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Abstract – This paper describes a new method for the auto-
matic extraction and measurement of fetal anatomic struc-
tures from echographic images. More specifically, we estimate
and measure the contours of the femur and of cranial cross-
sections of fetal bodies. Contour estimation is formulated as a
statistical estimation problem, where both the contour and the
observation model parameters are unknown. The observation
model (or likelihood function) relates, in probabilistic terms,
the observed image with the underlying contour. This like-
lihood function is derived from a region-based image model.
The contour and the parameters are estimated according to
the maximum likelihood (ML) criterion, via unsupervised de-
terministic iterative algorithms. Experiments reported in the
paper, using synthetic and real images, testify for the adequacy
and good performance of the proposed approach.

Keywords – Ultrasound images, contour estimation, de-
formable models, maximum likelihood, region-based image
model, image segmentation.

I. INTRODUCTION

Ultrasound imaging (echography) is a very important med-
ical diagnostic auxiliary tool. Its relatively low cost, short
acquisition time, and non invasive nature makes echogra-
phy a very competitive modality. This fact has stimulated a
great amount of research aimed at increasing its diagnostic
potential [1].
Measurements based on echographic images play a signif-

icant role in obstetrics as an accurate means for fetal age
estimation. Several parameters are used as age and devel-
opment indicators, the most important of which are: bi-
parietal diameter (BPD), occipital-frontal diameter (OFD),
head circumference (HC), and femur length (FL) [2]. Each
of these parameters provides, through a specific mathemati-
cal expression, estimates of the gestational age (GA), given
in weeks (w) and days (d) [2]. Consistency and reliability
of measurements is thus a very important issue.
Manual extraction of contours in medical images requires

expert knowledge and is a tedious and time-consuming
task. In addition, manual contour extraction is influenced
by the variability of the human observer which limits its re-
liability and reproducibility. The development of automatic
techniques for the extraction of contours of fetal anatomic
structures can in principle eliminate the variability intro-

duced by the human operator, contributing to reliable and
reproducible measurements. In the development of such
techniques, important factors determining its acceptance
by clinicians are: accuracy, robustness, reliability, repro-
ducibility, and applicability.
While a great deal of research has been published on auto-

mated contour estimation in cardiological and brain imag-
ing, the same does not seem to be true for obstetric ultra-
sound imaging. The only publications known to the authors
on this topic are [3] and [4].
The formation process of an ultrasound image involves

different types of random perturbations, such as the dis-
playing of non-structural echoes, removal of real structural
echoes, displacement and distortion of echoes, and distor-
tion of the organ dynamics [5]. To these types of artifacts
we must add the speckle noise, considered the most impor-
tant perturbation in ultrasound images. This type of noise
is Rayleigh multiplicative and degrades the image by hid-
ing thin structures and reducing the signal-to-noise ratio
(SNR) [6]. The presence of these perturbation makes con-
ventional techniques for contour extraction in digital im-
ages (such as those based on local estimates of the image
gradient) inappropriate for contour extraction in ultrasound
images [7]. More generally, any segmentation algorithm
that is sensitive to noise is not useful for segmenting ultra-
sound images.
In this paper, we describe a new method for the automatic

estimation of contours of the femur and of cranial cross-
sections, which is an indispensable first step towards an au-
tomatic measurement system. To deal with the low quality
of echographic images, which makes any contour detection
task very difficult, we use low order parameterizations of
the contour shapes. This low-order parameterization is suf-
ficient to accommodate the expected shape and size varia-
tions of the organs, but provides robustness against noise,
image artifacts, and regions of missing data. The problem
is formulated in a statistical estimation framework, and im-
plementation is carried out by unsupervised deterministic
iterative algorithms.

II. ACTIVE AND DEFORMABLE CONTOURS

Snakes, or active contour models [8], and their concep-
tual descendants, have been often adopted to deal with con-
tour/boundary estimation problems in several application



contexts. A relevant example is medical imaging, where
contour estimation is the fundamental first step of many au-
tomatic image analysis systems [7, 9]. Active contour mod-
els are controlled by a number of different (virtual) forces
acting simultaneously, where each force results from the
minimization of a separate term of a so-called energy func-
tion. Usually, these terms include an internal energy, which
is responsible for keeping the model smooth, and an exter-
nal energy which attracts the model towards the image fea-
tures of interest. During the application of an active contour
model to an image, these forces compete until an equilib-
rium configuration is reached, in which the global energy
is minimized. Several drawbacks of conventional snakes,
such as the strict use of local data, have stimulated a great
amount of research [10], [11], [12], [13], [14]. Although
most limitations of the original formulation have been suc-
cessfully addressed, only special-purpose approaches have
been able to deal with ultrasound images [7].
Active contour models (or their probabilistic reformula-

