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Abstract—Discontinuity-preserving Bayesian image restoration
typically involves two Markov random fields: one representing
the image intensities/gray levels to be recovered and another one
signaling discontinuities/edges to be preserved. The usual strategy
is to perform joint maximum a posteriori(MAP) estimation of the
image and its edges, which requires the specification of priors
for both fields. In this paper, instead of taking an edge prior, we
interpret discontinuities (in fact their locations) as deterministic
unknown parameters of the compound Gauss–Markov random
field (CGMRF), which is assumed to model the intensities. This
strategy should allow inferring the discontinuity locations di-
rectly from the image with no further assumptions. However,
an additional problem emerges: The number of parameters
(edges) is unknown. To deal with it, we invoke theminimum
description length(MDL) principle; according to MDL, the best
edge configuration is the one that allows the shortest description
of the image and its edges. Taking the other model parameters
(noise and CGMRF variances) also as unknown, we propose
a new unsupervised discontinuity-preserving image restoration
criterion. Implementation is carried out by a continuation-type
iterative algorithm which provides estimates of the number of
discontinuities, their locations, the noise variance, the original
image variance, and the original image itself (restored image).
Experimental results with real and synthetic images are re-
ported.

I. INTRODUCTION

A. Discontinuity-Preserving Image Restoration and
Compound Gauss–Markov Random Fields

EARLIER approaches to image restoration/reconstruction
used continuity and smoothness restrictions as a means

of overcoming the ill-posed nature of the problem [1], [5], [6],
[51] (see also [17] and the references therein). Independently
of their formal setting (e.g., statistical estimation or regulariza-
tion theory), these methods typically looked for compromises
between fidelity to the observed data and global smoothness;
possible discontinuities in the original images were ignored
and thus not preserved by the restoration/reconstruction proce-
dures. However, discontinuities (edges) are key visual features
[36]; this is testified to by the amount of research dedicated
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de Engenharia Electrotécnica e de Computadores. Instituto Superior Técnico,
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to the edge detection problem, ever since the early days of
digital image processing and computer vision, [5], [25], [36],
[42], [52].

The incorporation of discontinuity1 detection and preserva-
tion into restoration/reconstruction procedures has been pro-
posed by several authors. This perspective, in which image
restoration and discontinuity detection are jointly sought, is
different from edge detection as a separate and autonomous
problem. Some fundamental references that adopt statistical
tools are those of Geman and Geman [21], Marroquin, Mitter
and Poggio [37], Geiger and Girosi [20], Jeng and Woods
[26], [27], and Leclerc [34]; in a nonstatistical framework,
the works of Blake and Zisserman [7], Terzopoulos [50],
Grimson and Pavlidis [22], and Mumford and Shah [40]
are also basic references. Independently of their theoretical
foundations, the majority of these formulations are modifica-
tions of previous techniques; typically,everywhere(continu-
ity/smoothness) constraints are weakened becomingalmost-
everywhereconstraints, the exceptions being at the locations
of discontinuities. A common feature of most approaches to
discontinuity-preserving restoration/reconstruction is that they
lead to very difficult optimization problems; some authors have
advocated the use of stochastic techniques (e.g., [21], [37])
while others have proposed (faster) suboptimal deterministic
schemes (e.g., [7], [15], [20], [34], [56]). In addition to the
optimization issues, and arguably even more important than
these, difficulties in dealing with the involved parameters
also arise.

