTED FOR PUBLICATION; 2007. 2

functions with the form (1), were independently proposeare reviewed in Section 1V, together with previous results o
by several authors in different frameworks. IST algorithmthe convergence of IST. The TwIST algorithm is introduced
for wavelet-based deconvolution were first derived in [40h Section V, which also contains the central theorem of the
(see also [27]) under the expectation-maximization (EM)aper. Finally, experimental results are reported in Sactil.
framework and, later [28], using majorization-minimization Appendices contain brief reviews of basic results from esnv
(MM, see [32]) approach. In [20], IST algorithms were placednalysis and other mathematical tools, as well as the proofs
on solid mathematical grounds, with a rigorous convergencéthe new results presented.
proof in an infinite dimensional setting. A proof for the fait
dimensional case was independently presented in [4]. IST
algorithms have been independently proposed in [23], [24],
[44], [45]. Recently, paper [18] brought important contrib A. Denoising with Convex Regularizers
tions to the understanding of a class of objective functions
which containsf, as well as of a class of algorithms (termerk
forward-backward splittinywhich includes IST.

A different (not IST) algorithm, proposed in [6], [7], under faen= (1/2)d2 + A ®,
ageneralizedEM framework [48], was recently shown to also Y
be an MM scheme [26]. That algorithm, which we will refer tavhered,, : X — R,
as IRS (iterative reweighted shrinkage) was shown to be much

Il. REGULARIZERS AND DENOISING

Denoising problems are LIPs in whidK is the identity,
x = x. In this case, the objective function (1) simplifies to

faster than IST whekK is strongly ill-conditioned. Conversely, dy(x) = |Ix — y. )

for mildly ill-conditioned K and medium to strong noise, IST

is faster than IRS [26]. We adopt the following standard assumptions about the reg-
ularizer® : X — R: it is convex, lower semi-continuous (Isc),

C. Contributions and proper (see Appendix A for definitions and implications

This paper introduces a new class of iterative scheméjg these propert!es). . )
bringing together the best of IRS and IST. Algorithms in Thefactthq@ is Isc and properan«;ﬁ is a continuous, real-
this class have awo-stepIST (TwIST) structure,i.e, each Valued, coercive functionifnx| oo dy(x) = oc), guarantees
iterate depends on the two previous iterates, rather thin of@t fden iS ISC, proper, and coercive. Consequently, the set of
on the previous one. For ill-conditioned (but invertiblijgar MiNIMizers of faen is not_empt32/ (Theorem 5, Appendix A).
observation operators, we prove (linear) convergence ¢&Tw Finally, the strict convexity ofly implies strict convexity of
to minima of the objective functiofi, for a certain range of the /den (Theorem 7, Appendix A), thus its minimizer is unique;
algorithm parameters, and derive bounds for the conveggefidiS allows defining thelenoising functiorfalso known as the
factor. As a byproduct of this analysis, we provide a bourld0reau proximal mappingi8], [36], [43]) ¥ : ¥ — X as
for the convergence factor of IST in the case of invertible 2 (x)
operators which, to best of our knowledge, was not available ¥, (y) = argmin { T+ @(x)} : (3
in the literature. * 2

Experimental results (in wavelet-based and Tv-based de- -, following subsections, we describe in detail the
convolution) confirm that TwIST algorithms can be tuned tg . o .

- ) . _Classes or regularizers considered in this work, as welhas t

converge much faster than the original IST versions, Smmacorresponding denoising functions
in severely ill-conditioned problems. Similarly to the IRS '

algorithm [7], [26], the speed gains can reach up two orders

of magnitude in a typical benchmark problem.d, 9 x 9 B, Denoising with 1-Homogeneous Regularizers

uniform blur). Conversely, in well conditioned LIPs, TwIST , L
is still faster than IST (although not as much as in severerA func'uo.n ¢ that sat_|§f|e31>(§ x) = (2(x), forall ¢ > 0
ill-conditioned LIPs), thus faster than IRS [26]. andx € X, is calledpositively homogeneous of degreéhd-

The convergence proof mentioned in the previous park): L€t T (&) denote the set of functions : X' — R that are

graph applies only to invertible linear operators. For thg®"VeX, Isc, proper, and phd-1. o
non-invertible case, we introduce a monotonic variant of AN importantrecent result states that denoising with regul

TWIST, termed MTwIST. Although we do not have a proof?€'s fromY (X) corresponds_ to tr_\e residual (_)f the projection
of convergence, we give experimental evidence that, withCQto a convex set, as formalized in the following theorene (se
non-invertible operator, MTWIST also exhibits a large sped10l: [18], [35] for proofs):

advantage over IST. Theorem 1:If ® € T(X), then the denoising functio®

defined in (3) is given by
D. Summary of the Paper

. . _ _ ¥i(y) =y — Pac(y) (4)
In Section Il, we review several choices ®fin the context
of denoising problems, the solution of which plays a centralhere C C X is a closed convex set depending on the
role in IST and TwIST. Section Ill studies the existence anggularizer®, and P4, : X — X denotes the orthogonal
uniqueness of minimizers of. The IST and IRS algorithms projection operator onto the convex sétc X'.



