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A New TwIST: Two-Step Iterative Shrinkage/
Thresholding Algorithms for Image Restoration
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Abstract—Iterative shrinkage/thresholding (IST) algorithms
have been recently proposed to handle a class of convex uncon-
strained optimization problems arising in image restoration and
other linear inverse problems. This class of problems results from
combining a linear observation model with a nonquadratic reg-
ularizer (e.g., total variation or wavelet-based regularization). It
happens that the convergence rate of these IST algorithms depends
heavily on the linear observation operator, becoming very slow
when this operator is ill-conditioned or ill-posed. In this paper,
we introduce two-step IST (TwIST) algorithms, exhibiting much
faster convergence rate than IST for ill-conditioned problems. For
a vast class of nonquadratic convex regularizers ( norms, some
Besov norms, and total variation), we show that TwIST converges
to a minimizer of the objective function, for a given range of
values of its parameters. For noninvertible observation operators,
we introduce a monotonic version of TwIST (MTwIST); although
the convergence proof does not apply to this scenario, we give
experimental evidence that MTwIST exhibits similar speed gains
over IST. The effectiveness of the new methods are experimentally
confirmed on problems of image deconvolution and of restoration
with missing samples.

Index Terms—Convex analysis, image deconvolution, image
restoration, non-smooth optimization, optimization, regulariza-
tion, total variation, wavelets.

I. INTRODUCTION

A. Problem Formulation

I NVERSE problems abound in many application areas of
signal/image processing: remote sensing, radar imaging, to-

mographic imaging, microscopic imaging, astronomic imaging,
digital photography, etc. [1], [5], [35]. Image restoration is one
of the earliest and most classical linear inverse problems in
imaging, dating back to the 1960s [1].

In an inverse problem, the goal is to estimate an unknown
original signal/image from a (possibly noisy) observation ,
produced by an operator applied to . When is linear, we
have a linear inverse problem (LIP). Although we only report
image restoration experiments, all the results herein presented
are of general applicability in LIPs.
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Many approaches to LIPs define a solution (e.g., a restored
image/signal) as a minimizer of a convex objective function

, given by

(1)

where is the (linear) direct operator, and are
real Hilbert spaces (both with norm denoted as ),
is a function (whose meaning and role will be discussed in the
next paragraphs), is a parameter.

In a regularization framework, minimizing is seen as a
way of overcoming the ill-conditioned, or singular, nature of ,
which precludes inverting it. In this context, is called the reg-
ularizer and the regularization parameter [5].

In a (finite-dimensional) Bayesian setting, the reasoning be-
hind (1) is as follows. Assume that , where is
a sample of a white zero-mean Gaussian random vector/field,
of variance ; let be the adopted prior; thus, the loga-
rithm of the a posteriori density is (up to
a constant), with and ; maximum
a posteriori (MAP) estimates are, thus, minimizers of (see [2]
and references therein). Despite this possible interpretation of
(1), we will refer to simply as the regularizer.

Regardless of the adopted formal framework, the intuitive
meaning of is simple: minimizing it corresponds to looking
for a compromise between the lack of fitness of a candidate es-
timate to the observed data, measured by , and its
degree of undesirability, given by . The regularization pa-
rameter controls the relative weight of the two terms.

A more detailed discussion of will be postponed to Sec-
tion II; suffice it to say here that the current state-of-the-art regu-
larizers for image restoration are nondifferentiable. Examples of
such choices are total-variation (TV) regularization [11], [15],
[42] and wavelet-based regularization [13], [22], [23], [39]. The
nondifferentiable nature of , together with the huge dimen-
sion of its argument (for a typical 512 512 image,

), place its minimization beyond the reach of standard
off-the-shelf optimization methods.

Of course not all approaches to LIPs lead to convex optimiza-
tion problems such as (1). For example, some wavelet-based de-
convolution approaches do not lead to an optimization problem
[31], [40]. However, this paper is strictly concerned with algo-
rithms for minimizing (1), and will not discuss its relative merits
with respect to other criteria, nor the relative merits of different
choices of .

B. Previous Algorithms

In recent years, iterative shrinkage/thresholding (IST) al-
gorithms (described in Section IV), tailored for objective
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functions with the form (1), were independently proposed by
several authors in different frameworks. IST algorithms for
wavelet-based deconvolution were first derived in [41] (see also
[28]) under the expectation-maximization (EM) framework
and, later [29], using a majorization-minimization (MM, see
[33]) approach. In [21], IST algorithms were placed on solid
mathematical grounds, with a rigorous convergence proof in an
infinite-dimensional setting. A proof for the finite-dimensional
case was independently presented in [4]. IST algorithms have
been independently proposed in [24], [25], [45], and [46].
Recently, [19] brought important contributions to the under-
standing of a class of objective functions which contains ,
as well as of a class of algorithms (termed forward-backward
splitting) which includes IST.

