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Absolute Phase Image Reconstruction: A
Stochastic Nonlinear Filtering Approach

Jo® M. N. Leitao, Member, IEEE,and Mario A. T. FigueiredoMember, IEEE

Abstract—This paper formulates and proposes solutions to

the problem of estimating/reconstructing the absolute (not sim- Noise image

ply modulo-27) phase of a complex random field from noisy n®= {ng}
observations of its real and imaginary parts. This problem is
representative of a class of important imaging technigues such ob ]

. . . . . served image
as interferometric synthetic aperture radar, optical interferom- —! cOs(*) |[— . .
etry, magnetic resonance imaging, and diffraction tomography. Phase image ¥ = {yi}
We follow a Bayesian approach; then, not only a probabilistic X = {x;}
model of the observation mechanism, but also prior knowledge y . Observed image
concerning the (phase) image to be reconstructed, are needed. »| sin(*) - ¥ = {y5}
We take as prior a nonsymmetrical half plane autoregressive s

(NSHP AR) Gauss—Markov random field (GMRF). Based on a
reduced order state-space formulation of the (linear) NSHP AR
model and on the (nonlinear) observation mechanism, a recursive
stochastic nonlinear filter is derived. The corresponding estimates
are compared with those obtained by the extended Kalman—Bucy Fig. 1. Observation model.
filter, a classical linearizing approach to the same problem. A set
of examples illustrate the effectiveness of the proposed approach.

Noise image

ns= {nﬁ}

o _ o « Interferometric synthetic aperture raddmSAR), where

~ Index Terms—Absolute phase imaging, Bayesian estimation, phase measurements are used to produce topographic

image reconstruction, interferometric imaging, Kullback—Leibler maps. More precisely, (absolute) phase differences be-

divergence, nonlinear filtering, phase unwrapping, stochastic fil- i ' lex SAR i ’ ired by diff t ant

tering, 2-D Kalman—Bucy filtering. ween complex images acquired by different anten-
nas [24], [26], [60], or by the same antenna at separate

passes [21], [25], [27], are a function of the elevation

. INTRODUCTION of the observed terrain; see reviews in [1] and [17], and
references therein.
A. Absolute Phase Imaging and Its Applications « Optical interferometrywhere (absolute) phase differences

are used to obtain information, such as shape, displace-
ment, or vibration, of a surface under inspection; see,
e.g., [28], [51] and [57].
* Magnetic resonance imagingVRlI), in which absolute
phase measurements allow increasing the dynamic range
of phase contrast velocity images; references [4], [12],
[30], and [54] consider this problem.
« Diffraction tomography(e.g. geophysical tomography or
ultrasound medical tomography), where the Rytov ap-
proximation yields a mapping between the observed ob-
ject and the absolute phase of the measured field; for
details, see [14], [15], and [34].

ONSIDER the conceptual imaging model depicted in

Fig. 1, in which a discrete image/surface,= {z; ; €
R,i=0,---,M-1,7=0,---,N — 1}, is observed through
a pair of nonlinear (sine and cosine) functions corrupted by
additive white Gaussian noise. This paper addresses the non-
linear image reconstruction problem that consists in estimating
x from this pair of nonlinear noisy observations; andy?®.
Interpreting the observed imageasg, andy?®, as noisy versions
of the real and imaginary parts of a complex image, the
problem can also be stated as that of estimating the (absolute)
phase of this complex image. This scenario captures the es-
sential common features of a general class of imaging/sensing
techniques where some physical quantity is inferred frogl The
absolute (i.e., not simply modulex) phase measurements

[39]. Following are examples of such techniques. Conventional approaches to the problem of obtaining abso-
lute phase images follow a two-step procedure:
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[2], [3], and [33], to build ROM Kalman filters (ROMKEF) for
problems with linear observation models.
Supported on the ROM, and adopting stochastic nonlinear

filtering methodologies proposed in [40] and [41], we intro-
“ | duce a recursive scheme that estimates the absolute phase
[ image directly from its noisy sine and cosine observations.
| Accordingly, our technique should not be classified as a
[ conventional phase-unwrapping algorithm since it does not
f start from wrapped phase data.

The extended Kalman—Bucy filtdEKBF) [8], [22], [32],
which is a classical solution to nonlinear stochastic filtering
problems, is also considered and compared with the developed
NLF algorithm.

Noncausal MRF priors could also be used, as in [5] and [50];
there, a recursive formulation of noncausal MRF’s is proposed
and image restoration/reconstruction is interpreted as a fixed
interval smoothing problem (with linear observations) solved

Fig. 2. Original phase surface/image (example). The surface height valw double-sweep linear recursive filtering techniques. A main

are also gray-level coded. issue with the nonlinear observation model herein considered
would be how to solve fixed interval smoothing problems by

References [20], [25], [29], [36], [42], [43], [45], [52], and [55]applying the type of nonlinear algorithms presented in the

describe applications to INSAR. Phase unwrapping techniqusesjuel.

for MRI have been presented in [4], [12], [30], and [54]. In the

field of optical interferometry, several methods were publishgal Paper Overview

in [28], [46], [47]’_ [51, an_d [57_]' Reference [34] |r_1clude_>s The next section formally describes the observation model

a phase unwrapping algorithm in the context of diffractiog,gjgered. Section Il introduces the adopted prior model.

tomography. The proposed stochastic NLF algorithm and the EKBF are de-

scribed in Section IV. Section V presents experimental results

and Section VI ends the paper with some concluding remarks.

