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An EM Algorithm for
Wavelet-Based Image Restoration

Mario A. T. Figueiredo Senior Member, IEEEgnd Robert D. NowakMember, IEEE

Abstract—This paper introduces anexpectation—-maximization ~ Image deconvolution is more challenging than denoising.
(EM) algorithm for image restoration (deconvolution) based on a This is a classic, well-studied image processing task [1], but
penalized likelihood formulated in the wavelet domain. Regular- applying wavelets has proved to be a nontrivial problem.

ization is achieved by promoting a reconstruction with low-com- D luti . ¢ iv dealt with (at least i
plexity, expressed in the wavelet coefficients, taking advantage of —~€c0NvVolUlion 1S most easily deait wi (at least computa-

the well known sparsity of wavelet representations. Previous works tionally) in the Fourier domain. However, image modeling
have investigated wavelet-based restoration but, except for certain (thus denoising) is best handled in the wavelet domain; here
special cases, the resulting criteria are solved approximately or re- |ies the problem. Convolution operators are generally quite
quire demanding optimization methods. The EM algorithm herein difficult to represent in the wavelet domain, unlike the simple

proposed combines the efficient image representation offered by . o . : . . .
the discrete wavelet transform (DWT) with the diagonalization of diagonalization obtained in the Fourier domain. This suggests

the convolution operator obtained in the Fourier domain. Thus, the possibility of combining Fourier-based deconvolution
it is a general-purpose approach to wavelet-based image restora- with wavelet-based denoising, and several ad hoc proposals
tion with computational complexity comparable to that of standard  exploiting this combination have appeared in the literature.
wavelet denoising schemes or of frequency domain deconvolution |, this paper we formally develop an image deconvolution
methods. The algorithm alternates between an E-step based on the . . . Lo .
fast Fourier transform (FFT) and a DWT-based M-step, resulting algorithm based on maximum penallged |I'ke|lh00d estimator
in an efficient iterative process requiring O(N log N) operations (MPLE). The MPLE cannot be obtained in closed-form, and
per iteration. The convergence behavior of the algorithm is inves- SO we propose aexpectation-maximizatiofieM) algorithm to
tigated, and it is shown that under mild conditions the algorithm  numerically compute it. The result is an iterative deconvolu-
converges to a globally optimal restoration. Moreover, our new ap- tjnn algorithm which alternates between the Fourier and wavelet
proach performs competitively with, in some cases better than, the ; . .
best existing methods in benchmark tests. domains. We compare our method Wlth the state-of-thg—'art in
benchmark problems, showing that it performs competitively,

Index Terms—Bayesian estimation, expectation—maximization sometimes better, in terms of SNR improvement.

algorithm, image deconvolution, image restoration, penalized

maximum likelihood, wavelets.
Il. PROBLEM FORMULATION

Image restorationaims at recovering aoriginal image x
from a degradedobserved versioly [1]. In this paperx and
AVELET-BASED methods had a strong impact on thg will denote vectors containing all the image pixel values,
field of image processing, especially in coding and dexfter some (e.g., lexicographic) ordering. L&t and N, be
noising. Their success is due the fact that the wavelet transforfig dimensionality ofx and y, respectively. The class of
of images tend to be sparse (i.e., many coefficients are clasigservations/degradations herein considered is described by

to zero). This implies that image approximations based onige standard “linear observation plus Gaussian noise” model
small subset of wavelets are typically very accurate, which is

a key to wavelet-based compression. The good performance of y=Hx+n (1)
wavelet-based denoising is also intimately related to the approx-

o _ : . (1), H denotes the (linear) observation operator (i.€V,ax
imation capabilities of wavelets. Thus, the conventional WISdOE{/l matrix). andn is a sample of zero-mean white Gaussian
is that wavelet representations that provide good approximaZ. g b

tions will also perform well in estimation problems [23] foise with variance’®; that is,p(n) = A'(n|0,0”I), where
P P ' N(g|u, X) denotes a multivariate Gaussian density with mean

1 and covarianc®, evaluated ag;, andI is an identity matrix.
Examples of observation mechanisms which are adequately ap-
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In the above equationlJ is the matrix that represents theboundary conditions), itis also diagonalized by the DFT and we
2-D discrete Fourier transforriJ¥ = U is its inverse U can writeG = U® CU, whereC is diagonal. In this case, (5)
is an orthogonal matrix, that idJU” = UHU =1, where can be implemented in the DFT domain as

(1) denotes conjugate transpose), dds a diagonal matrix .

containing the DFT coefficients of the convolution operatorg — » + U¥ CD¥ (021 + DCDH) (Uy — DUp). (6)
represented byH. This means that multiplication biA can

be performed in the discrete Fourier domain with a simp®ince the matrix being inverted in (6) is diagonal, the leading

point-wise multiplication (recall thaD is diagonal) computational cost is th&(N log N) corresponding to the
. e FFTsUp andUy and to the inverse FFT expressed by the left
Hx =U"DUx=U"Dx multiplication by U¥. Equation (6) is a Wiener filter in the

