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Abstract—The problem of inferring 3D orientation of a camera from video

sequences has been mostly addressed by first computing correspondences of

image features. This intermediate step is now seen as the main bottleneck of those

approaches. In this paper, we propose a new 3D orientation estimation method for

urban (indoor and outdoor) environments, which avoids correspondences between

frames. The scene property exploited by our method is that many edges are

oriented along three orthogonal directions; this is the recently introduced

Manhattan world (MW) assumption. The main contributions of this paper are: the

definition of equivalence classes of equiprojective orientations, the introduction of a

new small rotation model, formalizing the fact that the camera moves smoothly,

and the decoupling of elevation and twist angle estimation from that of the compass

angle. We build a probabilistic sequential orientation estimation method, based on

an MW likelihood model, with the above-listed contributions allowing a drastic

reduction of the search space for each orientation estimate. We demonstrate the

performance of our method using real video sequences.

Index Terms—Camera orientation, sequential estimation, Manhattan world

assumption, camera calibration.

�

1 INTRODUCTION

APPLICATIONS in areas such as digital video, virtual reality, mobile
robotics, and visual aids for blind people require efficient methods
to estimate the 3D pose of a video camera from the images it
captures.

The most popular approaches to 3D pose estimation are feature-
based. In the multiview case, this requires finding correspondences
between features [2], [3], [4]. In the single-image case, typical
methods involve feature grouping [5], [6], [7]. Naturally, in both
cases, feature detection (e.g., corners, edges) is an indispensable first
step.However, it iswidely accepted that automatic featurematching
or grouping are serious bottlenecks. Moreover, by basing all
inference on a usually small feature set (relative to thewhole image),
potentially useful information may be prematurely discarded.

In the multiview case, methods that estimate the 3D structure
directly from the image intensity values, i.e., without involving
feature detection and matching, have been proposed [8], [9]. These
approaches lead to complex time-consuming algorithms and
strongly rely on the assumption that the brightness pattern
remains (approximately) constant from view to view.

Recently, a very different approach has been proposed which
avoids dealing with features in the single-image case by using prior
knowledge about the structure of the scene. Specifically, in typical

indoor and outdoor urban scenes, many edges are aligned with one
of the three directions defining an orthogonal coordinate system.
Under this so-called Manhattan world (MW) assumption, Coughlan
and Yuille [10], [11] used Bayesian inference to estimate the
rotational component of the 3D pose (i.e., 3D orientation) of the
camera, with respect to this coordinate system, from a single image.
The MW assumption was also used in [12] for camera calibration
and extended in [13] to more general urban environments.

In this paper, we propose a new method for 3D orientation
estimation from image sequences in MW environments. The
novelties in our method are the following:

. While, in [10], [11], the MW prior is used to perform
3D orientation estimation from a single image, we extend its
use for sequences of images.

. We introduce a new small rotation (SR) model that
expresses the fact that the video camera undergoes a
smooth 3D motion.

. By defining the 3D orientation in terms of the equivalence
classes of equiprojective orientations, we reduce the space
in which the solution has to be searched.

. We show how the estimate of the elevation and twist
angles can be computed independently of the compass
angle, thus reducing the computational load.

The paper is organized as follows: In Section 2, we review the
geometry of camera orientation. The concept of equiprojective
orientations and the small rotation (SR) model are introduced in
Sections 3 and 4, respectively. Section 5 describes the sequential
estimation method. Experimental results are shown in Section 6
and Section 7 concludes the paper.

2 CAMERA ORIENTATION AND VANISHING POINTS

Let ðx;y; zÞ and ðn;h;vÞ be the Cartesian coordinate systems of the
MW and the camera, respectively. These are related through the
equation ðn;h;vÞT ¼O � ðx;y; zÞT , where O 2 SOð3Þ is the orienta-
tionmatrix, i.e., the camera orientation. In the following text, we often
denote orientation as O � Oð�; �; �Þ, expressing the fact that it is
parameterized with three angles: �, the compass (azimuth) angle,
corresponding to rotationabout thezaxis;�, the elevationangleabove
the xy plane; and �, the twist about the principal axis (see Fig. 1).