C. The Proposed Approach

Phase estimation has been previously studied within the
stochastic nonlinear filtering (NLF) framework for (one- IIl. OBSERVATION MODEL
dimensional) time signals [8], [9], [48]. In particular, recursive The structure of the observation model is depicted in Fig. 1.
absolute phase estimation algorithms have been studied in [4t
[41], and [49]. In this paper, we propose a stochastic NLF ) )
approach to the problem of estimating/reconstructing absolute® = {zij € Ri=0,---,M—1,j=0,--,N-1} (1)
phase (two-dimensional) images; it stems from recognizipg the RMN.valued, M x N original phase image. Let the
the fact that this is a two-dimensional (2-D) version of thgpservations be denoted by
problem considered in [40], [41], and [49]. Being essentially a

Bayesian approach to the estimation of a random process/field ye={vf; i=1,-- M, j=1,--- N} (2)
from its noisy observations, stochastic NLF is supported, nghd

only on proba_blllstlc models of the c_Jbservatlon mec_hanlsm, yo = {yij’ i=1,,M, j=1,---,N} 3)
but also on prior knowledge concerning the (phase) image to

be reconstructed. the so-calledn-phase(cosine) andquadrature(sine) images

Markov random fields (MRF) have been widely used a@ssociated to the phase fialjl which are additively corrupted
(Bayesian) priors in many image processing and computgy the independent white Gaussian noise fields
vision problems; [6], [10], [13], [16], [23], [50], [58] are a few c (e . L
relevant references on this subject. In this paper, the original ™ = {nijsi=0,,M=1,j=0,-,N—1} (4)
phase image is modeled as a sample of a Gauss—Markkd
random field (GMRF) [10], [11], [13], [16], [58]. More specif- n® = {”f,jv i=0,---,M—-1,j=0,---,N — 1}_ (5)
ically, and having recursive filtering in mind, we consider ) )
causal nonsymmetrical half plane (NSHP) autoregressive (ARgrmally, the observation model is

GMRF's; this class of models, formalizing prior knowledge ye - cos(zi ;) ne .
in a probabilistic way, allows building recursive filtering Yij = [yfj} = [Sin(xi})} {nfj}
algorithms. fori=0,---,M—-1, and j=0,---,N—-1. (6)

A recursive stochastic filtering approach requires a state-
space formulation of the NSHP-AR model. Here, we adopt\@e assume that the noise fields can be spatially variant;

reduced order modefROM) similar to the one proposed inthus, we write afj as the variance of the noise random
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Fig. 3. Noisy(c = 0.5) cosine and sine observations, of the image/surface of Fig. 2.
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Fig. 4. n; ;'s (interferogram) and\; ;'s [see (10) and (11)] obtained from the observations shown in Fig. 3.

variables associated to pixgi, j), n{,; and n7,, for ¢ = which can be rewritten as
0,---,M—-1andj = 0,---,N — 1. Finally, we mention i j

that, particularly in INSAR and optical interferometry, the p(Wi g5 | 2ig) = 202 exp{Ai jcos(xij — i)} (8)

presence of additive white Gaussian noise in the in-phase and &
guadrature components is in fact the commonly adopted mouédiere
[31], [38], [44], [53]. As an example of data produced by this )

i i i i . e \2 s \2
observation mo_del, conS|de_r the phase su_rfacellmage of Fig. 2; ;= exps —=——[1+ (y”) + (y”) ] 9)
the corresponding observatiop$ andy?®, with homogeneous Tig
noise(o; ; = o = 0.5), are presented in Fig. 3. 1 L2 o2

From (6), and invoking the Gaussian nature of the noise, we Aij = 7 (y”) + (y”) (10)
obtain the pixelwise conditional probability density function of 7 5
the pair of observations associatedtg;, as i = arctan @ e [0,27]. (11)
Y

Fig. 4 displays they; ;'s and A; ;'s obtained from the noisy

o ! Lot 2 data of Fig. 3

Py vl | 2ig) = 5 exp{ — 5 [(4F; — cos(zi ;) ata of Fig. 3.
(09l | 2 2m0? 207, [k 2 Notice thatp(y; ;,; ; | @i ;) is the likelihood function of
y x;;, given the observationg;;, and y; .. Then, it is clear
+ (7, —sin(zi 5))7] (7) from (8) that{n;; + 2nl; ;,l;; € Z} is the (infinite) set of

maximum likelihood (ML) estimates of; ;, all yielding the

i,jV
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Fig. 5. NSHP Markov model.
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Fig. 7. Phase image/surface estimate obtained by the NLF from the obser-
vations shown in Fig. 3 (compare with Fig. 2).
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Filtering Fig. 8. Phase image/surface estimate obtained by the EKBF from the obser-
. density,F vations shown in Fig. 3 (compare with Fig. 2).
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parts of a complex field with additive white Gaussian noise.
However, that work differs considerably from ours: instead of
a sample of a random field, it considers the original absolute
Fig. 6. Computation of the filtering density (see Section IV-F). phase image/surface as a 2-D polynomial whose parameters
are to be estimated from the noisy data.

