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Abstract—This paper adopts a Bayesian approach to simultaneously learn both an optimal nonlinear classifier and a subset of predictor
variables (or features) that are most relevant to the classification task. The approach uses heavy-tailed priors to promote sparsity in the
utilization of both basis functions and features; these priors act as regularizers for the likelihood function that rewards good classification
on the training data. We derive an expectation-maximization (EM) algorithm to efficiently compute a maximum a posteriori (MAP) point
estimate of the various parameters. The algorithm is an extension of recent state-of-the-art sparse Bayesian classifiers, which in turn can
be seen as Bayesian counterparts of support vector machines. Experimental comparisons using kernel classifiers demonstrate both
parsimonious feature selection and excellent classification accuracy on a range of synthetic and benchmark data sets.

Index Terms—Pattern recognition, statistical learning, feature selection, sparsity, support vector machines, relevance vector
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1 INTRODUCTION

1.1 Motivation
IN binary supervised learning problems, the goal is to learn
how to distinguish between examples from two classes
(herein labeled, withoutloss of generality,asy = Oand y = 1)
on the basis of p observed predictor variables (also known as
features) € = [x1,2s,...,2,]" € R”. To achieve this goal, we
are given a training set D = {(z(V,y"): z) ¢ R¥,y!) €
{0,1}}}, with n labeled examples, where y) is the label
associated with example z"). Given this training set D, two
standard tasks are to learn a function that most accurately
predicts the class of a new example (classifier design) and to
identify a subset of the features that is most informative about
the class distinction (feature selection). In this paper, we
develop a joint classifier and feature optimization (JCFO)
algorithm to accomplish both tasks simultaneously.

One fundamental idea undergirding JCFO is the associa-
tion of a nonnegative scaling factor ¢, with each feature x;;
these scaling factors are then estimated from the data, under
an a priori preference for values that are either significantly
large or otherwise exactly zero. Although this idea can be
applied to a variety of other types of classifiers, we focus in
this paper on probabilistic kernel classifiers of the form

1. A preliminary conference version of this paper concentrating mostly
on biological applications was presented in [10].
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where ®(2) is the Gaussian cumulative distribution function
(also known as the probit link [12]),

B(z) = /ZN(x|O,1)dx:\/% / exp(%)dw, @)

—00

and Ky(z,z!") is a (possibly nonlinear) measure of
similarity between the test example z and the training
example z; usually Ky(-, -) is called the kernel function [16].
In our context, the similarity between two examples
depends upon the scaling factors associated with each of
the features; we indicate the parameter dependence of the
kernel function on the scaling factors by the use of the
subscript . Two of the most popular kernels are easily
parameterized to incorporate these scaling factors:

rth order polynomial :

P A\
Ky(z, ") = (1 + Z kakxf)) (3)
=1

Gaussian radial basis function (RBF) :

Kg(a:,z(”) = exp (— zpjﬁk (rk — rff))2> (4).
k=1

From these two equations, we see that setting 6, =0 is
equivalent to removing the kth feature from the classifier
entirely.

JCFO seeks sparsity in its use of both basis functions
(sparsity in B = [0,..., [3,,,]T) and features (sparsity in
0=10,.. .,Hp]T). This dual emphasis is founded on two
observations. First, for kernel classification, sparsity in the
use of basis functions is known to impact the capacity of the
classifier, which controls its generalization performance [6].
Second, according to the well-known curse of dimensionality,
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the difficulty of a learning task increases as the feature
dimensionality grows relative to the number of training
samples [3]; thus, sparsity in feature utilization is another
important factor for increased robustness. Motivated by
these observations, JCFO includes an a priori preference for
sparsity in both sets of parameters, 8 and 0, as they are
simultaneously estimated from the training set D.

1.2 Related Work

Except for the choice of the probit link, the classifier shown
in (1) is similar to other kernel machines such as the support
vector machine (SVM) [16] and the relevance vector machine
(RVM) [18]. The SVM and RVM learning algorithms also
seek sparsity in B, but do not address the estimation of
scaling factors 6.