A different (not IST) algorithm, proposed in [6], [7], under
a generalized EM framework [49], was recently shown to also
be an MM scheme [27]. That algorithm, which we will refer to
as IRS (iterative reweighted shrinkage), was shown to be much
faster than IST when is strongly ill-conditioned. Conversely,
for mildly ill-conditioned and medium to strong noise, IST
is faster than IRS [27].

C. Contributions

This paper introduces a new class of iterative schemes,
bringing together the best of IRS and IST. Algorithms in this
class have a two-step IST (TwIST) structure, i.e., each iterate
depends on the two previous iterates, rather than only on the
previous one. For ill-conditioned (but invertible) linear obser-
vation operators, we prove (linear) convergence of TwIST to
minima of the objective function , for a certain range of the
algorithm parameters, and derive bounds for the convergence
factor. As a byproduct of this analysis, we provide a bound
for the convergence factor of IST in the case of invertible
operators which, to best of our knowledge, was not available in
the literature.

Experimental results (in wavelet-based and TV-based decon-
volution) confirm that TwIST algorithms can be tuned to con-
verge much faster than the original IST versions, specially in se-
verely ill-conditioned problems. Similarly to the IRS algorithm
[7], [27], the speed gains can reach up two orders of magnitude
in a typical benchmark problem (e.g., 9 9 uniform blur). Con-
versely, in well-conditioned LIPs, TwIST is still faster than IST
(although not as much as in severely ill-conditioned LIPs), thus
faster than IRS [27].

The convergence proof mentioned in the previous paragraph
applies only to invertible linear operators. For the noninvert-
ible case, we introduce a monotonic variant of TwIST, termed
MTwIST. Although we do not have a proof of convergence, we
give experimental evidence that, with a noninvertible operator,
MTwIST also exhibits a large speed advantage over IST.

D. Summary of the Paper

In Section II, we review several choices of in the context of
denoising problems, the solution of which plays a central role in
IST and TwIST. Section III studies the existence and uniqueness
of minimizers of . The IST and IRS algorithms are reviewed
in Section IV, together with previous results on the convergence
of IST. The TwIST algorithm is introduced in Section V, which

also contains the central theorem of the paper. Finally, experi-
mental results are reported in Section VI. Appendices contain
brief reviews of basic results from convex analysis and other
mathematical tools, as well as the proofs of the new results pre-
sented.

II. REGULARIZERS AND DENOISING

A. Denoising With Convex Regularizers

Denoising problems are LIPs in which is the identity,
. In this case, the objective function (1) simplifies to

where

(2)

We adopt the following standard assumptions about the reg-
ularizer : it is convex, lower semi-continuous (lsc),
and proper (see Appendix I for definitions and implications of
these properties).

The fact that is lsc and proper and is a continuous,
real-valued, coercive function , guar-
antees that is lsc, proper, and coercive. Consequently, the
set of minimizers of is not empty (Theorem 5, Appendix I).
Finally, the strict convexity of implies strict convexity of
(Theorem 7, Appendix I); thus, its minimizer is unique; this al-
lows defining the denoising function (also known as the Moreau
proximal mapping [19], [37], [44]) as

(3)

In the following sections, we describe in detail the classes
or regularizers considered in this work, as well as the corre-
sponding denoising functions.

B. Denoising With 1-Homogeneous Regularizers

A function that satisfies , for all and
, is called positively homogeneous of degree 1 (phd-1).

Let denote the set of functions that are
convex, lsc, proper, and phd-1.

An important recent result states that denoising with regular-
izers from corresponds to the residual of the projection
onto a convex set, as formalized in the following theorem (see
[11], [19], and [36] for proofs).

Theorem 1: If , then the denoising function
defined in (3) is given by

(4)

where is a closed convex set depending on the regu-
larizer , and denotes the orthogonal projection
operator onto the convex set .

C. Total Variation

In the original formulation of total-variation (TV) [11], [15],
[42], is an infinite-dimensional Hilbert space , where
is a bounded open domain of , e.g., . With digital
images, is simply a finite-dimensional space of pixel values



2994 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

on a 2-D lattice, say , equipped with the Euclidean
norm; thus, discrete TV regularizers have to be used [11], [12].
Standard choices are the “isotropic” and “nonisotropic” discrete
TV regularizers, given, respectively, by

(5)

(6)

where and denote horizontal and vertical (on the 2-D
lattice) first-order local difference operators (omitting boundary
corrections). It is clear from (5) and (6) that ,

. Although there is no closed form for the projection onto
, i.e., to solve the TV denoising problem, fast iterative methods

have been recently introduced [11], [12], [20], [30].

D. Weighted Norm

Weighted norms, for , are defined as

(7)

where , with and .
The underlying Hilbert space is simply , in the finite-
dimensional case [with the sum in (7) extending from to

], or , in the infinite-dimensional case [where
the sum in (7) is for ]. Being a norm, clearly belongs
to .