Building on previous work on Markov random fields
(MRF’s) for Bayesian image restoration (e.g., [6], [21],
[54]), Jeng and Woods have introduced the compound
Gauss–Markov random field (CGMRF) model that allows
for edge-preserving Bayesian restoration with a continuous
(Gauss–Markov)a priori statistical model for the intensity
field together with discrete (binary) hidden edge variables
signaling discontinuities [26], [27]. The commonly adopted
strategy to image restoration using CGMRF’s is to follow
Geman and Geman’s approach [21]: The edge variables
are interpreted as a random field, with some prior, and
joint maximum a posteriori(MAP) estimation is performed.
Typical priors try to penalize edges in a way that depends on

1When dealing with images, or visual surfaces, defined on discrete domains,
the termdiscontinuitymust not be understood in its common mathematical
sense but rather asabrupt change.
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parameters defined in a more or lessad hocmanner [21], [26],
[27], [48], [49], [56]; consequently, the amount of signaled
edges in these methods is highly dependent on the definition of
these priors. Like most edge-preserving restoration techniques,
the use of CGMRF’s leads to a hard optimization problem
(for which stochastic [26] and deterministic [48], [49], [56]
algorithms have been applied) and raises the issue of how to
define the involved parameters.

B. Proposed Approach

1) Locating Discontinuities as a Parameter Estimation
Problem: In CGMRF’s, the edges play the role of parameters;
in fact, if the discontinuities are somehow known, we have
a fully specified CGMRF model. Accordingly, locating the
edges of a CGMRF is equivalent to estimating its parameters
based on a (possibly noisy) observed realization of it.

The discontinuities of a CGMRF are best described by their
locations, since their number is usually by far smaller than the
number of their possible locations; in other words, it is more
natural to write down the locations of a certain discontinuity
set than to specify, for each possible location, the presence
or absence of edge (i.e., a binary variable). Therefore, we
take discontinuity locations as the parameters of the intensity
field prior CGMRF; this is a change of perspective from the
classical formulation of Geman and Geman [21] where the
binary variables are themselves elements of a random field
to be estimated. Locating discontinuities is then formulated
as a parameter estimation problem. The advantage of this
perspective is that it allows inferring the edges directly from
the observed image without assuming any Bayesian prior.
However, it raises a problem: The number of parameters
(discontinuities/edges) is not knowna priori.

2) The Minimum Description Length Approach:Since the
goal is to estimate an unknown number of parameters
(discontinuities), it is impossible to use themaximum
likelihood (ML) criterion. Here, we resort to Rissanen’s
approach: “Take the parameters so that the model they define
allows the shortest representation of the data;” formally, the
representation lengthsare Shannon code lengths, and the
corresponding criterion is theminimum description length
(MDL) principle [43], [44], [46]. It includes ML as a
special case, gives it a coding theoretical meaning, and, more
importantly, it can be used when the number of parameters
is unknown, whereas ML can not [43], [44], [46]. According
to the MDL criterion, the best edge configuration is the one
that allows the shortest description of the image (including
the edge locations).

3) Unsupervised Estimation:In image restoration/recon-
struction problems, only a noisy version of the original image
is observed. However, the optimization problem resulting from
the proposed criterion does depend on the original image,
on the noise variance, and (in addition to the number of
discontinuities and their locations) on the global parameters
of the original CGMRF, which are all unknown. Hence,
these quantities will also be considered as unknowns to be
estimated from the observed image. What we propose is
an MDL-basedunsupervised(also calledadaptive, or blind)

discontinuity-preserving restoration criterion, built upon a
CGMRF model.

4) Implementation of the Proposed Criterion:The result-
ing optimization problem has to be simultaneously solved
with respect to all the above mentioned unknowns. To this
end, we propose an algorithm with two nested loops. The
inner loop is basically an iterative restoration/parameter-
estimation scheme. This type of procedure has been applied by
several authors in different areas, under different names; e.g.,
Mendel’sblock component search algorithm[38], theadaptive
segmentation algorithmof Lakshmanan and Derin [31], [53],
and Besag’s adaptive version of theiterated conditional modes
(ICM) scheme [6] (which we have also previously used
[14]). It is also conceptually related to (and in special cases
coincides with) theexpectation-maximization(EM) algorithm
of Dempsteret al. [10], recently used by several authors for
blind image segmentation and restoration problems [30], [32],
[33], [57]. Under certain conditions, this scheme is shown
to converge to apartial optimal solution(POS) [31], [53].
A POS corresponds to a weaker optimality criterion, when
compared to the original one.

