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Unsupervised Image Restoration and Edge
Location Using Compound Gauss—Markov
Random Fields and the MDL Principle
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Abstract—Discontinuity-preserving Bayesian image restoration to the edge detection problem, ever since the early days of

typically involves two Markov random fields: one representing digital image processing and computer vision, [5], [25], [36],
the image intensities/gray levels to be recovered and another one [42], [52).

signaling discontinuities/edges to be preserved. The usual strategy - . . - .
is to perform joint maximum a posterioriMAP) estimation of the The incorporation of discontinuitydetection and preserva-

image and its edges, which requires the specification of priors tion into restoration/reconstruction procedures has been pro-
for both fields. In this paper, instead of taking an edge prior, we posed by several authors. This perspective, in which image
interpret discontinuities (in fact their locations) as deterministic  restoration and discontinuity detection are jointly sought, is
#gtjn?gghﬁggm\?vﬁ?h ?; t:sessgggc;gnrﬂo?jzriﬁgl\i/rlﬁéﬁos\iltigm#ohrg different from edge detection as a separate and autonomous
strategy shoulél allow inferring the discontinuity locations di- problem. Some fundamental references that adoptlstatlstlcal
rectly from the image with no further assumptions. However, toOls are those of Geman and Geman [21], Marroquin, Mitter
an additional problem emerges: The number of parameters and Poggio [37], Geiger and Girosi [20], Jeng and Woods
(edges) is unknown. To deal with it, we invoke theminimum  [26], [27], and Leclerc [34]; in a nonstatistical framework,
description length(MDL) principle; according to MDL, the best na - \yorks of Blake and Zisserman [7], Terzopoulos [50],
edge configuration is the one that allows the shortest description Gri d Pavlidis [22 d Mumford d Shah 140
of the image and its edges. Taking the other model parameters rnmson an . avlidis [22], an umtord an . ah [ _]
(noise and CGMRF variances) also as unknown, we propose &ré also basic references. Independently of their theoretical
a new unsupervised discontinuity-preserving image restoration foundations, the majority of these formulations are modifica-
criterion. Implementation is carried out by a continuation-type  tions of previous techniques; typicallgyverywhere(continu-
iterative algorithm which provides estimates of the number of ity/smoothness) constraints are weakened becoralngpst-
discontinuities, their locations, the noise variance, the original everywhereconstraints, the exceptions being at the locations

image variance, and the original image itself (restored image). : A
Experimental results with real and synthetic images are re- Of discontinuities. A common feature of most approaches to

ported. discontinuity-preserving restoration/reconstruction is that they
lead to very difficult optimization problems; some authors have
I. INTRODUCTION advocated the use of stochastic techniques (e.g., [21], [37])
while others have proposed (faster) suboptimal deterministic

A. Discontinuity-Preserving Image Restoration and schemes (e.g., [7], [15], [20], [34], [56]). In addition to the
Compound Gauss—Markov Random Fields optimization issues, and arguably even more important than

) ) .these, difficulties in dealing with the involved parameters
EARLIER approaches to image restorat|on/reconstrucnocnso arise

used continuity and smoothness restrictions as a mean%uilding on previous work on Markov random fields
of overcoming the ill-posed nature of the problem [1], [5], [6](MRF's) for Bayesian image restoration (e.g., [6], [21]

[51] (see also [17] and the references therein). Independe %Yl]), Jeng and Woods have introduced the compound

of their formal setting (e.g., statistical estimation or reQUIariZ‘"{‘Sauss—Markov random field (CGMRF) model that allows
tion theory), these methods typically looked for compromlsqegr. edge-preserving Bayesian restoration with a continuous

between fidelity to the observed data and global SmOOthne%auss—Markov)a prioristatistical model for the intensity

possible discontinuities in the origina'l images were ignorergeld together with discrete (binary) hidden edge variables
and thus not prese_rved k_)y t_h_e restoratlon/reconstructlon progfgfnaling discontinuities [26], [27]. The commonly adopted
dures. However, discontinuities (edges) are key visual featugq tegy to image restoration using CGMRF's is to follow

[36]; this is testified to by the amount of research dedicat%ieman and Geman's approach [21]: The edge variables

are interpreted as a random field, with some prior, and
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parameters defined in a more or lesshocmanner [21], [26], discontinuity-preserving restoration criterion, built upon a

[27], [48], [49], [56]; consequently, the amount of signale€GMRF model.

edges in these methods is highly dependent on the definition o) Implementation of the Proposed CriterioThe result-

these priors. Like most edge-preserving restoration techniquies, optimization problem has to be simultaneously solved

the use of CGMRF's leads to a hard optimization problemith respect to all the above mentioned unknowns. To this

(for which stochastic [26] and deterministic [48], [49], [56]end, we propose an algorithm with two nested loops. The

algorithms have been applied) and raises the issue of howirtaer loop is basically an iterative restoration/parameter-

define the involved parameters. estimation scheme. This type of procedure has been applied by
several authors in different areas, under different names; e.g.,
Mendel’'sblock component search algorithi38], theadaptive

B. Proposed Approach segmentation algorithrof Lakshmanan and Derin [31], [53],

1) Locating Discontinuities as a Parameter Estimatio@nd Besag's adaptive version of titerated conditional modes