~ DFT domain [1].
wherex = Ux denotes the DFT af. Unfortunately, this FFT-based procedure only discriminates

If matrix H is block-Toeplitz, but not block-circulant, it is yatween signal and noise in the frequency domain. It is
possible to embed the nonperiodic convolution that it represe(s|;.known that real-world images are not well modeled by

in a larger periodic convolution and still work in the DFT do'stationary Gaussian fields. A typical imagewill not admit

main [16]. Accordingly, all the results and statements made dsparse Fourier representation; the signal energy may not be

this paper concerning circulant observation matrices (periodigncentrated in a small subspace, making it difficult to remove
convolutions) can be extended to the Toeplitz case. noise and preserve signal simultaneously.

Ill. REVIEW OF FFT-BASED RECOVERY AND WIENER IV. WAVELET-BASED IMAGE RESTORATION

FILTERING _
L. . . . ) A. Introduction
If H is invertible (i.e., there are no zeros in the diagonal of L . . .
D, thusD~! exists) we can writdl~' = U#D~'U. Then In wavelet-based estimation, the images re-expressed in

terms of an orthogonal wavelet expansion, which typically pro-
vides a very sparse representation (a few large coefficients and
% =UYD"'Uy = UED" 'y (3) Manyvery small ones) [23]. LAV denote the (inverse) discrete
wavelet transform (DWT) and let us wrike—= W@, wheref) is
wherey = Uy denotes the DFT of the observatign Of the vector of wavelet coefficients [23]. As above, let us consider
course, in practice, the DFT and its inverse are computed #a MPLE/MAP criterion, expressed in termséfthe wavelet
the fast Fourier transform(FFT) algorithm, which requires coefficients of the original image, that is, taking the likelihood
O(N log N) operations (wheréV is the number of pixels), not function to bep(y|#). Considering some penaliyn(f) empha-
using matrix multiplications. Consequently, implementing (3jizing sparsity of the DWT coefficients, the MPLE/MAP esti-

ignoring the noise, we can obtain an estimate @fs

also require$)(N log N) operations. mate is given by
In most cases of interedd is noninvertible (there are zerosin ~

the diagonal oD) or at least very ill-conditioned (there are very 0 = argmax {log p(y|6) — pen(6)} @)

small values in the diagonal @), with direct inversion leading ly — HW8)|2

to a severe amplification of the observation noise. Therefore, = argmax {—T - Pen(e)} - (8)

some regularization procedure is required. A common choice is

to adopt amaximum penalized likelihood estima{iMPLE) The penalty function can be interpreted as minus the logarithm
of some (non-Gaussian, sparseness-inducing) prior [26],

X = arg max {log p(y|x) — pen(x)} (4)  pen(8) = —log p(#), as a complexity-based penalty [27], or as

a regularization term [2].

wherep(y|x) = N (y|Hx, o?I) is the likelihood function cor- ~ WhenH = I, that is, for direct denoising problems, wavelet-
responding to the observation model in (1), grek(x) is a based methods are extremely efficient, thanks to the fast imple-
penalty function. From a Bayesian perspective, this max- mentations of the DWT and to the orthogonalityVdf (that is,
imum a posterior{MAP) criterion under the priop(x), such W7W = WW7’ = I) which allows solving (8) using a co-
thatpen(x) = — log p(x). efficient-wise denoising rule; moreover, these methods achieve

If the priorp(x) is Gaussian, with meam (usually zero) and state-of-the-art performance (see [14], [23], [25], [26] and ref-
covariance matrixG, it is well-known (see, for example, [31]) erences therein). The very good performance of wavelet-based

that the MPLE/MAP estimate can be written as denoising can be traced back to the adequacy of the underlying
1 priors/models of real world images.
X = arg max {—2||Hx —yP-(x-wHG (x - p)} Although wavelets have also been shown to be effective in
* g = image restoration problems (see [3], [4], [8],[9], [17], [18], [22],
=p+ GHY (021 4 HGHH) (y — Hp). (5) [28],[29], [33], and [34]), major difficulties arise
* unlike H alone,HW is not block-circulant, thus it is not
When the covariance of the pridg, is also (as the observation diagonalized by the DFT;

matrix H) block-circulant (meaning that the original image is « unlike W alone,HW is not orthogonal, thus precluding
considered a sample of stationary Gaussian field with periodic efficient coefficient-wise rules.
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B. Previous Work

In[4], [22], and [33], general frameworks aimed at restoration
approaches of the form of (8) has been proposed. The results are
promising, but the proposed algorithms are very numerically
intensive. The iterative method of [28] is also similar in spirit,
employing an ad hoc thresholding step within an iterative
restoration algorithm. In certain exceptional cases in which the
operatorH is scale-homogeneous, and hence (approximately)
diagonalized byw, the so-calledvavelet-vaguelettapproach
leads to very efficient threshold restoration procedures [9].
However, most convolutions are not scale-invariant and thus
the wavelet-vaguelettés inapplicable. -4 ; i i

