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Unsupervised Learning of Finite Mixture Models

Mario A.T. Figueiredo, Senior Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract—This paper proposes an unsupervised algorithm for learning a finite mixture model from multivariate data. The adjective
“unsupervised” is justified by two properties of the algorithm: 1) it is capable of selecting the number of components and 2) unlike the
standard expectation-maximization (EM) algorithm, it does not require careful initialization. The proposed method also avoids another
drawback of EM for mixture fitting: the possibility of convergence toward a singular estimate at the boundary of the parameter space.
The novelty of our approach is that we do not use a model selection criterion to choose one among a set of preestimated candidate
models; instead, we seamlessly integrate estimation and model selection in a single algorithm. Our technique can be applied to any
type of parametric mixture model for which it is possible to write an EM algorithm; in this paper, we illustrate it with experiments
involving Gaussian mixtures. These experiments testify for the good performance of our approach.

Index Terms—Finite mixtures, unsupervised learning, model selection, minimum message length criterion, Bayesian methods,

expectation-maximization algorithm, clustering.

1 INTRODUCTION

INITE mixtures are a flexible and powerful probabilistic

modeling tool for univariate and multivariate data. The
usefulness of mixture models in any area which involves
the statistical modeling of data (such as pattern recognition,
computer vision, signal and image analysis, machine
learning) is currently widely acknowledged.

In statistical pattern recognition, finite mixtures allow a
formal (probabilistic model-based) approach to unsuper-
vised learning (i.e., clustering) [28], [29], [35], [37], [57]. In
fact, finite mixtures naturally model observations which are
assumed to have been produced by one (randomly selected
and unknown) of a set of alternative random sources.
Inferring (the parameters of) these sources and identifying
which source produced each observation leads to a
clustering of the set of observations. With this model-based
approach to clustering (as opposed to heuristic methods
like k-means or hierarchical agglomerative methods [28]),
issues like the selection of the number of clusters or the
assessment of the validity of a given model can be
addressed in a principled and formal way.

The usefulness of mixture models is not limited to
unsupervised learning applications. Mixture models are
able to represent arbitrarily complex probability density
functions (pdf’s). This fact makes them an excellent choice
for representing complex class-conditional pdf’s (i.e., like-
lihood functions) in (Bayesian) supervised learning scenar-
ios [25], [26], [55], or priors for Bayesian parameter
estimation [16]. Mixture models can also be used to perform
feature selection [43].

The standard method used to fit finite mixture models to
observed data is the expectation-maximization (EM) algorithm
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[18], [36], [37], which converges to a maximum likelihood (ML)
estimate of the mixture parameters. However, the EM
algorithm for finite mixture fitting has several drawbacks: it
is a local (greedy) method, thus sensitive to initialization
because the likelihood function of a mixture model is not
unimodal; for certain types of mixtures, it may converge to the
boundary of the parameter space (where the likelihood is

unbounded) leading to meaningless estimates.
An important issue in mixture modeling is the selection

of the number of components. The usual trade off in model
order selection problems arises: With too many compo-
nents, the mixture may over-fit the data, while a mixture
with too few components may not be flexible enough to

approximate the true underlying model.
In this paper, we deal simultaneously with the above

mentioned problems. We propose an inference criterion for
mixture models and an algorithm to implement it which:
1) automatically selects the number of components, 2) is less
sensitive to initialization than EM, and 3) avoids the

boundary of the parameters space.
Although most of the literature on finite mixtures focuses

on mixtures of Gaussian densities, many other types of
probability density functions have also been considered. The
approach proposed in this paper can be applied to any type of
parametric mixture model for which it is possible to write an

EM algorithm.
The rest of paper is organized as follows: In Section 2, we

review finite mixture models and the EM algorithm; this is
standard material and our purpose is to introduce the
problem and define notation. In Section 3, we review
previous work on the problem of learning mixtures with an
unknown number of components and dealing with the
drawbacks of the EM algorithm. In Section 4, we describe
the proposed inference criterion, while the algorithm which
implements it is presented in Section 5. Section 6 reports
experimental results and Section 7 ends the paper by
presenting some concluding remarks.

0162-8828/02/$17.00 © 2002 IEEE
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2 LEARNING FINITE MiIXTURE MODELS

2.1 Finite Mixture Models
Let Y =[Y,..., Y;i}T be a d-dimensional random variable,
withy = [y, ... ,yd]T representing one particular outcome of

Y. It is said that Y follows a k-component finite mixture
distributionifits probability density function canbe written as

p(yld) = Zam p(y16m), (1)
where «y, ..., o are the mixing probabilities, each 6,, is the
set of parameters defining the mth component, and 6 =
{61,...,0p,01,...,04} is the complete set of parameters
needed to specify the mixture. Of course, being probabil-
ities, the «,, must satisfy

k
®, >0 m=1,...,k, and Zamzl. (2)
m=1
In this paper, we assume that all the components have the
same functional form (for example, they are all d-variate
Gaussian), each one being thus fully characterized by the
parameter vector 6,. For detailed and comprehensive
accounts on mixture models, see [35], [37], [57]; here, we
simply review the fundamental ideas and define our notation.
Given a set of n independent and identically distrib-
uted samples Y = {y(l) y() }, the log-likelihood corre-
sponding to a k-component mixture is

n k
= log H p(y"16) => log > anp(y" |6
i=1 m=1
(3)

It is well-known that the maximum likelihood (ML) estimate

log p(Y|6)

5ML = arg m{;lx{logp(y 10)}

cannot be found analytically. The same is true for the
Bayesian maximum a posteriori (MAP) criterion,

Oyiap = arg mgux{logp(yw) +logp(6)},
given some prior p(f) on the parameters. Of course, the

maximizations defining the ML or MAP estimates are
under the constraints in (2).

2.2 The EM Algorithm
The usual choice for obtaining ML or MAP estimates of the
mixture parameters is the EM algorithm [18], [35], [36], [37].
EM is an iterative procedure which finds local maxima of
log p(Y|0) or [log p(Y|0) + log p()]. For the case of Gaussian
mixtures, the convergence behavior of EM is well studied
[37], [63]. It was recently shown that EM belongs to a class
of iterative methods called proximal point algorithms (PPA;
for an introduction to PPA and a comprehensive set of
references see [4], chapter 5) [13]. Seeing EM under this new
light opens the door to several extensions and general-
izations. An earlier related result, although without
identifying EM as a PPA, appeared in [41].