Automatic relevance determination (ARD) [13] has been
used to estimate scaling factors on features for several
different types of classifiers, including neural networks [7],
[13], RBF networks [8], and kernel classifiers [14], [20].
While algorithms that use ARD are designed to find scaling
factors ¢j, that are well-matched to the training data D, JCFO
differs from these ARD methods in that it incorporates an
explicit sparsity-promoting (heavy-tailed) prior. This results
in many coefficient estimates that are exactly zero, as
opposed to estimates that are close to but not exactly zero.
This behavior is controlled by a tunable parameter of the
prior; in practice, adjusting this parameter through cross-
validation results in both strong feature selection and good
classification accuracy in data sets with high feature
dimensionality and many irrelevant features, like gene
expression data. Moreover, even in benchmark data sets
with low feature dimensionality, with few or no irrelevant
features, JCFO is found to perform at least as well as
conventional ARD methods, both in terms of classification
accuracy and feature scale estimation properties.

Methods specifically tailored for feature selection in
SVMs have also been proposed [5], [19]. In contrast with
JCFO, those methods involve training optimal SVM
classifiers over several feature subsets; selection is then
performed by recursive feature elimination [5] or by
adjusting the scaling factors using the gradient of a (loose)
theoretical upper bound on the error rate [19]. In Section 4,
we compare the classification performance of our JCFO
algorithm against the best results for all of these methods,
using benchmark data sets.

Finally, we should point out that JCFO is a generalization
of the sparse probit regression (SPR) technique of [4] which
only learns a sparse set of basis functions . In contrast,
JCFO jointly learns a sparse set of basis functions 8 and a
sparse set of features . If we chose the basis functions to be
the features themselves (i.e., a nonkernelized linear hyper-
plane classifier), the roles of # and 6 would merge and JCFO
would be essentially equivalent to SPR.

1.3 Structure of the Remainder of the Paper

In Section 2, we discuss the sparsity-promoting priors used by
JCFO. We derive an efficient expectation-maximization (EM)
algorithm to jointly estimate 8 and € in Section 3. In Section 4,
we report the results of various experiments comparing our
JCFO algorithm to several state-of-the-art methods (e.g.,
SVM, RVM, and SPR) on synthetic data sets, high-dimen-
sional gene expression data sets, and low-dimensional
benchmark data sets. Section 5 concludes the paper with a
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discussion of the results and a survey of possible future
research directions.

2 SPARSITY-PROMOTING PRIORS

To encourage sparsity in the estimates of the parameter
vectors B and 6, we adopt a Laplacian prior for each. It is
known from earlier work that a Laplacian prior promotes
sparsity, due to its equivalence to regularization with an ;
norm penalty [4], [17]; formally, p(B|y) x exp(—||B||;),
where ||8]|, = >_, 16| is the | norm. Notice that, for small
B;, the difference between p(0) and p((;) is much larger for a
Laplacian than for a Gaussian. As a result, using a Laplacian
prior in a learning procedure that seeks to maximize the
posterior density p(f8;|D) x p(D|Bi)p(8i) strongly favors
values of ; that are exactly 0 over values that are simply
close to 0. More insight on the sparsity-promoting nature of
the Laplacian prior can be found in [4], [17].

If we attempt to use a Laplacian prior directly, we will
run into computational difficulties due to its nondiffer-
entiability at the origin. To avoid this difficulty, we use an
alternative hierarchical formulation which is equivalent to
the Laplacian prior [4]. Let each (5, have a zero-mean
Gaussian prior p(8;|;) = N(30,7;), with its own variance
7; > 0. Further, let all the variances 7; be independently
distributed according to a common exponential distribution
(the hyperprior): p(7;|y1) = (m1/2) exp(—y1 7:/2), for 7 > 0.
With these assumptions in place, the effective prior can be
obtained by marginalizing with respect to each 7,

o0

[ 3m) pisin) dry = L expl(-ilBD: )

p(Biln) = 5

0

showing that this hierarchical model is indeed equivalent to
a Laplacian prior.