An adaptation of thevavelet-vaguelettapproach, based on -4 -2 0 2 4
wavelet-packets designed to match the frequency behaviorrgf 1. Soft-threshold function (dashed) and modified soft-threshold function
certain convolutions, was proposed in [18]. This method wésplid) with threshold level set at 1 anti= 1. If 3 = 0.1, then the difference
extended to a complex waveleidden Markov tregsee [6]) ﬁ%t;’svfi’ﬁgl}iginggtgfﬁgﬂggggce“;e”;”tf“tshzgfed.'f'ed soft-threshold function are
scheme in [17]. Although these methods are computationally
fast, they are not applicable to most convolutions and, more- TABLE |
over, choosing the (image) basis to conform to the operator iSSNR IMPROVEMENTS(SNRI) OBTAINED BY SEVERAL VARIANTS OF THE
exactly what wavelet methods set out to avoid in the first place. PROPOSEDALGORITHM ON THE BLURRED IMAGE SHOWN IN FIG. 2
The wavelet packets matched to the frequency behavior of the
convolution operator may not match image structure as well as Method SNRI
a conventional wavelet basis.

Other methods for more general deconvolution problems Raule (22), UDWT 7.47dB
have been proposed. In [3], the approach is to adapt the linear Rule (22), random shifts 7.59dB
filtering spatially, based on an edge detection test. The algo-
rithm presented in [29] combines Fourier domain regularization Modified Laplacian, UDWT 7.26dB

with wavelet domain thresholding, in a noniterative fashion,

with very good results. Recently, an iterative method using Modified Laplacian, random shifts | 7.34dB

preconditioned conjugate gradient was proposed in [8]; the Soft-threshold. UDWT 7.26dB
method achieves very good results, but it requires complex
wavelet transforms and a complicated initialization procedure Soft-threshold, random shifts 6.33dB

based on another wavelet-based restoration method (namely
the one proposed in [29]). Result by Neelamani et al [29] 7.3dB

Finally, we mention that EM and EM-type algorithms have Result by Banham and Katsaggelos [3] | 6.7dB
been previously used in image restoration and reconstruction,
with nonwavelet-based formulations (e.g., [11], [12], [19]).

white Gaussian noise into the sum of two different Gaussian

V. BEST OFBOTH WORLDS noises (one of which is nonwhite), i.e.,

The approach proposed in this paper is able to use the best n = aHn; +n, (10)

of the wavelet and Fourier worlds in image deconvolutiom,herea is a positive parameter, and andn, are independent
problems. The speed and convenience of the FFT-based Wier'?&ges such that
filter, which is well matched to the observation model, and the
adequacy of wavelet-based image models. p(n1) =N(m|0,I)
p(ny) =N (n2)0,0%T — o?’HHT).

A. Equivalent Model and the EM Algorithm ] ] ) T
) ) ) _ Notice that the covariance ofHin; + n, is o’ HH" + ¢2I —
Let us write the observation model in (1) with respect to the2 g7 — 21 a9 required. FofoI — o«?HH?) to be semi-

DWT coefficientsd (recall thatx = W6): positive definite (thus a valid covariance matrix), we must have

o? < o02/\;, where ), is the largest eigenvalue dH”.
With a normalized (total mass equal to one) and periodic (cor-

=H . . .
y Wo+n ©) responding to a block-circulanH) blur, we have\; = 1, and
As mentioned above, this equation clearly shows where the diflif H is not block-circulant, but block-Toeplitz, as long as the blur satisfies

ficulties come from: althougEH is diagonalized by the DFT. some very mild conditions, the eigenvalues are, asymptotically (in the size of
' the matrix) the same (see [15] and references therein); with blurs that are much

. . t
HW is not, and so F':_T'based methods are not directly _appﬁﬁaller than the image, the eigenvalues of the corresponding Toeplitz or circu-
cable. To overcome this problem, we propose decomposing thre matrices are then roughly the same.
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the condition simplifies tax? < 2. The idea behind the pro- the E-step is to compute the conditional expectation, gfiven

posed noise decomposition is that it allows the introduction g{e gpserved data and current parameter estimﬁt(é)
a hidden image which decouples the denoising from the de-

convolution, as next described. Notice that usingndn,, we ~) () ()
can decompose the observation model as z/ =L {Zb’?e ] = /Z p <Z|y-/0 )dz (14)
z=W80+ an (11) and plug it into the complete-data log-likelihood to obtain
y=Hz+n, .
Txx7T Txa7To(t
. . () 6" WIW6 — 26" WTz()
Clearly, if we hadz, we would have a pure denoising Q10,6 = — 5o + Ky
problem with white noise (the first equation in (11)). This a?
observation is the key to our approach, since it suggests treating _ HW9 - ﬁ(t)H LK (15)
z as missing data and estimatifigzia the EM algorithm (see, o 202 1'