tions [7, 12, 15]) require careful tuning of several involved
parameters, such as those controlling the trade-off between
smoothness/robustness and estimation accuracy. This fact
limits the use of these methods for practical medical imag-
ing applications. Moreover, the quality of fetal ultra-sound
images is often so low that a simple smoothness term is not
sufficient to ensure adequate contour estimates.
Deformable models constitute another important approach

to contour estimation. Here, global models generally de-
scribed by a small number of parameters are used (in con-
trast with snakes, which typically use explicit contour de-
scriptions). The model parameters are then estimated in
the presence of the observed image. Deformable models
usually do not include a smoothness energy term since the
simplicity of the parameterization itself guarantees regular-
ity and smoothness of the represented shape. Seminal work
on deformable models was done by Grenander [16]; see
also [17], [18], [19], [20], and other references therein.

III. PROPOSED APPROACH: MAXIMUM LIKELIHOOD

PARAMETRIC DEFORMABLE MODELS

A. Statistical Estimation

As mentioned above, we will formulate contour estimation
by adopting a maximum likelihood criterion. To specify
this criterion, we need to consider:

� the observed data set �, which in our case is the set of
all image pixels;

� a probabilistic model indexed by the parameter vector
�, that is ������, where � is a set of parameters de-
scribing the contour shape.

Under the maximum likelihood criterion, the best estimate
of �, denoted ��ML, is given by

��ML � ������
�

������� (1)

To derive the likelihood function ������, we adopt a region-
based model [7, 9, 12, 14, 15], which is an approach known
to be robust with respect to local artifacts and poor image

quality. Region-based models are based on spatial charac-
teristics of homogeneity, where the term homogeneity does
not necessarily mean that the pixels in a given region have
identical intensities, but that the differences inside a region
are much less than between regions. The advantage of these
models is that they directly depend on all the image data,
being less sensitive to noise and image artifacts than meth-
ods that use derived information. Moreover, region-based
models allow, in general, an easy derivation of the likeli-
hood function, a main ingredient of any probabilistic for-
mulation.

B. Observation model

The observed image � (a �� ��� array of gray levels), is
modelled as a random function of the object’s boundary �,
which is a parametric function of unknown parameters, that
is we write ����. The likelihood function ������ �� defines,
in probabilistic terms, the image observation model, where
the image plays the role of observed data, and � is a set
of additional unknown parameters which characterize the
observation model.
We adopt the simplest region-based model characterized by
the two following hypotheses:

� Conditional independence
Given the contour, the image pixels are independently
distributed;

� Region homogeneity
The conditional probability function of each pixel de-
pends only on whether it belongs to the inside or
outside region of the contour; i.e., all pixels inside
(resp. outside) have a common distribution charac-
terized by a parameter vector � in (resp. �out), with
� � 	�in �out
.

Thus, the joint probability density function of the observed
image, given a contour ����, can be written as

������ �� �
�

�������������

����������in�
�

�������������

����������out��

(2)
with ������ denoting the value of pixel ��� 	�, while 
������
and ������� are, respectively, the inside and outside re-
gions of the contour ����. Finally, ����������in� and
��
�������out� are, respectively, the pixel-wise probability
functions, of the inner and outer regions.
Given that ultrasound images follow a Rayleigh distribu-

tion, the pixel-wise probability densities have the form

����
� �
�



�����

��




�� for � � �� (3)

and thus � � 	
in 
out
, where 
in and 
out are the vari-
ances for the inside and outside regions, respectively.

C. Complete estimation criterion and algorithm

To implement an unsupervised scheme we must estimate,
from an observed image �, not only the parameters that de-
fine the contour, �, but also the other parameters of the ob-
servation model, �. Accordingly, we extend the maximum
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Figure 1 - Parameterization of the femur shape: the axis is a 3 point inter-
polating spline; the inside region is� pixels wide around the axis.

likelihood criterion to include also those parameters:�
��� ��
�
� ������

��	

���� � ����� ��� � (4)

where the ��� function is included because it does not affect
the location of the maximum and allows some formal sim-
plification. Since solving (4) simultaneously with respect to
� and � would be computationally very difficult, we settle
for a suboptimal solution given by iterative schemes of the
type

���
��� � ������
�

�
��� �

�
���� ���
��� (5)

���
��� � ������
	

�
��� �

�
�����
���� �

��
� (6)

where ���
� and ���
� are the estimates of � and � at iteration
�, respectively.