SUBMITTED FOR PUBLICATION; 2007. 3

C. Total Variation H is the observation operator. In practice, for digital image

In the original formulation of total-variation (TV) [10], X is finite-dimensional, sayt’ = R™, &y is a weighted’”
[14], [41], X is an infinite-dimensional Hilbert spade?(7), Norm onR™, andW € R™*™ is an unitarym x m matrix.
where I is a bounded open domain &2, e.g, Q =0, 1]2. Notice that (9) has the same form as (1), wikh= HW and
With digital images,X is simply a finite-dimensional spaceq’ =, .
of pixel values on a 2D lattice, sa¥ = R™, equipped with ~ 2) Frames and Redundant RepresentatioAgiother for-
the Euclidean norm; thus discrete TV regularizers have to pallation (in a finite-dimensional setting) leading to anembj
used [10], [11]. Standard choices are the “isotropic” anoiin tive function with the same form as (9) is the following. Lisét

isotropic” discrete TV regularizers, given, respectiydly columns of W contain a redundant dictionarg.g, a frame)
with respect to which we seek a representation of the unknown
Piry (x) = Z \/(A?X)2 + (A¥x)? (5) image. If the image is directly observeH, is the identity; in
i this case, minimizing (9) corresponds to finding a reguéatiz
Opity (x) = Z|Afx| +|AYx|, (6) representation of the observed image on the dictioriafy
i [23], [24]. Forp = 1, this is the well-knownbasis-pursuit

Ddenmsmgcntenon [16]. If the original image is not directly
observed H is not identity), minimizing (9) corresponds to
reconstructing/restoring the original image by looking o
regularized) representation on an over-complete diatin
his formulation has been used for shift-invariant wavelet
%ased deconvolution [7], [27], [28].

where A" and A? denote horizontal and vertical (on the 2
lattice) first-order local difference operators (omittibgund-
ary corrections). It's clear from (5) and (6) thagry, $nitv €
T (R™). Although there is no closed form for the projectio
ontoC, i.e, to solve the TV denoising problem, fast iterativ
methods have been recently introduced [10], [11], [19]].[29

D. Weighted?? Norm

) ) E. Thep-th Power of a Weighted” Norm
Weighted/? norms, forp > 1, are defined as

This class of regularizers, defined as

1/p
w = il zi|P , 7
" (;"”“) 0 ¥ () = Ixlf = Sl (10)

wherew = [wq, wa, ..., w;, ...], with w; > 0 andp > 1. The

underlying Hilbert space is simplyf = R™, in the finite- appears in many wavelet-based approaches [7], [20], [27],

dimensional case (with the sum in (7) extending from 1  [28], [29], [42]. This regularizer can also be motivated asiy

to i = m), or X = (2(N), in the infinite-dimensional caseequivalent to the»-th power of a Besov nornij - ||Ba(Lp(1))

(where the sum in (7) is foi € N). Being a norm,®,  [20], [35].

clearly belongs tor. Forp =1, &} 0= = &, , thus the denoising operator (3) is
The denoising functio , under a®,» regularizer cannot given by (8). Forp >1, q) is not phd-1, and the denoising

be obtained in closed form, except in some particular caseperator doesn’t have the form (4). In this case, however, we
the most notable of which is = 1; in this case,W, is the can write W (z) = X = [Z1, ..., Ti, ..., With

well known soft-thresholding function [22], that &, (z) =
X = [51,...756\1',...], with aj\l :S)\wi,p(zi)a (11)

Z; = soft(z;, Aw;) = sign(z;) max {0, |z;] —Aw;}.  (8)

Dy, (x) = x|

whereS; , = F; ) is the inverse function of

Next, we discuss some approaches involvibyg regular-
izers. F,p (2) = z + 7p sign(z)|z[P~t. (12)

1) Orthogonal Representationg classical approach con-
sists in modeling images as elements of some Besov spasiice that, forp > 1, F;, : R — R is one-to-one, thus
Bg(LP(I)), wherel = [0,1]* is the unit square. The adoptedS, , = F,} is well defined. The functiors, ,, called the
regularlzerls then the corresponding Besov n@ffisa .+ (1)), ~ shrinkagefunction, has simple closed forms when= 4/3,
which has an equivalent weightééisequence norm of waveletp = 3/2, or p = 2 [15]. For example, the functio®s; » is
coefficients on an orthogonal wavelet basis (see [12] farsimple linear shrinkageS; »(z) = z/(1 + 27). Important
details). To exploit this equivalence, the problem is folaed features ofS, , (for p > 1) are: it's strictly monotonic, con-
w.rt. the coefficients, rather than the image itself. Ingfti tinuously' differentiable, and its derivative is upper bounded
W : X — By (LP(I)) denote the linear operator that producesy 1 (since the derivative of its inverg& , is uniformly lower
an image from its wavelet coefficients, the objective fumtti bounded by 1) [20].
becomes

f(x) _ 1 d2 (HWX) + /\‘I)ZP ( )’ (9) 1Continuous differentiability is not claimed in [20], onlisidifferentiability.

However, the continuity (fop > 1) of the derivative ofS; ,, denotedS’. P

asily shown. Firstly, it's trivial to check thdim, .o S, (z) = 0,
where the weights depend on the scale of each coefficient zm\areg/ (z) = 1/F! Y (Sr.p(2)). Secondly, its also Oeasypio)show via
T,p T

on the parameterg @nda) of the Besov norm (see [12]), andthe definition of derivative, thas? ,(0) = 0.
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I1l. EXISTENCE AND UNIQUENESS OFSOLUTIONS k, the corresponding product can be computed efficientlygusin

The existence and uniqueness of minimizers of (1) affa fast Fourier transform (FFT).

addressed in the following proposition, the proof of which Convergence of IST, with# = 1, was first shown in [20].
can be found in [18, Propositions 3.1 and 5.3]. Later, convergence of a more general version of the algarith

. — , . (including 5 # 1), was shown in [18]. The following theorem
Proposition 1: Let f : X — R be defined as in (1), where. implified ; f Th 34 and 5.5 f 18-
operatorK : X — Y is linear and bounded, andl : X — s & simplified version of Theorems 3.4 and 5.5 from [18];

Ri | funct Leét denote th t of the simplifications result from considering finite-dimemsl
S a proper, Isc, convex function. enote the set o spaces (no difference between strong and weak convergence)
minimizers of f. Then,

and from (13) being a particular case of the somewhat more

()  if s coercive, ther is nonempty; general version studied in [18].
@iy if @ is strictly convex orK is injective, thenG Theorem 2:Let f be given by (1), where : X — R is
contains at most one element; conveX and |K|% < 2. Let G, the set of minimizers off,

(|||) if K is bounded beIOW, that iS, if there existse be non_empty‘ Fix some; and let the Sequenqe(h t e N}

0, 400}, such that, for any € &, [|[Kx| > sl[x|l, pe produced by (13), withs €]0, 1]. Then, {x;, t € N}
thenG contains exactly one element. converges to a point € G.