e.g., [7], [24]). Recall that the EM algorithm is a means of ob-
fcaining MAP/MPLE estimates (of which maximum |ike|ih00dsincep(y|z) = N(y|Hz, 0’1 — «?HH") andp z|§(t)) =
is a parthular cas_e) o_f a parameter (_see (M) in cases Whﬁf?z|W§(t),a21), thenp(z|y,§(t ) o p(y|z)p(z|5 t)) is also
the penalized log-likelihoodog p(y|6) — pen(0) is hard to Gaussian, with mean given by (see, e.g., [31])
maximize, but the so-callecbmplete penalized log-likelihood ' e
logp(y,z|@) — pen(f) would be easy to maximize if we 0 a? ()
had z. The EM algorithm produces a sequence of estimates zW =W + ﬁHT (y —HW6 )
{5“), t = 0,1,2,...} by alternating two steps (until some &) a? ()
stopping criterion is met). =Wéo "+ —QUHDH <Uy — DUW6 > (16)
» E-step Computes the conditional expectation of the 7
complete log-likelihood, given the observed data anghich can be efficiently implemented by FFT (recall that
the current estimat@ . The result is the so-called UYD¥U = H” andU¥ D¥DU = H”H). Notice that since
@-function: 2® = W8'" can be seen as the current estimate of the true
imagex, we can write the E-step as

Q <070(t)> =F {logp(y7z|0)|y,0(t)} . (12) )
720 =0 4 THT (y - Hﬁ(”) 17)
» M-step: Updates the estimate according to 7
revealing its similarity with a Landweber iteration for solving
" _ arg max {Q (075(”) _ pen(o)} @3 Hx = y [20], [32]. Of course this is just the E-step; the com-
6 plete EM algorithm is not a Landweber algorithm.

Itis well known (e.g., [7], [24]) that each iteration of EM isC. M-Step: Wavelet-Based Denoising

guaranteed to increase the penalized log-likelihood, that is In the M-step, the parameter estimate is updated as in (13),

~(t+1) (t+1) (1) (t) whereQ(eﬁ(t)) is given by (15) wittz®) computed according
logp| y|0 —pen| @ >logplyl@ " |-pen( 8 ). to (16)

Next, we derive the specific formulas for the E and M steps, for _:11) ng —_z® ||(Z
our deconvolution problem. 6 = argmax ¢ =S5

— pen(e)} . (18)

B. E-Step: FFT-Based Estimation This is simply a MPLE/MAP estimate o, under the prior
The complete likelihood i9(y,z|0) = p(y|z,0)p(z|0) = p(f) x exp{—pen(0)}, for a denoising problem: we observe
p(y|z)p(z|@), because, conditioned any is independentd  z®* ~ N(W8,a’T). BecauseW is orthogonal we have
(see (11)). Since = W+ an,, wherean, is zero-mean with |[W8 — 2|2 = || — &"||?, wherea!) = W7Z® denotes
covariancex’I, we simply have the DWT transform o&®. Thus, the M-Step can be computed
by applying the corresponding denoising rulexd

W6 — z||?
log p(y.2/6) = — I 704 i,
20 FARR 507 — 242
0T WTWo — 20" W7z 0 = argmax q — H0 -w H —2a’pen(@) ;. (19)
- 202 + Ko

For example, under alh penalty
where K1 and K> are constants that do not dependéoiThis

shows that the complete-data log-likelihood is linear with re- pen(8) = 70| = TZ 16,1 (20)
spect to the missing data Consequently, all that is required in Z
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TABLE I
SNR IMPROVEMENTSOBTAINED BY SEVERAL VARIANTS OF THE PROPOSED
ALGORITHM ON THE IMAGES SHOWN IN FIG. 4

Method 02=2|02=8
Rule (22), UDWT 6.91dB | 4.88dB
Rule (22), random shifts 6.93dB | 4.37dB

Modified Laplacian, UDWT 6.39dB | 4.51dB
Modified Laplacian, random shifts | 6.33dB | 4.22dB
Soft-threshold, UDWT 6.36dB | 4.12dB
Soft-threshold, random shifts 6.42dB | 4.01dB

Results by Jalobeanu et al [17] | 6.75dB | 4.85dB

Fig. 2. (a) Original image, (b) blurred image, and (c) restored image using t
UDWT version of our algorithm with rule (22).

. 7
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Fig. 4. Blurred and noisy images with (af = 2 and (b)s? = 8, and
corresponding restored images (c and d).

~(t+1) | . . . (1)
0 is obtained by applying soft-thresholdunction tow" ",

the wavelet coefficients 0£®) [26]. More specifically, each
S(t+1) . .
component 09( ) is obtained separately according to

0 = sen (0) (|2

(2

- Ta2>+ (21)

50 100 . 15‘0 500 250 300 where (-); denotes thep03|t|ye par_t operat_qr defl_ned as
iterations (z)4+ = max{z,0}, andsgn(-) is thesign function defined as
sgn(z) = 1,if > 0, andsgn(z) = —1, if z < 0. Other priors
Fig. 3. SNR improvement along the iterations of the (top) UDWT-base@r complexity penalties will lead to different wavelet denoising
method and (bottom) the random shifts method, for the example of Fig. 2. rules in the M-Step [14], [23], [26], [27].
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Fig.5. SNR improvement along the iterations of EM for the example of Fig.