same maximum value of the likelihood function (observe that

O—i2:j’ aij, Aij, andr; j, appearing in (8), are all independent Ill. ORIGINAL ABSOLUTE PHASE IMAGE MODEL

of z; ;). Conventional phase unwrapping techniques, as the

ones mentioned in Section I-B, usually take the’s (i.e., A. AR Gauss—Markov Model

the interferogram) as the observations and try to determineWe model the original phase image/surface as a sample of

the /; ;'s by imposing some continuity criterion. a causal, NSHP, AR GMRF [10], [13], [59]; specifically
Few approaches take into account, formally, the noisy nature
of the observations. References [46] and [47] consider the Tiyj = Z 0i gk 0 Thyt + Wi 5 (12)

observations as wrapped versions of the absolute phase, with (k,DES: 5

additive white Gaussian noise; this is an invalid assumptigvhere thew; ;’s are independent and identically distributed
[31], [38], [53]. The model based approach in [20] adopt§.i.d.) zero-mean Gaussian variables of variapéeand®; ;
an observation model similar to ours, i.e., real and imaginafyee Fig. 5) is theupportof pixel (¢, 5) [13], [59]. Horizontal
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(line-by-line), left to right, top to bottom recursion order
(which coincides with the lexicographical order) is herein
assumed.

When the position of the support is such that it requires pix- **°|
els from outside the image, some assumption has to be made
about those pixels. Here, we addpte boundary conditions
which, in the AR formulation, are equivalent to considerings
that the pixels near the boundaries simply have a smaller
support. The model coefficients associatecexternal pixels
are set to zero, so that no boundary values have to be defined,
ie., 100 |

(k<lork>Morl<lorl>N)=0;,;.:=0. (13)

500 |

300

200

For example, the first line of the image is taken as a one- o = : ;
dimensional (1-D) AR process. —n/2 0.0 w2
The surface presented in Fig. 2 is a sample of a NSHP AR
GMREF; its generating model (with the standard deviation of

the driving noise set tg. = 0.7) is
Ty = 0.495371‘7]'_1 + 0.495371‘_17]' + 0.005.’171‘_17]'_1 + U .
(14)

B. State Space Formulation

For recursive stochastic filtering purposes, a state-space |
formulation of (12) is necessary. Adopting the procedure
proposed in [59], the state vector would have to include several ol
complete lines of pixels together with some boundary values; ©t S
this approach would lead to a huge state vector of which only ~
a few elements are really important. Alternatively, we adoplg. 9. Error histograms corresponding to the estimates of Figs. 7 (NLF)
a reduced order mode(ROM), as proposed in [2] and [3], and 8 (EKBF).
where the state vector contains only the pixels in the support

of the AR model. the meaning off}, 7, and73 being shown in Fig. 5, and the

Since we are assuming a lexicographical recursion ordg[yperscripf” standing for vector transpose. The dimension of
the image pixels can be addressed by a single indexhich  ihis state vector is

is related to the line and column coordinates by
L= (T2 + Tg)Tl T3 =TT+ (Tl - 1)T3 (18)

The state vectox,, is in fact all that is necessary to generate

Ty = Ty(n),e(n) (15)

wherel(n) andc(n) are theline and columnfunctions ; j+1, Which is the first element of,,, ;. Some other elements
I(n) = LEJ (16) ©f vu41 are also inv,,, so they can be obtained by index
N shifting operations. Thd; — 1 elements ofv,,,; which are
e(n)=n— L%JN (17) not inv,, i.e., those in the rightmost column of the support

Oi(n+1),e(n+1), have been previously generated and can be

forn =1,2,---,MN. In (16) and (17),[a] stands forthe .\ 1 0% & doterministic inputs. Formally, the reduced order

greatest integer smaller than. Notice that, ifc¢(n) # N, state space model equivalent to (12), is then
then o411 = Zy(n),c(n)+1, @Nd, ifc(n) = N, thenz, 1 = ’

Ti(n)+1,1- Vpt+1 = Av, + Bw,, + Ee, (29)

The (reduced order) state vector, corresponding to pixel where A is the L x L state transition matrix containing the
Zi(n),e(n),» has to contain all the “past” necessary to prearR model parameters [the; ; ;. ;’s in (12)], B is the L x 1

dict pixel zy), c(n)+1, i.€., all the pixels in the supportmatrix given byB =[;: 0 0 --- 0]7, thew,’s are i.i.d. unit
Ou(n),c(n)+15 variance zero mean Gaussian variables (theing noisg, E
Vi = [Bynyetn)  Tin)en)—1 0 Bi(n)e(n)—(To—1) is aL x (71 — 1) matrix with only zeros and ones, and
xl(n)—l,c(n)—(Tz—l) e xl(n)—l,c(n) €n = [xl(n)—l,c(n)+T3+l xl(n)—?,c(n)-l—Tg-i—l
Tin)—Le(m)+1  *°° TUln)—1,c(n)+Ts ) (T —Den) 1+ Ta 1] (20)

is the referred deterministic input.
The above-mentioned free boundary conditions of the AR
TUn)=(T1=1),e(n)=(Te=1) " FlUn)=(T1—1),e(n) model translate, in this state-space formalism, into arbitrarily-
Tin)—(Ti—1)se(n)41 " *° xl(n)_(Tl_l)jc(n)JrTg]T valued boundary pixels and a space variant state transition
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Fig. 10. Diagonal profiles. (a) Original surface (Fig. 2). (b) NLF estimate (Fig. 7). (c) EKBF estimate (Fig. 8). (d) Wrapped phagesqtteown in Fig. 4).