The principal point P lies on the sphere with center at the

optical center 0 (chosen as the origin of the MW reference frame)

and radius equal to the focal length f . Its 3D coordinates are

related with the compass and elevation angles via

P ¼ ðPx; Py; PzÞT ¼ fðcos� cos�; sin� cos �; sin�ÞT : ð1Þ

The orientation Oð�; �; �Þ can be determined by finding where the

vanishing points (VPs) of the MW axes project on the image plane

[2], [3]. In fact, let ðh;vÞ be the reference frame of this plane and let

the 2D principal point p be its origin, i.e., p ¼ ð0; 0ÞT . Assuming a

pinhole and radial-distortion-free camera, the 2D coordinates, vx,

vy, vz, of the VP projections are related with Oð�; �; �Þ via

vx ¼ f R� � tan�
cos � ;� tan�

� �T

;

vy ¼ f R�
cot�
cos � ;� tan �

� �T

;

vz ¼ f R� 0; cot�ð ÞT ;

ð2Þ

where R� is the twist matrix,

R� ¼ cos � sin �
� sin � cos �

� �
: ð3Þ

In the above, Cartesian coordinates are used only for simplicity;
vanishing points at infinity can be handled by using homogeneous
coordinates.
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3 EQUIPROJECTIVE ORIENTATIONS

Consider the problem of determining the camera orientation from
the set of three VPs on a single image. Since it is not known which
VP corresponds to which MW axis, the problem has multiple
solutions. This ambiguity motivates the concept of equiprojectivity.

Definition 1 (equiprojective orientations). Denote by VðOÞ ¼
fvx;vy;vzg the set of VPs determined by an orientation O. Two
orientations O and O� are termed equiprojective iff they have identical
sets of VPs, i.e., iff VðOÞ ¼ VðO�Þ.

Equiprojectivity, as just defined, is reflexive, symmetric, and
transitive; therefore, it is an equivalence relation. The following
result provides a way to find the complete equivalence class of a
given orientation, i.e., the set of all orientations which are
equiprojective with it.

Proposition 2. Let O be an orientation and P ¼ ðPx; Py; PzÞT the
corresponding principal point. The equivalence class of O always has
24 elements. Each OðnÞ ¼ Oð�n; �n; �nÞ, for n ¼ 1; . . . ; 24, corre-
sponds to a principal point PðnÞ related to P through PðnÞ ¼ MnP,
where Mn is a 3� 3 signed permutation matrix (i.e., entries in
f�1; 0; 1g, with one nonzero entry per row and per column) with
detMn ¼ 1. The angles �n and �n are obtainable from PðnÞ according
to (1); the twist angles �n depend on Oð�; �; �Þ and PðnÞ as follows:

�n ¼

� ( MT
nz ¼ ð0; 0; 1ÞT ðP ðnÞ

z ¼ PzÞ
� � � ( MT

nz ¼ ð0; 0;�1ÞT ðP ðnÞ
z ¼ �PzÞ

� þ atan tan�
sin � � � ( MT

nz ¼ ð1; 0; 0ÞT ðP ðnÞ
z ¼ PxÞ

� þ atan tan�
sin � ( MT

nz ¼ ð�1; 0; 0ÞT ðP ðnÞ
z ¼ �PxÞ

� � atan cot�
sin � � � ( MT

nz ¼ ð0; 1; 0ÞT ðP ðnÞ
z ¼ PyÞ

� � atan cot�
sin � ( MT

nz ¼ ð0;�1; 0ÞT ðP ðnÞ
z ¼ �PyÞ:

8>>>>>>>>><>>>>>>>>>:
Proof. Given an orientation O, the corresponding image plane can

be seen as the plane that is tangent to the sphere fw : jjwjj ¼ fg in
P. The intersection of each MW axis x, y, and z with the image
plane defines its respective VP. Hence, a necessary condition for
an orientation OðnÞ to be equiprojective with O is that their
corresponding principal points (respectively, PðnÞ and P) have
the same coordinates up to permutations and/or sign changes,
which is equivalent to the existence of a signed permutation
matrix Mn satisfying PðnÞ ¼ MnP. Any permutation matrix
satisfies detMn ¼ �1; however, not all matrices of this kind
yield a solution. Particularly, if P and PðnÞ differ by a single
permutation or by a single sign change, the triangles formed by
the VPs at each case have opposite orientations, i.e., they are
“reflected.” Since the composition of two reflections is the
identity, the number of permutations plus the number of sign
changes defined by anymatrixMn must be even; this is equivalent
to imposing detMn ¼ 1. Because the number of possible
permutations in a 3-vector is 3! ¼ 6 and the number of sign
changes is 23 ¼ 8, we can combine permutations and sign

changes in 48 different ways; since half of these correspond to
“mirror images,” the cardinality of the set fMng is 24 (see
illustration in Fig. 2).