(left, o2 = 2;right, 02 = 8).

TABLE I
SNR IMPROVEMENTSOBTAINED BY SEVERAL VARIANTS OF THE PROPOSED
ALGORITHM ON THE BLURRED IMAGE SHOWN IN FIG. 6

Method SNRI
Rule (22), UDWT 2.94dB
Rule (22), random shifts 1.71dB

Modified Laplacian, UDWT 2.75dB
Modified Laplacian, random shifts | 1.77dB
Soft-threshold, UDWT 2.75dB

Soft-threshold, random shifts 1.61dB

Best result by Liu and Moulin [22] | 1.078dB

D. Computational Complexity

Fig.6. (a) Original image, (b) blurred image, and (c) restored image using rule
(22) and the UDWT-based method.

E. Some Comments

An important feature of this EM algorithm is that any wavelet
denoising procedure that can be interpreted as an MPLE/MAP
rule can be employed in the M-Step. For exampl@) could
correspond to a hidden Markov tree model [6] or to a locally
adaptive model [25]; of course, in those cases, the M-step would
no longer be a simple fixed nonlinear thresholding rule. We can
also use the denoising rule that we have proposed in [13], [14]

((@@)2 - 3a2)

(t+1)
oty = 50

+ (22)

although it was originally derived from an empirical-Bayes ap-
proach, we have shown that it corresponds to an MPLE/MAP
estimate under a prior of a particular form [14].

Let D denote whichever denoising operation is applied to the
wavelet coefficients (e.g., (21) or (22)), aRdthe resulting de-
noising procedure applied to some imagehat is,

P(v) = WD(WTv). (23)

With this notation, we can write compact a expression for each
iteration of the EM algorithm

~ < a2 X
g+ — p (X(t) + EHT (y — HX(t))> (24)

The computational complexity of the M-Step is dominatedhich can be interpreted as a Landweber iteration followed by
by the DWT, usuallyO(N) for an orthogonal DWT. The com- a wavelet-based denoising step.

putational load of the E-step is dominated by eV log N)

Of course the choice af affects the rate of convergence of

cost of the FFT. The cost of each iteration of the complete Efe algorithm. The standard theory of the rate of convergence

algorithm is thusO (N log V).

of EM, based on the information matrices (see [24]), suggests
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thata should be made as large as possible. Since we must hayéoes the corresponding sequence of images converge to a
a? < o2 to have a meaningful EM algorithm (see Section V-A)fixed image and is this limit (assuming it exists) unique? This
a reasonable choice i = ¢2. Although the analysis of the section explores these issues. First, we consider the conditions
rate of convergence based on the information matrices can oafyder which the EM algorithm converges to a stationary point
be performed ignoring the penalty terms, since these may dfgdhe penalized likelihood function. Second, we investigate the
nondifferentiable, we found experimentally that = o2 is convexity of the penalized negative log-likelihood function and

indeed a good choice. establish conditions under which the EM algorithm converges
Finally, let us summarize the several attractive features of th@sa unique solution.
approach:
« the computational complexity of each iteration id\- Convergence to a Stationary Point
O(N log N); The results in [35] guarantee that the EM algorithm converges
* we can employny orthogonal wavelet basis; to a stationary point (local maximum or saddle-point) of the pe-
* we can employanywavelet-based penalization. nalized likelihood function under fairly mild conditions. The-
orem 2 of [35] shows that all limit points of the EM algorithm are
VI. EXTENSION TO UNKNOWN NOISE VARIANCE stationary points of the penalized likelihood function, provided

Up to this point, we have assumed that the noise variaice thatQ(B,ﬁ(t)) andpen(#) are continuous in both andd. This
is known in advance. We now present an extension of the pamndition is clearly met by the expected complete-data log-like-
posed algorithm which also estimaie$ This is simply done |ihooqd Q(Gﬁ(t)). The penalty functiorpen(8) also needs to
by inserting an additional step in which the noise variance esfis continuous in order to guarantee convergence to a stationary
mate is updated based on the current estimate of the true imggt. This precludes the use of the conventional hard-threshold
X(t) = W6(t). The complete algorithm is now defined by tWofunction, but both the soft-threshold rule (21) and our rule in

steps: (22) correspond to continuous penalty functions (log-priors).
* EM step: (24); To summarize, if the penalty function underlying the nonlinear
» Noise variance update shrinkage/threshold function employed in the M-Step is con-
R 9 tinuous in#, then the EM algorithm converges to a stationary
;5<t+1) _ [HR+D — | . (25) point of the penalized log-likelihood. The limit points may be
N local maxima or saddle-points; it is difficult to guarantee con-

ergence to alocal maximum without further assumptions. Such

This algorithm is not an EM algorithm, but it is also guaran¥€"9€" ; §
gnditions are investigated next.