We will now comment on the application of Proposition
1 to the several regularization functions above considerddl lterative Re-weighted Shrinkage (IRS)

If all the weights are strictly positiveu > 0, Vi), both  The |RS algorithm was specifically designed for wavelet-
the weighted?? norm and itsp-th power (forp > 1) are pased problems of the form (9), wheW contains an or-
coercive (see [10, Proposition 5.15 and Problem 5.18], thiffogonal or redundant wavelet basis and the regularizestis n

Proposition 1 (i) ensures existence of minimizersfonder npecessarily a weighte norm [7]. The iterations of the IRS
these regularizers, K is injective, the minimizer is unique; aigorithm are given by

otherwise, the minimizer is unique Witm’:gp, with p > 1 _
(which is strictly convex). v x¢+1 = solution{A; x = b}, (14)

In the finite-dimensional caseX( = R™), injectivity of with b — KTy andA; — AD, + K”K, whereD, is a diago-
K is sufficient to guarantee existence and uniqueness of m matrix (of non-negative elements) that dependscpoand
solution (u_nder any convex regu!a_lrizer, §_trictly or noEn_[w_e ®. Observe that matriD; shrinks the components of; 1,
o_rnot)._Th|s r.e.sultg from Propo§|t|on 1 (iii), because anjté thus the termiterative reweighted shrinkageéEach iteration
dimensional injective operator is bounded below. of IRS resembles a weighted ridge regression problem, with

When © is a TV regularizer *:9’ ®irv or ®nrv) and design matrixK; algorithms with a similar structure have been
K is not bounded below, Proposition 1 can not be used {Red for sparse regression [25], [31]

guarantee existence of minimizers of (1). The reason islttat The huge size ofA; forces the use of iterative methods

regularizers are not coercive since they equal zero when %eimplement (14). In [7], this is done with a two-step (or

argument is a constant image. However, under the additiongl.,nq_order) stationary iterative method [3], which wél wi
condition that constant images do not belong to the nullez;parqext briefly review.

of K, it can still be shown thafr is not empty [13].

IV. PREVIOUS ALGORITHMS C. Two-step Methods for Linear Systems

This section reviews algorithms previously proposed for. Consider the linear systemx = b, with A positive defi-

finding minimizers of f. From this point on, we focus on fite; define a so-calledplitting of A as A = € —R, such
the finite-dimensional casey — R™ J — R". and denote thatC is positive definite and easy to inved.§, a a diagonal

the standard Euclidean vector norm|as||s. ;?\t/r.z(é jxsiaﬂoigaégmoéjtzz iterative methoMwSIM) for

_ —1
A. lterative Shrinkage/Thresholding (IST) X1 = Xo+fo C(b—Axo)

IST algorithms has the form X1 = (1—a)xe1 +ax, +6C  (b—Ax;), (15)

. T for ¢ > 1, wherex, is the initial vector, andv, 3, Gy are
Xerr = (1= B) % + 5 (Xt Ky - th)) - 13 the parameters of the algorithm (more on this below). The
where 3 > 0. The original IST algorithm has the form (13),designation “two-step” stems from the fact that.;, depends
with 3 =1 [20], [27], [28]. Schemes witl8 # 1 can be seen on bothx; andx;_;, rather than only orx;.
as under § < 1) or over (3 > 1) relaxed versions of the The main result concerning TwSIM is given in following
original IST algorithm. theorem [3, Theorem 5.9]:

Each iteration of the IST algorithm only involves sums,
matrix-vector products b and K7, and the application of
the denoising operatio® . In wavelet-based method¥s ,

1S _a_coeff|C|ent-W|se non-llnearlty, thus \(ery gomputaﬂhm 2|n a finite-dimensional space, every real convex functiocoistinuous, so
efficient. WhernK represents the convolution with some kernete can drop the Isc condition.

Theorem 3:Let {x;, t € N} be the sequence produced by
(15), with arbitraryxy. Let A\; and )\,, denote the smallest
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and largest eigenvalues of mat 1A, andx = \;/\,, be B. Convergence of TwIST

its inverse condition number. Thefx;, ¢ € N} converges  pyndamental questions concerning TwIST are: for what
to the solution ofAx = b if and only if 0 < a <2 and \gjyes ofw andg does it converge? How does the convergence
0 <B#<2a/Ay. The optimal asymptotic convergence faétoryate depend of and 32 The main theorem of this paper par-

is p = (1—V/k)/(1+ /), obtained fora = p +1 and3 = tially characterizes the convergence of the TwIST algarith
2a/(A1+Am). With a = 1, the two-step method (15) become@vhenf has a unique minimizer.

a one-step method for which the best asymptotic converg

factor isp = (1 — k) /(1 + k). Srheorem 4:Let f be given by (1), whereb is a convex

regularizer. Lett; and¢,, be two real numbers such thai
& < MNKTK) < €, where );(+) is thei-th eigenvalue of

D. Comparing IST with IRS its argument, let = ¢,/ €,,, where¢,, = max(1,&,,), and
It was shown in [7] that, for ill conditioned systems, IRS = 1-Vk <1. (20)
is much faster than IST. This fact can be traced to the use 1+ Vk

of the TWSIM in each step of IRS. On the other hand, wheret  be the unique (becaud$ is injective) minimizer off
noise is the main factor, and the observation operator i$000t and define the “error vector” as = x; — x and the “stacked
ill-conditioned, IST outperforms IRS because it uses aees error vector” as
form (usually non-linear) denoising step in each iteraf@si. €1

In fact, in a pure denoising probler&(= I or K orthogonal), Wi = : (21)

IST (with 8 = 1 and initialized with a zero image) converges
in one step, while IRS does not. 0] There exists a matrix se® such thatw,,; can be

written asw;.1 = Q: w¢, whereQ; € 9, fort € N

(Q; may depend orw,); moreover, if 0 < a < 2
V. Two-STEPIST (TwIST) and 0 < 8 < 2a/¢,,, thenp(Q,) < 1, for any
Q: € 9, wherep(Q;) is the spectral radius of);
(see Appendix B).