For each scaling coefficient §;, we adopt a similar sparsity-
promoting prior, but with an important difference: We must
ensure that any estimate of ¢, is nonnegative. To see why,
observe that, in the kernels defined by (3) and (4), a negative
value for 6, would imply that when comparing two feature
vectors, increasing similarity of the corresponding features
would correspond to a reduced value of the kernel function.
Though greater similarity of a particular feature in two
different observations need not imply that the observations
are more similar—e.g., if this feature is irrelevant—it should
never imply that they are somehow less similar. Thus,
although 0), can and often will be exactly zero, negative
values are disallowed. Accordingly, we consider a hierarch-
ical model for 6}, similar to the one described above for 3;, but
with the Gaussian prior replaced by a truncated Gaussian
prior that explicitly forbids negative values

{2N(9k|0,pk) if 0, >0
0

p(0k|pk,) = if 6, < 0 (6)

and an exponential hyperprior p(pi|v2) = (72/2) exp
(=2 pi/2), for p, > 0. As above, the effective prior can
be obtained by marginalizing with respect to p;,
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p(Oklr2) /p Oxlok) p(prlr2) dpr
0 (7)

Ve exp(—ybk) i 0, >0

N { 0 if 0, < 0,

showing that the effective prior on 6, has the same shape as
a Laplacian density, but limited to positive values of the
parameter (i.e., it is an exponential density).

3 MaAP PARAMETER ESTIMATION VIA EM

Given the priors described above, our goal is to find
the maximum a posteriori (MAP) estimates (ﬂ 0)

arg max g ) (P(D| B, 0)p(B|11) p(6]72)), where p(D|B,0) is the
likelihood of the training data, which has the following

form (noting that 1 — ®(z) = &(—2)):
NG
z(j))) ]

" (1-y®).
[@ (—50 — > Bike(z", z“)))}
j=1

We next describe an EM algorithm that finds MAP
estimates using the hierarchical prior models described above
and the latent variable interpretation of the probit model [1],
[4]. Consider the (n + 1)-dimensional vector function hg(z) =

[1, Ko(z,zV),..., Ko(z,z™)]", and the random function
2(z, 8,0) = hj (z)B + w, where w~ N(0,1). If a classifier
were to assign the label y =1 to an example z whenever
2(x,B,0) >0 and y =0 whenever z(z,8,60) <0, then we
would recover the probit model:

P(y=1|z,B,0) = P(hy = ®(hy(z)B). (8)

Now, consider the vector of missing variables
z=1[21,..., 20", where z0) = 2(z'), B, §). Consider also
the vectors of missing variables 7 = [TO,...,T,L}T and
p= [pl,...,pp]T. If 2, 7, and p were known, estimating
B and @ would be much simpler:

n

p(D|B,6) =[]

i=1

P <ﬂo +3 Bk,

=

(z)B+w > 0)

e If z was known, we would have the linear
observation model z= Hg¢B+w, where Hy=
[h(,v(z(l)),...,ha(I("))]T is the so-called design ma-
triv and w = [wy,...,w,]".

e IfTand pwere known, the priors on §and 8 would be
a Gaussian and a truncated Gaussian, respectively,
much simpler to handle than a Laplacian and an
exponential.

These observations suggest the use of an EM algorithm
in which 2, 7, and p play the role of missing variables.
Il('}f: EM algorithm will produce a sequence of estimates
B and 0 by alternating between the E-step and the
M-step, described below.