For each Mn, we are able to know which VP in VðOÞ
corresponds to which VP in VðOðnÞÞ. Namely, for every
i; j 2 fx; y; zg, the VP vi and v

ðnÞ
j correspond iff jTMni ¼ �1,

i.e., iff Pi ¼ �P
ðnÞ
j . Taking j ¼ z, we have:

�n � � ¼ ff ½vzpvi� ( zTMni ¼ 1 ðP ðnÞ
z ¼ PiÞ

ff ½vzpvi� � � ( zTMni ¼ �1 ðP ðnÞ
z ¼ �PiÞ:

�
Finally, from (2)-(3), we obtain the expression for �n. tu
The concept of equiprojectivity is useful in any problem of

orientation estimation, or VP location since it allows reducing the
search spaces. This was also pointed out in [12], where an
algorithm was proposed to round a quaternion to a canonical
value in SOð3Þ=C, where C is the octohedral group of cube
symmetries. We formalize this search space reduction in the
following proposition (proven in the Appendix).

Proposition 3. Every orientation O has an equiprojective O� ¼
Oð��; ��; ��Þ such that:

�� 2 ��

4
;
�

4

i i
; �� 2 ��

4
;
�

4

i i
; and �� 2 �’; ’� �; ð4Þ

where ’ ¼ atan
ffiffiffi
2

p
	 54:7
. An equivalent statement is: For any

camera orientation O, there exists at least one VP inside the region of

the image plane shown in Fig. 3.

4 SMALL ROTATIONS MODEL

Let us now assume that the camera is moving and acquiring a
sequence of frames fI1; . . . ; INg. We denote by Okð�k; �k; �kÞ the
orientation at the kth frame. The sequence of orientations
fO1; . . . ;ONg depends only on the rotational component of the
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Fig. 1. Parameterization of the camera orientation. Left: Compass angle � and
elevation angle �. Right: Twist angle � represented on the image plane. (Note: The
image plane is placed in front of the optical center.) Fig. 2. Three-dimensional locations of the principal points of equiprojective

orientations, on the octants of a sphere with radius f. Here, we have two
equivalence classes: the white and the black points. Black points correspond to
“mirror images” of white points.

Fig. 3. Representation of the image plane. It is guaranteed that there exists at least

one vanishing point in the shaded region.



motion. In typical video sequences, the camera orientation evolves
in a smooth continuous way. We formalize this property by
introducing the small rotations (SR) model, described next.

Definition 4. Let Rkð�k; ekÞ be the rotational component of the camera
motion between the ðk� 1Þth and kth frames, where �k and ek denote
the angle and the axis of rotation, respectively. Independently of ek,
we say that the camera is consistent with the SR(�) model iff there
exists a small fixed angle � such that j�kj � � for any k.

In our experiments, we have used an SR(5
) model, which
implies that, for a sampling rate of 12:5 Hz, the rotation angle is
always less than 62:5
 in each second; this is an intuitively
reasonable assumption.

The following proposition expresses how the variations of the
compass, elevation and twist angles between consecutive frames
are bounded due to the SR model.

Proposition 5. If the camera motion is consistent with the SR(�) model,

then, at any frame k, the following bounds hold:

. The elevation variation, �� ¼ �k � �k�1, satisfies

j��j � �: ð5Þ

. The compass variation, �� ¼ �k � �k�1, satisfies

j��j � a�ð�k; �k�1Þ �

acos 1� cos j��j�cos �
cos �k�1 cos �k

� �
( j�k�1 þ �kj � �� �

�
2 ( otherwise:

(
ð6Þ

If Ok�1 is in the region defined by (4), then, independently of

�k and �k�1:

j��j � acosð2 cos � � 1Þ: ð7Þ

. The twist variation, �� ¼ �k � �k�1, satisfies

j��j � g�ð�k�1Þ; ð8Þ

where g� is an even function that increases in the subdomain

½0; �2� from g�ð0Þ ¼ � to g�ð�2Þ ¼ �. If Ok�1 is in the region

defined by (4), then j�k�1j � �
4 and

j��j � g�
�

4

� �
; ð9Þ

Fig. 4 plots g� in the subdomain ½0; �4�, for � ¼ 5
; this value of

� leads to j��j � 7:08
.