€

A. Motivation and Definition

The TwIST method proposed in this paper aims at keeping . )
the good denoising performance of the IST scheme, while stil ()~ Setting

being able to handle ill-posed problems as efficiently as the o a=p2+1 (22)
IRS algorithm. S oo~z

TakingC = I+ AD; andR = I — K7K in the splitting Z =26/ +8&) (23)
A = C—Rof matrix A = A\D;+K7TK, the two-step iteration guarantees thai(Q;) = p.

: _ T
(15) for the linear systenAx = K"y becomes (i) Setting o = 1 (i.e. the IST algorithm) and
xe41 = (L—a)xe1 + (= B)x: B = B =2/E,+&), (24)

c! Ki(v - K . 16
+p (x: + K" (y — Kxy)) (16) guarantees that

Observe the relationship between (13) and (16): the foraer ¢ _ 1-k
be obtained from the latter by setting= 1 and replacing the p(Qi) < p = s <1 (25)
multiplication by matrixC~! by the denoising operatop .

This similarity suggests a two-step version of IST (TWIS$) a () |f ¢, <1, 0 <a < 1,and 0 < 3 < 2aq, then

hmtﬁoo Wy = 0.

X1 = I‘)\ (Xo) (17)
X1 = (1—a)xi—1 + (@ — B)x; + Bx(x¢), (18) Theorem 4 extends the results about the convergence of the
linear TWSIM (see Section IV-C and [3]) to the non-linearno

for t > 1, wherel', : R™ — R™ is defined as differentiable case. While the proof in [3] uses linear bige
T tools, the possible non-linear/non-differentiable nataf ¥,
Di(x) = ®5 (x + K (y — Kx)) . (19) ' demands non-smooth analysis techniques [17], [43]. Thefpro

L . of Theorem 4 can be found in Appendix C.
A key observation is that TwIST, IST, and the original IST ¢ i Q. is not time dependente. Q, — Q, the con-

with 3 =1 all have the same fixed points. In fact, elementary:;i p(Q) < 1 would be sufficient for convergence to zero

manipulation .allows showing that the three following equay; w,. However, in TWIST.Q; is in general not constant, thus
tions are equivalent: p(Q:) < 1, V¥4, is not a sufficient condition for convergence
to zero ofw,. Convergence of a non-stationary linear iteration

x = (I-a)x+(a—f)x+FD(x) w1 = Q; we, whereQ; belongs to some set of matric€s
x = (1-p)x+pi(x) depends on the so-callgaint spectral radiugJSR) ofQ [47,
x = ID(x). Proposition 3.2]. Computing (or bounding) the JSR of (even

very small) matrix sets is a hard problem, currently under
3See Appendix B for a brief review of convergence factors. active research (see [47] and the many references therein).
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The convergence stated in Theorem 4 (iv) results from tladgorithms used to implement them, but only on the choice
following fact: for « < 1, there exists a matrix norm, sayof the type of regularizefb. On the other hand, the relative
I - |la, for which ||Q.|l. < e < 1, for any Q; € Q, which is convergence speed of the algorithms is essentially depénde
a sufficient condition for convergence to zero of the itemati on their structure.
w1 = Qi wy. We consider two classes of regularizeds®(x) = ||x]|1,
Although, whena > 1, Theorem 4 does not guaranteavhere x denotes wavelet coefficients of the image to be
convergence, we have observed, in a large number of imadgterred, andii) ®(x) = ®v(x), i.e, isotropic TV. See
deconvolution experiments, that the algorithm always co&ections II-C and II-D for further details. In the cayeve use
verges for a wide range of choices of parameterand 5. the simplest possible choice of wavelet: Haar discrete lgave
In Section VI, we will discuss practical rules for choosingransform (DWT). We are well aware that this does not lead
these parameters. to state-of-the-art performance in terms of SNR improvetmen
As in linear stationary algorithms, we have experimentallyowever, the conclusions obtained concerning the relative
verified thatp andp, respectively, are good indicators of thespeed of the algorithms are valid for other choices of wasele
relative speed of TwIST and IST. Seeing the algorithms asd penalty functions. To implemeiit, corresponding to the
linear stationary, quantities-1/log,,p and —1/log;,7 are regularizer®yry (x), we use the algorithm introduced in [10].
approximately the numbers of iterations needed to reduce

the error norm by a factor of 10 (see Appendix B). For TABLE |
examp|e, withk ~ 1074 (Common in image restoration)’ EXPERIMENTAL SETTING (W IS THE INVERSE DISCRETE WAVELET
—1/logyqp =~ 10% and —1/log;, p =~ 10%; i.e, in this case, TRANSFORM).

TwIST is expected to be roughly two orders of magnitude

faster than IST, as confirmed in our experiments. To the bestEXP [ image | Linear Operato [ @) [ BSNR |
of our knowledge, the bound on the convergence factor of IST 1 | camera| Hi (9 x 9 uniform) o7y | 40dB
given by (25) has not appeared previously in the literature. | 5 | camera| H,W Ixll. | 40dB
3 | tena | H, ([LACAUTLAOALY | goy | 17dB
C. Monotonic Version: MTwIST
o ) o ) 4 Lena HoW [[x|lx | 17dB
Monotonicity underlies the derivation of many algorithms 5 | camera| 40% missing samples oy | 40 dB

and is instrumental in several convergence proefs;, the
proof of convergence of IST (which is monotonic fér= 1) . _ . :
in [20]. Monotonicity is not used in our convergence proof of Tatble ! ZhO\;vsdthEe setting ltjsid |nde2ach of the gvte expten-
TwlIST (which is not necessarily monotonic), but the proof r{;en s_tt;oln ucted. xr;]erlmen sLan tcocr),resr()joz oas ror(ljg
quires the condition that the observation operator is tiivier ur with 'ow noise, whereas experiments s and 4 correspon