E-step. The E-step requires computing the expected
value of the complete log-posterior (ie.,
would be maximized if we had z, 7, and p) conditioned
cir(})the data D and the current estimate of the parameters,
B and 0. This complete log-posterior is given by

the one which
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IOg p(ﬂ7 0|D> Z, T7 p)
o log p(2|B,8) + log p(B|T) + log p(8p) 9)
o« —2'z— B Hy(HoB —22)— B'TB—-0"RO, (10)

where T and R are diagonal matrices: T = diag(7; ', ..., 7, !

and R = diag(p;',...,p,"). The expected value of this l?)g-

posterior, usually denoted as the @) function, is thus
Q(8.6|B",0)
E [—sz — BTHE(HoB - 22) — BT - 0TR0‘D, ﬁ<’-‘>,§<f>} .

where the expectation is, of course, with respect to the
missing variables. Since the M-step will maximize @ with
respect to B and @, the term —z”z can be dropped, leaving

Q(ﬂ,o‘ﬁ(t)ﬁ(t)) _
—ﬂTHgHaﬂ-i-QﬂTHgT]E[z‘D,B(”,/G\(”} (11)
_F'E [T‘D, 3(t)7§(t)}ﬂ _0"IE [R’D, ’B(t)ﬁ(t)} 0

The E-step thus reduces to computing each of the expecta-
tions appearing in (11). For the expectation of z, if we define
1 = 2410 — 1 (i.e., map the labels to {—1, +1}), we have

v, =IE [z(i)

Wy(a B +

D, E(f)7a(t)} -
10 N(hg(xm)ﬁm‘o, 1)
o (1005 =)

which follows from the fact that 20 is distributed as a
Gaussian with mean hg (z") BY, but left-truncated at zero if
y® =1 and right-truncated at zero if y) = 0. Some further,
simple manipulation allows us to show that the expecta-
tions of 77! and p;! are

(12)

I

w; = IE |:7—7j_1 ‘Dv ﬁ§t>7 ’711|
[ 7 p(in) p(BL )

f p(T; |'Vl (A<t>

0

1 A\

]E|:p]¢, ’Dvok 7’72i| :72(0k ) .
In summary, all three expectation terms in the E-step can be
computed analytically.

M-step. In this step, the parameter estimates are updated
according to

" s

TL') dTi

B30 5D — argmax) (ﬂ, o‘ ﬁ@),a(t)) . (15)
8.0

After defining v =[vy,..., U,L]T, Q = diag(wy, . . . ,w,), and
A = diag(é1,...,6,), the M-step requires that we maximize

the following function with respect to 8 and 6 jointly:

(8.0

B.09) =—p"HyHoB+ 26" Hyv —B'Q6 07 A0,
(16)

The gradient with respect to B, and the partial derivatives
with respect to each 6, are
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VsQ = —2HyHofB +2Hyv — 208 (17)
8@ n n+1{ . (8H9)}
— = =260 — 2 HypB — ® 18
20, O ; ; (HoB —v)B ) (18)

where © represents element-wise Hadamard matrix multi-
plication. For the polynomial and RBF kernels used in this
paper ((3) and (4)), these derivatives are computed trivially.

In general, the joint maximization of () with respect to 8
and @ cannot be performed analytically. However, we can
exploit the fact that, for any given 6, the corresponding
optimal B, denoted By, can be evaluated analytically by
solving Vg @ = 0, which yields

Bo= 2+ HyHy) 'Hyv=S(I+ SH)HyS) 'SHyv, (19)

where S = diag(so,...,s,) with s; = w[m = 7{1/2|B§t)|1/2.
Matrix S allows a stable numerical implementation since
the sparsity-promoting priors will drive several of the f; to
zero, thereby causing numerical problems in implementa-
tions that use Q directly. Having solved the maximization
analytically with respect to B8, we are left with a function
only of @, resulting from plugging By into Q). Maximization
with respect to 8 can be handled by any standard method;
in the results presented below, we use a simple conjugate
gradient algorithm.

3.1 Approximate Methods for Improving

Computational Complexity

The computational complexity of the algorithm described
above is very reasonable for moderately sized problems
where the number of training examples n and the feature
dimensionality p can each be on the order of several
hundred. The computational bottleneck of the algorithm is
the matrix inversion in (19), which becomes impractical for
large numbers of training examples n; this problem is
endemic to kernel methods and reduced set strategies may
be useful in these situations [11] (see also Section 5.2).