The denoising function under a regularizer cannot
be obtained in closed form, except in some particular cases, the
most notable of which is ; in this case, is the well-
known soft-thresholding function [23], that is

, with

(8)

Next, we discuss some approaches involving regular-
izers.

1) Orthogonal Representations: A classical approach con-
sists in modeling images as elements of some Besov space

, where is the unit square. The adopted
regularizer is then the corresponding Besov norm ,
which has an equivalent weighted sequence norm of wavelet
coefficients on an orthogonal wavelet basis (see [13] for de-
tails). To exploit this equivalence, the problem is formulated
w.r.t. the coefficients, rather than the image itself. Letting

denote the linear operator that produces
an image from its wavelet coefficients, the objective function
becomes

(9)

where the weights depend on the scale of each coefficient and
on the parameters ( and ) of the Besov norm (see [13]), and
is the observation operator. In practice, for digital images, is
finite dimensional, say , is a weighted norm on

, and is an unitary matrix. Notice that
(9) has the same form as (1), with and .

2) Frames and Redundant Representations: Another formu-
lation (in a finite-dimensional setting) leading to an objective
function with the same form as (9) is the following. Let the
columns of contain a redundant dictionary (e.g., a frame)
with respect to which we seek a representation of the unknown
image. If the image is directly observed, is the identity; in
this case, minimizing (9) corresponds to finding a regularized
representation of the observed image on the dictionary [24],
[25]. For , this is the well-known basis-pursuit denoising
criterion [17]. If the original image is not directly observed (
is not identity), minimizing (9) corresponds to reconstructing/
restoring the original image by looking for a (regularized) repre-
sentation on an over-complete dictionary. This formulation has
been used for shift-invariant wavelet-based deconvolution [7],
[28], [29].

E. th Power of a Weighted Norm

This class of regularizers, defined as

(10)

appears in many wavelet-based approaches [7], [21], [28]–[30],
[43]. This regularizer can also be motivated as being equivalent
to the th power of a Besov norm, [21], [36].

For , ; thus, the denoising operator (3) is
given by (8). For , is not phd-1, and the denoising
operator does not have the form (4). In this case, however, we
can write , with

(11)

where is the inverse function of

(12)

Notice that, for , is one-to-one; thus,
is well defined. The function , called the shrinkage

function, has simple closed forms when , ,
or [16]. For example, the function is a simple linear
shrinkage, . Important features of (for

) are: it is strictly monotonic, continuously1 differentiable,
and its derivative is upper bounded by 1 (since the derivative of
its inverse is uniformly lower bounded by 1) [21].

III. EXISTENCE AND UNIQUENESS OF SOLUTIONS

The existence and uniqueness of minimizers of (1) are ad-
dressed in the following proposition, the proof of which can be
found in [19, Propositions 3.1 and 5.3].

Proposition 1: Let be defined as in (1), where
operator is linear and bounded, and is a
proper, lsc, convex function. Let denote the set of minimizers
of . Then:

i) if is coercive, then is nonempty;

1Continuous differentiability is not claimed in [21], only its differentiability.
However, the continuity (for p > 1) of the derivative of S , denoted S ,
is easily shown. First, it is trivial to check that lim S (x) = 0, where
S (x) = 1=F (S (x)). Second, it is also easy to show, via the definition
of derivative, that S (0) = 0.
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ii) if is strictly convex or is injective, then contains
at most one element;

iii) if is bounded below, that is, if there exists ,
such that, for any , , then contains
exactly one element.

We will now comment on the application of Proposition 1 to
the several regularization functions above considered. If all the
weights are strictly positive , both the weighted
norm and its th power (for ) are coercive (see [19, Propo-
sition 5.15 and Problem 5.18]); thus, Proposition 1 i) ensures
existence of minimizers of . Under these regularizers, if is
injective, the minimizer is unique; otherwise, the minimizer is
unique with , with (which is strictly convex).

In the finite-dimensional case , injectivity of is
sufficient to guarantee existence and uniqueness of the solution
(under any convex regularizer, strictly or not, coercive or not).
This results from Proposition 1 iii), because any finite-dimen-
sional injective operator is bounded below.

When is a TV regularizer (e.g., or ) and is
not bounded below, Proposition 1 can not be used to guarantee
existence of minimizers of (1). The reason is that TV regular-
izers are not coercive since they equal zero when the argument is
a constant image. However, under the additional condition that
constant images do not belong to the null space of , it can still
be shown that is not empty [14].

IV. PREVIOUS ALGORITHMS

This section reviews algorithms previously proposed for
finding minimizers of . From this point on, we focus on the
finite-dimensional case, , , and denote the
standard Euclidean vector norm as .

A. Iterative Shrinkage/Thresholding (IST)

IST algorithms has the form

(13)

where . The original IST algorithm has the form (13),
with [21], [28], [29]. Schemes with can be seen as
under or over relaxed versions of the original
IST algorithm.