equation: when the coordinatén), ¢(n)) approach the im-
age boundary, the state transition maiand the determinis-
tic input matrixE are modified so that the (external) boundary
pixels correspond to zero coefficients in these matrices. This
space-variant behavior of the model only occurs near the imagt
boundaries and so we will not clutter the notation in (19)
by appending indices to matrices end E. Of course, the

implementation will have to take these aspects into account. 11 | -
An example will help elucidate the notation adopted. Con- _ | H'“‘-—h__q__ /
sider the following AR model for whicl} =2, 75 = 1, and "I Tl / /
Ts = 2 (yielding L = 4): o e
3 (vielding ) L 1
Zi; =017 j1 + Ooxi—1 j—1 + baxi_1 -
+0urio1, 41+ ui g (21) L g :
The equivalent reduced order state-space model is L Tt
Vgl A Vi 1
Li(n),e(n)+1 th 602 03 64 Li(n),c(n) Fig. 11. Original phase surface/image (second example).
Tip)—temy4r | _ [0 0 1 0 Ti(n)—1,c(n)
Li(n)—1,c(n 0 0 0 1 Li(n)—1,e(n . .
x;i ;_1 E ;iz 0 0 0 0 ij ;_1 E ;: line the model isx; 1 = f¢xi—1,1 + 072:-1 2 + u; 1; the last
Tmsen B E TR pixel of each line is obtained accordingdg = fsz; v—1 +
—~ ~~— Ooxi—1 n—1+0sxi—1 N +ui1. The ROM matrices have to be
K 0 en adequately modified to reflect these boundary conditions.
+ 0 wy, + 0 [%1(n)1,0(n)+3) - Finally, notice that in terms of the state vectey, the
8 (1) ’ observation equation (6) becomes

Concerning the boundary pixels, we adopt the following vy, = {yg(n)zc(n)} = [C_OS(BV")} + {”Z(n),c(n)} (22)
approach: in the first line, a 1-D AR model of the type () e(n) sin(Dvy,) "(n),e(n)
r1; = O521,5-1 + uy,; is used; for the first pixel of eachwhereD =[1 0 0 --- 0], so thatDv,, = Zj(n),c(n)-
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Fig. 14. Phase image/surface estimate obtained by the NLF from the nofsy. 15.

Phase image/surface estimate obtained by the EKFB from the noisy
observations shown in Fig. 12 (compare with Fig. 11).

observations shown in Fig. 12 (compare with Fig. 11).
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Fig. 16. Diagonal profiles. (a) Original surface (Fig. 11). (b) NLF estimate (Fig. 14). (c) EKBF estimate (Fig. 15). (d) Wrapped phasgg ¢the
shown in Fig. 13).

IV. PROPOSED SOLUTION

A. Introduction o e

Stochastic filtering is essentially a Bayesian approach f | v,
the recursive estimation a random process from its noi: P
observations. When the state transition (dynamics) and obs ;,-"
i r.-----"-
i
|
I.
%

.-'.l..; I
.-'-. I
vation equations are linear, the driving and observation nois A
are Gaussian, and the initial condition is a Gaussian randc i
variable, Kalman—Bucy (linear) filtering provides the optima
solution [22], [32]. When (at least) one of these condition i
r

fails, the problem falls into the general framework of stochast
nonlinear filtering [7]-[9], [22], [32], [48]. |
B. General Optimal Solution

Given the models defined by (19) and (22), consider tt T P4
problem of estimatingv,,, based on the set of “present” and 3
“past” observationsY, = {yx : k& < n}. In the Bayesian
perspective, all the information concernimg is contained in
the conditional probability density functiah, = p(v,, | Y.), . _ o _
usually termedfiltering density A nonlinear filter propagates the functions were omitted to simplify the notation. The other
the filtering density by recursive (alternating) application of entities in (23)—(24) are as follows.

* The convolution kernel S, = p(v,, | v,—1) which,

Fig. 17. Deterministic phase surface/image (third example).