On the other hand, when we have a few tens of
training samples but several thousand feature dimensions
(so-called “small n, large p” problems), we can apply an
initial feature preselection step using some alternative
approach and, subsequently, invoke the JCFO algorithm
on the feature subset. For example, this feature preselec-
tion can easily be performed using JCFO itself, but in a
nonkernelized mode: setting all 6, equal to some constant
and letting hg(z) = [1,21,7y,...,2,)". In such a nonkerne-
lized mode, our JCFO algorithm reduces to the algorithm
of [4], and very efficient implementations that avoid any
matrix inversions can be obtained. The sparsity-promoting
prior on B yields a linear hyperplane classifier using only
a few features. These features can then be used in a fully
kernelized JCFO. In the experiments reported below, this
strategy is employed only with the very high-dimensional
gene expression data sets.

4 EXPERIMENTAL RESULTS

Following standard procedure in experiments with kernel
classifiers, each data set is initially normalized to have zero
mean and unit variance. The regularization parameters 7,
and 7, (controlling the degrees of sparsity enforced on 8
and 0, respectively) are selected by cross-validation on the
training data. To obtain meaningful comparisons against
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Fig. 1. Effect of increasing numbers of irrelevant features added to a series
of synthetic data sets. In accordance with the curse of dimensionality, the
error rate of most kernel classifiers increases as more irrelevant features
are introduced, but our JCFO algorithm is largely immune.

other published algorithms, we use either identical cross-
validation procedures or the same training and test sets as
those previously reported. We present results of experi-
ments with both high-dimensional data sets containing
many irrelevant features, and low-dimensional data sets in
which feature selection is not critical or sometimes even
useful. Before doing so, however, we consider a series of
tests with synthetic data to illustrate the ability of JCFO to
guard against the curse of dimensionality.

4.1 Effect of Irrelevant Predictor Variables

The first experiment aims at illustrating the robustness of
JCFO against the inclusion of increasing numbers of irrele-
vant features. To this end, we generate synthetic data from
one of two normal distributions with unit variance, depend-
ing on the class. The locations in p-dimensional space of the
means of these two distributions, g, and p,, are given by

B = — [y = [1/\/571/\/57070770]’[
—_——

(p—2) zeros

Regardless of the feature dimensionality p, the optimal
classifier is linear and uses only the first two dimensions of
the data, and the Bayes error rate is ®(—1) ~ 0.1587. The
competing algorithms are given training sets with 100
examples from each class and tested on independent test
sets with 500 examples from each class. The results are
averaged over 20 random samples of the training set and
the entire procedure is repeated for several feature
dimensions p. The average error rates of the competing
algorithms, all with linear kernels, are compared in Fig. 1.
Although error bars have been omitted from Fig. 1 to
enhance readability, for p > 10, JCFO is assessed by a
binomial test to be statistically superior to all other
competing algorithms with a p-value of 0.05 or better.
This experiment shows that JCFO is much more robust to
the presence of increasing numbers of irrelevant features
than other kernel methods, such as the SVM, RVM, and SPR.
Among the kernel methods compared in this experiment,
only JCFO s able to estimate the scale of the input features, so
it is not surprising that it is the only one largely immune to
the presence of irrelevant variables. Furthermore, the feature
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TABLE 1
Accuracy of Diagnostic Classification with Gene Expression Data Sets (% Correct)
Classifier AML/ALL Colon
Adaboosting (Decision stumps) [2] 95.8 72.6
SVM (Linear kernel) [2] 94.4 77.4
SVM (Quadratic kernel) [2] 95.8 74.2
Logistic regression (No kernel: on feature space) [9] 97.2 71.0
RVM (No kernel: on feature space) [9] 97.2 88.7
Sparse probit regression (No kernel: on feature space) 97.2 88.7
Sparse probit regression (Linear kernel) 97.2 91.9
Sparse probit regression (Quadratic kernel) 95.8 84.6
JCFO (Linear kernel) 100.0 96.8
JCFO (Quadratic kernel) 98.6 88.7

selection ability of our JCFO algorithm was clearly demon-
strated in this experiment: For almost all the random draws
of the training set across all values of p, JCFO identified only
the two relevant features by choosing 6, = 0 for all £ > 2. The
rapid performance degradation of the other kernel methods
shows that feature selection is indeed crucial, even for large
margin techniques like the SVM.