The EM algorithm is based on the interpretation of ) as
incomplete data. For finite mixtures, the missing part is a set

of n labels Z = {zV), z} associated with the n
samples, indicating which component produced each
sample. Each label is a binary vector z() = [zglz...,z,g)],
where 2()) = 1 and zz([f) = 0, for p # m, means that sample y(*)
was produced by the mth component. The complete log-
likelihood (i.e., the one from which we could estimate 6 if

the complete data X = {Y, Z} was observed [36]) is

logp(Y, Z10) = Z Z 2 log [a 2D(y

i=1 m=

y16.)]. @

The EM algorithm produces a sequence of estimates
{0(t), t =0,1,2,...} by alternatingly applying two steps
(until some convergence criterion is met):

e E-step: Computes the conditional expectation of the
complete log-likelihood, given ) and the current
estimate 0( ). Since logp(Y, Z|6) is linear with
respect to the missing Z, we simply have to compute
the conditional expectation W = E[Z]|), 0( )], and
plug it into logp(Y, Z|6). The result is the so-called
Q-function:

Q(6,0(1)) = Elog (. Z16) | ,0(1)]

= log p(Y, W|6).

Since the elements of Z are binary, their conditional
expectations are given by

(5)

wl) = [ AV, 6(t } [ng]) =1 y“ﬂ@(t)}
G (®) Py B (1)) ©)
Sh &) plyD[8;(t)

10;(£))

where the last equality is simply Bayes law (c, is
the a priori probability that z() =1, while w(¥) is
the a posteriori probability that =) =1, after
observing y).

e  M-step: Updates the parameter estimates according to

0(t + 1) = arg max {Q(6,0(t)) +log p(0) },
in the case of MAP estimation, or
O(t+1) = arg max Q(0,0(1)),
in both cases, under the

for the ML criterion,
constraints in (2).

3 PREvVIOus WORK

3.1 Estimating the Number of Components

Let us start by defining M; as the class of all possible
k-component mixtures built from a certain type of pdf’s (e.g.,
all d-variate Gaussian mixtures with unconstrained covar-
iance matrices). The ML criterion cannot be used to estimate k,
the number of mixture components, because Mj, C M.y,
that is, these classes are nested. As an illustration, let
0={6,...,0i,01,...,q5_1,}, define a mixture in My,
and 0 ={0,...,0;,011,01,..., 41,0, 0}, }, define a
mixture in My,y. If 6441 =6, and o = o), + o, then 6
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and ¢ represent the same probability density function.
Consequently, the maximized likelihood p(Y|6uy) is a
nondecreasing function of k, thus useless as a criterion to
estimate the number of components.

Several model selection methods have been proposed to
estimate the number of components of a mixture. The vast
majority of these methods can be classified, from a computa-
tional point of view, into two classes: deterministic and
stochastic.

3.1.1 Deterministic Methods

The methods in this class start by obtaining a set of candidate
models (usually by EM) for a range of values of k (from ki, to
kmax) Which is assumed to contain the true/optimal k. The
number of components is then selected according to

k= arg m]jn{C(a(k), k) yk=kmin,s - -, kmax}a (7)

where C (@(/«), k) is some model selection criterion, and (k)
is an estimate of the mixture parameters assuming that it
has k components. Usually, these criteria have the form

c(B(k), k) = —10gp(YIo(k)) + P(h),

where P(k) in an increasing function penalizing higher
values of k. Examples of such criteria that have been used
for mixtures include:

e Approximate Bayesian criteria, like the one in
[50] (termed Laplace-empirical criterion, LEC, in
[37]), and Schwarz’s Bayesian inference criterion
(BIC) [10], [17], [22], [53].

e Approaches based on information/coding theory
concepts, such as Rissanen’s minimum description
length (MDL) [49], which formally coincides with
BIC, the minimum message length (MML) criterion [42],
[60], [61], Akaike’s information criterion(AIC) [62], and
the informational complexity criterion (ICOMP) [8].

e Methods based on the complete likelihood (4), which
is also called classification likelihood), such as the
approximate weight of evidence (AWE) [1], the classifi-
cation likelihood criterion (CLC) [7], the normalized
entropy criterion (NEC) [6], [12], and the integrated
classification likelihood (ICL) criterion [5].

A more detailed review of these methods is found in [37]

(chapter 6) which also includes a comparative study where
ICL and LEC are found to outperform the other criteria.

3.1.2 Stochastic and Resampling Methods
Markov chain Monte Carlo (MCMC) methods can be used
in two different ways for mixture inference: to implement
model selection criteria (e.g., [2], [39], [51]); or, in fully
Bayesian way, to sample from the full a posteriori
distribution with k& considered unknown [40], [45], [48].
Despite their formal appeal, we think that MCMC-based
techniques are still far too computationally demanding to
be useful in pattern recognition applications.
Resampling-based schemes [33] and cross-validation
approaches [54] have also been used to estimate the number
of mixture components. In terms of computational load,
these methods are closer to stochastic techniques than to
deterministic ones.

3.2 The Drawbacks of EM-Based Methods

Basically, all deterministic algorithms for fitting mixtures
with unknown numbers of components use the
EM-algorithm. Although some of these methods perform
well, a major draw-back remains: a whole set of candidate
models has to be obtained, and the following well-known
problems associated with EM emerge.

3.2.1 The Initialization Issue

EM is highly dependent on initialization. Common (time-
consuming) solutions include one (or a combination of
several) of the following strategies: using multiple random
starts and choosing the final estimate with the highest
likelihood [25], [36], [37], [50], and initialization by clustering
algorithms [25], [36], [37]. Recently, a modified EM algorithm
using splitand merge operations to escape from local maxima
of the log-likelihood has been proposed [59].