teed to increase the penalized likelihood function. To this, let G

denote the penalized log-likelihood being maximized (which is )
now also a function 0f2) as B. Convergence to a Global Maximum

Let us begin by considering the case in whidhis invert-
> [HWO—y|*>

L£(8,0%) = _% log o pen(B). (26) ible. Under this assumption, the log-likelihood term of (8) is

202 strictly concave irf. Now if the penalty function is also con-
~(t4+1) —(t ~(t) —5(t cave (not necessarily strictly so), then the penalized negative
Forthe EM step, we ha\é(ﬂ( ),02( )) > L(G( ),02( )), due oV ( lly strictly s) penatz gatv

. e . . . log-likelihood function is strictly concave ih For example, the
to its monotonicity property [24]. The noise variance updatin 9 y b

Mol . Lo \ ; M penalty function||6||, leading to the soft-threshold rule, is
step is simply a maximum likelihood estimate ¥, with the convex, thus—||@||1 is concave, though not strictly. Strict con-

~(t
estimate of fixed atd cavity of the penalized log-likelihood function implies that there
_(t+1) 2 is only one stationary point, the global maximum. Thus, under
—(t41) HHW9 -y _(+41) the continuity conditions discussed above, the EM algorithm is
o2 = I = arg max L <0 ,02> guaranteed to converge to the global maximum. Note that the

uniqueness of the maximum point guarantees that the sequence
since pen(#) does not depend om?. Accordingly, we have Ofimages produced by the EM algorithm converges to the global
r 5(t+1) —5(t+1) > r §(t+1) —® | lusi . MPLE.
b( o 7 ) 2 (d ’Ud )- In cc;]nc US'O?' s(;r}ce i Next consider situations whel is not invertible. For
Iir?;ozt?up:cz:)englsjgrgntt:;rggr;tt?inztci;ia%t € penalize og'éx%(mple,H is not invertible if the DFT of the underlying
’ : point spread response is zero at some point(s). In such cases,

the log-likelihood term of (8) is concave, but not strictly,
in 8. If —pen(#) is also concave (but not strictly so), then

A general, basic property of an EM algorithm is that it genethe sequences of penalized log-likelihood values produced by
ates a sequence of nondecreasing (penalized) likelihood valthes EM algorithms will converge to their respective global
[24]. EM iterations produce a sequence of images, each of whittaximum penalized log-likelihood values. This follows from
has a penalized likelihood value greater than or equal to thhe EM convergence results of Wu [35], since all stationary
of the preceding image. This is a desirable property, but s@aints of a convex function are global maxima. However, since
eral questions remain. 1) Does the sequence (of penalized likeere may be many global maxima, the EM algorithms may
lihood values) converge to the maximum penalized likelihoodt converge to fixed images (they are only guaranteed to

VIl. CONVERGENCEANALYSIS OF THEEM ALGORITHM
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converge to their respective sets of images correspondingréatinely used instead of the orthogonal DWT [5], [14], [21].
global maxima). If it does converge to a fixed image (thi$he standard way to achieve translation invariance in denoising
limit could depend on the initialization of the algorithm), theris to use a redundant transform, called the translation-invariant
that image maximizes the penalized likelihood criterion. DWT (TI-DWT), which corresponds to computing the inner

If —pen(@) is strictly concave, then the EM algorithm isproducts between the image and all (circularly) translated ver-
guaranteed to converge to the uniqgue MPLE and a unique @jBns of the wavelet basis functions. Denoising is accomplished
timal image. This also follows from the EM convergence resultsy thresholding as usual and then averaging the results. Working
[35]; the unique stationary point of a strictly concave function iwith all possible shifts of the discrete wavelet basis functions,
the global maximum. So far, the only case we have considemadher than the dyadic shifts underlying the orthogonal DWT
where —pen(0) is concave is thé, penalty; but this function basis functions, helps to reduce blocky artifacts and achieves
is not strictly concave. The following modification leads to detter denoising performance [5], [14], [21].
strictly convexpen(8) (thus a strictly concave pen()),anda  Inthis paper, we consider three ways to achieve translation in-
threshold rule nearly the same as the soft-threshold, except teiance in our iterative image deconvolution algorithm, which
it is differentiable at all points. Instead of tiigpenalty, which we describe in the following three subsections.
has the fornpen(6) = «|6|, consider

A. Translation Invariance via Undecimated DWT
pen(b) =1y 02 + 2 @7 The TI-DWT is an over-complete transform based/éror-

for some small numbes. Notice that as3 — 0, \/62 + 32 thogonal DWTSs. Each of th¥ DWTs is comprised of circularly
approachess|. However, for every, 8 > 0 this benalty is Shifted versions of the discrete DWT basis functions. W&l
strictly convex, sincei?(n\/8% + 32)/d6?> > 0. The differ- be an orthogonal DWT matrix. Léte {0,..., N — 1} index

. . . e T .
ence between the threshold rule induced by the penalty (27) &HPossible circularimage shifts; I&; denote a DWT matrix

. . . . . T .
the soft-threshold is that the former makes a smooth transitiifh thei-th shift applied to all the basis functions#, . With

across the threshold level, as shown in Fig. 1. this notation, the TI-DWT matrix is written as
1
C. Summary of Convergence Results W' = \/_N[WO - Whg)" (28)

The following four points summarize the convergence pro
erties of our EM algorithm.