A similar experiment was also performed in [4] using
nonkernelized sparse probit regression in which hg(x) =
[1,21,... ,xp}T. The results reported therein demonstrate
reduced performance degradation with increasing feature
dimensionality, lending support to the two-stage approxi-
mate method described in Section 3.1. As shown in the next
section, in the context of data with an extremely high feature
dimensionality, the two-stage approximate version of JCFO
outperforms nonkernelized sparse probit regression alone.

4.2 Results with High-Dimensional Gene
Expression Data Sets

Gene expression data sets are known to contain a large
number of irrelevant and redundant variables; conse-
quently, effective feature selection becomes a key factor
in determining the performance of a classification algo-
rithm. In fact, the strategy for learning a classifier is likely
to be less relevant here than the choice of feature selection
method. We consider two commonly-analyzed data sets.
The first contains expression levels of 7,129 genes from
47 patients with acute myeloid leukemia (AML) and
25 patients with acute lymphoblastic leukemia (ALL).?
The second contains expression levels of 2,000 genes from
40 tumor and 22 normal colon tissues.” Due to the high
feature dimensionality of these data sets, we used low-
order polynomial kernels in this set of experiments.

To assess diagnostic accuracy, we use a full leave-one-out
cross-validation (LOOCV) procedure: We train on n —1
samples and test the obtained classifier on the remaining
sample, and repeat this procedure for every sample. To

2. The AML/ALL data set is available from http://www-genome.wi.
mit.edu/mpr/table_AML_ALL_samples.rtf.

3. The Colon data set is available from http://microarray.princeton.edu/
oncology/affydata/index.html.

reduce the computational cost of the full LOOCYV procedure,
we accelerate JCFO by using the approximate method
outlined in Section 3.1. This allows performing full LOOCV
error rate estimation on an 800MHz Pentium IIl machine in a
couple of hours. The results are reported in Table 1, where
JCFO is compared against Adaboost, SVM, RVM, SPR, and
logisticregression. Onthe AML/ALL data set, although JCFO
outperforms all the other methods, the difference between it
and the other methods is too small to be statistically
significant given the small sample size. However, on the
Colon data set, a binomial test indicates that JCFO is superior
to kernelized SPR with a p-value of 0.12 and superior to all the
other methods with a p-value of 0.03 or better.

Since JCFO is also able to identify the most relevant
features, we can assess which genes were identified as
particularly useful for good classification performance.
Only about 20 genes were identified as diagnostically
important by JCFO (6, > 0); importantly, the role of many
of these genes has already been described in the medical
literature (as discussed in [10]).

4.3 Results with Low-Dimensional Benchmark
Data Sets

In the second set of experiments with real data, we assess the
performance of JCFO using a few popular benchmark data
sets for nonlinear classifier design. It is worth emphasizing
that these data sets are of relatively low feature dimension-
ality and were not deliberately created to contain irrelevant
predictor variables. Detailed descriptions of these data sets,
as well as availability information, can be found in [4].
Table 2 reports the accuracy of JCFO for several benchmark
data sets alongside some of the best results reported in the
literature. Since Gaussian RBF kernels are used in all these
kernel classifier results from the literature, we use only
Gaussian RBF kernels here; we also show results reported in
the literature for Bayesian training of linear discriminants,
neural networks, and logistic regression.

