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Abstract

This paper describes a new approach to the analysis of
Poisson point processes, in time (1D) or space (2D), which
is based on the minimum description length (MDL) frame-
work. Specifically, we describe a fully unsupervised recur-
sive segmentation algorithm for 1D and 2D observations.
Experiments illustrate the good performance of the pro-
posed methods.

1. Introduction

Data modelled by Poisson statistics arises in many ar-
eas [1], such as bio-medical imaging (e.g., nuclear imag-
ing, electron microscopy), and particle and astronomical
physics. Specifically, photon-limited data is acquired by de-
tecting and counting individual photons. In this paper, we
address a basic and important analysis problem: from an ob-
served realization of a Poisson process (1D or 2D) we wish
to parse, or segment, the observation space into regions that
are well described as having homogeneous intensity.

To deal with this problem, we develop a method based
on Rissanen’s minimum description length (MDL) princi-
ple [2]. One interesting aspects of our development is that
we are able to derive MDL criteria without recourse to the
usual asymptotic approximations. Hence, our application of
MDL here is especially simple and well motivated. Finally,
we point out that our work can be seen as a coding-theoretic
(unsupervised) alternative to related Bayesian methods pre-
sented in [3], [4], and [5]. Namely, our recursive method
is related to the Bayesian blocks procedure in [5]; however,
the selection rule in [5] differs considerably from our MDL
criterion, and only 1D data is considered there.

2. The Mininum Description Length Principle

The MDL criterion addresses the following question:
given a set of generation models, which one best explains

the observed data? To formalize the notion of “best expla-
nation,” Rissanen introduced the following coding-theoretic
thought-experiment [2]. Suppose that we wish to transmit
the observed data x to a hypothetical receiver. If we are
in possession of a (probabilistic) generation model for the
data, say p(xj�), the Shannon-optimal code length is well
known to be � log p(xj�). Of course, the receiver needs to
know the model parameters � in order to build a decoder. If
� is a priori unknown, we also need to estimate it, code it,
and transmit it. Now, consider a set of K competing model
classes fpi(xj�i)gKi=1. In each class i, the “best” model is
the one that gives the minimum code length,

b�i = argmin
�i

f� log pi(xj�i)g = argmax
�i

pi(xj�i);

this is simply the maximum likelihood (ML) estimate. How-
ever, if the class is unknown, the “best” overall model, ac-
cording to the MDL criterion, is the one leading to the mini-
mum description length: the sum of � log pi(xj�i) with the
length of the code for �i itself. The key aspect of MDL
is that it performs model selection (which ML alone does
not) by penalizing more complex model classes (requiring
longer parameter code lengths).

The delicate issue in applying MDL is in how to en-
code the parameter �i; problems arise because real-valued
parameters have to be truncated in order to be encoded
by finite code-words. Usually, parameter code lengths are
based on asymptotic approximations; e.g., the well known
(1=2) logN , whereN is the amount of data, is an asymptot-
ically optimal parameter code length [2]. In this paper, we
are able to work with (non-asymptotic) exact code lengths.

3. The Basic Criterion

The simplest instance of our approach can be described
as follows. Let x1 and x2 be two counts which are samples
of two Poisson variables of intensities �1 and �2, i.e.,

p(x1j�1) = e
��1

�
x1

1

x1!
; p(x2j�2) = e

��2
�
x2

2

x2!
;



the model selection problem we wish to address is: are �
1

and �
2

equal or different? To attack this question with MDL
tools, imagine we wish to transmit x1 and x2. To do so, we
start by sending the sum xt = (x1+x2), which can be done,
for example, by using Elias’ technique for arbitrary integers
[2] (as we shall see, this code length for xt is irrelevant for
the resulting model selection criterion). Then, we send one
of the counts, say x

1
, from which the receiver can easily

infer the other, x2 = xt � x1. Now consider two model
classes leading to two possible description lengths.

Model Class 0: Here, �1 = �2. In this case, the probabil-
ity function of x1, conditioned on xt, is simply bino-
mial with parameter 1=2, i.e., (for x1 2 f0; 1; :::; xtg)

p0(x1jxt) =

�
xt

x1

�
(1=2)

xt � Bi(x1 jxt; 1=2):

Since there is no parameter to encode (in this class it is
fixed at 1/2), the total description length is simply

L0 = �logBi(x1 jxt; 1=2) = � log

�
xt

x1

�
+ xt log 2:

(1)

Model Class 1: In this case we let �1 6= �2. The corre-
sponding probability of x1, given xt, is still binomial
but its parameter is no longer 1/2; specifically,

p1(x1jxt) =

�
xt

x1

�
�
x1(1� �)xt�x1 � Bi(x1 jxt; �);

where � = �1=(�1 + �2). In this case, the first step
consists in estimating, coding, and transmitting �; its
ML estimate is b� = x1=xt. Because xt was already
transmitted, it suffices to encode and transmit x1; this
requires log(xt+1) bits, since x1 2 f0; 1; :::; xtg. Sur-
prisingly, we find that while encoding b�, we have en-
coded x1 itself, and so no additional coding is needed.
The resulting total description length is simply