Proof. Rkð�k; ekÞ is the composition of two rotations: Rk1 ð�k1 ; ek1 Þ
transforming the principal point Pk�1 in Pk, followed by

Rk2ð�k2 ; ek2 Þ that twists the camera through the principal axis.

Composing these two rotations and taking into account that

ek1?ek2 , we obtain cos �k2 ¼ cos
�k1
2 cos

�k2
2 . Therefore, the SR(�)

condition j�kj � � implies both cos
�k1
2 � cos �

2 and cos
�k2
2 � cos �

2 ,

i.e., j�k1 j� � and j�k2 j� �. Since cos �k1 ¼ f�2 PT
kPk�1, from (1) we

obtain cos �k1 ¼ cos �k cos�k�1 cos��þ sin �k sin�k�1 � cos��.

This suffices to prove (5). Now, rewriting the latest inequality

for cos�� and simplifying leads to (6). If Ok�1 is in the

region defined by (4), then j�k þ �kþ1j � �=4þ �=4þ � � �� �.

The maximum value of �� occurs for �k ¼ �k�1 ¼ �
4 , which

leads to (7).
For ��, we couldn’t find a simple closed-form expression

for g�ð�k�1Þ. Instead, since �k is a function of �k�1, �k, ��, and
��, we can study g� assuming that �k�1 ¼ �k�1 ¼ 0. Spherical
symmetry implies that g� is an even function; also, a simple
geometric argument shows that g�ð�k�1Þ increases with j�k�1j.
Writing Rk as a composition of the three individual compass,
elevation and twist rotations, and using the formula for the
product of quaternions, yields

j��j ¼ 2 acos
AB� C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2 �A2

p

B2 þ C2
; ð10Þ

where A ¼ cos �k2 , B ¼ cos ��
2 cos ��

2 , and C ¼ sin ��
2 ðcos ��

2 sin �k
� cos�k sin��Þ. Numericalmaximization of (10)w.r.t.�� and �k
(for �k ¼ �) approximates g�. tu
If the orientation Ok�1 lies in the minimal region defined by (4),

the search space for Ok is significantly reduced by the bounds
imposed by Proposition 5. In particular, with � ¼ 5
, we have
j��j � 7:08
, j��j � 5
, and j��j � 7:08
. If Ok�1 does not lie in
this minimal region, there is an equiprojective orientation that
does. This shows how the SR model and the equiprojective
orientations can be used together to reduce the search space.

5 SEQUENTIAL ORIENTATION ESTIMATION

5.1 Estimation Criterion

To estimate the sequence of camera orientations fO1; . . . ;ONg from
the observed image sequence fI1; . . . ; INg, we adopt a probabilistic
sequential estimation framework, making use of the MW and SR
assumptions.

The MW assumption states that the images contain many edges
consistent with the x, y and z axes; hence, the statistics of the
image intensity gradient rIk of each image carry information
about the corresponding camera orientation Ok via a likelihood
function P ðrIkjOkÞ [10], [11]. In this paper, we embed this idea in a
sequential estimation framework, using a maximum a posteriori
(MAP) criterion:

bOOk ¼ argmax
Ok

logP ðrIkjOkÞ þ logP ðOkjbOOk�1Þ
n o

; ð11Þ

where the prior P ðOkjbOOk�1Þ penalizes large changes between
consecutive orientation estimates.

A fully Bayesian sequential estimation approach would require
computationally expensive Monte Carlo methods [14], [15]. Our
results show that the simplified criterion in (11) leads to good results
and, by exploiting the equiprojectivity results and the SR assump-
tion introduced in the previous section, can be implemented in near
real time.An alternative schemewas proposed in [13], inwhichOk is
estimated via an iterative (EM) algorithm initialized with bOOk�1.