Deterministic annealing (DA) has been used with success
to avoid the initialization dependence of k-means type
algorithms for hard-clustering [27], [38], [52]. The resulting
algorithm is similar to EM for Gaussian mixtures under the
constraint of covariance matrices of the form T'I, where T is
called the temperature and I is the identity matrix.
DA clustering algorithms begin at high temperature (corre-
sponding to w() ~1/k, a high entropy, uninformative
initialization); T" is then lowered according to some cooling
schedule until T' ~ 0. The heuristic behind DA is that forcing
the entropy of the assignments to decrease slowly avoids
premature (hard) decisions that may correspond to poor local
minima. The constraint on the covariance matrix makes DA
clustering unapplicable to mixture model fitting, when seen
as a density estimation problem. It is also not clear how it
could be applied tonon-Gaussian mixtures. However, it turns
out that it is possible to obtain deterministic annealing
versions of EM for mixtures, without constraining the

covariance matrices, by modifying the E-step [31], [58].
Recently, we have shown (see [20]) that the EM algorithm
exhibits a self-annealing behavior [44], that is, it works like a
DA algorithm without a prespecified cooling schedule.
Basically, all that is necessary is a uninformative (high
entropy) initialization of the type w()) ~ 1/k (called random
starting, in [37]), and EM will automatically anneal without
the need for externally imposing a cooling schedule. This
fact explains the good performance of the random starting

method, recently reported in [37].

3.2.2 The Boundary of the Parameter Space

EM may converge to the boundary of the parameter space.
For example, when fitting a Gaussian mixture with uncon-
strained covariance matrices, one of the «,,’s may approach
zero and the corresponding covariance matrix may become
arbitrarily close to singular. When the number of components
assumed is larger than the optimal/true one, this tends to
happen frequently, thus being a serious problem for methods
that require mixture estimates for various values of k. This
problem can be avoided through the use of soft constraints on
the covariance matrices, as suggested in [31].
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4 THE PROPOSED CRITERION

The well-known deterministic methods (see (7)) are model-
class selection criteria: They select a model-class (M) based
on its “best” representative (f(k)). However, in mixture
models, the distinction between model-class selection and
model estimation is unclear, e.g., a 3-component mixture in
which one of the mixing probabilities is zero is undistin-
guishable from a 2-component mixture. These observations
suggest a shift of approach: Let k£ be some arbitrary large
value and infer the structure of the mixture by letting the
estimates of some of the mixing probabilities be zero. This
approach coincides with the MML philosophy [61], [60],
which does not adopt the “model-class/model” hierarchy,
but directly aims at finding the “best” overall model in the
entire set of available models,

Finax

U Mk7

k=kmin

rather than selecting one among a set of candidate models
{0(k), k = kwin, - -,k = kmin}. Previous uses of MML for
mixtures do not strictly adhere to this perspective and end
up using MML as a model-class selection criterion [42].
Rather than using EM to compute a set of candidate
models (with the drawbacks mentioned above), we will be
able to directly implement the MML criterion using a
variant of EM. The proposed algorithm turns out to be
much less initialization dependent than standard EM and
automatically avoids the boundary of the parameter space.

4.1 The Minimum Message Length Criterion

The rationale behind minimum encoding length criteria
(like MDL and MML) is: if you can build a short code for
your data, that means that you have a good data generation
model [49], [60], [61]. To formalize this idea, consider some
data-set ), known to have been generated according to
p(Y]0), which is to be encoded and transmitted. Following
Shannon theory [15], the shortest code length (measured in
bits, if base-2 logarithm is used, or in nats, if natural
logarithm is adopted [15]) for YV is [—1logp()|0)], where [a]
denotes “the smallest integer no less than a.” Since even for
moderately large data-sets —logp()|0) > 1, the [-] operator
is usually dropped. If p(Y|6) is fully known to both the
transmitter and the receiver, they can both build the same
code and communication can proceed. However, if 6 is a
priori unknown, the transmitter has to start by estimating
and transmitting 6. This leads to a two-part message, whose
total length is given by

Length(6,Y) = Length(#) + Length())]6). (8)

All minimum encoding length criteria (like MDL and MML)
state that the parameter estimate is the one minimizing
Length(6,Y).

A key issue of this approach, which the several flavors of
the minimum encoding length principle (e.g.,, MDL and
MML) address differently, is that since 6 is a vector of real
parameters, a finite code-length can only be obtained by
quantizing 6 to finite precision. The central idea involves the
following trade off. Let 6 be a quantized version of 6. If a fine
precision is used, Length(8) is large, but Length()|#) can be
made small because 6 can come close to the optimal value.

Conversely, with a coarse precision, Length(f) is small,
but Length(y@) can be very far from optimal. There are
several ways to formalize and solve this trade off; see [32] fora
comprehensive review and pointers to the literature.

The fact that the data itself may also be real-valued does
not cause any difficulty; simply truncate ) to some arbitrary
fine precision 6 and replace the density p()|0) by the
probability p(Y|0)¢? (d is the dimensionality of )). The
resulting code-length is —log p()|0) — dlogé, but —dlogé is
an irrelevant additive constant.

The particular form of the MML approach herein adopted
is derived in Appendix A and leads to the following criterion
(where the minimization with respect to 8 is to be understood
as simultaneously in 6 and c, the dimension of 6):

~

0= argmoin { — log p(6) — log p(V|0)

1 c 1
+§ log [1(6)] +§ <1 —Hogﬁ) },

where' 1(0) = —E[D}logp(V|0)] is the (expected) Fisher
information matrix, and |I(6)| denotes its determinant.

The MDL criterion (which formally, though not concep-
tually, coincides with BIC) can be obtained as an approxima-
tion to (9). Start by assuming a flat prior p(¢) and drop it.
Then, since 1(9) = nIV(9) (where IV(6) is the Fisher
information corresponding to a single observation),
log [1(8)| = clogn + log [TV (8)|. For large n, drop the order-
1 terms log [TV (6)| and £(1 ilogﬁ). Finally, for a given c,
take —logp(Y|0) ~ —logp(Y|6(c)), where 6(c) is the corre-
sponding ML estimate. The result is the well-known
MDL criterion,

9)

oL = argm{lin{flogp(yW(c)) +glogn}, (10)
whose two-part code interpretation is clear: the data code-
lengthis — log p(Y|6(c)), while each of the ccomponents of 6(c)
requires a code-length proportional to (1/2) log n. Intuitively,
this means that the encoding precision of the parameter
estimates is made inversely proportional to the estimation
error standard deviation, which, under regularity conditions,
decreases with /n, leading to the (1/2) log n term [49].