Problem: In CGMRF'’s, the edges play the role of parameter§lCM) scheme [6] (which we have also previously used
in fact, if the discontinuities are somehow known, we havd4]). It is also conceptually related to (and in special cases
a fully specified CGMRF model. Accordingly, locating thecoincides with) theexpectation-maximizatioEM) algorithm
edges of a CGMRF is equivalent to estimating its parametéts Dempsteret al. [10], recently used by several authors for
based on a (possibly noisy) observed realization of it. blind image segmentation and restoration problems [30], [32],
The discontinuities of a CGMRF are best described by thd#3], [57]. Under certain conditions, this scheme is shown
locations, since their number is usually by far smaller than ti@ converge to gartial optimal solution(POS) [31], [53].
number of their possible locations; in other words, it is mo® POS corresponds to a weaker optimality criterion, when
natural to write down the locations of a certain discontinuitgompared to the original one.
set than to specify, for each possible location, the presencehe outer loop of the algorithm is a continuation-type
or absence of edge (i.e., a binary variable). Therefore, weheme similar to thesimulated tearingalgorithm we have
take discontinuity locations as the parameters of the intensi{pposed in [15]; the function to be minimized is embedded
field prior CGMRF; this is a change of perspective from thé@ & family of functions (depending on a control parameter) of
classical formulation of Geman and Geman [21] where tighich the first member is easy to minimize; this minimum
binary variables are themselves elements of a random fiéddthen tracked along the family (by varying the control
to be estimated. Locating discontinuities is then formulatdtrameter) until the desired solution is reached. By including
as a parameter estimation problem. The advantage of tHi§ innerloop into the outer continuation-type loop, a sequence
perspective is that it allows inferring the edges directly frofif POS’s of increasing quality (i.e., decreasing values of the
the observed image without assuming any Bayesian pri@figinal objective function) is obtained.

However, it raises a problem: The number of parametersThe mean field annealingMFA) algorithm is another con-
(discontinuities/edges) is not knovenpriori. tinuation scheme that could be considered for this application
2) The Minimum Description Length Approacisince the [20], [56]; however, MFA is heavily supported on the inter-
goal is to estimate an unknown number of parametepéetation of the edge variables as elements of a random field,

(discontinuities), it is impossible to use theaximum Which we are abandoning.

likelihood (ML) criterion. Here, we resort to Rissanen’s

approach: “Take the parameters so that the model they define .

allows the shortest representation of the data:” formally, tife Previous Related Work

representation lengthsare Shannon code lengths, and the Leclerc pioneered in using the MDL principle for image

corresponding criterion is theninimum description length partitioning [34]; the main difference between his work and

(MDL) principle [43], [44], [46]. It includes ML as a ours is that we model the true image as a sample of an MRF

special case, gives it a coding theoretical meaning, and, mavhkile in [34] it is deterministically modeled as piecewise

importantly, it can be used when the number of parametgrslynomial. Keeler uses MDL in an MRF-type context pur-

is unknown, whereas ML can not [43], [44], [46]. Accordingsuing a different goal: to buildcomplexity-based priors for

to the MDL criterion, the best edge configuration is the ondiscontinuity configurations [29]. Recently, MDL and related

that allows the shortest description of the image (includingeas have seen several applications in the fields of image

the edge locations). processing and computer vision: segmentation [9], [29], [32];
3) Unsupervised Estimationtn image restoration/recon- line and curve detection [47]; contour estimation [18]; motion

struction problems, only a noisy version of the original imagend displacement segmentation and/or estimation [11], [23],

is observed. However, the optimization problem resulting frofp9]; and shape description [35].

the proposed criterion does depend on the original image,To the authors’ knowledge, not much has been done in unsu-

on the noise variance, and (in addition to the number pgrvised restoration using noncausal CGMRF's. The technique

discontinuities and their locations) on the global parametetsveloped in [49] (and also used in [56]) assumes known noise

of the original CGMRF, which are all unknown. Henceyariance, fixed edge penalty, and availability of the original

these quantities will also be considered as unknowns to ineage. In [57], noise and also an unknown blur are considered;

estimated from the observed image. What we propose hiswever, the parameters of the original CGMRF and of the

an MDL-basedunsupervisedalso calledadaptive or blind) edge field area priori fixed.
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Nadabar and Jain [41] resort toomputer aided design CGMRF.X, given edge configuratioth, v), is (see, e.g., [48],
(CAD) models of the objects in the scene (assumed avdu9])
able) to estimate parameters of the discontinuity field; this is
computationally very demanding and not applicable to imag”e($|h’ v)

restoration problems. 1 " M N ,
For other MRF-type models, parameter estimation and/or = m exp ) Zzwv(l — vij (@35 — @ij-1)
unsupervised estimation has been considered in, e.g., [3], [12], ’ i=1 j=
[14], [28], [30]-[32], [53], and [58]. See also [2] for an " M N
elucidative review of some joint image-restoration/parameter- ~ — % Z th(l — hij)(xij — wi15)”
estimation methods. i=2 j=1
M N
D. Paper Overview - g D31 = 2wy +wn))ad; )

In Section I, the set of tools underlying our work is i=1j=1

described; in particular, compound Gauss—Markov randaghere, is the “global smoothness” (i.e., inverse of the “global
fields and the MDL principle are briefly reviewed. Sectiogariance”) of the CGMRF, whiley;, andw,, control its relative