The outer loop of the algorithm is a continuation-type
scheme similar to thesimulated tearingalgorithm we have
proposed in [15]; the function to be minimized is embedded
in a family of functions (depending on a control parameter) of
which the first member is easy to minimize; this minimum
is then tracked along the family (by varying the control
parameter) until the desired solution is reached. By including
the inner loop into the outer continuation-type loop, a sequence
of POS’s of increasing quality (i.e., decreasing values of the
original objective function) is obtained.

The mean field annealing(MFA) algorithm is another con-
tinuation scheme that could be considered for this application
[20], [56]; however, MFA is heavily supported on the inter-
pretation of the edge variables as elements of a random field,
which we are abandoning.

C. Previous Related Work

Leclerc pioneered in using the MDL principle for image
partitioning [34]; the main difference between his work and
ours is that we model the true image as a sample of an MRF
while in [34] it is deterministically modeled as piecewise
polynomial. Keeler uses MDL in an MRF-type context pur-
suing a different goal: to build “complexity”-based priors for
discontinuity configurations [29]. Recently, MDL and related
ideas have seen several applications in the fields of image
processing and computer vision: segmentation [9], [29], [32];
line and curve detection [47]; contour estimation [18]; motion
and displacement segmentation and/or estimation [11], [23],
[59]; and shape description [35].

To the authors’ knowledge, not much has been done in unsu-
pervised restoration using noncausal CGMRF’s. The technique
developed in [49] (and also used in [56]) assumes known noise
variance, fixed edge penalty, and availability of the original
image. In [57], noise and also an unknown blur are considered;
however, the parameters of the original CGMRF and of the
edge field area priori fixed.
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Nadabar and Jain [41] resort tocomputer aided design
(CAD) models of the objects in the scene (assumed avail-
able) to estimate parameters of the discontinuity field; this is
computationally very demanding and not applicable to image
restoration problems.

For other MRF-type models, parameter estimation and/or
unsupervised estimation has been considered in, e.g., [3], [12],
[14], [28], [30]–[32], [53], and [58]. See also [2] for an
elucidative review of some joint image-restoration/parameter-
estimation methods.

D. Paper Overview

In Section II, the set of tools underlying our work is
described; in particular, compound Gauss–Markov random
fields and the MDL principle are briefly reviewed. Section
III formally introduces the proposed approach. The algorithm
designed to implement the estimation criterion is presented
in Section IV. Finally, Section V reports experimental results
obtained with synthetic and natural images, and Section VI
contains some concluding remarks.

II. UNDERLYING TOOLS

A. Compound Gauss–Markov Random Fields (CGMRF)

Let the image
containing real valued pixels, be a sample

of a GMRF
defined on an lattice. The probability density function
(pdf) of is

(1)

where here stands for a vector containing the lexicographi-
cally ordered pixel values, is the inverse of the covariance
matrix (termedpotential matrix[39]), and its determinant
[6]. Since we are in the presence of a Markov field, the
conditional probability densities verify

where is the neighborhoodof pixel [6], [21]. The
Gibbs joint pdf of the MRF can be recognized in (1); for a
GMRF, the neighborhood system and the clique potentials are
completely determined by the potential matrix [39] (see [6] or
[21], for precise definitions).

Proposed by Jeng and Woods [26], [27], (see also [48],
[49], [56]) compound GMRF’s are simply GMRF’s in which
the potential matrix is parametrized by a collection of binary
(0/1) edge variables. Each of these, when set to one, breaks
the direct bond between neighbor pixels. Specifically, let

and
be the

sets of, respectively, horizontal and vertical edge variables.
The probability density function of a zero-mean first-order2

2I.e., in which the neighborhood is the set of four nearest neighbors of
(i; j):Nij = f(i; j�1); (i; j+1); (i�1; j); (i+1; j)g; this is the simplest
CGMRF. Higher order models involve larger neighborhoods; here, without
loss of generality, we consider the first-order case for whichAAA(hhh; vvv) is block
tridiagonal with tridiagonal blocks [39].