4.2 The Proposed Criterion for Mixtures

For mixtures, I(f) cannot, in general, be obtained analyti-
cally [37], [42], [57]. To side-step this difficulty, we replace
1(#) by the complete-data Fisher information matrix
I.(9) = —E[Djlogp(Y, Z|0)], which upper-bounds I(6)
[57]. 1.(0) has block-diagonal structure

I.(6)=n block—diag{alI(l)(ﬂl), ... ,aklm(ﬂk), M},

where 1V (6,,) is the Fisher matrix for a single observation
known to have been produced by the mth component, and M
is the Fisher matrix of a multinomial distribution (recall that
IM| = (a2 - - - )~ ") [57]. The approximation of I(8) by L.(8)
becomes exact in the limit of nonoverlapping components.
We adopt a prior expressing lack of knowledge about the
mixture parameters. Naturally, we model the parameters of

1. Here, Dg denotes the matrix of second derivatives, or Hessian.
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different components as a priori independent and also
independent from the mixing probabilities, i.e.,

k

o) [ p(60)-

m=1

p(0) = p(a, ...

For each factor p(6,,) and p(a, - . ., ou), we adopt the standard
noninformative Jeffreys’ prior (see, for example, [3])

P(8) o< /111 (0,,)] (11)
plag,...,ap) x /|M| = (a1a2~-~a;\~)71/2 (12)
for 030[170427...704k§1 and 051+042+“'+041€:1. With

these choices and noticing that for a k-component mixture,
¢ = Nk + k, where N is the number of parameters specifying
each component, i.e., the dimensionality of 6,,, (9) becomes

0 = arg moin L£(6,Y), (13)
with
N& n k n
£(6,Y) :EmZ:llog( 1 ) —|—§ logﬁ "
+ w — logp(Y|6).
Apart from the order-1 term NH) (1 —log 12), this criterion

has the following intuitively appeahng interpretation in the
spirit of the standard two-part code formulation of MDL
and MML: 1) As usual, —log p()|6) is the code-length of the
data. 2) The expected number of data points generated by
the mth component of the mixture is na,,; this can be seen
as an effective sample size from which 6,, is estimated; thus,
the “optimal” (in the MDL sense) code length for each 6,, is
(N/2)log(nay,). 3) The ay,s are estimated from all the n
observations, giving rise to the (k/2)log(n) term.

The objective function in (14) does not make sense if we
allow any of the a,,s to be zero (it becomes —o0). However,
this difficulty is removed by invoking its code-length
interpretation: To specify the mixture model, we only need
to code the parameters of those components whose
probability is nonzero. Letting k,. denote the number of
non—zero-probability components, we have

Y5 ) o

km(N+ 1)
+f

Anadditional term isneeded to encode k., butits codelength
is constant (specifically, log(k), since k,, € {1,2,...,k}), thus
it is irrelevant. This is the final cost function, whose
minimization with respect to 6 will constitute our mixture
estimate.

(15)
—logp(V6).

5 ALGORITHM

5.1 Minimization of the Cost Function via EM

From a Bayesian point of view, (15) is equivalent, for fixed
knz, to an a posteriori density resulting from the adoption of
Dirichlet-type prior for the «,’s,

(16)

N
plai, ..., ) X exp _EZIOga’" ,

m=1

(with negative parameters, thus improper [3]), and a flat
prior leading to ML estimates for the 6,,s. Since Dirichlet
priors are conjugate to multinomial likelihoods [3], the EM
algorithm to minimize the cost function in (15), with k,,
fixed, has the following M-step (recall the constraints in (2)):

onfo ()3
}’ (17)

an(t+1)= —
S () -
for m: &y, (t+1) >0,

NIZ

form:1,27...,k,

Hm( +1) = drgr%aXQ(o 0( ))s
(18)

where the w(!) are given by the E-step equation in (6). The
0,,s corresponding to components for which @, (t+1) =0
become irrelevant; notice in (3) that any component for
which «,, = 0 does not contribute to the log-likelihood.

We stress that, for N > 1, this Dirichlet “prior” with
negative exponents —N /2 is not the original Jeffreys prior
on the mixing probabilities ((12), which is itself a Dirichlet
prior but with exponent -1/2). Although Dirichlet priors
with negative exponents (e.g., Jeffreys’ prior) have been
adopted in several contexts, to our knowledge Dirichlet
(improper) “priors” with exponents less than -1 have not
been used before.

We now highlight some aspects of this algorithm and its
relationship with other work.

5.1.1 Component Annihilation

An important feature of the M-step defined by (17) is that it
performs component annihilation, thus being an explicit
rule for moving from the current value of k,. to a smaller
one. Notice that this prevents the algorithm from approach-
ing the boundary of the parameter space: When one of the
components becomes “too weak,” meaning that it is not
supported by the data, it is simply annihilated. One of the
drawbacks of standard EM for mixtures is thus avoided.

5.1.2 Robustness Regarding Initialization

By starting with k,. = k, where k is much larger than the
true/optimal number of mixture components, this algo-
rithm is robust with respect to initialization. Local maxima
of the likelihood arise when there are too many components
in one region of the space, and too few in another (see, e.g.,
[59]) because EM is unable to move components across low-
likelihood regions. By starting with “too many” compo-
nents all over the space, this problem is avoided, and all
that has to be done is to remove the unnecessary ones. We
have previously exploited this idea in [21].

Another type of local minimum from which standard
EM may not escape corresponds to situations where two (or
more) components have similar parameters, thus sharing
(approximately) the same data points. The Dirichlet-type
prior with negative exponents in (16) makes these situations
unstable and promotes the competition among these
components; as a result, one of them will eventually
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negative Dirichlet prior (N=2)
minimum entropy prior
Jeffreys' prior

Fig. 1. Plot of the “negative Dirichlet prior” in (16) (solid line), for k = 2
and N =2, thus ay = 1 — a; and p(ay) o (o (1 — a;))™"); observe how
this prior encourages configurations where «; equals either zero or one.
For comparison, we also plot the corresponding Jeffreys prior (as given
by (12), dashed line) and the minimum entropy prior p(ag) =
ay'(1 —m)(l’”‘) [9], [64] (dotted line). Notice how these other priors
also favor estimates where «; equals either zero or one, though not as
strongly.

“win” and the others will be annihilated. The unstable
nature of this negative-parameter Dirichlet-type prior is
clear in the plot shown in Fig. 1, where N =2, k = 2, thus
ag =1— 0y, and p(ay) o (a1 (1 — al))fl.