[l formally introduces the proposed approach. The algorith{ertical and horizontal “smoothness”. In (D (h,v) is the
designed to implement the estimation criterion is presentgg@rmalizing constant callepartition function[21]. It is clear

in Section IV. Finally, Section V reports experimental resultgn the exponent of (2)) that each difference between neighbor
obtained with synthetic and natural images, and Section Yixel values is quadratically penalized unless the associated

contains some concluding remarks. line variable is set to one. This is the feature of CGMRF’s
that makes them suitable priors for edge preserving Bayesian
II. UNDERLYING TOOLS restoration.
In vector notation, (2) can be written as

A. Compound Gauss—Markov Random Fields (CGMRF) | A(h, v)[/?

1
Let the imagex = {z;; € Rii = 1,2,--.,M;j = pzlh,v) = (2m (7 P {—giﬂTA(’h U)x} 3
1,2,---, N}, containingM x N real valued pixels, be a sample
ofa GMRFX = {X;;:i = 1,2,---, M;j = 1,2,---,N} where the dependence of(h,v) on parameters:, w,, and
defined on anV/ x N lattice. The probability density function wr is not explicitly indicated. The factor multiplying the
(pdf) of X is exponential in (3) is the reciprocal of thgartition function
A2 ) Z1(h,v), which depends on the edge configurati@gv) via
plz) = —————exp {——:cTA:c} (1) the determinant of the potential matrik(h, v).
(2m)(MN)/2 2 Assume that only a noisy versian= z + n is observed,
wherez here stands for a vector containing the lexicographitheren is a sample of a white Gaussian homogeneous noise
cally ordered pixel valuesd is the inverse of the covariancefield of variances?; the probabilistic observation model is then

matrix (termedpotential matrix[39]), and|A| its determinant (ylz) = (2m0?)~MN/2
[6]. Since we are in the presence of a Markov field, the Py M
conditional probability densities verify 1 :
n exp 4 =53 DO (v — i)’ (4)
p(@ij{anm, (B, 1) # (i,0)}) = p(xi{zm, (k,1) € Nij}) i=1 j=1

where IV;; is the neighborhoodof pixel (¢, 5) [6], [21]. The The goal of image restoration is to estimatefrom the

Gibbs joint pdf of the MREX can be recognized in (1); for aobservedy. Fixing h andwv, thea posterioriprobability density
GMREF, the neighborhood system and the clique potentials dugction p(z|h,v,y) x p(z|h,v)p(y|z), considering (4) and
completely determined by the potential matrix [39] (see [6] dB), is convex with respect to and its maximizer (the MAP

[21], for precise definitions). estimate) is simply
Proposed by Jeng and Woods [26], [27], (see also [48], . 5 1
[49], [56]) compound GMRF’s are simply GMRF'’s in which Evar(h,v) = (07 Ah,v) + 1)y, )

the potential matrix is parametrized by a collection of binarEquaﬁon (5) can be solved by any technique suitable for

(0/1) edge variables. Each of these, when set to one, bregk&emely large but highly sparse and structured matrices (see,

the direct bond between neighbor pixels. Specifically, 1@t [17] and references therein).

h = {hy € {0,1},¢ = 2,3,-- M;j = 1,2,--- N} and  The condition(1 — 2(w, +wy)) >0 is sufficient for having

v={v; €{0,1},i = 1,2,--- , M;j = 2,3,--- N} be the |4 v)| £ 0 for any (h,v), i.e., for thatZ, (h,v) < co; in

sets of, respectively, horizontal and vertical edge variablggetropic models, the ones herein considered,= w;, = w

The probability density function of a zero-mean first-ofderyng the condition is simply, < 1/4. Of course, anisotropy
2|.e., in which the neighborhood is the set of four nearest neighbors eould be considered; however, since hesg and w;, are

(i, 7): Nij = {(4,7 = 1), (i-7+1), (1= 1,5). (i +1,j)}; this is the simplest 355ymed known, there is no point in introducing this additional

CGMREF. Higher order models involve larger neighborhoods; here, without N,
loss of generality, we consider the first-order case for wii¢h, v) is block complication. Weak membrangype models lack the(l -

tridiagonal with tridiagonal blocks [39]. 4w)x?; term [20]; as a consequence, matAkh, v) is singular
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for many edge configurations. In Bayesian estimation parlané«gs,,)ML = argmax {p(x|0))} (subscript(k) indicates that
p(z|h,v) becomes aimproper(or nonnormalizableprior [4]. a vector is k-dimensional). Underlying MDL is a coding
For MAP estimation, this is not a difficulty becaugéh,v) theoretic interpretation of ML estimation. If, based on the
is added to an identity matrix [see (5)]; however, in parametprobabilistic modep(x |61, ), one builds a Shannon-type code,
estimation problems the partition function (and consequentlye lengti of the code word for the observed datds
|A(h,v)|) must be explicitly used and difficulties emerge. L(al8s) = — log p(xl6) (10)

B. The Usual Approach with rounding effects neglected [8], [45]. Accordingly, given

As stated above, the common strategy consists in interprebservatione, looking for 8;,,,, is the same as looking for
ing the edge configuration also as a realization of a randdhe Shannon-type code in whiahhas the shortest code word;
field and to perform joint MAP estimation af,k, and v, in fact, from (10)

gveny. O, = argmax {p(al6)} = argwin L(zl0). (1)