IV. IMPLEMENTATION

We have implemented two contour estimation algorithms:
one for the fetal femur, and another for the fetal head. In
both cases, the underlying criterion and type of algorithm
are those in Equations (4), (5), and (6), although the param-
eterization of the contour shapes is naturally different.
The algorithm defined by Equations (5) and (6) can be seen

as a 2-levels hierarchical scheme of nested algorithms: the
inner scheme (Algorithm 2) updates � (Equation (5)), tak-
ing � fixed. Algorithm 2 is then used by the global algo-
rithm, termed Algorithm 1, to solve for both � and �.

A. Femur contour estimation algorithm

Given the form of a fetal femur (usually a straight line seg-
ment for a younger fetus, and a slightly curved arc for an
older fetus [2]), we adopt an interpolating spline defined
by only three points � � 	��� ��� ��
. As shown in Fig-
ure 1, the inside region 
������ is � pixels wide around
the spline (dashed line). Although this is a very simple pa-
rameterization, it reveals itself rich enough to cover all the
possible shapes of fetus femurs.

Algorithm 1

Inputs: An initial valid point �� init
� . This point is given by

the user who is asked to indicate a point somewhere
inside the femur.

Outputs: The estimates �� final and �� final.

Step 0: Set � � � (iteration counter). Set �� �
�
� � �� init

� . To

set� and initialize �� �
�
� and �� �
�

� we use the following
procedure: a straight line segment is defined such that�� �
�
� and �� �
�

� are the endpoints and �� �
�
� is the mid-

point. The angle of this line segment and the region
width � are chosen by maximizing the variance mea-
sured in the corresponding inside region, while keep-
ing �� �
�

� fixed.
Step 1: Given the current contour �����
��, update the es-

timates of the variance parameter � � 	
in 
out
 ac-
cording to the ML criterion,

�
�
���
in � ������

�in
��� �

�
� � ���
�� 	
in 
out


�

�
�


 �
�
��

�
����������

��
������ (7)

where 
 �
� � 
������
��� is the current inside region,
and �
 �
�� denotes the number of pixels in 
 �
�; a simi-

lar expression is used for �
�
���
out .

Step 2: Run Algorithm 2, providing ���
� and ���
��� as
inputs. Algorithm 2 returns an updated ���
���.

Step 3: If some stopping criterion is met, terminate with
outputs �� final � ���
��� and �� final � ���
���; other-
wise, increment � and return to Step 1.

Algorithm 2

Inputs: A given parameter estimate �� and an initial con-
tour parameter �� first.

Outputs: An updated contour parameter estimate �� new.

Step 0: Set � � � (iteration counter). Set ����� � �� first.
Step 1: Update the contour parameters according to

�� �����
� � ������


��� ��
 ���
� �

��� ��� � 	��� �� ���
� � �� ���

� 
� ����
�� �����
� � ������


��� ��
 ���
� �

��� ��� � 	 �� ���
� � ��� �� ���

� 
� ����
�� �����
� � ������


��� ��
 ���
� �

��� ��� � 	 �� ���
� � �� ���

� � ��
� ����

where � � �� ���
� � is the set of 8 nearest neighbors of�� ���

� , for � � �� �� 
.
Step 2: If a stopping criterion is met, output �� new ��������; if not, increment � and go back to Step 1.

B. Head contour estimation

The fetal head is approximately elliptical. In order to
get a precise adjustment, we have parameterized the con-
tour as an closed 8-point interpolating spline, that is, � �
	��� ���� ��
. As illustrated in Figure 2, the inside region

������ is � pixels wide around the spline (dashed line).
To estimate the cranial cross-section, we use the same ba-

sic approach as described above for the femur. However,
this turns out to be more difficult, mainly due to the pres-
ence of several intracranial structures which can wrongly
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Figure 2 - Parameterization of the cranial cross-section wall.

attract the contour estimate. To avoid these intracranial ar-
tifacts, we add to the log-likelihood function a new term
which forces the contour to move beyond undesired high
variance regions. This approach, proposed in [11], is named
balloon, since it makes the contour behave like an inflating
balloon. The modified estimation criterion is thus

�
��� ��
�
� ������

��	

���� � ����� �� � � ����� � (8)

where ���� is the balloon term, an increasing function of the
contour area; here, we set ���� to the area of the inscribing
rectangle. The weight � of this new term must be sufficient
to allow the contour to move past the undesired regions, but
not so strong that it makes the contour move beyond the
true cranial wall. We have found experimentally that � �
���� is a good general-purpose choice. We are currently
investigating ways of adjusting � automatically.