5.1.3 Relation with Supervised Learning

It may seem that the component annihilation behavior of
the new M-step in (17) is too strong. However, although we
have no proof of optimality, there are some interesting
connections in the particular case of Gaussian mixtures.
Consider a d-dimensional Gaussian mixture, with arbitrary
covariance matrices; then N = d + d(d + 1)/2, meaning that
the minimum value of Y, w'Y) needed to support compo-
nent m grows quadratically with dimension d (notice that
>, wl) can be seen as an equivalent number of points
assigned to the mth component). This is in accordance with
known results on the relation between sample size,
dimensionality, and error probability in supervised classi-
fication [46], [47]; namely, in learning quadratic discrimi-
nants, the training sample size needed to guarantee a given
error probability grows (approximately) quadratically with
the dimensionality of the feature space. This connection still
holds in the case of a Gaussian mixture with components
sharing a common covariance matrix; in this case, N = d, in
agreement with the fact that for linear discriminants, the
sample size needed to guarantee a given error probability
grows linearly with the dimensionality [46], [47]. This
connection with supervised classification is not surprising
due to the use of the complete-data Fisher information.

5.1.4 Relation with Minimum-Entropy Priors
It can be shown that the log of the “prior” in (16) verifies

k
7%21%0% x 7% Dy [{1/k} || {oun },

m=

where Dirp,[{1/k} || {oun}] is the Kullback-Leibler divergence
between a uniform distribution (all probabilities equal to 1/k)
and the one specified by the a,,,s. This shows that our criterion
penalizes uniform distributions, thus being related to mini-
mum entropy priors p(6) o« exp{—FH(8)}, where H(0) is the
entropy of the likelihood p(y|0) [9], [64].

In [9], a minimum entropy prior (with 8 =1) is used to
learn the structure of probabilistic models, such as the
number of components of a mixture. The method proposed
in [9], like ours, starts with a large number of components,
some of which are then annihilated under the influence of the
minimume-entropy prior. However, as shown in [9], the M-
step resulting from the minimum entropy prior on the mixing
probabilities does not have a closed-form solution, and does
not explicitly annihilate components; annihilation requires
an additional test. In Fig. 1, our prior is compared with a
minimum entropy prior (for k = 2and N = 2) showing thatit
favors component annihilation more strongly. On a more
fundamental level, the approach in [9] raises the following
questions: 1) Why should 3 = 1 be chosen, and what is its
influence on the results? 2) For mixture models, why consider
only the entropy of the multinomial distribution defined by
the mixing probabilities, which is but a lower bound on the
full entropy of the mixture?

5.2 The Component-Wise EM Algorithm

Direct use of EM with the M-step in (17) and (18) has a
failure-mode: if k is too large, it can happen that no
component has enough initial support (3>, w'®) < N/2, for
m=1,2,...,k) and all a,,s will be undetermined. We avoid
this problem by using the recent component-wise EM for
mixtures (CEM?) algorithm [11]. Basically, rather than
simultaneously updating all the «ys and 0,s, CEM?
updates them sequentially: update «; and 6;, recompute
W, update o, and 6,, recompute W, and so on. For our
purposes, the key feature of CEM? is the following: If one
component dies (a,(t+ 1) = 0), immediate redistribution
of its probability mass to the other components increases
their chance of survival. This allows initialization with an
arbitrarily large k without any problems.

Convergence of CEM? was shown in [11] with the help of
its proximal point algorithm interpretation. The order of
updating does not affect the theoretical monotonicity
properties of CEM?, although it may affect the final result
since the objective function has multiple local minima.
Although better results may in principle be achieved with
adaptive schedules, for simplicity, we adopt a simple cyclic
updating procedure, as in [11].

Finally, notice that although it may seem that CEM? is
computationally much heavier than standard EM, due to
the multiple E-steps to recompute W, that is not so. Suppose
that 6,, and «,, were just updated; of course, via normal-
ization, some other o;s, for j # m, also change. Updating all
the wgw variables only requires full computation of (6) for
j = m. For j # m, the terms p(y?|6;), which involve most of
the computational effort of the E-step, remain unchanged
and only have to be computed once per sweep, like in
standard EM. In conclusion, CEM? is only slightly
computationally heavier than EM.
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Inputs: kpin, kmax, €, initial paxameters
Output: Mixture model in Obest
t< 0, kn, <+ knax, Lmin ¢ +00
ull) p(y(i)@m), form=1,...,
while k,, > kn, do
repeat
t—t+1
for m =1 to kpax do

j=1

{alv ---aakmax} — {(31, -
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ull) « ply

if £[0(t),Y] < L then
Linin < L[6(1), V]
ebest — 0( )

end if

m* < arg min,, {G,, > 0},

end while

0(0) = {6,,.

kmax, and 1 =1, ...,n

W) < Gy ul) (kaa" Q; u(-i))_l, fori=1,..,n
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else
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end if
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Qg 0,

- ok‘maxﬂ A1y ey akmax}

—1

kpy < by, — 1

Fig. 2. The complete algorithm (e = 10~° in all the examples presented ahead).

5.3 The Complete Algorithm

After convergence of CEM?, i.e., when the relative decrease
in E(@(t), ) falls below a threshold € (e.g., ¢ = 107°), there is
no guarantee that we have found a minimum of £(6,)). In
fact, the component annihilation in (17) does not take into
account the additional decrease in £(6,Y) caused by the
decrease in k,.. Consequently, we must check if smaller
values of £(#,Y) are achieved by setting to zero compo-
nents that were not annihilated by (17). To this end, we
simply annihilate the least probable component (with
smallest @,,) and rerun CEM? until convergence. This
procedure is repeated until k,. = 1. In the end, we choose
the estimate that led to the minimum value of £(6,)). Of
course, if we know that the number of components is no less
than some ki, > 1, we stop when k,,. = kyin. Fig. 2 contains
a detailed pseudocode description of the algorithm.

6 EXPERIMENTS

Although our algorithm can be used for any type of mixture
model, our experiments focus only on Gaussian mixtures,
which are by far the most commonly used. In d-variate

Gaussian mixture models with arbitrary covariance matrices,

we have
(2m) 1 r
p(y|0m) = €Xpy —5 (y - I‘Lm) Cm (y p‘m)
VGl 2
= N(u,,, Cn).