Each iteration of the IST algorithm only involves sums, ma-
trix-vector products by and , and the application of the
denoising operation . In wavelet-based methods, is a co-
efficient-wise nonlinearity, thus very computationally efficient.
When represents the convolution with some kernel , the cor-
responding product can be computed efficiently using the fast
Fourier transform (FFT).

Convergence of IST, with , was first shown in [21].
Later, convergence of a more general version of the algorithm
(including ), was shown in [19]. The following theorem is
a simplified version of Theorems 3.4 and 5.5 from [19]; the sim-
plifications result from considering finite-dimensional spaces
(no difference between strong and weak convergence) and from
(13) being a particular case of the somewhat more general ver-
sion studied in [19].

Theorem 2: Let be given by (1), where is
convex2 and . Let , the set of minimizers of , be
nonempty. Fix some and let the sequence be
produced by (13), with . Then, converges
to a point .

B. Iterative Re-Weighted Shrinkage (IRS)

The IRS algorithm was specifically designed for wavelet-
based problems of the form (9), where contains an orthog-
onal or redundant wavelet basis and the regularizer is not nec-
essarily a weighted norm [7]. The iterations of the IRS algo-
rithm are given by

(14)

with and , where is a di-
agonal matrix (of non-negative elements) that depends on
and . Observe that matrix shrinks the components of ,
thus the term iterative reweighted shrinkage. Each iteration of
IRS resembles a weighted ridge regression problem, with design
matrix ; algorithms with a similar structure have been used for
sparse regression [26], [32].

The huge size of forces the use of iterative methods to
implement (14). In [7], this is done with a two-step (or second-
order) stationary iterative method [3], which we will next briefly
review.

C. Two-Step Methods for Linear Systems

Consider the linear system , with positive definite;
define a so-called splitting of as , such that is
positive definite and easy to invert (e.g., a a diagonal matrix). A
stationary two-step iterative method (TwSIM) for solving

is defined as

(15)

for , where is the initial vector, and , , are the
parameters of the algorithm (more on this below). The designa-
tion “two-step” stems from the fact that depends on both

and , rather than only on .
The main result concerning TwSIM is given in following the-

orem [3, Theorem 5.9].
Theorem 3: Let be the sequence produced by

(15), with arbitrary . Let and denote the smallest and
largest eigenvalues of matrix , and be its
inverse condition number. Then, converges to the
solution of if and only if and

. The optimal asymptotic convergence factor3 is
, obtained for and

. With , the two-step method (15) becomes a one-step
method for which the best asymptotic converge factor is

.

2In a finite-dimensional space, every real convex function is continuous, so
we can drop the lsc condition.

3See Appendix II for a brief review of convergence factors.
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D. Comparing IST With IRS

It was shown in [7] that, for ill conditioned systems, IRS is
much faster than IST. This fact can be traced to the use of the
TwSIM in each step of IRS. On the other hand, when noise is
the main factor, and the observation operator is not too ill-condi-
tioned, IST outperforms IRS because it uses a closed-form (usu-
ally nonlinear) denoising step in each iteration [27]. In fact, in
a pure denoising problem ( or orthogonal), IST (with

and initialized with a zero image) converges in one step,
while IRS does not.

V. TWO-STEP IST (TWIST)

A. Motivation and Definition

The TwIST method proposed in this paper aims at keeping
the good denoising performance of the IST scheme, while still
being able to handle ill-posed problems as efficiently as the IRS
algorithm.

Taking and in the splitting
of matrix , the two-step iteration

(15) for the linear system becomes

(16)
Observe the relationship between (13) and (16): the former can
be obtained from the latter by setting and replacing the
multiplication by matrix by the denoising operator .
This similarity suggests a two-step version of IST (TwIST) as

(17)

(18)

for , where is defined as

(19)

A key observation is that TwIST, IST, and the original IST
with all have the same fixed points. In fact, elementary
manipulation allows showing that the three following equations
are equivalent:

B. Convergence of TwIST

Fundamental questions concerning TwIST are: for what
values of and does it converge? How does the convergence
rate depend of and ? The main theorem of this paper par-
tially characterizes the convergence of the TwIST algorithm,
when has a unique minimizer.

Theorem 4: Let be given by (1), where is a convex reg-
ularizer. Let and be two real numbers such that

, where is the th eigenvalue of its argu-
ment, let , where , and

(20)

Let be the unique (because is injective) minimizer of and
define the “error vector” as and the “stacked error
vector” as

(21)

i) There exists a matrix set such that can be written
as , where , for ( may
depend on ); moreover, if and

, then , for any , where
is the spectral radius of (see Appendix II).

ii) Setting

(22)

(23)

guarantees that .
iii) Setting (i.e., the IST algorithm) and

(24)

guarantees that

(25)

iv) If , , and , then
.