("i"v i"vﬂ)MAP = arg imax {p("l"v h,11|y)} * *
LY Of course, it can be argued that only discrete data can have

T ate e {p(yl, hv)p(z,hv)}  (6) finjte code lengths. However, as Rissanen recently noted [45],

o even the negative log of densities can be seen as code lengths;
finite values may be obtained by truncating to finite precision
] ) - ] and replacing the densities with the resulting probabilities.
where p(h,v) is the prior probability function of the edge apyse of the term “code length” is convenient and harmless,
fields. Going from (Q) to (7) relies on the fact thatis only  gjce the precision itself is not important.
an observation ofr, i.e. p(y|lz,h,v) = p(ylz);h andv are  \henj is unknown, ML cannot be used; the MDL principle
termedhidden fields stipulates that one should still ook for the shortest description

In generalp(h,v) is not explicitly written; instead, a joint (code length) of the data, which in fact must also include the
prior p(x, h,v) is defined. The most common one (see [ZOL

‘ | : arameters themselves. The total length of the optimal code
[21], [26], [27], [48], [56]) is obtained by adding somefy, z, given k-dimensionald ), is
discontinuity penalty functio/(h,v) to the exponent of (2);

= arg max {p(y|z)p(x|h,v)p(h,v)} (7)

20y

this leads to L(%,00,k) = L(2|04)) + L(O) + L(k)
p(z, h,v) where L(6,) is the code length for &-dimensionaldy,,
. and L(k) is the code length fok itself (usually a constant,
S ad BRYOY )2 independent of;). The MDL estimate oft and 6, is then
= - exp § — 5 S [l - vig) (i — 24j-1) indep (#)
Zo { 2 z“: ST ! [after dropping L(k)]
+w(l = hij)(zi; — zim;)? + (1 — 4w)$3j (/%,9(@)MDL = arg min {—logp(z|0n)) + L(Ox))}. (12)
V)
- U(h, U)} (8) Notice that, ifL(6)) only depends otk, then for fixedk the
MDL and ML estimates coincide. As a corollary, the MDL

where Z, is the partition function, and the summatiah; is estlmate_ofa(k) coincides with its ML estimate given the
simply a shorthand (to be used throughout this paper) for IMEDL estimate ofk.
more detailed notation in (2). Inserting (2) and (8) into Bayes
law, p(h,v) = p(x, h,v)/p(x|h,v), reveals that (8) implicitly I1l. PROPOSEDFORMULATION
includes the following prior for the edge field:
A. Discontinuity Locations as Parameters

1
p(h,v) = Z—3Z1(h7 v) exp {=U(h,v)}. (©) Examining the CGMRF pdf given by (2) reveals that the
) discontinuities/edges play the role of (possibly unknown)
The presence of)(h,v) makes the meaning of (9) not atyarameters. This perspective avoids (in fact precludes) the
all obvious since its dependence hArand v is complex and gpecification of a Bayesian prior for discontinuity estimation,
unclear; as pointed out in [27], this may not even be an MREince we will be interpreting them as deterministic (albeit
Finally, notice that in the sequel we will not wrigh, v) since nknown). Notice that the true difficulty consists in estimating
edges will be considered as deterministic parameters. the edges; as stated above, dindw (and the other parameters)
are somehow known and fixed, the image estimate is simply
C. The Minimum Description Length Principle (MDL) given by (5).

MDL is an information-theoretical principle proposed by In general, the active (i.e., equal to one) edge variables
Rissanen that allows the generalization of ML estimation &€ a small minority; then, it is obviously more efficient to
cases where not only the parameters but also their number &rée down their locations than to exhaustively enumerate all
unknown [43], [44], [46]. The ML estimate of &&dimensional 3In bits, if base 2 logarithms are used, orriats if natural logarithms are
parameter vectod(;), given observationz, is defined as adopted [8].
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binary variables. Formally, lef ;) = (61,02, --,0;]" be a becomes

k-dimensional parameter vector expressing the locatioris of

discontinuities;f;, is just a compact description df and (:37/570/(;)7,37 EE)MDL

v, exploiting the fact that only the elements that are equal o . 2

to one need to be specified. Each componenfgf is a g (.’l,',k,ér(lifu,oZ){L(x’y’ Oy, 1, 0°)}  (14)

triplet (¢,4,86), with ¢ € {1,2,---,M},j € {1,2,---,N},
andb € {0,1}, indicating thath;; = 1, if b = 1, or, that \ynere
v; = 1,ifb=10
L("l"vyvo(k)vuvo—Q)
= —108P($711|0(k)7N7 02) + L(o(k))
= —logp(y|z,0%) — log p(x|0 ), 11) + klog (2MN).