L1 = log(xt + 1) = � log
1

xt + 1
: (2)

The fact that, while encoding the parameter we have also
encoded the data itself, is an instance of the incompleteness
issue [6]. If a subset of code-words of a given code has zero
probability of being used, this code is called (maybe some-
what counter-intuitively) incomplete. The MDL approach
reviewed in Section 2 uses two-part codes: we first encode
and send a parameter estimate, then the data itself, coded
according to that parameter estimate. However, if we build
a code for all possible data out-comes, this code is incom-
plete. In fact, once the receiver has the parameter estimate,
it knows that only data out-comes that could have led to this

estimate are possible. In our particular case, since the code-
word for the parameter estimate coincides with the data it-
self, we do not need to send the data again at all. This is an
extreme case of incompleteness removal.

The resulting model selection criterion is: �1 = �2, if
L0 < L1, and �1 6= �2, otherwise. As mentioned above,
the code length associated with the total count xt is a com-
mon constant added to both code lengths, thus irrelevant for
model selection purposes. In practice, we would also need
an extra bit to indicate which of the two model classes was
chosen, which is also irrelevant in terms of model selection.

Finally, we show that the same criterion results from
a Bayesian model selection approach [7]. Let x1 denote
a sample of a binomial random variable with probability
Bi(y jxt; �) and consider the problem of deciding between
two hypotheses: H

0
: � = 1=2, or H

1
: � 6= 1=2 (totally

unknown). Assume that, a priori, p(H0) = p(H1) = 1=2.
The models for � under the two hypotheses are

p(�jH0) = �(�� 1=2); p(�jH1) = U(� j 0; 1); (3)

where �(�� a) is a Dirac delta function at a and U(� j b; c)
stands for a uniform probability density function between b
and c. Naturally, we decide for H1 if p(H1jy) � p(H0jy);
this condition is equivalent to p(yjH

1
) � p(yjH

0
) be-

cause p(H0) = p(H1). The so-called marginal likelihoods
p(yjH1) and p(yjH0) are particular cases of the binomial-
Beta distribution (see [7], pp. 117)

p(x1jH0) =

Z
1

0

p(x1j�) p(�jH0) d� = Bi(x1 jxt; 1=2)

p(x1jH1) =

Z
1

0

p(x1j�) p(�jH1) d� =
1

xt + 1
:

Then, comparing p(yjH0) versus p(yjH1) is the same as
comparing L0 versus L1, as given by (1) and (2).

4. Adaptive Recursive Segmentation

4.1. Splitting a Sequence

Suppose now that we have a length-N sequence of Pois-
son observations (or counts) x = fxkg

N�1

k=0
. Let us consider

the following model classes, competing to explain this data.
Under Model Class 0, x is a sequence of Poisson samples
with common intensity �. Alternatively, consider N � 1
other model classes: Model Class i, for i = 1; ::; N � 1.
Under Model Class i, fxkg

i�1

k=0
is modeled as a sequence

of i Poisson samples of intensity �a, while fxkg
N�1

k=i
is a

set of Poisson samples of intensity �b, with �a 6= �b. We
thus have a total of N candidate classes. If these classes
are a priori equiprobable, index i is encoded with constant
code-length logN , and dropped from any comparisons.

Assume that the total count sN =
P

N�1

k=0
xk is known to

the receiver and need not be encoded (as we shall see, this



will be a natural assumption in the complete segmentation
method). The description lengths achieved are:

Model Class 0: With a constant intensity model, and given
the total sN , the individual counts follow a multino-
mial distribution with all parameters equal to 1=N , i.e.,

p0(x1; :::; xN jsN ) =

�
sN

x1; : : : ; xN

��
1

N

�sN

;

where the multimonial coefficients are given by�
sN

x1; : : : ; xN

�
=

sN !

x1! x2! � � �xN !
:

In this case, there is no parameter to estimate and the
resulting total description length is simply

L
0
= � log

�
sN

x1; : : : ; xN

�
+ sN logN: (4)

Note that (1) is a particular case of (4), for N = 2.

Model Classes 1; :::;N � 1: Model class i assumes that
fxkg

i�1

k=0
and fxkg

N�1

k=i
are sets of Poisson samples of

different intensities, respectively �a and �b. Given
sN , the individual counts are still multinomially dis-
tributed; however, the first i parameters are now equal
to � = �a=(i�a + (N � i)�b), and the N � i last ones
equal to (1 � i�)=(N � i) = �b=(i�a + (N � i)�b).
Notice that with �a = �b, we get � = 1=N and we
recover Model Class 0. Then,

pi(x1; :::; xN jsN ; �) =

�
sN

x
1
; : : : ; xN

�
�

�
si

�
1� i�

N � i

�sN�si

: (5)

To use this model to encode the data, we compute
the ML estimate of �, b� = si=(i sN), where si =P

i

k=0
xk. Since sN is known to the receiver, all that

needs to be encoded is si involving a log(1 + sN )
code-length (since si 2 f0; 1; :::; sNg). After trans-
mitting si, the best code for the data has to take into
account the fact that the receiver already knows thatP

i�1

k=0
xk = si and

P
N�1

k=i
xk = sN � si (see com-

ment about incompleteness in the previous section).
Specifically, each set of counts is itself multinomially
distributed, leading to a total code length

Li = log(1 + sN )� log

�
si

x1 : : : xi�1

�
+ si log i

� log

�
sN � si

xi : : : xN�1

�
+ (sN � si) log(N � i):

Notice that this code-length has three components:
log(1 + sN ) bits needed to encode the partial sum si,
plus the two “-log(multinomial)” terms corresponding
to the two segments (compare with (4)).