Theorem 4 extends the results about the convergence of the
linear TwSIM (see Section IV-C and [3]) to the nonlinear/non-
differentiable case. While the proof in [3] uses linear algebra
tools, the possible nonlinear/nondifferentiable nature of de-
mands nonsmooth analysis techniques [18], [44]. The proof of
Theorem 4 can be found in Appendix III.

If matrix is not time dependent, i.e., , the con-
dition would be sufficient for convergence to zero
of . However, in TwIST, is in general not constant, thus

, , is not a sufficient condition for convergence
to zero of . Convergence of a nonstationary linear iteration

, where belongs to some set of matrices ,
depends on the so-called joint spectral radius (JSR) of [48,
Proposition 3.2]. Computing (or bounding) the JSR of (even
very small) matrix sets is a hard problem, currently under ac-
tive research (see [48] and the many references therein). The
convergence stated in Theorem 4 iv) results from the following
fact: for , there exists a matrix norm, say , for which

, for any , which is a sufficient condi-
tion for convergence to zero of the iteration .

Although, when , Theorem 4 does not guarantee con-
vergence, we have observed, in a large number of image decon-
volution experiments, that the algorithm always converges for a
wide range of choices of parameters and . In Section VI, we
will discuss practical rules for choosing these parameters.

As in linear stationary algorithms, we have experimentally
verified that and , respectively, are good indicators of the rel-
ative speed of TwIST and IST. Seeing the algorithms as linear
stationary, quantities and are approx-
imately the numbers of iterations needed to reduce the error
norm by a factor of 10 (see Appendix II). For example, with

(common in image restoration),
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and ; i.e., in this case, TwIST is expected
to be roughly two orders of magnitude faster than IST, as con-
firmed in our experiments. To the best of our knowledge, the
bound on the convergence factor of IST given by (25) has not
appeared previously in the literature.

C. Monotonic Version: MTwIST

Monotonicity underlies the derivation of many algorithms
and is instrumental in several convergence proofs; e.g., the proof
of convergence of IST (which is monotonic for ) in [21].
Monotonicity is not used in our convergence proof of TwIST
(which is not necessarily monotonic), but the proof requires the
condition that the observation operator is invertible. To handle
noninvertible operators, we introduce a monotonic version of
TwIST (MTwIST); the rationale is that, even though we cannot
guarantee convergence of the estimate, monotonicity combined
with the fact that the objective function is bounded below guar-
antees convergence of the objective function values . Al-
though this is a weaker result, we have observed in many exper-
iments that MTwIST always converges and still does so much
faster than IST.

The structure of MTwIST is very similar to that of TwIST,
with a single difference. Formally, for , let be given by
(18); then

.

Notice that setting corresponds to taking a
TwIST step with , that is, a (monotonic) IST step.

VI. EXPERIMENTAL RESULTS

In this section, we present image restoration results illus-
trating the convergence speed of TwIST in comparison with IST.
Our goal is not to assess the performance of image restoration
criteria of the form (1); this has been carried out in several other
publications, in comparison with other state of the art criteria
(see [7], [25], [28], [31], and [34]). It is clear that the perfor-
mance of such criteria (e.g., in terms of SNR improvement) does
not depend on the optimization algorithms used to implement
them, but only on the choice of the type of regularizer . On the
other hand, the relative convergence speed of the algorithms is
essentially dependent on their structure.

We consider two classes of regularizers: i) ,
where denotes wavelet coefficients of the image to be inferred,
and ii) , i.e., isotropic TV. See Sections II-C
and D for further details. In the case i) we use the simplest pos-
sible choice of wavelet: Haar discrete wavelet transform (DWT).
We are well aware that this does not lead to state-of-the-art per-
formance in terms of SNR improvement; however, the conclu-
sions obtained concerning the relative speed of the algorithms
are valid for other choices of wavelets and penalty functions. To
implement corresponding to the regularizer , we
use the algorithm introduced in [11].

Table I shows the setting used in each of the five experiments
conducted. Experiments 1 and 2 correspond to a strong blur with
low noise, whereas experiments 3 and 4 correspond to mild blur
with medium noise. Our aim in choosing these two scenarios is

TABLE I
EXPERIMENTAL SETTING (W IS THE INVERSE

DISCRETE WAVELET TRANSFORM)

to illustrate that TwIST converges much faster than IST in se-
verely ill-conditioned LIPs and still faster than IST in mildly
ill-conditioned LIPs. In all the experiments, the operator is
normalized to have , thus , which we simply de-
note as . Finally, experiment 5 considers a problem in which
matrix models the loss of 40% of the image pixels (at random
locations); matrix is, thus, 0.6 m m, thus noninvertible
(40% of its singular values are zero). This experiment illustrates
the behavior of MTwIST on an severely ill-posed
problem.