(hz] = 1) <:>E|0n=(i,j,1)7 n = 1,2,---,/{;
(Uij = 1) <:>E|0n=(i,j,0)7 n= 1727"'7k-
In words, h,; (resp.v;;) is equal to one if and only if there (15)

exists one element of,, which is equal to(s,j,1) (resp. _ _
to (i,5,0)). To clarify this notation, consider as examplélhe lengthsL(;:) and L(c) are not included, since they are

an edge configuration witth; 9 = 1,h1215 = 1,hi3; = independent of; i.e., with respect tg, ando?, this is simply
1,har19 = 1l,uss = 1,v135 = 1,u3118 = 1, and all other an ML criterion. The criterion (14)—(15) can also be interpreted
hij's and v;;'s equal to zero; thenk = 7 and §; = asan MDL version of the (Bayesiajgint mode approacho

[(7,9,1),(12,15,1),(13,5,1),(47,19,1),(2,8,0),(13,5,0),  simultaneous image restoration and parameter estimation [2].
(31,18,0)]*. Now, given thati € {1,---,M},j €
{1,---,N}, andb € {0,1}, we have

D. The Pseudolikelihood Approximation

L)) = E(log M +log N +1og2) = klog (2MN). (13
b)) (log o8 °82) o8 ( ) (13) Before addressing the issue of solving (14), notice the huge

Different description length functions could be obtained H'ﬁlcuny in computing (15). The obstacle lies fiiz|0), 1),

other ways of encoding the discontinuity configuration wers> 9Ven by (3), which involves the determinant of a very

used (see, e.g., [24], [25]). For example, chain-coding udjxrge matrix(MN x MN). This is the well-known problem

; . ting the partition function, arising in parameter
25] (as used in [34]) will favor long connected sequences o{ computi
EﬂiS(]:cEntinuitieS' tr[1is ]Jvould be a dir(gaction to explorg. estimation in MRF models [3], [6], [31], [53], [57]. Here, we

Finally, notice that sincé(;, contains the same informationresort to Besag's pseudolikelihood approximation [6] which,

as the pair(h,v), writing p(x|6,) is exactly the same asomntmg the parameters, states that
writing p(x|h,v), as given by (2) or (3).
p(:ﬂ) ~ Hp(xij|{$kl, (/f,l) S N“}) (16)
B. The Global Parameterg, o2, andw v
Two other parameters play a fundamental role in the proBxact formulae proposed in [3], or better approximations,
lem at hand: the inverse of the CGMRF variange,and such as the one presented in [55], can only be applied to
the noise variance?. In a realistic setting, these parameteraomogeneous fields; CGMRF’s are not homogeneous.
are unknown and must be estimated from the noisy observedince X is a Gaussian MRF, the conditional pdf's are also
data. In the sequel, we explicitly incluge and o2, writing Gaussian
p(|0, p) and p(y|z,0?) to emphasize that they will be
considered unknown parameters.
Parametery is a technical parameter whose only role is
preventing the priorp(x|6 ), ) from becoming improper.

As long as we keepw<1/4, the results are practically ) , i
independent ofv. In all examples presented in Section Vyvhere/\/(l/,z/; ) denotes a Gauss function with mearand

we setw — 0.2499 variance?. The local means and varianceg,; and A7,
which obviously depend om, 6, (i.e. onh andwv) and s,

are given by

p(xij|{$ij—17$ij+la-Ti—ljaxi-l—lj}ao(k)aﬂ) = N(m‘j, )\Z‘Qj)
17)

C. An MDL Criterion with Incomplete Data

If = was directly observed, MDL could be immediately used 1, :(x, 81, ;1) = A (8a) o[ osjvivj + Bijwij—1
by introducing (3) and (13) into (12). Since ondy a noisy
version ofz, is observed, we usg(z, y|0 ), 1, o) (Which is
equal top(ylz, o*)p(z|0), 1)), instead ofp(x(0 ), 1), and
interpret the original image: as missing data, in the sens
of [10]. Parameterss,f(;,,x, and a? could (in principle)
be estimated from theomplete dataset {z,y}, but only y )\12,,(9(,“)7@ -
is observed:z also has to be estimated. The criterion then |

+ Ei-i—ljxi-i—lj + Ui 1%i541) (18)
whereh;; = (1 — hi;) andz;; = (1 — vi;), and

1
1= w(hij + higrj +vij +vij+1)]

(19)
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Introducing (13), (4), and the pseudolikelihood approximatioalthough POS’s are, of course, not necessarily global minima
(16), together with (17), (18) and (19), into (15) leads (aftef the objective function (21), they are almost always local

dropping additive constants and common factors) to minima exhibiting the following obvious properties:
, * % is the MAP estimate givem, /:L,E'E,];' anda/(,?);
L(z,y, Oy, 10 ) . k anda/(k\) are the MDL estimates givea and ji;
~ 2klog (2MN) + M N log o + Zlog AZ?j(e(k),u) . EL\iS the ML estimate giver, &, and O1y;
& * o2 is the ML estimate giverf andy.
(zij — m; z 9(k) 1)) It is easy to solve (22), (24), and (25), since
+ Z 0 — Z Lij — yu . ith d
(Ory» 10) a (:c ¥, 00, 1,07) is convex with respect tar,1/p, an
(20) o?%, leading to
o » =(o? ( o, @)+ 1) (26)
Some manipulation allows rewriting (20) as
, fr = [ Bij(ij — 2ijo1)” + whij(8ij — &im15)°
L("l"v Y, o(k)v H, o )
~ - C o2 212
~ 2klog (2MN) + M Nlogo? + Z log A% (k). 1) 1— 4w xQD 27)
ij 2 J
+ 200 Y [y = wij—1)” + hij(wiy — wio1)’] pOR . 2 28)