4.2. Recursive Segmentation of a Sequence

Our progressive/recursive parsing (or transmission)
scheme, proceeds as follows. As above, we start by en-
coding the total count sN by using, e.g., Elias’ technique
for arbitrary integers [2]. Then, from the full data set, we
compute all the Li’s. If L0 < Li� � minfL1; :::; LN�1g,
our criterion states that the data is best encoded as a sin-
gle piece, and the procedure stops. Otherwise, there is one
best partition of the data, fxkg

i
�

�1

k=0
and fxkg

N�1

k=i�
. We then

transmit i� and si� and apply the criterion to the two seg-
ments fxkg

i
�

�1

k=0
and fxkg

N�1

k=i�
. The receiver can compute

the second partial count from si� and sN (which it already
has): sN�si� ; i.e., when the procedure is applied to each of
the subsegments, the respective lengths and totals were al-
ready transmitted. By recursively repeating this procedure
independently to the resulting sub-blocks of data, we ob-
tain a very efficient recursive scheme of refinement. The
process stops when no further splits are indicated by the
criterion (i.e., we keep splitting until L0 is selected for each
sub-block). The underlying intensity field estimate is piece-
wise constant, with the segments defined by the obtained
parsing and the corresponding intensities as the ML esti-
mates inside each segment. Of course, this is a suboptimal
scheme, because at each level we are ignoring that each seg-
ment may be further subdivided into even smaller pieces,
thus achieving a shorter code length. It is then clear that our
scheme can only under-segment, never over-segment the se-
quence. An optimal scheme would be computationally ex-
tremely heavy. We conclude this section with an illustrative
example in Figure 1.
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Figure 1. Segmenting a piece-wise constant
intensity function from observed counts.



5. Segmenting in Two Dimensions

The 1D strategy described above can be extended to 2D.
The main difference is that in 2D we have more freedom in
how we split the data. To maintain a manageable algorithm,
we restrict the splitting to rectangular tesselations. In our
recursive scheme, the MDL criterion is applied to rectangu-
lar blocks to select one of the following possibilities: (a) no
splitting (the rectangle is considered homogeneous); (b) the
rectangle is split into four (or two1) sub-rectangles defined
by a common vertex (the best possible such splitting is cho-
sen). As in the 1D case, the code lengths for these options
are derived from the multinomial probabilities. As in 1D,
we start by applying the criterion to the full image. Every
time one rectangular block (the image itself, to start) is split
(into 2 or 4 sub-rectangles), the criterion is again applied to
the resulting sub-regions. The parsing process stops when
no further splits are indicated by the MDL criterion. The
final estimate of the intensity field is piece-wise flat, with
the rectangular regions defined by the parsing; the corre-
sponding intensities are the ML estimates based on the data
inside each region. Figures 2 shows an example based on
a piecewise-constant intensity image. The sequence of seg-
mentations obtained along the recursive scheme is shown in
Fig. 3. Finally, Fig. 4 shows an example on a natural image.

(a) (b) (c)

Figure 2. (a) Piecewise-constant intensity (in-
tensities 0.05, 0.2, and 0.4). (b) Observed pho-
ton events. (c) Intensity field parsing.

Figure 3. Segmentation sequence for the data
shown in Fig. 2.

1Notice that with the vertex at one of the edges of the rectangle, we can
also perform a horizontal or vertical split into two sub-rectangles.

(a) (b) (c)

Figure 4. Parsing a natural image. (a) Inten-
sity. (b) Counts, (normalized) MSE = 1.00. (c)
Adaptive recursive estimate, MSE = 0.54.

6. Conclusions and Future Work

Our MDL parsing scheme is a fully unsupervised alter-
native to the Bayesian methods of [3, 4]. We have shown
that our MDL criterion is, in fact, a special case of a
Bayesian approach. However, MDL has no free parame-
ters; it is fully data-driven. Due to the predictive (coarse-to-
fine) nature of the method, we were able to write exact (non-
asymptotic) expressions for the parameter code-lengths.

The 2D method described here is based on rectangular
tesselations, thus showing a clear preference for vertical and
horizontal edges. We could use more general refinement
schemes based on polygonal region splitting. For example,
in the recursive scheme, at each step we could search for the
optimal (in MDL sense) line(s) partitioning a given polygon
into to smaller polygons.
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