Inspired by Theorem 4 ii), the TwIST parameters are initially
set to

(26)

(27)

where is given by (20) and is set according to a qualita-
tive classification: or for, respectively,
mildly or severely ill-conditioned LIPs. This choice may be,
of course, far from optimal; we have observed, however, that
it leads to speeds of convergence very close to the best ones
obtained by hand tuning . The reason for this is that, as
illustrated below, TwIST is very robust with respect to the pa-
rameters , namely for severely ill-conditioned LIPs. An-
other alternative is to run a few TwIST iterations, say , for each

, with and choose the value that leads to
lowest value of . In the experiments reported below, we
use this procedure with .

The parameter of IST is set according to Theorem 4 iii);
i.e., . This setting, yields the optimal spectral
radius associated to the one-step iterative method. We
will refer to this particular optimal version of IST as and
to the original IST (i.e., ) as . Notice that since, in
ill-conditioned problems, , the optimal is very close
to the maximum allowed value that guarantees convergence; for
example, for , we have .

In all the examples, the algorithms are initialized with
given by a Wiener filter and the parameter is hand tuned for
the best SNR improvement.

Experiments 1 and 2: Fig. 1 shows the evolution of the
objective function along the iterations4 confirming that TwIST
converges much faster than and , which take,
respectively, 2400 and 5800 iterations to reach the value of

4Arguably, the horizontal axes should represent CPU time instead of number
of iterations; however, we have verified that the CPU time per iteration differs
by less than 1% between TwIST and IST, so this change would only imply a
change of scale of these horizontal axes.
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Fig. 1. TV-based deconvolution in a severely ill-conditioned problem (experi-
ment 1). Evolution of the objective function f(x ) produced by TwIST, IST ,
and IST .

Fig. 2. TV-based deconvolution in a severely ill-conditioned problem (ex-
periment 1). Evolution of the SNR improvement (ISNR) produced by TwIST,
IST , and IST .

Fig. 3. TV-based deconvolution in a severely ill-conditioned problem (exper-
iment 1). Evolution of the objective function f(x ) produced by TwIST, for
different parameters (�(�); �(�)), and by IST . Notice the low sensitivity of
TwIST with respect to (�(�); �(�)).

obtained by TwIST just after 100 iterations. Notice also that
converges approximately twice as fast as . This

pattern of behavior was systematically observed in severely
ill-conditioned LIPs. Fig. 2 shows the evolution of the SNR

TABLE II
AVERAGE NUMBER OF ITERATIONS REQUIRED BY IST AND IST TO

REACH THE SAME VALUE OF f OBTAINED BY 100 ITERATIONS OF TwIST

Fig. 4. Wavelet-based deconvolution in a severely ill-conditioned problem (ex-
periment 2). Evolution of the objective function f(x ) produced by TwIST,
IST , and IST .

improvement (ISNR) produced by TwIST, and .
As expected,5 also converges much faster with TwIST
than with and . Fig. 3 shows the evolution of the
objective function produced by TwIST, for different
parameters , and by . Notice the low sensi-
tivity of TwIST with respect to . This is a relevant
characteristic of TwIST, because the optimal setting for
is rarely know.

In order to assess the impact of the initialization on the rela-
tive performance of the algorithms, we considered two other ini-
tialization methods: an all zeros image and the observed image.
Table II shows the average (over ten runs) number of iterations
required by and to reach the value of the objective
obtained by 100 iterations of TwIST. Initialization with zeros
or the observed image decreases the advantage of TwIST by
roughly 50%; however, the Wiener initialization leads (after 100
iterations) to a final value of and an ISNR which are a little
better than the other two methods.

Figs. 4 and 5 plot wavelet-based deconvolution results ob-
tained with the setting of experiment 2. The comments to Figs. 4
and 5 are similar to those made for Figs. 1 and 3: TwIST con-
verges much faster than and ; TwIST has low sen-
sitivity with respect to .

Experiments 3 and 4: Figs. 6 and 7 plot results obtained in
mildly ill-conditioned LIP. The first aspect to note is that (as
expected) all the algorithms converge much faster than in the
severely ill-conditioned case. The limit situation is a denoising
LIP (i.e., or unitary) in which the solution is obtained in
just one step (with and ). The other aspect to

5ISNR(t) = 10 log (ky�xk=kx �xk), where x is the original image.
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Fig. 5. Wavelet-based deconvolution in a severely ill-conditioned problem (ex-
periment 2). Evolution of the objective function f(x ) produced by TwIST, for
different parameters (�(�); �(�)), and by IST . Notice the low sensitivity of
TwIST with respect to (�(�); �(�)).

Fig. 6. TV-based deconvolution in a mildly ill-conditioned problem (experi-
ment 3). Evolution of the objective function f(x ) produced by TwIST, IST ,
and IST .

Fig. 7. Wavelet-based deconvolution in a mildly ill-conditioned problem (ex-
periment 3). Evolution of the objective function f(x ) produced by TwIST,
IST , and IST .

note is that although the behavior of all the algorithms is almost
identical, TwIST is still slightly faster than IST.