Prediction:P, = S, « F,,_, 23) reflecting model (19), is Gaussian, i.e.,
Filtering: F,, = C,, H,, » P, (24) Sp x N(v;, — Av,_1 — Ee,_;,BBT)  (25)
where N(s, V) = exp{—sTV~1ls/2}; recall that the
where = denotes convolution and means pointwise multi- w,'s [see (19)] are assumed to have unit variance. The

plication (both defined on the state space); the arguments of deterministic input,_; contains previously obtained (in
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Fig. 18. Noisy(c = 0.4) cosine and sine observations of the original image/surface of Fig. 17.
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Fig. 19. n; ;’s (interferogram) and\; ;'s obtained from the observations displayed in Fig. 18.

a lexicographical sense) estimates. Of course this is an /
. h . . . = v Vi | Voo Vet | Y1) dv,—
approximation because it treats these field estimates as Pn | va) RE PV | Vn-1)p (Vi | Y1) dvis

determinist, thus reducing their effect to a mean shift. (28)

* The observation (or sensor) factotH,, = p(y, | V),
which, taking into account the observation model intro- =p(¥n | Vn) /IRL P(Vn, Vi1 | Y1) vy (29)
duced in (8) in Section I, is given by = p(¥n | Vi, Yoo )p(Vi | Yet) (30)
H,, x exp{An cos(Dv,, — n,)} 26)  =P(Va | ¥n, Yo1)p(¥n | Yn-1) (31)
x p(vp | Yyn) = Fy. (32)

wheren, = nin),e(n) ANA An = Ai(n),e(n), With n; ; and

Aii as given by (10) and (11). Obtaining (29) from (28) requires noticing thatv,,, v,,_1 |

* The predipt?on density P, = p(vy | Yi—1). Y. 1) = p(vin | Va1, Yo 1)p(vao1 | Ya_1) and that

¢ A normalizing constant’,,. P(Vo | Vo1, Yoo1) = p(vn | vio1) (ie., with v,,_; given,
For a detailed derivation of these equations see [7]-[9], [33},, does not depend ofY,,). From (29) to (30), notice that
[48]. As a brief justification, insert (23) into (24) and explicitlyp(y,, | v,) = p(yn | vn, Yn) (i-e., conditioned on the
rewrite the result as current state, the current observation does not depend on the
past ones). Equality between (30) and (31) is simply Bayes
Hy, o (Sp o« Fo1) law. To write (32), notice thal,, = {y,} U Y,_; and that

=p(yn | Vi) (p(vi | Vie1) * p(Vi—1 | Y1) (27) p(y, | Yn-1) is a constant (with respect to,).
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Fig. 20. Phase image/surface estimate obtained by the NLF from the nofdy. 21. Phase image/surface estimate obtained by the EKFB from the noisy

observations shown in Fig. 18 (compare with Fig. 17). observations shown in Fig. 18 (compare with Figs. 17 and 20).
C. Implementation Aspects this leads to
To implement operations (23) and (24), approximate finite -
; ; T Oh(z,y) 1
representations of the operands are required. Each (normal- M, \) /"2~ dz =0, (35)
ized) period ofH,, is a Tikhonov function [56] that tends to a -7 v h(z,v)

Gaussian function for large values &f and becomes flat as

An goes to zero. This fact suggests representing the periodie Inserting the particular forms df(z, \) and i(z,~) into

positive functionH,, by a train of Gaussian terms (35), yields a nonlinear integral equation. A look-up table
of numerical solutions, built off-line, can be accessed with
a minor computational effort.

Notice that only two parameters are needed to repredgnt

the location of a maximum of,, [given by (11)] and the

common variancey» obtained from this look-up table. To

() — ; i i
centered Ol N I +.27” (the maxima Of H,) with have an idea of the quality of these representations see the
common variance'» (notice thatDv,, is scalar) [40], [41]. lated figures in [40]

Representation (33) should reproduce, as much as possi[)(fe . L . S
the shape off,,, for all values of\,. As in [40] and [41], we At each stem, the estimatev,, is obtained by minimizing

adopt the following minimum Kullback divergence criterion.tah deog;(ep(f(c::?gtofnurgvgtlrg ﬁg?ipeftéo)tkg%fll[t;;]ng dendih) of an
. Taken,(LO) = 0 for simplicity, and consider the normalized " " ’ '
central periods ofH,, and H,,. Denote these probability D. Prediction
density functions asi(z,\) and h(z,7), respectively,  assyme thatF,_; is a finite sum of N¥-: Gaussian
where the recursion index dropped andy» is simply  fynctions
referred to asy.

+oo .
H,ox Y N(Dv,—n) y") (33)

i=—00

« Consider the Kullback divergence Fao1 = p(Vie1 [ Yo-1)
Nfn-1
5 T — an—lN = El_l’VFn_l 36
D) [ e) = [ b0 tog 20 D ) €9
-7 Z,y -

(34) with meansn;"~* € IRZ, common covariance matri¥ ©-:
(dimensionL x L), and the weighting factorBiF”‘1 such that
a dissimilarity measure between the probability densitf,—1 is a normalized density. According to (23) [see also
functionsh(z, A) and B(a:,fy) [35], [40]. (28)—(30)], the prediction density’,, = p(v,, | Y,_1) is
» For any given\, obtain the optimal representatié(w,fy) obtained by the convolution df,,_; [given by (36)] with the
by determining the value of that minimizesD(h(z, A) || kernelS, = p(v,, | v._1) [given by (25)], i.e., by computing

h{z,v)) [40]. the integral inside the parenthesis in (28). The result is a finite
+ Since the Kullback divergence is a convex functionalum of N/ Gaussian terms

with respect to both probability density functions involved NFn

[35], the minimum can be found by computing its partial P, = Z kip”/\/(vn - niP”,VP”) (37)

derivative with respect tey and setting it equal to zero; i=1
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Fig. 22. Diagonal profiles. (a) Original surface of Fig. 17. (b) Estimate of Fig. 20 (nonlinear algorithm). (c) Estimate of Fig. 21 (EKBF algorjthm). (d
Wrapped phases (the; ;'s) of Fig. 19.