5.2 Likelihood Function

In this section, to simplify the notation, wewill omit the time index k
and derive the likelihood function P ðrIjOÞ for a generic image. Let
Eu ¼ ðEu; �uÞdenote the element of the image gradientrI at pixelu,
where Eu is the gradient magnitude and �u the gradient direction.
As in [10], [11], the likelihood function is derived as follows:

. Each pixel u has a class label mu 2 f1; 2; 3; 4; 5g. Pixels in
classes 1, 2, 3 belong to edges consistent with the x, y, z
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Fig. 4. Maximum variation for the twist angle as a function of the initial elevation

angle, using an SR(5
) model.



axes, respectively. Pixels in class 4 are on edges not
consistent with those axes. Nonedge pixels are in class 5.
These classes have prior probabilities fP ðmuÞg (we adopt
the values used in [10], [11]).

. The gradient magnitude and direction are conditionally
independent, given the class label. Naturally, the gradient
magnitude is also conditionally independent of the camera
orientation and of the pixel location. Thus,

P ðEujmu;O;uÞ ¼ P ðEujmuÞP ð�ujmu;O;uÞ; ð12Þ

where

P ðEujmuÞ ¼
Pon Euð Þ; if mu 6¼ 5
Poff Euð Þ; if mu ¼ 5;

�
ð13Þ

and PonðEuÞ and PoffðEuÞ are the probability mass

functions of the quantized gradient magnitude, conditioned

on whether pixel u is on or off an edge, respectively. These

probabilities are learned offline.
. Let �xðO;uÞ, �yðO;uÞ, �zðO;uÞ be the gradient directions

that would be ideally observed at location u if mu ¼ 1; 2; 3,
respectively. The gradient direction probability function is

P ð�ujmu;O;uÞ ¼

Pang �u � �xðO;uÞð Þ ( mu ¼ 1
Pang �u � �yðO;uÞ

� �
( mu ¼ 2

Pang �u � �zðO;uÞð Þ ( mu ¼ 3
U �uð Þ ( mu ¼ 4; 5;

8>><>>: ð14Þ

where

Pang tð Þ ¼
1�	
2
 ( t 2 ½�
; 
 �
	

��2
 ( t 2 � � �=2;�
 ½ [ �
; �=2�;

�
and U �ð Þ is the uniform pdf on � � �

2 ;
�
2�. In our experiments,

we use 	 ¼ 0:1, and 
 ¼ 4
.
. Finally, the joint likelihood is obtained by marginalizing

(summing) over all possible models at each pixel and
assuming independence among different pixels:

P ðrIjOÞ ¼ P ð Euf gjOÞ ¼Y
u

X5
mu¼1

P ðEujmuÞ P ð�ujmu;O;uÞ P muð Þ:
ð15Þ

5.3 Locating the Estimates

The maximization in (11), with the likelihood function (15), is a

three-dimensional optimization problem with respect to �, �, and

�. We propose an approximate solution which decouples the

problem into two simpler steps: a two-dimensional optimization

w.r.t. � and �, followed by a one-dimensional search w.r.t. �. This

approximation is supported on the fact that the vanishing point vz

does not depend on the compass angle �, as is clear from (2).
In the first step, we estimate � and �, for frame k, according to

b��k; b��k� �
¼ argmax

�;�
logP ð Euf gkj�; �Þþ

	
logP ð�; �jb��k�1; b��k�1Þ

o
;

ð16Þ

where the likelihood P ð Euf gkj�; �Þ is a version of (15) which only

models direction information of edges consistent with the z axis.

More specifically, instead of (14), we use here

P ð�ujmu; �; �;uÞ ¼
Pang �u � �zð�; �;uÞð Þ ( mu ¼ 3
U �uð Þ ( mu ¼ 1; 2; 4; 5:

�
ð17Þ

Notice that the use of a uniform distribution is simply a way of

ignoring angle information from all pixels but those corresponding

to the z axis (mu ¼ 3), when estimating �k and �k; it doesn’t mean
that those angles are actually uniformly distributed.

P ð�; �jb��k�1; b��k�1Þ is a truncated bivariate Gaussian with mean
½b��k�1; b��k�1�T , defined over the region � 2 �b��k�1� �; b��k�1 þ �� and
� 2 �b��k�1� g�ðb��k�1Þ; b��k�1 þ g�ðb��k�1Þ�. This prior formalizes the
SR assumption (see (5) and (8)) as well as angle variation
smoothness. The variance of this Gaussian controls the trade-off
between the smoothness of the estimated sequence of angles and
the accuracy of this estimates. In the first frame, the prior is flat
over the entire domain ð�; �Þ 2 �45
; 45
� � � �54:7
; 54:7
� �, accord-
ing to (4).