2 _ Sy
" = MN Z(‘/EU yz]) .
vy

2 1 2
+u%:(1 dwjwiy + o2 %:(x” vis)" @) Recall thati;; stands for(1 —o;;) andh“ stands for(1—h;);
the palr(h #) is equivalent too(k)

As a final observation, notice that resorting to the pseudo-It is not possible to obtain a closed-form solution for
likelihood approximation is not necessary in one-dimension@3). Alternatively, we adopt the ICM algorithm; i.e.,
(1-D) problems. In 1-D, each discontinuity breaks the potenti&, ¥, 8(x), 1, o) is successively minimized with respect
matrix into two independent subblocks and the determindigt €ach line variable. By computing the difference between
can be factored into two subdeterminants; as a result, #€ objective function forh;; = 1 and h;; = 0, keeping all
exact expression fop(z|6), 1) can be obtained (see [13],0ther variables constant, we get the decision criterion
for details). In 2-D, only configurations of discontinuities ) \
which split the image into two disjoint areas lead to a sim- hi; = {1 = (@i — U.Ui_lj)Q > 3 log (4(MN)?t};) (29)

. S . 0 < otherwise
ilar factorization; this, of course, can not be guaranteed in
general. where we obtain (30), shown at the bottom of the page, which
is simply a comparison with a threshold depending on a set of
surrounding line variables (an analogous criterion is obtained
IV. IMPLEMENTATION for eachw;; ). Notice that we were led to edge interactions, not
explicitly includeda priori, but rather implicitly contained in

A. A Weaker Optimality Criterion the partition function of the CGMRF.

The joint minimization (14) is extremely hard to |mplementB Algorithm
alternatively, we consider (as in [14]) a weaker criterion, the

partial optimal solution(POS) [31], [53], which is defined as__ "€ Proposed algorithm is composed of two nested loops.
a joint solution of The inner loop is basically an iterative restoration/parameter-

estimation scheme. Formally, it consists in cyclicly solving
(22)—(25). As shown in [14] and [53], the only stationary

= argniin L(z,y, B1y- - 0?) (22)  points of this scheme are POS's: more specifically, they
(,%79/(;)) = arg min L(%,y,00), /1,0 ) (23) are POS’s where (22), (24?, and (25) are global mgxima
(%00 [see (26)—(28)], while (23) is a coordinate-wise maximum

. T (characteristic of ICM). The order by which (22)-(25) are
fr=atg mmL(I’ Y0, 1, 0%) (24) solved is irrelevant to this fact; nevertheless, different orders

o arg mmL(:c v 9(k) i, o). (25) can lead to slightly different POS’s. Experimentally, we found

that these differences are negligible.

[1 = whizyj +vim1y + vic10)][1 — wlhityy +vij +vij)]
[1—w(l+hi—1y +viy + vy )] — W@+ higry + vij + vij41)]

th. = (30)
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Set ¢=¢,<<1.0

Initialize ﬁ and G2

Update X by Eq. (26)
with y replaced by ¢ y

Update k and é(:) by
applying ICM to (23)

Fig. 2. Synthetic image: (a) original and three noisy versions with (b)
o = 10.0, (c) ¢ = 20.0, and (d)o = 40.0.

Update fi and o2 by
Equations (27) and (28) a=10

Convergence ?

Stop Increase ¢

Fig. 1. Structure of the proposed algorithm.

Th | . . . h imil Fég. 3. Results obtained from the noisy images of Fig. 2; first, second and
e outer loop Is a continuation-type scheme similar to ”ﬂ rd columns correspond to Fig. 2 (b), (c), and (d), respectively. The first row

simulated tearingalgorithm we have proposed in [15]. Thecontains the images restored by the proposed algorithm, the second row shows

function to be minimize(L(:c ¥,000, 1 02) is embedded into the corresponding discontinuity configurations, and the third row displays the
a family 1S U (k) H images resulting from not taking discontinuities into account.

{Lo(z.y.0k), 11,0%), ¢ €]0,1]} (31) condition of the inner loop is verified when the differences
between consecutive estimates ;ofand o2 both fall below
indexed by the control parametgr The family members are some threshold (2% in all examples presented ahead); of
defined byL¢(:c,y,0(k),u,02) = L(:c,d)y,e(k),u,cf?), i.e., course, the number of iterations spent in the inner loop
by multiplying the observed image by. For ¢ ~ 0, we is highly dependent on this threshold. Parameteevolves
clearly havek = 0, thus @, is an empty (zero-dimensional)linearly according tap = ¢ + (1.0 — ¢o)(t — 1)/(Q — 1),
vector, and we only have to solve (22), (24), and (25), byheret is the iteration number of the outer loop (starting at
applying (26)—(28), which are global maxima (in the POS= 1, and going up ta = @), ¢ is the initial value, andy
sense) easy to obtain. These solutions are then trackedidbthe total number of iterations of the outer loop; clearly, for
slowly varying ¢ up to ¢ = 1, i.e.,, up to the original ¢t = @ we have¢ = 1.0.
objective function L(z,y, 0(x), 11, o?). As will be seen in Initial estimates ofs? and . are obtained by the following
the experiments presented ahead, this continuation scheadehocprocedures. The initial estimate of is taken as the
provides a sequence of POS’'s of increasing quality, i.@ariance of the difference between the observed image and
decreasing values of the objective function. a median filtered version of it. Concerning i) horizontal
The complete structure of the algorithm is depicted in Fig. &nd vertical first-order difference images are obtained from the
Equation (26) is solved with the Gauss—Seidel method [1Foisy image; ii) these images are squared and median filtered;
The ICM scheme used to solve (23) consists in cyclicly applyit) the means of the two images are computed; iv) finally,
ing (29) to all edge variables until a stationary configuratiothe initial estimate ofl /1. is set to the average value of these
is reached (typically two to four sweeps). The convergent®o means.
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Iterations