where whereDn!™ is the first component of; ™, andV;, ,, stands
n = Aan_l + Ee,_; (38) for the glement(m,n) of matrix V. o
VP = AVF AT 4 BBT (39) Equations (42) and (43) cqrrespond, formally, to an |nf|r_1|te

" bank of Kalman-Bucy filtering steps [weighted according

ki"=Ck;" (40) to (44)], each one guided by the (pseudo)observatigfls

ConstaniC affecting all the terms of’, can be omitted. Since With the same data-dependent (equivalent) “noise variance”

(25) is a single Gaussian, there is no creation of new modeé:. Notice that the covariance matri¥ = in (43) is not

ie., N = NF-1 Prediction is thus a bank avf»-1 subscripted by the index i.e., all the modes of}, have the

discrete Kalman—Bucy prediction steps [32]. same covariance matrix.

Straight application of the filtering step would produce an
infinite number of Gaussian terms; in the implementations
To implement the filtering step (24), the representatthy described in [41] and [49], the dimension of the filter (i.e.,
given by (33), is used instead @f,,. Since multiplying two the number of Gaussian terms) is controlled by the following

Gauss functions yields a third Gauss function, the result ofechanisms.
multiplying thesth term of P,, by thelth mode ofH,,, denoted

E. Filtering

« Each modei of P, is multiplied by only theJ nearest

by (P,  Hy);, is itself Gaussian; specifically modes of H,,; i.e., in (42), (43), and (44)] ranges
. over only J different values. CallJ the multiplication
(PnoHy)ig < 5N (v =7, V) (41) parameter
 In the resulting function, those modes which are closer
with than some threshold distance are agglutinated, while those
. lef which weight less than another threshold are eliminated
nFr = nl Dy =) | (42) (pruned).
ot ‘ ij T4y V.pn Adjusting the corresponding control parameters is an important
1I,L issue which depends on many aspects of the particular model
1 Vig 0 - 0 considered. Another critical point is the choice of an estimation
Vi =y ———=| : VI (43) criterion (cost function) considering the multimodal shape of
Vil A vl 0 ... 0 the filtering density; [41] and [49] adopted the minimum mean
Fy P P W ;L i squared error criterion which, in some cases, may not lead to
ki =k N(Dni -, Vil ) (44) good local (modulo27) estimates.
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600

500 F

2001

Step 3:

(b)

Fig. 23. Error histograms corresponding to the estimates of Figs. 20 and 21;
notice the multimodal nature of the second histogram due t@2th@hase
jumps.

F. Simplification

To avoid the above details and the corresponding implemen-Step 4:
tation complexity, we adopt, in this paper, the simplification
next described. The key feature lies in setting the multipli- Step 5:
cation parameter equal to ond, = 1. Assuming that the
prediction density, is unimodal (i.e. N7 = 1), the filtering
density, which is obtained by multiplyind®, only by the .
nearest mode (sincé = 1) of H,, will also be a single
Gaussian. Agglutination and pruning loose any sense and the
next prediction density’,+; will automatically be unimodal.
Furthermore, the Gaussianity of this filtering density implies
that the optimal estimate, with respect to any reasonable cost
function, is simply its mean. Step 6:

The complete final structure of the (simplified) NLF is next
described. As just stated, assume tHatis a single Gaussian
(N = 1) with meann™ and covariance matri¥ .

NLF Algorithm:

Step 1: Given A, = N\yn).c(n), function of the observed

L]

operation

879

Fig. 24. Surface obtained by superimposing a Gaussian “hill” with a sample
of model (54).

Call it 7753” =, + 27l*, wherel* is given by

I* = arg mlin{(DnP” — (nn + 2l7r))2}

Dni~ — n
- d[u} (45)
27
Correctn,(f*) according to
VPn
Dnlr — g*) L1
nf =t - = (46)
Py H .
V171 +t VPn
1,L

which is (42) without the indices(since N = 1)
and! (because/ = 1). This corrected value is the
estimatev,, = n™».

Compute the covariance matr» according to
(43).

Compute the parameters of the (Gaussian) predic-
tion density, as follows.

Mean:n’»+1 = Anf» + Ee,, according to (38).

CovarianceVI»+1 = AVI= AT + BB?, accord-
ing to (39)

wheree,, contains previously obtained estimates,
according to its definition (20).
Incrementn by one and go back t8tep 1

Notice that Steps 1, 2, 3, and 4 implement the filtering

(24), while Step 5 implements the prediction (23).

Steps 2 and 3 are illustrated in Fig. 6.