Given b��k and b��k, we then estimate the compass angle �k using

b��k ¼ argmax
�

logP ð Euf gj�; b��k; b��kÞþn
logP ð�jb��k�1; b��k�1; b��kÞo; ð18Þ

where the prior P ð�jb��k�1; b��k�1; b��kÞ is a truncated Gaussian with
mean b��k�1, defined over the interval �b��k�1� a�ðb��k; b��k�1Þ; b��k�1 þ
a�ðb��k; b��k�1Þ� (see (6)). For the first frame, the prior is flat over
�45
; 45
� �. The maximizations in (16) and (18) are carried out by
exhaustive search.

If a given estimate bOOkðb��k; b��k; b��kÞ is located outside of theminimal
region defined in (4), we replace it by an equiprojective orientation
inside that region. As explained in the last paragraph of Section 4,
this allows a�ðb��k; b��k�1Þ to be less than 7:1
, hence keeping a small
search space. As a final step, at each frame k, we select an orientation
from the equivalence class of bOOk, such that the resulting sequence
satisfies the SR model.

6 EXPERIMENTS

The algorithm was tested with outdoor MPEG-4 video sequences,
acquired with a hand-held camera. Although the sequences are of
low quality due to radial distortion and several over and
underexposed frames, our algorithm was able to successfully
estimate the camera orientation, as illustrated in Fig. 5.

The images in Figs. 6 and 7 show frames from two other
sequences. Notice that the algorithm is able to estimate the correct
orientation, despite the many edges not aligned with the MW axes
(e.g., people in Fig. 7). The plots in the same figures represent the
estimates of the orientation angles, for these two sequences. Note
that the estimates on the plot of Fig. 7 are slightly noisier than those
in Fig. 6, due to the lower image quality. The smoothness of these
estimates is controlled by the prior variances referred to in
Section 5.3; here, these variances are the same for both sequences
and the three angles. Of course, there is a trade-off between
smoothness and ability to accurately follow fast camera rotations.

Typical processing time for each ð288� 360Þ-pixels frame is
below one second, on a 3.0~GHz Pentium IV, using a MATLAB
implementation. The only effort made to speed up the computation
was the exclusion of nonrelevant pixels by nonmaxima suppression
followed by thresholding of the gradient magnitude. We are
currently working on a C implementation to achieve frame-rate.

7 CONCLUSION

We have proposed a probabilistic approach to estimating camera
orientation from video sequences of urban scenes. The method
avoids standard intermediate steps such as feature detection and
correspondence or edge detection and linking. Experimental
results show that the method is able to handle low-quality video
sequences, even with many spurious edges.

APPENDIX

Here, we prove Proposition 3. From (1)-(2), we have (for
i; j 2 fx; y; zg):
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vT
i vj ¼

f2 f2

P 2
i

� 1
� �

( i ¼ j

�f2 ( i 6¼ j;

(
ð19Þ

which gives us both the Euclidean distance di ¼ ðvT
i viÞ1=2

between points vi and p ¼ ð0; 0ÞT and the angle �ij ¼ acos
vT
i vj

didj

formed by the two lines ½pvi� and ½pvj�, with i 6¼ j.
Consider now the disk D with radius f centered at p, i.e.,

D ¼ fðu; vÞ 2 IR2 : u2 þ v2 � f2g. We have vi 2 D iff di � f , which,

by (19), is equivalent to P 2
i � f2=2. Since P 2

x þ P 2
y þ P 2

z ¼ f2, the

condition P 2
i � f2=2 implies that P 2

j � f2=2 for any j 6¼ i, which

means that there cannot exist more than one VP in the interior of

disk D. Furthermore, the three VPs are all in the exterior or at the

boundary of D iff P 2
i � f2=2, for i 2 fx; y; zg.

To complete our proof, we need the following intermediate

result:

Proposition 6. Any two VPs vi and vj, with i 6¼ j, verify cos �ij � 0.

Furthermore, if vk 2 D, with k 6¼ i and k 6¼ j, then cos �ij � � 1
3 .