To handle non-invertible operators, we introduce a moriotori0 mild blur W'thtmﬁd":mtn?r']si TO?SrTalm in choosmgtg;zse
version of TwWIST (MTwIST); the rationale is that, even thbug Wo scenarios is to illustrate that Tw converges muctetas

we can’t guarantee convergence of the estimate, monolpnljg?rn IST II(;]I S?IV erel()j/tlll cogdljlgneld Lllrfhand still fastitaman
combined with the fact that the objective function is bouhd In mitdly 1ii-conditione S. In all the experimentthe

below guarantees convergence of the objective functicmegl ope_zratorK .'S normalized to _havegm - 1 thus r = .51’
f(x¢). Although this is a weaker result, we have observed W“Ch we simply denote & Finally, experiment 5 considers

roblem in which matrixK models the loss ofl0% of
many experiments that MTwIST always converges and stf’nep image pixels (at random locations): matii& is (Ehus

does so much faster than IST. 0.6 " tible 40% of it | |
The structure of MTwWIST is very similar to that of TwIST, > " x m, IUS non- |nver_| e 40% of its smgg ar values
are zero). This experiment illustrates the behavior of M3WI

with a single difference. Formally, far > 1, let z be given

by (18); then on an §everely ill-posed{ = O) problem.
Inspired by Theorem 4 (i), the TwIST parameters are
Xpo1 = { z < [f(z) < f(x) initially set to
* Di(xe) < f(z) > f(x0). ,

: . . = p°+1 26
Notice that settingk;; = I'\(x:) corresponds to taking a @ prt (26)
TwIST step witha = § = 1, that is, a (monotonic) IST step. fo= 2a/(1+), (27)

wherep is given by (20) and is set according to a qualitative
VI. EXPERIMENTAL RESULTS classification:¢ = 10~ or ¢ = 1072 for, respectively,

In this section, we present image restoration results-illusildly or severely ill-conditioned LIPs. This choice may,be
trating the convergence speed of TwIST in comparison witif course, far from optimal; we have observed, however, that
IST. Our goal is not to assess the performance of imagdeads to speeds of convergence very close to the best ones
restoration criteria of the form (1); this has been carrietl oobtained by hand tuninga, 5). The reason for this is that,
in several other publications, in comparison with othetestaas illustrated below, TwIST is very robust with respect te th
of the art criteria (see [7], [24], [27], [27], [30], [33])t'¢ parameterq«, 3), namely for severely ill-conditioned LIPs.
clear that the performance of such criteriag, in terms Another alternative is to run a few TwIST iterations, sgy
of SNR improvement) does not depend on the optimizatidar eaché = 10~%, with i = 1,2, ... and choose the value that
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Fig. 1.  TV-based deconvolution in a severely ill-condigdn problem Fig. 3. TV-based deconvolution in a severely ill-condigan problem

(experiment 1). Evolution of the objective functigiix;) produced by TwIST, (experiment 1). Evolution of the objective functigiix;) produced by TwiIST,

ISTopt, and IST;. for different parameteréa(€), 3(€)), and by IST,. Notice the low sensitivity
of TwIST with respect ta(«(&), B(€)).

8.5

8 also that IS, converges approximately twice as fast as

IST;. This pattern of behavior was systematically observed

7.5¢

|5 in severely ill-conditioned LIPs. Fig. 2 shows the evoluatio
% n of the SNR improvement (ISNR) produced by TwIST, k3T
§6_5, and IST,. As expected] ISNR() also converges much faster
p; with TwIST than with IST and ISTy. Fig. 3 shows the
A evolution of the objective functiorfi(x;) produced by TwIST,

5.57 for different parameteréx(€), 5(£)), and by IST. Notice the

low sensitivity of TwIST with respect té«(&), 5(£)). This is

a relevant characteristic of TwIST, because the optimahget

a0 50 100 150 200 for (o, ) is rarely know.

Iterations In order to assess the impact of the initialization on the rel

Fig. 2. TV-based deconvolution in a severely ill-condigdn problem atlve _performance of the algorlthms'_we considered tworothe

(experiment 1). Evolution of the SNR improvement (ISNR) duced by iNitialization methods: an all zeros image and the observed

TWIST, ISTopt, and IST. image. Table Il shows the average (over 10 runs) number of
iterations required by ISTand ISTo to reach the value of the
objective obtained by 100 iterations of TwIST. Initialigat

leads to lowest value of (x¢,). In the experiments reportedwith zeros or the observed image decreases the advantage of

below, we use this procedure with = 5. TWIST by roughly 50%; however, the Wiener initialization

The parameteg of IST is set according to Theorem 4 (iii); leads (after 100 iterations) to a final value pfaind an ISNR

i.e, B =2/(1+¢). This setting, yields the optimal spectralyhich are a little better than the other two methods.
radius p(Q;) associated to the one-step iterative method. We

) i . . . TABLE I

will refer to this particulaoptimalversion of IST as ISJ,; and A qsT ST

to the original IST {(e., 3 = 1) as IST,. Notice that since, in "'ERACE NUMBER OF ITERATIONS REQU'RIESOB LAND iPTITSOT
ill-conditioned problems{l < 1, the optimalﬁ is very close REACH THE SAME VALUE OF f OBTAINED BY ITERATIONS OF I'W .

to the maximum allowed value that guarantees convergence;

5if==

4

Initialization IST IST

. -3 o opt 1
for ex?lmrpl)le, for¢s T 10 h’ Wf ha.\;]eﬁ = 1.998. lized wi Wiener filter 2.4 x 103 | 5.8 x 103
_In all the examples, the algorithms are initialize with Zeros 11x10% | 2.1 x 10
given by a Wiener filter and the parameteis hand tuned for Observed image | 1.1 x 103 | 2.0 x 103

the best SNR improvement.