The structure of the algorithm used for the cranial cross
sections is basically the same as the one developed for the
femur. There are only three important differences:

(1) The log-likelihood function being maximized is modi-
fied with the balloon term (Equation (8)).

(2) The algorithm is divided into two phases: in a first
phase, only control points 	��� ��� ��� �	
 (see Figure
2) are considered (that is, the contour is a spline with
four control points). After convergence, four more
control points are inserted, 	�
� ��� ��� ��
 (see Figure
2) and the algorithm continues until it converges to a
final estimate. The basic idea behind this approach is
that during the first iterations, when the contour esti-
mate is far from its final position, a coarse represen-
tation is sufficient and the algorithm proceeds much
faster. In the final iterations, a finer adjustment of the
shape is possible with the extra control points.

(3) Initialization is performed as follows: the user indicates
a point somewhere close to the center of the head;
points ��, ��, ��, and �	 are placed in such a way
that the contour they define is a small ellipse around
the given point.

Figure 3 - Initial and final estimates on a synthetic image representing a
femur.
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Figure 4 - Evolution of the log-likelihood for the example of Figure 3.

V. EXPERIMENTS

A. Synthetic Images

The first two examples simply illustrate the behavior of
the algorithm using synthetic images generated according
to the Rayleigh model. In Figure 3 we simulate a femur,
with the inner and outer variances set to ��� and ���, re-
spectively; the figure shows the initial contour and the fi-
nal one obtained after 34 iterations. The evolution of the
log-likelihood function is plotted in Figure 4. The image
model parameter estimates obtained were �
�� � ������
and �
��
 � ������, very close to the true ones.

In the example of Figure 5, resembling a cranial cross-
section, the inner and outer regions have variance ����� and
�
���, respectively. The log-likelihood evolution is plotted
in Figure 6; the transition from the first to second stage of
the algorithm occurred at iteration 22. The final parameter
estimates are 
�� � �
��� and 
��
 � �
���, again very
close to the true values.



Figure 5 - Initial and final estimates on a synthetic image representing a
cranial cross-section.
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Figure 6 - Evolution of the log-likelihood for the example of Figure 5.

B. Real images

Figures 7, 8, and 9 show examples of femur contour es-
timates on real echographic images. We recall that the
only interaction required from the user is to indicate a point
somewhere on the femur. No parameter adjustments are
needed. These estimates were considered very good by ex-
pert clinicians.
Figures 10, 11, and 12 show examples of cranial cross-

section contour estimates on real echographic images. We
recall that the only interaction required from the user is to
indicate a point somewhere close to the center of the head.
The initial contour obtained by the algorithm, around the
point given by the user, are shown as dashed lines. Again,
we stress that no parameter adjustments are needed. These
final contours were also considered very good by experts.

C. Measurements

Figures 9 and 12 show the femur and cranial cross-section
of a fetus, taken during an obstetric exam. The measure-
ments obtained via the automatically estimated contours
are FL � ���� cm (GA � ��w 
 d) and BDP � ���� cm

Figure 7 - Example of femur contour estimation on a real image.

Figure 8 - Example of femur contour estimation on a real image.

Figure 9 - Example of femur contour estimation on a real image.

Figure 10 - Example of cranial cross-section contour estimation on a real
image.



Figure 11 - Example of cranial cross-section contour estimation on a real
image.

Figure 12 - Example of cranial cross-section contour estimation on a real
image.

(GA � ��w � d). Manual measurement gives FL � ��� cm
(GA � ��w � d) and BDP � ��� cm (GA � ��w � d).
For Figures 10 and 7, which also correspond to one fetus,
the automatically obtained measurements are FL � ��� cm
(GA � ��w � d) and BDP � ���
 cm (GA � ��w
 d);
parameters values for manual extraction are FL � ��� cm
(GA � ��w� d) and BDP � ��� cm (GA � ��w� d). We
verify that in both examples the difference between ges-
tational age obtained for FL and BPD parameters via the
automatic contour extraction is 1 day, while for manual ex-
traction is 2 days for the first example and 1 week and 4
days for the second. Although, of course, more experiments
are needed, this seems to suggest a good consistency of the
measurements obtained automatically.

VI. CONCLUDING REMARKS

This paper described an approach to unsupervised contour
estimation of fetal anatomic structures. All the model pa-
rameters are considered unknown and estimated from the
observed image. Examples presented, using synthetic and
real images, showed the ability of the proposed method to
estimate contours in an unsupervised manner, i.e. adapting
to a not completely known shape and observation parame-
ters. With the synthetic images, the good match between
the estimated and the true parameters also shows the good
performance of the approach.
Future work will include a thorough experimental evalua-

tion of consistency, robustness, and reproducibility.
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