Step 2:

data via (10), consult the look-up table (se&- Extended Kalman—Bucy Filter

Section IV-C) to find the optimal (in a minimum  Assume a Gaussian prediction density, now denotef},as
Kullback divergence sense)’-. with meann’» and covarianc& ™+, The extended EKBF is
Find which mode of the representation of thebtained by linearizing the nonlinear observation model (22)
observation factor (i.e., ofl,,) is closer to the first aroundn’™. As a consequence of this linearization, the sensor
component of the prediction density (see Fig. 6factor, now denoted a#,,, looses its multimodal structure
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Fig. 25. Reconstruction of the surface of Fig. 24, obtained by the NLF. Fig. 26. Reconstruction of the surface of Fig. 24, obtained by the EKBF.

reducing to the Gaussian form B
———  Original
NLF
{777 EKBE

H, x N(Dv, — ", 0?) 47) 20
whereo? = o7, . »y 1S the observation noise variance at 15
pixel (I(n), ¢(n)), and v [ ! :
nt» = Dnl™ 442 cos (an”) — g sin (an”). (48)

The filtering density, nowZ},, is obviously also a single

Gaussian. The structure of the EKBF is next described. 0 - ; s :
EKBF Algorithm: 20 40 60 80 100
Step 1: Filtering. Compute the mean and covariance of the Fig. 27. Profiles of the surfaces of Figs. 24-26.

filtering density according to

5 V. EXPERIMENTAL RESULTS
Vi The set of simulations next presented are not extensive nor
| statistically meaningful studies. Examples have been selected
Vllf 71 as they correspond to plausible real world situations and/or

(49) illustrate special features of the approach and algorithms here
Vllfn 0 - 0 described.

VB P - : VP The first exp_erimenta_l test considers the original im-
vir 102l 5 age/surface of Fig. 2, which was generated according to (14).
’ Vie 0 - 0 The noisy (witho = 0.5) real (cosine) and imaginary (sine)

(50) observations are presented in Fig. 3, while Fig. 4 displays the
7.5’ (i.e., the wrapped phase values, or interferogram) and
The state estimate at each step is, simgly,= the ); ;'s. The estimate produced by the NLF is presented in
. Fig. 7, while Fig. 8 shows the estimate obtained by the EKBF,
Step 2: Prediction.Convolving the Gaussian filtering den-both visually indistinguishable from the original. However, the
sity £}, with (25), one has again a Gaussian preerrors between the original image and the estimates, whose
diction density, P, 1, with mean and covariance approximately Gaussian shaped histograms are presented in

ys cos(Dn™) — y¢ sin(Dn’™)

P, 2
‘/1,1 +0n

-

. 5 1

matrix given, respectively, by Fig. 9, have different standard deviations: 0.485 for the NLF,
and 0.581 for the EKBF. Fig. 10 shows diagonal profiles of
nl+1 = Anfr + Ee, (51) the original and estimated surfaces and also of the wrapped
VPt — AV AT + BBZ. (52) phase values.

The second test regards an unstable AR model,

Step 3: Incrementn by one and go back tStep 1 x;,; =0.512; ;-1 +0.21a;_1 ; + 0.31w,—1 j—1 +u;; (53)
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with the standard deviation of the driving noise setjte= [40], [41], and [49]) were adapted to this 2-D problem. The
0.75; a sample surface is shown in Fig. 11. The noisy observertended Kalman—Bucy filter (EKBF), a classical approach to
images (o = 0.5) are in Fig. 12; Fig. 13 shows thg; ;'s stochastic nonlinear filtering, was also applied to the problem
and the); ;’s. The surfaces estimated by the NLF and thender study.
EKBF algorithms, displayed in Figs. 14 and 15, respectively, In the four examples presented, the nonlinear filter was
are again visually indistinguishable. The histograms of ttable to adequately estimate absolute phase images; the EKBF
errors (not shown) are again approximately Gaussian withiled in two of the examples and presented about 20% higher
different standard deviations: 0.529 for the NLF and 0.6Xrror standard deviation in the other two. This behavior was
for the EKBF. In Fig. 16, profiles obtained along line 9&xpectable from what has been shown in systematic studies
of the surfaces are shown. Notice how, despite the unstable 1-D phase estimation problems (see [41] and references
nature of the phase surface model, both algorithms are afflerein): nonlinear filters, designed to capture essential in-
to follow its absolute value. In this example, there are phag@mation contained in the conditional probability density
differences between adjacent pixels excee@imgmany phase functions, perform better than the EKBF, where linearization
unwrapping methods often adopt the criterion that adjacesftthe observation model may destroy important information.
phase values can not differ by more tharThis surface could In this paper, we have not addressed the setting of the
never be recovered by such techniques. involved model parameters, which is a critical issue of any

The next example illustrates the ability of the proposed amodel-based technique. One approach to this problem, which
proach to reconstruct surfaces for which there is no knowledge intend to explore in future work, is to embed the proposed
about the generating model. The surface to be reconstructdgiorithm as part of an adaptive scheme, such as those in,
was deterministically generated as the sum of two 2-D Gausg., [18], [19], and [37].
functions, as shown in Fig. 17. The observations, with=
0.3, are shown in Fig. 18; thg; ;'s and the), ;'s are displayed
in Fig. 19. The algorithms were implemented assuming the
following a priori model: [1] C. Allen, “Interferometric synthetic aperture radatEEE Geosci. Re-

mote Sensing Soc. Newslepip. 6-13, Sept. 1995.
[2] D. Angwin and H. Kaufman, “Image restoration using reduced order

(54) models,” Signal Process.vol. 16, pp. 21-28, 1989.