Proof. The first statement comes directly from (19). To prove the

second statement, we obtain min cos �ij ¼ � f2

min didj
, w.r.t. the

principal point coordinates Pi and Pj, over the domain defined

by P 2
i þ P 2

j � f2=2. The minimum occurs for jPij ¼ jPjj ¼ f
2

with value �1=3.
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Fig. 6. Left: Frames 20, 30, 40, and 50 of another video sequence. Right: Camera angle estimates.

Fig. 7. Left: Frames 110, 130, 150, and 170 of a third video sequence. Right: Camera angle estimates.

Fig. 5. Orientation estimates (superimposed cubes represent the estimated MW axes) for the first and several other frames of a video sequence.



Since 1
2 acosð� 1

3Þ ¼ atan
ffiffiffi
2

p
	 54:7
,the shaded area in Fig. 3 is a

simple consequence of Proposition 6. To show (4), consider an
orientation O and let vi be a VP in this shaded area. Proposition 2
then guarantees the existence of an equiprojective orientation O�,
satisfying: 1) v�

z ¼ vi and 2) d�x � d�y. From (2)-(3), we have, due to
1), that �� 2 ��=2; �=2� � and �� 2 �atan

ffiffiffi
2

p
; atan

ffiffiffi
2

p
 

and, due to 2),

that �� 2 ��=2; �=2� �.

ACKNOWLEDGMENTS

Anearlyversionof thisworkappeared in [1]. Thisworkwaspartially
supported by the (Portuguese) Foundation for Science and Technol-
ogy, grants POSI/SRI/41561/2001 and POSI/33143/SRI/2000.

REFERENCES

[1] A. Martins, P. Aguiar, and M. Figueiredo, “Navigating in Manhattan: 3D
Orientation from Video without Correspondences,” Proc. IEEE Int’l Conf.
Image Processing, 2003.

[2] O. Faugeras, Three-Dimensional Computer Vision. Cambridge, Mass.: MIT
Press, 1993.

[3] R. Hartley and A. Zisserman, Multiple View Geometry. Cambridge Univ.
Press, 2000.

[4] Geometric Invariants in Computer Vision, J. Mundy and A. Zisserman, eds.
Cambridge, Mass.: MIT Press, 1992.

[5] E. Lutton, H. Maitre, and J. Lopez-Krahe, “Contribution to the Determina-
tion of Vanishing Points Using Hough Transform,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 16, no. 4, pp. 430-438, Apr. 1994.

[6] S. Utcke, “Grouping Based on Projective Geometry Constraints and
Uncertainty,” Proc. IEEE Int’l Conf. Computer Vision, 1998.

[7] J. Kosecka and W. Zhang, “Video Compass,” Proc. European Conf. Computer
Vision, 2002.

[8] B. Horn and E. Weldon Jr., “Direct Methods for Recovering Motion,” Int’l J.
Computer Vision, vol. 2, no. 1, pp. 51-76, 1988.

[9] G.P. Stein and A. Shashua, “Model-Based Brightness Constraints: On Direct
Estimation of Structure and Motion,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 22, no. 9, pp. 992-1015, Sept. 2000.

[10] J. Coughlan and A. Yuille, “Manhattan World: Compass Direction from a
Single Image by Bayesian Inference,” Proc. IEEE Int’l Conf. Computer Vision,
1999.

[11] J. Coughlan and A. Yuille, “The Manhattan World Assumption: Regula-
rities in Scene Statistics which Enable Bayesian Inference,” Proc. Neural
Information Processing Systems, 2000.

[12] J. Deutscher, M. Isard, and J. MacCormick, “Automatic Camera Calibration
from a Single Manhattan Image,” Proc. European Conf. Computer Vision,
2002.

[13] G. Schindler and F. Dellaert, “Atlanta World: An Expectation-Maximization
Framework for Simultaneous Low-Level Edge Grouping and Camera
Calibration in Complex Man-Made Environments,” Proc. IEEE CS Conf.
Computer Vision and Pattern Recognition, 2004.

[14] N. Gordon, A. Doucet, and N. Freitas, Sequential Monte Carlo Methods in
Practice. New York: Springer-Verlag, 2001.

[15] M. Isard and A. Blake, “CONDENSATION–Conditional Density Propaga-
tion for Visual Tracking,” Int’l J. Computer Vision, vol. 29, no. 3, pp. 5-28,
1998.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 5, MAY 2005