1) If the penaltypen(0) is a continuous function &, then W — 1 W W 29

each iteration of the EM algorithm produces an image \/N[ 0 ~-1] (29)

with a penalized likelihood value greater than or equal Eg standardly used to transform the redundant set of coefficients

the previous image. ; . X .
2) If pen(6) is convex (but not strictly so), then the se—back tothe image space. Notice thatifs any image,

guence of penalized log likelihood values converges to wl
the global maximum. However, since there may be many WWwWTx = [Wo - Wx_i] . x
global maxima, the EM algorithm may not converge to a Wf
fixed image,; if it does, then that image maximizes the pe- N-1
nalized likelihood criterion.
3) The EM algorithm converges to the unique, globally
optimal solution of the penalized likelihood criterion
if either of the following two conditions are meH is  pecausd¥, W, = I, thusWW” = L. However W' W # I
invertible and the penalty function is convex (it e.g.and thusW is not orthogonal.
soft-threshold)pen(#) is strictly convex (e.g., the modi-  WhenW corresponds to a TI-DWT, the M-Step of our EM
fied soft-threshold penalty (27)). algorithm can not be simplified as in (19)However, as is
4) Recall the that the EM algorithm coupled with theommon in denoising [5], [14], [21], we can ignore this fact and
adaptive updates of the noise variance, given by (2%)ill use (19) as if# were orthogonal. The resulting method is
produce nondecreasing sequences of penalized likelihagslionger and EM algorithm but, as will be shown below, it leads
values (with the noise varianeé treated as an unknowng excellent image restoration results.
parameter to be inferred jointly with). However, the  Recall that the coefficients of the TI-DWT can be efficiently
corresponding penalized log likelihood function is nogomputed using the so-called undecimated DWT (UDWT),
concave and convergence can no longer be guarantegfich simply eliminates the down-sampling process in the
in this case. filter-bank implementation of a wavelet transform [21]. The
TI-DWT producesN? coefficients in total, but onlyV log N
VIII. EXTENSION TO TRANSLATION-INVARIANT RESTORATION values are unique because certain shifts generate the same

Itis well known that the dyadic image partitioning underlyindgner products between the image and basis functions. The
the orthogonal DWT can cause blocky artifacts in the processéigr-bank implementation of the UDWT produces only the

images. In denoising p_rob_lgms, tran5|at|0n'|nVa“an_t approaches, similar complication arises if the orthogonal DWT is replaced by a
have been shown to significantly reduce these artifacts and Bitethogonal DWT, but we will not investigate that problem here.

F;§ince the TI-DWT is not invertible, the pseudo-inverse

==

| V-1
=N Z W, Wix =x,
i=0
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Nlog N unique coefficients, and require8(Nlog N) op-  The generalized M-step is obtained by maximizlr@,@(t))
erations. Thus, the computational complexity of each partigdth respect td, alone, keeping; fixed. To this end, notice that

optimization in the M-Step i® (N log N). we can write (31) as

Summarizing, our first approach to Tl restoration consists
simply in keeping the same E-step and M-step, but leifly 1. (9_9@)) - _ HW101+W197—3(” ? —2a2pen ((8,,6)))
in (19) be the UDWT o0&, rather than its orthogonal DWT. ’ /

2

= —HW;G;—J”H —2a’pen(6;) —2a’pen(65)
B. Translation Invariance via Random Shifts

Another possible way to achieve some level of translatiamheree(t) = z(t) — Wfaz(t), and where we are assuming a sep-
invariance consists in choosing a randomly shifted DWT atable penalty function. Then, the generalized M-step is per-
each iteration. Formally, at each M-step, weilbe a randomly formed by choosing somlec {0, ..., N — 1}, either randomly
chosen circular shift. Then, we computeiashifted orthogonal or following some predefined schedule, and letting
DWT of 2, that is@” = W7z(® and apply the original (1) a0
denoising step (19). With respect to the UDWT-based approach 6; =0, (33)
described in the previous subsection, this method has the ;1) . (t) 2 9
advantage of employing an orthogonal DWT, which B¥sV) 0" = arg e HWIO’ —e|| +2apen(6:) o (34)
computational cost, rather than té N log V') cost associated () (1) ~(t41) ()
with the UDWT. finally, we setf = (9, ,8; ). This®  does verify