Fig. 5. Description length, SNR, and the estimatescofand p,

iteration number, for the examples of Fig. 3.

The computational load of the algorithm is, of course, highl
dependent on the image size, on the convergence threshold np; o,

13 14 15 16 17 18 19

versus

a) original

4\

b) o=10

\lif

H

Fig. 6. Natural image: (a) original and three noisy versions with (b)
o = 10.0, (c) ¢ = 20.0, and (d)o = 40.0.

of the inner loop, and on the total number of iterations of
the outer loop(?). From the involved expressions (basically,
(27), (28), (30) and the Gauss—Seidel updates for (26)), a rough

gpver)estimate can be obtained; for &h x N image
~ (15ngs + 25n1cMm + 25)nL. M NQ

(32)
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Fig. 7. Results obtained from the noisy images of Fig. 6; first, second and Iterations

third columns correspond to Fig. 6 (b), (c), and (d), respectively. The first row

contains the images restored by the proposed algorithm, the second row sheigs8. Description length, SNR, and the estimatessofand p, versus
the corresponding discontinuity configurations, and the third row displays theration number, for the examples of Fig. 7.

images resulting from not taking discontinuities into account.

appears for values belo®@ = 6 ~ 9. As mentioned above,

where ny; . denotes the total number dfoating point all tests were performed witly = 0.2499.

operations (FLOP’s), ngs is the number of iterations of
the Gauss—Seidel scheme used to solve (2@} is the
number of iterations spent in the ICM algorithm, amg, the  Fig. 2 presents the original image and three noisy versions
(average) number of inner loop iterations. For typical valuegf it (with ¢ = 10.0,0 = 20.0, ando = 40.0) used in the first
nes = 15,n1em = 4,0 = 5,Q = 20,M x N = 10*, set of experiments. In Fig. 3, the results obtained from these
we getng o, =~ 350 106 = 350 MFLOP’s (millions of noisy images are displayed: the first row shows the final image
FLOP's). On a reasonably fast workstation, this representgstimates obtained by the proposed scheme, while the second
few seconds. row exhibits the corresponding discontinuity configurations;
the images in the third row were obtained without considering
discontinuities (but taking the parameter estimates provided by
the proposed scheme); notice how edges are unduly smoothed.
With the purpose of illustrating the working of the algo-
. ] ) .. rithm, some intermediate image and edge estimates are shown
This section reports a set of experimental results. The_ initial Fig. 4 (the image estimates presented were multiplied by
parameter of the outer loop was always sebgo= 0.35; this 1 /4 {5 have a similar mean gray level). Fig. 5 plots the
value is sufficiently low to assure that the first estimateof o\ q1utions of the description length, the signal-to-noise ratio
is 0. As in any continuation method, the _quahty of the resulgz‘SNR4), and the estimates gf and o versus the iteration
depends strongly o; however, some simple tests showe
that there is no point in going abovg = 15 ~ 20 (see [15]). verage of squares of the original (undegraded) imagesApds tﬁggaverage

Vv_e tOOkQ =19, but very similar results W_OUId be obta|r}e f squares of the difference between the considered image and the undegraded
with, e.g., @ = 16 or Q@ = 20; some serious degradationone [25].

B. Synthetic Images

V. EXPERIMENTAL EXAMPLES

A. Introduction

“The definition used ISNR = 101log o (s2,,/s3;;), wheresZ ;  is the



1098 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 8, AUGUST 1997

—

-
B TEl W
3

e
B Eas

[ =l I

E

‘ I [l '
[ L~
“ nDnl0 NNn |
Fig. 9. Natural images (original versions). (a) Building. (b) Lena. (c) farn = o '

Fig. 10. Example based on the image of Fig. 9(a). (a) Noisy version. (b)
. Restored image. (c) Corresponding edge configuration. (d) Smoothed image
number of the outer loop. Abscissa 0 corresponds to th@ edges considered).

initial values of the description length and SNR (i.e., for
the noisy images), and to the initial estimates «ofand

i+ (obtained as described above). When computing the d
scription length and the SNRg is multiplied by 1/¢ to
cancel the effect of having multipliegg by ¢ and, thus,
obtain meaningful plots; for similar reasons, the plotted valu
of 4 and i are multiplied by 1/¢ and ¢?, respectively.
Note how the SNR in the first iterations is even low
than the SNR of the observed noisy image; this is d
to the fact that the first estimates are oversmoothed

obtained with parameter estimates still far from the fin

values. See also how the first estimates obtained by tﬂg 11. Example based on the image of Fig. 9(b). (a) Noisy version. (b)

algorithm (iteration 1) are quite Qifferent from t_h(_a_iniltial ONESRestored image. (c) Corresponding edge configuration. (d) Smoothed image
this demonstrates robustness with respect to initialization. W@ edges considered).