Thus, 6, = (p,,,,C), N =d+d(d+1)/2, and the M-step
(18) is

n

1
At +1) = (zw) g gl

=1

(19)

m(t+1) (an) Zl —, (t+1)) (20)

6.1 Initialization for Gaussian Mixtures

We initialize the k;,.x mean vectors to randomly chosen data
points. The initial covariances are made proportional to the
identity matrix, C(t = 0) = 02I, where o2 isa fraction (e.g., 1/5
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g ===- True mixture

() (f)

Fig. 3. Fitting a Gaussian mixture: (a) the dashed ellipses show the true mixture; (b) initialization with k,, = 30; (c), (d), (e), and (f) four estimates (for
k,. = 14,8,3, and 1). Our algorithm selects a mixture with k,. = 3. The solid ellipses are level-curves of each component estimate; only those

components for which @ # 0 are shown.

or 1/10) of the mean of the variances along each dimension of
the data,

1 1< ; .
2 __ it @) _ 0 _ m)?
=104 trace <n2(y m)(y m) )

1=1

(m=1%" yl is the global data mean). Other initializa-
tion strategies are possible; in fact, we have verified
experimentally that any method that spreads a large
enough number of components throughout the data space
leads to good results. To quantify what “large enough”
means, notice that the condition for success of this
initialization is that all components of the true mixture are
represented; that is, for each component, there is at least one
data point such that one of the initial means is on that data
point. Assume that the sample size n is large enough so that
the proportion of points that were generated by each
component is very close to their mixing probabilities
{ov,...,a4}. Let apiy = min{ay,...,a;} be the probability
of the least probable component, i.e., the one which will
more probably be left out of the initialization. The
probability that this component is unrepresented in the
initialization is (approximately, for large n) given by
(1- amin)k . Then, if a probability of successful initialization
of at least 1 — ¢ is desired, it is necessary to have

loge
k> ——m—.
IOg(l - arnm)

For example, for € = 0.05 and ay,i, = 0.1, we obtain &k > 28.

6.2 First Examples
In the first example, we use 900 samples from a 3-component
bivariate mixture from [58]:

(11:Oé2:043:1/3

mean vectors at [0,—2]", [0, 0]", [0, 2]", and equal covar-
iance matrices diag{2, 0.2}. With ky,,x = 30, Fig. 3 shows an
initialization, two intermediate configurations, and the
(sticcessful) final estimate with k,,=3. The plot of
L(0(t),y) shown in Fig. 4a reveals that mixtures with £, =
2 and 1 have higher values of £(6(t),y) and, consequently,
they were discarded. We repeated this experiment 100 times
with 100 percent success. In conclusion, for this mixture,
our method successfully solves the initialization issue, like
the DA version of EM proposed in [58], without using any
cooling schedule. More importantly, our method automa-
tically selects the number of components.

In the second example, we consider a situation where the
mixture components overlap. In fact, two of the four
components share a common mean, but have different
covariance matrices. The parameters are:

Q] = g = Q3 203,

and

Q
I

1 05 6 -2
Cy =
05 1 -2 6

2 -1 0.125 0
C; = C,= .
-1 2 0 0.125

Fig. 5a shows the true mixture and 1,000 samples of it,
while Figs. 5b, 5¢, 5d, 5e, and 5f show the evolution of the
algorithm. The cost function is plotted in Fig. 4b.



FIGUEIREDO AND JAIN: UNSUPERVISED LEARNING OF FINITE MIXTURE MODELS
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Fig. 4. Evolution of the cost function £(§(t),y) for (a) the example in Fig. 3, and (b) the example of Fig. 5. The vertical solid lines signal the
annihilation of one (or more) components inside the CEM? algorithm; the vertical dotted lines indicate the least probable component being forced to

zero after the convergence of CEM?.

5| meman True mixture

1000 samples

(d)

10 5 0 5

Fig. 5. Fitting a Gaussian mixture with overlapping components: (a) the dashed ellipses show the true mixture; (b) initialization with k,. = 20; (c), (d),
and (e) three immediate estimates (for k,, = 10,7, and 5); (f) the final estimate (with k,. = 4).

Next, we consider the well-known Iris data set (150
four-dimensional points from three classes, 50 per class),
to which we fit a Gaussian mixture with arbitrary
covariance matrices. Using kmax = 20, the algorithm was
run 100 times (to study the robustness with respect to the
random initialization), and every time it correctly identi-
fied the three classes, using 30 to 50 iterations. The data
and the estimated components (from one of the 100 runs)
are shown in Fig. 6, projected on the two principal
components of the data.

Finally, we consider two univariate data sets that were
studied in [48] using MCMC: the enzyme data set (n = 245)

and the acidity data-set (n =155). Figs. 7 and 8 show
histograms of these data sets together with the mixture
densities obtained by our algorithm. Interestingly, the
selected numbers of mixture components (k,. =3 and
knz = 4, for the acidity and enzyme data sets, respectively)
coincide with the location of the maxima of the a posteriori
marginal probabilities p(k|)) obtained via MCMC [48].

6.3 Comparison with EM-Based Methods
To compare our algorithm with EM-based methods referred
in Section 3.1.1, we chose MDL/BIC, as the most commonly
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Fig. 6. Iris data (projected on the two principal components) and the
estimated Gaussian mixture. The three classes are plotted with different

@, N wx N [

symbols (“+,” “*,” and “0”); of course, the mixture was obtained without
knowledge of the class of each data point.

used model selection criterion, and LEC and ICL which are
reported in [37] and [50] as outperforming all other criteria.

As described in Section 3.1.1, mixture estimates are
obtained by EM for a range of values of k, from kyin t0 kmax;
the “best” one is then selected according to (7), where
C(0(k), k) is either the MDL/BIC, LEC, or ICL criterion. The
MDL/BIC criterion is given by (10), with ¢ = Nk + k. For
details about LEC, see [37] and [50]. ICL is described in [5]
and [37]. To deal with the initialization issue of EM, a
standard approach was used: start from 10 different
random initial conditions and pick the solution with the
highest likelihood. When one of the covariances approaches
singularity (as measured by its condition number), we abort
that run of EM and start a new one. The convergence
criterion is the same which is used in our algorithm, also
with e = 107°.

Like our method, MDL/BIC and LEC were 100 percent
successful in identifying the three components in 100 simu-
lations from the mixture of Fig. 3, and the four components
in 100 simulations of the mixture of Fig. 5. The ICL criterion
was 100 percent successful for the mixture of Fig. 3, but
with the mixture of Fig. 5 it failed completely, choosing two
components 82 times, and three components 18 times. The
poor performance of ICL when there are overlapping
components, also reported in [5], is due to the fact that it
is tailored to clustering applications. In these tests, the
EM-based algorithms used kyin = 1 and ky.x = 5; obtaining
the five mixture candidates requires a total of around 1,200

09 o
os Knz=12 Initialization

0.7

0.6~

to 1,400 EM iterations, versus the 200 to 250 iterations
typically required by our method (for a much larger range,
kmin = 1 to kpax = 30) for these two mixtures.