Experiments 1 and 2Fig. 1 shows the evolution of the
objective function along the iteratichsonfirming that TwIST
converges much faster than I and IST;, which take,
respectively, 2400 and 5800 iterations to reach the val
of f obtained with TwIST just after 100 iterations. Noti(:eS

Figs. 4 and 5 plot wavelet based deconvolution results
obtained with the setting of experiment 2. The comments to
this figures are similar to those made for Figs. 1 and 3: TwIST

nverges much faster than IS&nd ISTp; TWIST has low
ensitivity with respect t@.
4Arguably, the horizontal axes should represent CPU timieausof number Experiments 3 and 4Figs. 6 and 7 p|0t results obtained in

of iterations; however, we have verified that the CPU timeitegation diffiers Mildly ill-conditioned LIP. The first aspect to note is thais(
by less than 1% between TwIST and IST, so this change wouldiorly a
change of scale of these horizontal axes. SISNR(t) = 10logo(|ly — x|I/||x¢ — x||), wherex is the original image.
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Wavelet-based deconvolution in a severely ill-éboded problem
(experiment 2). Evolution of the objective functigifx;) produced by TwIST,
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of TwIST with respect ta(«(&), B(€)).
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Fig. 7. Wavelet-based deconvolution in a mildly ill-conalited problem
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Fig. 8. TV-based image restoration from 40% missing samf@rgeriment
5). Evolution of the objective functioifi(x;) produced by TwIST, ISgp, and
IST;.

expected) all the algorithms converge much faster thanen th
severely ill-conditioned case. The limit situation is a dising
LIP (i.e.,K = I or unitary) in which the solution is obtained in
just one step (withh = 8 = 1 andxy = 0). The other aspect
to note is that although the behavior of all the algorithms is
almost identical, TwIST is still slightly faster than IST.

Experiment 5:In this example, the goal is not to present a
state-of-the-art method for restoration from missing ses\p
but simply to illustrate the behavior of the algorithms with
a non-invertible observation model. The evolution of the
objective function in Figure 8 shows that MTwIST converges
considerably faster than ISTand IST with = 1.998. In
line with the results reported in 3 and 5, MTwIST is again
rather insensitive to the choice ¢f (which in this case can
no longer be related to the minimum singular valuekKf
which is zero) Figure 9 shows the observed image (the missing
samples are set to the mid level gray value) and the restored
image produced by MTwIST.



SUBMITTED FOR PUBLICATION; 2007. 9

is said to be strict if the inequality holds strictly] for any
u,v € X and anya €]0, 1].

The function f is properif f(x) < oo, for at least one
x € X, and f(x) > —oo, for all x € X.

The functionf is lower semi-continuoufsc) atv if

lim inf f(x) > f(v),

INO xeB(v,d)
where B(v,d) = {x: ||x — v|| < 4} is the §-ball aroundv,
and|| - || is the norm in the Hilbert spac#.

A function f is called coercive if it verifies
hm”x”_)()o f(X) = +o0.

Proper, Isc, coercive functions play a key role in optimiza-
tion because of the following theorem (see [43]):

Theorem 5:If f is a proper, Isc, coercive, convex function,
then infxcyx f(x) is finite and the setrgmingecr f(x) is
nonempty.

The next theorems concern strictly convex functions.

Theorem 6:If f is a strictly convex function, the set
arg mingcx f(x) possesses at most one element.

Theorem 7:If f; is a convex function,f, is a strictly
convex function, and) < A < oo, then\ f; and f1 + Afa
are strictly convex.

APPENDIXB: MATRIX NORMS, SPECTRAL RADIUS,

Fig. 9. TV-based image restoration from 40% missing samf@rgeriment CONVERGENCE CONVERGENCEFACTORS AND

5); top: observed image; bottom: restored image.

CONVERGENCERATES
Given a vector normi| - ||, [|A| = max)x—1 [|Ax]| is the
VII. CONCLUDING REMARKS matrix norm ofA induced by this vector norm. A vector norm

In this paper we have introduced a new class of iterati\?'él"d the corresponding induced matrix normewasistenti.e.,

methods, called TwIST, which have the formtafo-step iter- they satisfy||Av]| < [|A] “VH‘ :
ative shrinkage/thresholding (TwIST) algorithms. The aigd When the vect(_)r normis the Euclidean norm (denditgd),
equation depends on the two previous estimates (thus time tépe induced _matrlx horm (also denotipd]2) is calledspectral
two-step, rather than only on the previous one. This cladid™m If A is Hermitian, IAllz = max; |Ai(A)] = p(A),
contains and extends the iterative shrinkage/threshp|d8ir) Called spectral radius [3]. Key results involvipg) are
methods recently introduced. lim A =0 & p(A) <1, (28)
We proved convergence of TwIST to minima of the objec- kf’oo kLK
tive function (for a certain range of the algorithm paramste klin;o [AZF = p(A), (29)
and derived bounds for the convergence factor as a funcfion o Vae I : 1Al < p(A) +e. (30)
the parameters defining the algorithm. Experimental regurit ) _ . R
wavelet-based and TV-based deconvolution) have shown thafonsider the linear systelx = b, with solutionx and an
TWIST can in fact be tuned to converge much faster than tfigrative scheme yielding a sequence of itergtes ¢ N}A-
original IST, specially in severely ill-conditioned prebhs, For a linear stationary iterative algorithm, the erepe= x; —X
where the speed up can reach two orders of magnitu@¥lves according te;, = Ae,;, thuse, = A'ep. From
in a typical deblurring problem. We have also introduce®8) the error goes to zero if and onlyifA) < 1. Because
MTWwIST, a monotonic variant of TwIST, conceived for non®f (29),p(A) is also called thasymptotic convergence factor
invertible observation operators; the performance of M3Ww| 1heasymptotic convergence ratgiven byr = —log; p(A),

was illustrated on a problem of image restoration from migsi is roughly the number of new correct decimal places obtained
per iteration, while its inverse approximates the number of

samples. ' X .
iterations required to reduce the error by a factor of 10.
APPENDIXA: CONVEX ANALYSIS APPENDIX C: PROOF OFTHEOREM 4
We very briefly review some basic convex analysis results Before proving Theorem 4, we introduce several results on
used in this paper. For more details see [43], [49]. which the proof is built, one of them being Clarke’s mean
Consider a functiory : X — [—c0,4+o0] = R, whereR is value theorem for non-differentiable functions [17]. Qthe
the extended real line, andl is a real Hilbert space. preliminary results are presented and proved in SubseCtidn