) ) ] o ) o ) [3] , “Nonhomogeneous image identification and restoration proce-
with unit variance driving noise. This simple model is enough  dures,” inDigital Image RestorationA. Katsaggelos, Ed. New York:

. ; u iny- Springer-Verlag, 1991, pp. 177-208.
to express, in a formal way, the desired phase surface Contmﬁ] L. Axel and D. Morton, “Correction of phase wrapping in magnetic

ity”; i.e., that each pixel is expected to be close to the average ressonance imagingMed. Phys.vol. 16, pp. 284—287, 1989.

of its two nearest causal neighbors. The surface estimat&s N.Balram andJ. Moura, “Recursive enhancement of noncausal images,”
obtained with the NLF and the EKBF are exhibited in Figs. 20 i;gg;océolgoEE Int. Conf. Acoustics, Speech, Signal Proces<i8g1, pp.
and 21, respectively. In this example, only the NLF succeeds] J. Besag, “On the statistical analysis of dirty pictures,R. Stat. Soc.

in estimating the absolute phase surface, as is evident from th? B, vol. 48, pp. 259-302, 1986.

. . . . 7] R. Bucy, Lectures on Discrete Time Filtering New York: Springer-
profiles shown in Fig. 22 and the error histograms presente[d Verlag, 1994.

in Fig. 23. [8] R. Bucy, C. Hecht, and K. D. Senne, “An engineer’s guide to building
In the last example, a mixed situation is studied (similar nonlinear filters,” Tech. Rep. SRL-TR-72-0004, Frank J. Seiler Res.

. Lab., vols. 1-2, 1972.
to the one in [39]); a sample of a random surface generatg] r. Bucy and P. JosepFiltering for Stochastic Processes with Applica-

according to (54) (with driving noise standard deviatjor= tions to Guidance2nd ed. New York: Chelsea, 1987.

: ; st : «ii10] R. Chellappa, “Two-dimensional discrete Gaussian Markov random field
0.7) is superimposed on a deterministic Gaussian shaped hlﬂ’ models for image processing,” iArogress in Pattern Recognitior..

(see Fig. 24). Both filters were implemented assuming model Kanal and A. Rosenfeld, Eds. New York: Elsevier, 1985.
(54); as in the previous example, only the NLF was able {d1] R. Chellappa, T. Simchony, and Z. Lichtenstein, “Image estimation

. . __ using 2D noncausal Gauss—Markov random field models,Digital
adequately estl_mate the or!glna_ll surface. This is clear from Image RestorationA. Katsaggelos, Ed. New York: Springer-Verlag,
the reconstructions shown in Figs. 25 and 26, and from the 1991, pp. 109-140.
profile displayed in Fig. 27. [12] N. Ching, D. Rosenfeld, and M. Braun, “Two-dimensional phase un-

wrapping using a minimum spanning tredPEE Trans. Image Pro-
cessing vol. 1, pp. 355-365, 1992.
[13] H. Derin and P. Kelly, “Discrete-index Markov-type random processes,”
VL. FINAL REMARKS in Proc. IEEE vol. 77, pp. 1485-1510, 1989.
This paper formulated absolute phase imaging as a Bayesii A Devaney, “Geophysical diffraction tomography/EEE Trans.

l . . bl h id d Geosci. Remote Sensjngpl. GE-22, pp. 3-13, 1984.
nonlinear image reconstruction problem. The considered gls; —~ " “pjffraction tomographic reconstruction from intensity data,”

servation model captures the essential common features of a IEEE Trans. Image Processingol. 1, pp. 221-228, 1992.

wide range of phase imaging techniques, appearing nam&f} ib;’“gte:t 6\‘2"’ A6' gg'”’lg'ff{'gfmléggd models for image analysis,

in INSAR, MRI, optical interferometry, and diffraction to-[17] S. Dupont and M. Berthod, “Intezfometrie radar etetoulement de
mography. The prior model adopted for the original image 2ha_se,|’_’ T?:ch. Repl.9§144, Inst. Nat. Rech. Inform. Automat., Sophia
. . : ntipolis, France, .

IS a nonsymmemcal hal_f plane autoregressive (NSHP A ] M. Figueiredo and J. Léib, “Adaptive discontinuity location in image
Gauss Markov random field (GMRF). A reduced order state  restoration,” inProc. First IEEE Int. Conf. Image Processingustin,
space formulation of this model allowed casting the problem X, 1994, vol. Il, pp. 665-669. o

. hasti linear filtering framework. Specificall 19] , “Unsupervised image restoration and edge location using com-
Into a stochastic nonlinea g - op ’ pound Gauss—Markov random fields and the MDL principlEEE

nonlinear absolute phase estimation algorithms (studied in Trans. Image Processingol. 6, pp. 1089-1102, 1997.
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