present a final observation: The continuation procedure does,
in fact, provide a sequence of estimates with decreasing values

of the objective function (the description length), as is appareilievious subsection. Figs. 6-8 report the results obtained; all

in Fig. 5 . _ explanations and comments of the preceding subsection also
The final estimates ot are 10.9, 20.8, and 37.7; thegpn)y 1o these experiments. The final estimates @re now

errors are below 10%, which can be considered as reasonapleg 201 and 35.7: the first two are again good estimates

Underestimation in the higher noise situation is caused Q)ih errors below 10%. Underestimation in the higher noise
saturation effects, i.e., although noise with= 40 was added it ation was already justified in the previous subsection.

to the original image, the result is bounded to the interval [Qegain a good consistency among the theeestimates is
255], and thus the resulting noise has smaller effective Sta”dﬁm)arent.

deviation. The similarity among the final estimates, under the next set of tests uses the natural images of Fig. 9
the three different noise conditions, reveals a good degree(ga“ding Lena, and farm), withy = 20.0. Figs. 10-13

consistency. show the results. The apparent loss of texture is typical of
CGMRF-type priors which are surface models rather than
texture models. Notice also how the images restored with-
The first set of tests with natural images is parallel tout discontinuities are oversmoothed. The plots in Fig. 13
the one performed with synthetic images described in theere obtained as the previous ones; the finakstimates

C. Natural Images
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45 6 7 8 9 [pmu 1213 14

Iterations

TABLE |

SUMMARY OF QUANTITATIVE RESULTS IN TERMS OF SNR

Fig. 12. Example based on the image of Fig. 9(c). (a) Noisy version. (b) Noisy Signal-to-noise ratio (SNR)

Restored image. (c) Corresponding edge configuration. (d) Smoothed image

(no edges considered). image initial | proposed algorithm | without edges
Fig. 2 (b) || 19.8dB 22.5 dB 17.1 dB

are now 20.4, 20.2, and 20.9, respectively, i.e., with errors Fig. 2 (¢) || 13.7 dB 21.1dB 16.3 dB

below 5%. )

Table | summarizes the results in terms of SNR, comparing Fig- 2 (4) | 8.2dB 17.7.dB 16.0 dB
th_e noisy images y\_nth the restore_d images obtained with and Fig. 6 (b) || 24.2 dB 259 dB 23.8 dB
without discontinuities. A conclusion that can be drawn from
these results is that the SNR obtained without considering Fig. 6 (¢) | 18.7dB 24.7 dB 22.6 dB
edges is always worse than the one obtained with the edge- ~—

. . . . o Fig. 6 (d) || 13.1dB 22.7 dB 21.4 dB
preserving technique; sometimes, it is even worse than the
SNR of the noisy image itself. Fig. 10 (a) || 17.8 dB 20.7 dB 18.0 dB
Fig. 11 (a) || 17.2dB 20.4 dB 19.0 dB
D. MAP Estimates Obtained by the MFA Algorithm N
Fig. 12 (a) || 17.6 dB 20.1 dB 17.4 dB

The most closely related edge-preserving image restoration
method is the MAP estimator (see Section IlI-B) with a
linear edge penalty functiod/(h,v) = ~v%;; (hi; + viy),
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Fig. 13. Description length, SNR, and the estimatescoénd p, versus
iteration number, for the examples of Figs. 10-12.

criterion that has to be hand tuned; naturally, with an adequate
as, e.g., in [20], [48], [49], and [56]. This is a nonadaptivehoice of parameters, the results will be extremely close to
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Fig. 14. Results obtained with the (user supervised) MFA algorithm.

those obtained with the proposed adaptive scheme (since &inel ii) no knowledge of the hyperparameters (noise and
underlying prior is the same). This fact was confirmed bgriginal field variances) is required. To deal with the result-
means of the MFA algorithm (as described in [56]) with théng optimization problem, a deterministic continuation-type
noisy images of Figs. 10-12. The trué and the estimated iterative technique was developed.
(by our method): values were used; parametgmwas tuned  Experiments were carried out with synthetic and natural
to yield the best possible results. Fig. 14 shows the resultingages, contaminated by noise with different variances. Our al-
discontinuity configurations and restored images, which aregorithm was able to achieve edge-preserving restoration while
fact very similar to those in Figs. 10-12. The SNR values asimultaneously correctly estimating the noise standard devia-
20.8 dB, 20.3 dB, and 20.0 dB, which are also very close tmn and the global variance of the original field. Particularly
those obtained with our method (see Table I). We stress thakevant are the good noise standard deviation estimates (errors
these results could only be obtained with user interaction aalivays below 10%, sometimes well below 5%) testifying for
not in an unsupervised manner as in the method proposedhr good performance of the technique. The advantage of using
this paper. a discontinuity-preserving approach, over a nondiscontinuity-
preserving one, was evidenced both visually and quantitatively

VI. CONCLUDING REMARKS (in terms of SNR).

In this paper we have introduced a new approach to un-
supervised discontinuity-preserving image restoration using
compound Gauss—Markov random fields and the minimum REFERENCES
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