With the Iris data set, MDL/BIC and LEC were again
able to find the three components (confirming the results in
[50]), while ICL fails, always selecting two components.

For the univariate data sets, MDL/BIC, LEC, and ICL,
all chose mixtures with two components. According to
the marginal a posteriori probabilities p(k|)) obtained in
[48] via MCMC, this number has little support from the
data: respectively, p(2|Y) =0.082 and p(2|)) = 0.024, for
the acidity and enzyme data sets. As mentioned above,
the numbers of components selected by our algorithm
have the highest values: respectively, p(3|Y) = 0.244 and
p(4|Y) = 0.317, for the acidity and enzyme data (see [48]).

To study how the several methods perform when the
degree of component overlap varies, we used a bivariate
Gaussian mixture with two equiprobable components
(=10, 01", py =16, 0)", and C; = C, =1). Fig. 9a shows
the percentage (over 50 simulations, with n = 800) of correct
selections achieved by each method, assuming free covar-
iance matrices. Notice that, for § < 2, the mixture density is
not even bimodal [57]. ICL only performs acceptably for
6 > 3, so we left it out of this plot. When not correct, all the
methods selected just one component, never more than 2.
These results reveal an excellent performance of our
method and of the LEC criterion, with our algorithm
requiring roughly 5~ 7 times fewer iterations. Fig. 9b
reports a similar study, now for 10-dimensional data
(d = 10, thus each component has N = 65 parameters), with
p =10,...,01", py=106,...,6", and C, =C, =1 In this
case, the distance between the two components is 8v/10. The
results for the LEC criterion (not shown) are now
disastrous; it always chooses ky.x components (regardless
of how large kmay is).

The results in Fig. 10 are from a similar test, now under
the constraint that the covariance matrix of each component
is diagonal. Notice the marked performance improvement
for the 10-dimensional data (compare the numbers in the
horizontal axis of Figs. 9b and 10b). In any case, our method
always outperforms the others.

6.4 Mixtures as Class-Conditional Densities

Using Gaussian mixtures to model class-conditional den-
sities has been suggested several times, e.g., [25], [26], [34],
[55]. In our first example (following [25]), there are

09

3035 4 45 5 55 6 65 1 15

Fig. 7. Fitting a Gaussian mixture to the acidity data set. Our algorithm selects k,, = 3.
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Fig. 8. Fitting a Gaussian mixture to the enzyme data set. Our algorithm selects k&,
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three (equiprobable) classes in IR?'. Each observation is where the ul) are iid. uniform in (0,1), the ny') are ii.d.

y @ = 5T with
y;f,) =uDhy j+ (1 —uD)hy ; + n;i)7
yy) =uhy j+ (1 —uD)hy ; + nﬁ”,

zero-mean unit-variance Gaussian samples, and £y, hy, and

hs define three points in IR* given by

Class 1, . .
hij=max(0,6 — |[j—11)), j=1,2,...,21

Class 2, ho j=h 4 j=12..21

Class 3, hgj = hl,j+47 ] = 1, 2, ey 21.
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TABLE 1
Average Test Error Rates (Over 50 Simulations) for the Texture Classification Example

Method

Mixture-based, our method
Mixture-based, EM and MDL/BIC

Lincar discriminant

Quadratic discriminant

mean error rate | error rate standard deviation
0.0074 0.0020
0.0075 0.0019
0.0185 0.0024
0.0155 0.0027

Each class is roughly one side of a noisy triangle in R*,
whose vertices are [hy1,.. .7h1,21]T, [ho1,-..,ho, 21]T, and
[hs1,.. ., hs o]

As in [25], the class-conditional mixtures are fitted to sets
of 100 samples per class; the resulting MAP classifier is
tested on an independent set of 500 samples. In [25], the
class-conditionals are fitted to 3-component mixtures with a
common covariance, using EM with 10 random starts; the
resulting classifier outperforms linear discriminants, quad-
ratic discriminants, classification and regression trees (CART),
and other classifiers. The mean error rate (over 10 simula-
tions) reported in [25] is 0.169. Using a common covariance
matrix for each class (like in [25]), we found a mean error
rate of 0.162, using our method to estimate the class-
conditional mixtures. Notice that, while exhibiting a slightly
better error rate, our method does not require multiple
random starts and it adaptively selects the number of
components (in this problem, usually three, but also two
and four several times).

To further exemplify the use of mixtures as class-
conditional densities, we considered a real texture classifi-
cation problem. From a collage of four Brodatz textures, we
obtained 4,000 (~ 1,000 per class) randomly located
19-dimensional Gabor filter features (see [30]). Using the
proposed algorithm, we then fitted mixtures (with free

--------- Class 1
230 ——— (Class 2
ol === Class 3

(@

covariance matrices) to 800 samples from each class, leaving
the remaining 200 samples per class to serve as test data. In
Table 1, we report the results (over 50 simulations with
random train/test data partitions) in terms of error rate,
comparing the mixture-based methods with linear discri-
minants and quadratic discriminants. Our method achieves
a similar performance as the EM-based method using the
MDL/BIC criterion, at a fraction (~ 0.1) of the computa-
tional cost. The ICL and LEC criteria yielded very bad
results in this problem. Finally, Fig. 11 shows the best
2D projection (obtained using discriminant analysis [19]) of
800 points from each class, together with the projections of
the mixtures that were fitted to each class-conditional
density and of the corresponding decision regions.

6.5 Mixtures of Factor Analyzers

Mixtures of factor analyzers (MFA), proposed in [24], are
basically mixtures of Gaussians with a reduced parameter-
ization of the covariance matrices:

k
p(y(Z)lo) = Z amN(ll'm7 AmAz;L + ‘Ilm)'
m=1

The data produced by component m is modeled as
y = Apv +n, where v is N(0,I), n is N(0,%¥,,), and ¥,
is a diagonal matrix. Since v may be of lower dimension

-6

(b)

Fig. 11. Best 2D projection of the texture data (using discriminant analysis) together with (a) the projections of the mixtures that were fitted to each
class-conditional density and (b) the projections of the corresponding decision regions.
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Fig. 12. Fitting a mixture of factor analyzers to the noisy shrinking spiral: (a) data, (b) initial configuration at k,,. = k£ = 40, (c) estimate at k,,, = 13 (the
selected one), and (d) at k,. = 6. The line segment ends are (u,, — 2A,,, i, + 2A.,).

than y, MFA are able to perform local dimensionality
reduction. MFA are closely related to the mixtures of
probabilistic principal component analyzers proposed in
[56]. An EM algorithm for MFA was derived in [24]. The
split and merge EM algorithm [59] was also applied to
MFA, successfully overcoming most of the initialization
sensitivity of EM. A recently proposed variational
Bayesian approach estimates the number of components
and also the dimensionality of each component [23].