This method is of course not an EM algorithm. Although thghe GEM condition (30), because
M-step is exact, it corresponds to using a different penalty/prior

2

at each iteration; accordingly, the resulting algorithm can noj <§(t+1) 5(75)) _ Wa(tﬂ)—e(“
be interpreted as maximizing some penalized likelihood (or a ’ o il
posteriori probability function). ) ~(t41) ~(t)
As shown by the experiments reported below, this method —2a [pen <0l )ﬂ’@” (01 ﬂ
almost always leads to results very close to those obtained by 9
the UDWT-based method. = moax {— HWlﬂl—e(t) —2a2pen(0l)}
C. Translation Invariance via a Generalized EM Algorithm — 2a2pen <§l(t)>
Although both Tl restoration methods described above per- ~(®) (1)
form well, none of the two is a true EM algorithm, thus they >L (0 0 )

don’t have any monotonicity or convergence guarantee. Our
third approach to Tl restoration consists in using the UDWT butloreover, the computation of the update is simple. To obtain

rather than keeping the original form of the M-step, we change it we apply the inverse UDWT t8 = (0 §Et+1)) 10 obtain
to recover the monotonicity properties of the algorithm. Specif- () o

ically, we derive a so-callegeneralized EMGEM) algorithm, Wi#i - This can be computed iO(N log N) operations.
in which the exact maximization performed in the M-step is ré-Inally, notice that (34) is simply a standard DWT denoising
placed by a weaker condition: operation (with the threshold/shrinkage function associated
with pen(-)) applied toe®, which can be computed i@( V)
(41) (1) (1) () operations. . . iy
L6 ,0 >L(0 .6 (30) Being a GEM algorithm, this method has all the monotonicity
where guarantees of EM and is thus of theoretical interest. However, it

(1) 9 turns out that, in all the experiments carried out, this approach
L (0,0 ) = - HE(” - WBH — 2a’pen(8) (31) performs worse than the two previous methods; for this reason,
we will not further consider it in this paper.

is the function to be maximized in the M-Step (see (18)), &nd

is the vector ofV log N unique coefficients associated with the
UDWT. GEM algorithms possess the same monotonicity andin this section, we present a set of experimental results

convergence properties as standard EM [24], [35]. illustrating the performance of the proposed approach and
As above W, denotes the orthogonal inverse DWT matrix atomparing it with some state-of-the-art methods recently de-
an arbitrary shift, andé, denotes the corresponding setf scribed in [17], [22], and [29]. We consider only the Tl versions
coefficients. Writingd = (0, 8;), wheref; are theV(log N—1)  of the algorithm: the UDWT-based method (using the UDWT
coefficients not associated with the basis function8p we filterbank of [21]) and the method based on random shifts;
have the reason for this choice is that the TI versions clearly and
consistently outperform those that use the orthogonal DWT.

Wo=w,0, + W;6; (32) Moreover, we do not consider the noise-adaptive version de-

scribed in Section VI; this is because we always achieve better

whereW3 is composed of the basis functions no#f. performance using a fixed noise variance, which can be easily

IX. EXPERIMENTAL RESULTS
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estimated directly from the observed image using the MAD We can observe a clear trend in the behavior of the algorithm:

scheme proposed in [10].

for larger noise variance, convergence is achieved in fewer iter-

In all the experiments, we employ Daubechies-2 (Haaations (recall from the results above: 280300 iterations for
wavelets; other wavelets always lead to very similar resulis? ~ 0.308; ~ 40 iterations folo? = 2; 8 ~ 10 iterations for

The algorithm is initialized with a Wiener estimate (see (5)i? =
of iterations decreases, the performance of the random-shifts-

with 4 = 0 andG = 10%I, and the convergence criterion is

8; and 5~ 7 iterations foro? = 7%). As the number

based method degrades, since it does not cover enough shifts to

[ES

o, <"

wheres is a threshold, typically set tth—3¢2. As discussed in
Section V-E, we setr = o; we found experimentally that this
is a good general-purpose choice.

achieve approximate shift-invariance.

X. CONCLUSIONS

This paper proposed a wavelet-based MPLE/MAP criterion
for image deconvolution. The estimate must be computed

In the first set of tests, we consider the setup of [29] arWmerically, and we derived an EM algorithm for this purpose,

[3]: uniform blur of size 9x 9, and the noise variance suc

Heading to a simple procedure that alternate between Fourier

that the SNR of the noisy image, with respect to the blurré@mam filtering and wavelet domain denoising. We have also

image without noise (BSNR), is 4@B (this corresponds to
o? ~ 0.308). We have restored this image using six variants o

proposed extensions of the algorithm which perform shift-
invariance restoration. Experimentally, our approach performs

the algorithm: the denoising rule (22), the rule corresponding tgMPetitively with two of the best existing methods.

the modified Laplacian prior (withh = 0.35 andg = 0.02, see
(27)), and the soft-threshold rule, each with the UDWT-based
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