The functionf is convexif f(au+ (1 — a)v) < af(u)+ Finally, Subsections C.3, C.4, C.5 and C.6 contain the groof
(1—a)f(v), foranyu,v € X and anyx € [0, 1]. Convexity of parts (i), (ii), (i), and (iv) of Theorem 4, respectivel
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C.1. The Non-Smooth Mean Value Theorem C.3. Proof of Theorem 4 (i)

Definition 1: Let F : R™ — R™ be such that each of Recalling thate; = x; — X and using (18), we write
its components is Lipschitz anr the set of points at o — (1_n)e, s+ (a—B)e,+ 8 Tx(x,) — T\(X)]. (33
which F' is non-differentiable. Let/ F'(x) denote then x m t_+1 ( _)_t_ 1 ﬁ_) ' _ﬁ[ A(xe) &) 33)
Jacobian matrix of” atx, whenx ¢ Qp. The (Clarke’s [17]) Using the definition off" given in (19) and the mean value

generalized Jacobianf F atx is given by theorem (Theorem 8), we may write
Ta(x:) —Ta(X) = Wy(x+K'(y—-Kx;))
OF(x) = CO{ lim 0 JF(xi)} , (31)
Xi— X, X; Jal Zt

~U\(X+ K (y ~KX%))

where cgA) denotes the convex hull oA. If F is continu- ~
ously differentiable ak, thend F'(x) = {JF 17]. i
y (X) { (X)} [ ] Bt [Xt - + KTK(Xt _ ﬁ)]

Theorem 8:(Mean value theorem [17]) LeF' be as in .
= Bt [I - K K} €, (34)

Definition 1 andu, v € R™ be any two points. Then,

whereB, € cod ¥,([z:,z]). Recall that Proposition 3 states
F(u) = F(v) € c0d F([u, v])(u —v), (32) thatB, is symmetric, psd, and hddB, > < 1. Inserting (34)
into (33),
where c@ F([u,v]) denotes the convex hull of the sgA : (33)
A € 9F(r),r € [u,v]} , with [u, v] denoting the line €1 = (1 —a)e; 1 + e, — 5 [I—-BI-K K] e

segment between andv. Expression (32) means that there =(1—-a)e;_1+[al—FM;]ey, (35)

exists a matrixB € cod F([u, v]), such thatF'(u) — F(v) =

B(u - v). where .
M,=1-B,I-K'K]. (36)

o Recalling that thestacked errovectorw, € R*™ is
C.2. Preliminary Results

e
The two following propositions characterize the elemeffits o Wi = l ::1 1 )
the generalized Jacobian of denoising functieh®,,, and of ¢
co0 ¥ ([u,v]). we can use (35) to writev; = Q; w;_1, where
Proposition 2: For anyx € R™, anyD € 0¥, (x) is (aI—8M;) (1-a)I
symmetric, positive semi-definite (psd), afiB|, < 1. Q= [ . 0 1 (37)

Proof: The proof distinguishes two classes of regulariz-

ers. Consider first tha¥ , results from a regularizer in classThus,Q is the set of matrices with the form (37), wheve; is

T(R™) (see Section II-B)e.g, iTV, niTV, or &, . From given by (36) andB; is symmetric, psd, and hadB|> < 1.

Theorem 1 in Section 1I-B¥(x) = x — Py¢(x). Thus, To prove the second statement in Theorem 4 (i), we need

OWy(x) = I — 9Pyc(x), that is, any element, sapp, of to study how the choice otv and 3 affects p(Q:) =

0 W, (x) can be written a® = I— A, whereA € 9P (x). max; |A;(Qq)|, for any possibléM;. We begin by considering

Theorem 2.3 in [46] guarantees thatis symmetric, psd, and the following facts:(a) I - K"K is symmetric and — &, <

|Al2 < 1. Thus,D = I — A is also symmetric, psd, andAi (I-K"K) < 1 —¢& (becauset; < \; (K'K) < &,.);

ID||2 < 1. (b) according to Proposition 3B; is symmetric, psd, and
IB¢t]|2 < 1, thus0O < X\;(B;) < 1. Consequently, using results

Consider now that¥, results from a®y, regularizer, on phounds of eigenvalues of products of symmetric matrices,
with p > 1 (see Section II-E). Due to the component-wisgne of which is psd, [37, Theorem 2.2]

structure of® 5, shown in (11), and sincg; , is continuously

differentiable (see footnote 1)) ¥,(x) contains a single min(0,1 — &,) < A\(ByI-K'K]) <1-¢&;  (38)
diagonal (thus symmetric) matrix, sdy. As shown in [20], .. : T 1T

Srp (for p > 1) is strictly monotonic and its derivative is upperfma"y’ sinceM, =1 - B,[I - K"K],
bounded by 1, which implies that each entryIdfbelongs to 0 <& < MMy <max(1,6,) =¢E,,. (39)

10, 1]. This implies thafD is psd and|D||> < 1. . . . .
- ) . Following [3], let (u,z) denotes any eigenpair @, i.e.,
Proposition 3: For any pair of pointar,v € R™, anyB € Quz = pz; writing z = [z ZZ“]T’ we have

€00 ¥ ([u,v]) is symmetric, psd, angB||» < 1.