For the RVM results from [18], the kernel width
parameter (equivalent to setting 6 to some constant) is
chosen by cross-validation. For SPR, the kernel widths are
set to the same values reported in [4] (these kernel widths
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TABLE 2
Accuracy of Diagnostic Classification with Benchmark
Data Sets (Average Number of Errors)

Classifier Ripley | Pima | Crabs | WBC
Linear discriminant [14] N/A 67 3 19
Neural network [20] N/A 75 3 N/A
Gaussian process [20] 92 67 3 8
SVM [14] 106 64 4 9
Logistic regression [20] N/A 66 4 N/A
RVM [18] 93 65 0 9
Sparse probit regression 95 62 0 9
JCFO 92 64 0 8

were observed to be optimal for SPR in the sense of
minimizing test error rates); JCFO training procedures are
initialized with these same widths. For the SVM results from
[14], as well as for the Gaussian process results [20], the
scales of the individual feature dimensions are estimated
within the learning algorithm.

Our algorithm did not perform any feature selection in the
Ripley data set, selected five out of eight variables in the Pima
data set, and selected three out of five variables in the Crabs
data set. These results are similar to those reported in [14].
JCFO is also very sparse in its utilization of kernel functions:
It chooses an average of 4 out of 100, 5 out of 200, 5 out of 80,
and 6 out of 300 kernels for the Ripley, Pima, Crabs, and WBC
data sets, respectively. In short, it successfully finds
classifiers that are sparse both in # and in 6.

Our results are either the best or very close to the best in
each case, but the differences are not statistically significant.
However, although all the state-of-the-art methods consid-
ered here are competitive in terms of error rates on these data
sets, JCFO is able to successfully perform feature selection at
the same time. Two of the competing methods (the SVM of
[14] and the Gaussian process of [20]) also perform feature
scale estimation. Since the feature selection property was the
principal difference between JCFO and these two ARD
algorithms, their similar performance confirms that JCFO
does at least as well, even when applied to data sets that are
not particularly amenable to feature selection.

5 CONCLUSION

5.1 Discussion

JCFO should be judged on two different criteria: accurate
classification and parsimonious feature selection. Like some
ARD methods, JCFO estimates feature scaling coefficients
along with the other parameters of the classifier; it differs
from those algorithms in its use of sparsity-promoting priors
that encourage many of the 6, to be exactly zero. Our
experimental results indicate that, for high-dimensional data
with many irrelevant features, the classification accuracy of
JCFO is likely to be statistically superior to other methods.
Even for low-dimensional data where we do not expect
feature selection to be critical or sometimes even useful, JCFO
seems to be at least as accurate as other state-of-the-art
methods thatalso perform feature scale estimation along with
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classifier design. However, in addition to high accuracy, JCFO
has the additional benefit of more parsimonious feature
selection. This is especially important in the context of gene
expression data, where many of the features selected by JCFO
have been previously identified as clinically relevant for
diagnosis.

5.2 Future Work

The joint optimization of the classifier parameters and the
feature scale parameters comes at a price: The JCFO algorithm
is significantly slower than the SPR algorithm of [4], although
its running time is still acceptable for the data sets studied in
this paper. However, the computational complexity of JCFO
mightrender itimpractical if naively applied to data sets with
several hundred features or several thousand samples. This
computational issue is endemic in almost all kernel-based
methods; while the approximate method described in
Section 3.1 partially alleviates the problem with high-
dimensional feature spaces, it is not helpful in problems with
large training sets. We are currently working on alternative
techniques to improve the computational efficiency of the
algorithm. In one promising avenue of research, we are
investigating the use of the fast Gauss transform [15] and
reduced set methods [11] to dramatically improve the
computational cost of (19).

In conclusion, JCFO has successfully achieved both of its
objectives: excellent classification accuracy and automatic
sparse feature selection. Nevertheless, we must still address
some important questions. Does our EM formulation
converge to a global maximum or do we face multiple
local maxima? Can we obtain tight theoretical upper
bounds on the error rate that can be used to motivate
further improvements in algorithm? We are currently
investigating different ways to address these issues. Code
developed as part of this research can be freely obtained
from the first author for academic research use.
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