We tested the algorithm proposed here on the noisy
shrinking spiral data. As described in [59], the goal is to
extract a piece-wise linear approximation to a one-
dimensional non-linear manifold from three-dimensional
data. In this case, 6,, = (,,, A, ¥,), where each A,, is
3x1, thus N=9 (three components of each pu,, plus
three components of each A,,, plus the three diagonal
elements of each ¥,,). The data is generated according to

x (13 — 0.5¢;) cos t; ni
xlz = | (0.5t; — 13) sint;, | + n’2 , 1=1,2,...900,
Th t; ng

the ¢; are uniformly distributed in [0, 47], and n{, n}, and n,
are i.i.d. N(0,1).

Fig. 12 shows the data set, the initial mixture with
kn.= k = 40, and estimates at k,,, = 13 (the selected one) and
knz= kmin= 6. We repeated the test 30 times with different
data sets; the algorithm selected k,. =13, 28 times, and
kn; =12 and k,, = 11, once each, never getting trapped in
poor local minima. With ki, = 6, the number of iterations
is typically between 300 and 400, similar to the algorithm in

[59]. Notice however, that the algorithm in [59] does not
select the number of components and would have to be run
several times to select an optimal number of components.

6.6 Failure Conditions

The most difficult mixtures for our algorithm are those with
components of very different weights. It may happen that a
component that is already well adjusted to a subset of data
produced by a low weight component gets prematurely
forced to zero, instead of an unnecessary heavier compo-
nent almost completely overlapping another one. For
instance, in the example of Fig. 5, if ay < 0.05, the algorithm
sometimes drops the smaller component. A possible
solution to this problem consists in using different criteria
to reduce the mixture, e.g., the weighted Kullback-Leibler
criterion that we have used in [21].

7 DiscussiON AND OUTLOOK

In this paper, we have proposed a method for learning finite
mixtures from data which is able to select the number of
components in an unsupervised way. The proposed
algorithm also avoids several drawbacks of the standard
EM algorithm: sensitivity to initialization and possible
convergence to the boundary of the parameter space. The
method is based on a MML-like criterion which is directly
implemented by a modified EM algorithm. The novelty in
our approach is that we do not use MML as a model
selection criterion to choose one among a set of candidate
models; instead, we seamlessly integrate estimation and
model selection in a single algorithm. Experimental results
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showed the good performance of the approach in learning
mixtures of Gaussians and mixtures of factor analyzers.
An important issue in mixture fitting is the detection of
outliers (i.e., observations that are not well modeled by any
mixture component). Outliers can be handled by an extra
component (uniform or Gaussian of very high variance)
whose role is to “absorb” these anomalous observations
[37]. We are currently investigating how this idea can be
incorporated in the technique proposed in this paper.
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APPENDIX

DERIVATION OF THE MML CRITERION

This appendix presents the derivation of the MML criterion
(9) which plays a central role in this paper. We closely
follow [32], and start with the scalar parameter case.
Consider a prior p(¢) and the likelihood function p(Y|6).
Let 6 be a finite precision version of §, with quantization
step A. The complete description length is

Length(6, V) ~ —log(Ap(d)) —logp(V|6),

Length(6)

(21)

Length(Y|0)

since, a priori, P(6 € [0 — A/2, 6+ A/2]) ~ Ap(0). Assum-

ing the prior is smooth enough, we write Ap(f) ~ Ap(6). To

obtain —logp(Y|f), a second order Taylor expansion is
used:

) ~ 01 0
—logp(YV|0) ~ —logp(Y|6) — (6 — 9)%34)

1 o 0%logp(V|0)
2 (0-9) 0

This can now be used to obtain the expected value of the
description length:

(22)

E[Length(6, V)] ~ —log A —log p(6) — log p(Y|6)

A2 (23)
+ ﬂ Z(ya 9)7

where Z(Y,0) = — 9% logp(Y|0)/96” is the (observed) Fisher
information, and where the two following facts were
invoked: E[§ —6] =0 and E[(0 — 6)*] = A?/12, both well-
known consequences of assuming that the quantization
error is uniformly distributed in [-A/2, A/2]. To find the
optimal A, the corresponding derivative is set to zero
leading to Agpe = 1/12/Z(Y, 6). Inserting A, into (23), and
approximating the observed Fisher information by the
expected Fisher information I(0) = —E[0*logp()|0)/06%],
we finally have the MML criterion for a single parameter
(compare with (9)):

0 = arg mein { —log p(0) — log p(V|0)

1 1 1
+§logl(€) +§ (1 —Hogﬁ)}.

The derivation for the vector parameter case is somewhat
more complicated, and we omit most of the details (see
[32]). The main difference arises in the definition of the

(24)

quantization regions, which are no longer simply intervals
as in the scalar case. Wallace and Freeman have proposed
using optimal quantization lattices. In one dimension, these
are simply intervals, in two dimensions, the optimal regions
are hexagonal, while in three dimensions they are truncated
octahedrons [14]. With A denoting the volume of the
quantization region (the length of the quantization interval
in the scalar case), the mean squared quantization error is
now given by

E[| 60 |% = cr. AY°, (25)

where c is the dimension of 6, and k. is the so-called optimal
quantizing lattice constant for IR [14]. Due to this difference,
the MML criterion for a c-dimensional 6 becomes

0 = arg min { —log p(0) — log p(V|6)
6
: . (26)

Notice that, since x; = 1/12 ~ 0.083(3), for ¢ = 1 we recover
(24). As ¢ grows, k. approaches an asymptotic value, k. —
(2me) ' ~ 0.05855 [14]. Since k. does not vary much, we
approximate «. by 1/12 (which corresponds to hypercubic
quantization regions) [32], finally obtaining (9).
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