Proof: From Proposition 2, for any € R™, any al=fM; (1-a)l Za —u Za | (40)
A € 0W,(r) is symmetric, psd, and hdsA|; < 1. Thus 1 0 Zp Zp

€00 ¥ ([u, v]) is the convex hull of a set matrices which A& 1o hottomm rows of (40) givez, — u z; inserting this
all symmetric, psd, and have norm no larger than 1. Theref%%uality into the top half of (40) vl\l/e obtain,

any matrixB € cod W,([u,v]) is also symmetric, psd, and '
has||B||» < 1. | [ulaT—BM;) + (1 — )]z, = u° 2. (41)
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Since the matrix in the L.h.s. of (41) can be written(asy +  Finally, sincep 2(1, 5, ) = (1 —3))? is a convex function of
1

1—a)I-puBM,, its eigenvectors coincide with thosed,. A, and[ri, 7] C [€1, &0l
Thus, with A denoting some eigenvalue d;, . has to be a 1— k)2
solution of the following second degree equation max p2(1,5,0) < max p2(1,5,\) < ( > ,
) NE[T1, Trm] AE[€1, €] 1+ kK
(patl—a)—pfr=p (42) concluding the proof of Theorem 4 (jii). [ ]
Let
pla, B, \) = max{|u1], |p2}, (43) C.6. Proof of Theorem 4 (iv)

A sufficient condition for convergence to zero of the
switched linear system;.; = T z;, whereT; € 7, and
7 is a bounded set of matrices, is the existence of a matrix
norm || - ||, such that||T;|| < e < 1, for any T, € 7. Our
proof uses the matrix norfi- ||a, defined as

where p; and us are the two solutions of (42). We
thus need to study howp(w,3,)\) behaves for\ €
[Amin(M¢), Amax(M)] = [11, 7], for each choice ofv and 3.
Notice that (39) does not provide andr,, (all it guarantees
is that [11, 7] C [&1, €,,))- It is shown in [3, Lemma 5.8]
that (o, ,A\) < 1, for any A € [r1, 7], if 0 < a < 2 IB|la = [|[ABA™!||2, (47)
and0 < 3 < 2a/7,. Sincer,, < &
B < 2a/E,, also satisfiess < 2a/7,,.
Finally, notice thatp(Q:) = max;{p(a, 5, \;(M;))}; thus
pla, B,\) < 1 implies thatp(Q;) < 1, concluding the proof
of Theorem 4 (i). m (a) With a = 1, the errore, evolves according to the one-step
iteration

C.4. Proof of Theorem 4 (ii) err1 = (I—BM;)es (48)

We begin by re-writing (42), forn = a and 3 = 3, as matrix M; (see (36)) can be written &d; = I- B, U, where
N s . o . ;
2L \G—a a-1)=0, 44 U = I-K'K s a symmetric positive definite matrix, thus
wA@Af-ap+(@-1) (44) so isU'/2, Computing the|| - ||gz1/2 norm of (T — 3 M),

and proving that the solutions of (44) are complex conjugate _ 1/2 ~1/2
for any A € [r, 7], From the classical formula for the 11— AMturz= U —51\1/I/t2)U 1/2H2
solutions of a second degree equation, it's clear that tie tw = [I-T-U""B, U7
roots of (44) are complex conjugate if and only M3 —a)? < = p(I—- (M, (49)
4(a—1), for any X € [r1, 7,]; this inequality is equivalent to

ms any 3 satisfying where A is a symmetric positive definite matrix, which is
induced by the vector norii- ||a = ||Av]||2 [9].
We split the proof into two cases:

R R where we have used the following facts: for a real symmetric
B3N —2ap +a’—4(@—1)<0. (45) matrix A, |A|2 = p(A) and, for any pair of square matrices
A andB, p(AB) = p(BA).

It's easy to show that the two roots of |.h.s. of (45) §reand Finally, notice that, as shown in Section C.5,

&, thus, sinceﬁ2 > 0, inequality (45) is satisfied wheh
K

is between these two roots. Therefore, wheg [71, 7,,] C p(I—pBM;) = max p(1,8,)) < - <1,
(€1, €,,], the roots of (44) are indeed complex conjugate. AE[TL, Tin] L+r
Recall that the product of the two roots of a second ordeoncluding the convergence proof, far= 1.
ponnc_>m|aI equals 'tf' independent term; applying this fact (b) With o < 1, let us define the matrix
(44) yieldspy pi2 = (@ — 1). For A € [r1, 7], we haveu, =
i3, thus iy g = i |2 = |pa? = (@ — 1); thus (8, 5.3) = V= [ v } . (50)
max{|pa|, ||} = Va—1 = p, for any A € [r1, 7], as 0 (1-)U
stated in Theorem 4 (ii). B With Q, given by (37), it is simple to conclude that

1/2 -1/2 _
C.5. Proof of Theorem 4 (iii) ViV

C - B)I+BUY2B,UY?2 (T—-al
Insertinga = 1 and 8 = 3 in (42) leads to the equation (a=O)1+5 ' “ , (51)
_ 5 Vi—al 0
(1= BA) = p, (46) L . : . y
_ which is a real symmetric matrix. This allows writing
which has solutiong; = 0 anduz = (1-3\). Consequently, Il IVI2Qv-12)
p(1,8,\) = max{|u1|, |pu2|} = |1 — BA|. To show part (iii) tivi/z ¢ 2
of the theorem, we need to show that = p (Vl/QQtV*l/Q)
max p(1,6,A) < 1 _T_K. = p(Q)
_ e " = max{f(o, 6, (M)} (52)
Becausey(1, 3, ) and(1—«)/(1+ k) are positive, both sides < ~
of the previous inequality can be squared. Simple maniuiat - Aer[lrli)im]{p(a’ B, A} (53)
allows showing that < 1, (54)
9, = S R & 2 where the equality in (52) and the inequalities (53) and (54)
p(1,8,6)=p"(1,8,&,) = (1 T ,Q) : were shown in Section C.3. n
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