Experiment 5: In this example, the goal is not to present a
state-of-the-art method for restoration from missing samples,

Fig. 8. TV-based image restoration from 40% missing samples (experiment 5).
Evolution of the objective function f(x ) produced by MTwIST, IST , and
IST .

Fig. 9. TV-based image restoration from 40% missing samples (experiment 5);
top: observed image; bottom: restored image.

but simply to illustrate the behavior of the algorithms with a
noninvertible observation model. The evolution of the objective
function in Fig. 8 shows that MTwIST converges considerably
faster than and IST with . In line with the results
reported in 3 and 5, MTwIST is, again, rather insensitive to the
choice of (which in this case can no longer be related to the
minimum singular value of , which is zero) Fig. 9 shows the
observed image (the missing samples are set to the mid level
gray value) and the restored image produced by MTwIST.

VII. CONCLUDING REMARKS

In this paper we have introduced a new class of iterative
methods, called TwIST, which have the form of two-step iter-
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ative shrinkage/thresholding (TwIST) algorithms. The update
equation depends on the two previous estimates (thus, the term
two-step), rather than only on the previous one. This class
contains and extends the iterative shrinkage/thresholding (IST)
methods recently introduced.

We proved convergence of TwIST to minima of the objective
function (for a certain range of the algorithm parameters) and
derived bounds for the convergence factor as a function of the
parameters defining the algorithm. Experimental results (in
wavelet-based and TV-based deconvolution) have shown that
TwIST can in fact be tuned to converge much faster than the
original IST, specially in severely ill-conditioned problems,
where the speed up can reach two orders of magnitude in a
typical deblurring problem. We have also introduced MTwIST,
a monotonic variant of TwIST, conceived for noninvertible
observation operators; the performance of MTwIST was illus-
trated on a problem of image restoration from missing samples.

APPENDIX I
CONVEX ANALYSIS

We very briefly review some basic convex analysis results
used in this paper. For more details see [44] and [50].

Consider a function , where is
the extended real line, and is a real Hilbert space.

The function is convex if
, for any , and any . Convexity

is said to be strict if the inequality holds strictly for any ,
and any .

The function is proper if , for at least one ,
and , for all .

The function is lower semi-continuous (lsc) at if

where is the -ball around ,
and is the norm in the Hilbert space .

A function is called coercive if it verifies
.

Proper, lsc, coercive functions play a key role in optimization
because of the following theorem (see [44]).

Theorem 5: If is a proper, lsc, coercive, convex function,
then is finite and the set is
nonempty.

The next theorems concern strictly convex functions.
Theorem 6: If is a strictly convex function, the set

possesses at most one element.
Theorem 7: If is a convex function, is a strictly convex

function, and , then and are strictly
convex.

APPENDIX II
MATRIX NORMS, SPECTRAL RADIUS, CONVERGENCE,
CONVERGENCE FACTORS, AND CONVERGENCE RATES

Given a vector norm , is the
matrix norm of induced by this vector norm. A vector norm
and the corresponding induced matrix norm are consistent, i.e.,
they satisfy .

When the vector norm is the Euclidean norm (denoted ),
the induced matrix norm (also denoted ) is called spectral

norm, and is given by , where
is the largest absolute eigenvalue of , called the

spectral radius. Key results involving are

(28)

(29)

(30)

If is Hermitian, .
Consider the linear system , with solution and an

iterative scheme yielding a sequence of iterates .
For a linear stationary iterative algorithm, the error
evolves according to , thus . From (28),
the error goes to zero if and only if . Because of
(29), is also called the asymptotic convergence factor. The
asymptotic convergence rate, given by , is
roughly the number of new correct decimal places obtained per
iteration, while its inverse approximates the number of iterations
required to reduce the error by a factor of 10.

APPENDIX III
PROOF OF THEOREM 4

Before proving Theorem 4, we introduce several results on
which the proof is built, one of them being Clarke’s mean value
theorem for nondifferentiable functions [18]. Other preliminary
results are presented and proved in Appendix III-C. Finally, Ap-
pendix III-C–F contain the proofs of parts i)–iv) of Theorem 4,
respectively.

A. Nonsmooth Mean Value Theorem

Definition: Let be such that each of its com-
ponents is Lipschitz and the set of points at which is non-
differentiable. Let denote the Jacobian matrix of

at , when . The (Clarke’s [18]) generalized Jaco-
bian of at is given by

(31)

where denotes the convex hull of . If is continuously
differentiable at , then [18].

Theorem 8: (Mean value theorem [18]) Let be as in Defi-
nition 1 and , be any two points. Then

(32)

where denotes the convex hull of the set
, with denoting the line segment

between and . Expression (32) means that there exists a ma-
trix , such that .

B. Preliminary Results

The two following propositions characterize the elements of
the generalized Jacobian of denoising functions, , and of

.
Proposition 2: For any , any is sym-

metric, positive semi-definite (psd), and .
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Proof: The proof distinguishes two classes of regularizers.
Consider first that results from a regularizer in class
(see Section II-B); e.g., iTV, niTV, or . From Theorem 1
in Section II-B, . Thus,

, that is, any element, say , of can be written
as , where . Theorem 2.3 in [47]
guarantees that is symmetric, psd, and . Thus,

is also symmetric, psd, and .
Consider now that results from a regularizer, with

(see Section II-E). Due to the component-wise structure
of , shown in (11), and since is continuously differen-
tiable (see footnote 1), contains a single diagonal (thus,
symmetric) matrix, say . As shown in [21], (for )
is strictly monotonic and its derivative is upper bounded by 1,
which implies that each entry of belongs to ]0,1]. This im-
plies that is psd and .

Proposition 3: For any pair of points , , any
is symmetric, psd, and .

Proof: From Proposition 2, for any , any
is symmetric, psd, and has . Thus,
is the convex hull of a set matrices which are

all symmetric, psd, and have norm no larger than 1. Therefore,
any matrix is also symmetric, psd, and has

.

C. Proof of Theorem 4 i)

Recalling that and using (18), we write

(33)

Using the definition of given in (19) and the mean value
theorem (Theorem 8), we may write

(34)

where . Recall that Proposition 3 states that
is symmetric, psd, and has . Inserting (34) into

(33)

(35)

where

(36)

Recalling that the stacked error vector is

we can use (35) to write , where

(37)

Thus, is the set of matrices with the form (37), where is
given by (36) and is symmetric, psd, and has .

To prove the second statement in Theorem 4 i), we
need to study how the choice of and affects

, for any possible . We begin by con-
sidering the following facts: a) is symmetric
and (because

); b) according to Proposition 3,
is symmetric, psd, and , thus .

Consequently, using results on bounds of eigenvalues of prod-
ucts of symmetric matrices, one of which is psd, [38, Theorem
2.2]

(38)

finally, since

(39)

Following [3], let denotes any eigenpair of , i.e.,
; writing , we have

(40)

The bottom rows of (40) give ; inserting this
equality into the top half of (40), we obtain

(41)

Since the matrix in the left-hand side (l.h.s.) of (41) can be
written as , its eigenvectors coincide
with those of . Thus, with denoting some eigenvalue of

, has to be a solution of the following second degree equa-
tion

(42)

Let

(43)

where and are the two solutions of (42). We,
thus, need to study how behaves for

, for each choice of
and . Notice that (39) does not provide and (all it guar-
antees is that ). It is shown in [3, Lemma
5.8] that , for any , if and

. Since , any satisfying
also satisfies .

Finally, notice that ; thus,
implies that , concluding the proof of

Theorem 4 i).
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D. Proof of Theorem 4 ii)

We begin by re-writing (42), for and , as

(44)

and proving that the solutions of (44) are complex conjugate for
any . From the classical formula for the solutions
of a second degree equation, it is clear that the two roots of (44)
are complex conjugate if and only if , for
any ; this inequality is equivalent to

(45)

It is easy to show that the two roots of l.h.s. of (45) are and ;
thus, since , inequality (45) is satisfied when is between
these two roots. Therefore, when , the
roots of (44) are indeed complex conjugate.

Recall that the product of the two roots of a second order
polynomial equals its independent term; applying this fact to
(44) yields . For , we have ,
thus ; thus

, for any , as stated
in Theorem 4 ii).

E. Proof of Theorem 4 iii)

Inserting and in (42) leads to the equation

(46)

which has solutions and . Consequently,
. To show part iii) of

the theorem, we need to show that

Because and are positive, both sides
of the previous inequality can be squared. Simple manipulation
allows showing that

Finally, since is a convex function of
, and

concluding the proof of Theorem 4 iii).

F. Proof of Theorem 4 iv)

A sufficient condition for convergence to zero of the switched
linear system , where , and is a bounded
set of matrices, is the existence of a matrix norm , such that

, for any . Our proof uses the matrix norm
, defined as

(47)

where is a symmetric positive definite matrix, which is in-
duced by the vector norm [10].

We split the proof into two cases.
a) With , the error evolves according to the one-step

iteration

(48)

matrix [see (36)] can be written as ,
where is a symmetric positive definite
matrix; thus, so is . Computing the norm of

(49)

where we have used the following facts: for a real sym-
metric matrix , and, for any pair of square
matrices and , .
Finally, notice that, as shown in Appendix III-E

concluding the convergence proof, for .
b) With , let us define the matrix

(50)

With given by (37), it is simple to conclude that

(51)
which is a real symmetric matrix. This allows writing

(52)

(53)

(54)

where the equality in (52) and the inequalities (53) and
(54) were shown in Section III-C.
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