CGMRF given edge configuration is (see, e.g., [48],
[49])

(2)

where is the “global smoothness” (i.e., inverse of the “global
variance”) of the CGMRF, while and control its relative
vertical and horizontal “smoothness”. In (2), is the
normalizing constant calledpartition function[21]. It is clear
(in the exponent of (2)) that each difference between neighbor
pixel values is quadratically penalized unless the associated
line variable is set to one. This is the feature of CGMRF’s
that makes them suitable priors for edge preserving Bayesian
restoration.

In vector notation, (2) can be written as

(3)

where the dependence of on parameters and
is not explicitly indicated. The factor multiplying the

exponential in (3) is the reciprocal of thepartition function
, which depends on the edge configuration via

the determinant of the potential matrix
Assume that only a noisy version is observed,

where is a sample of a white Gaussian homogeneous noise
field of variance the probabilistic observation model is then

(4)

The goal of image restoration is to estimate from the
observed Fixing and thea posterioriprobability density
function considering (4) and
(3), is convex with respect to and its maximizer (the MAP
estimate) is simply

(5)

Equation (5) can be solved by any technique suitable for
extremely large but highly sparse and structured matrices (see,
e.g., [17] and references therein).

The condition is sufficient for having
for any i.e., for that in

isotropic models, the ones herein considered,
and the condition is simply Of course, anisotropy
could be considered; however, since here and are
assumed known, there is no point in introducing this additional
complication. Weak membrane-type models lack the

term [20]; as a consequence, matrix is singular
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for many edge configurations. In Bayesian estimation parlance,
becomes animproper(or nonnormalizable) prior [4].

For MAP estimation, this is not a difficulty because
is added to an identity matrix [see (5)]; however, in parameter
estimation problems the partition function (and consequently

must be explicitly used and difficulties emerge.

B. The Usual Approach

As stated above, the common strategy consists in interpret-
ing the edge configuration also as a realization of a random
field and to perform joint MAP estimation of and
given

(6)

(7)

where is the prior probability function of the edge
fields. Going from (6) to (7) relies on the fact thatis only
an observation of i.e. and are
termedhidden fields.

In general, is not explicitly written; instead, a joint
prior is defined. The most common one (see [20],
[21], [26], [27], [48], [56]) is obtained by adding some
discontinuity penalty function to the exponent of (2);
this leads to

(8)

where is the partition function, and the summation is
simply a shorthand (to be used throughout this paper) for the
more detailed notation in (2). Inserting (2) and (8) into Bayes
law, reveals that (8) implicitly
includes the following prior for the edge field:

(9)

The presence of makes the meaning of (9) not at
all obvious since its dependence onand is complex and
unclear; as pointed out in [27], this may not even be an MRF.
Finally, notice that in the sequel we will not write since
edges will be considered as deterministic parameters.

C. The Minimum Description Length Principle (MDL)

MDL is an information-theoretical principle proposed by
Rissanen that allows the generalization of ML estimation to
cases where not only the parameters but also their number are
unknown [43], [44], [46]. The ML estimate of a-dimensional
parameter vector given observation is defined as

(subscript indicates that
a vector is -dimensional). Underlying MDL is a coding
theoretic interpretation of ML estimation. If, based on the
probabilistic model one builds a Shannon-type code,
the length3 of the code word for the observed datais

(10)

with rounding effects neglected [8], [45]. Accordingly, given
observation looking for is the same as looking for
the Shannon-type code in whichhas the shortest code word;
in fact, from (10)

(11)

Of course, it can be argued that only discrete data can have
finite code lengths. However, as Rissanen recently noted [45],
even the negative log of densities can be seen as code lengths;
finite values may be obtained by truncating to finite precision
and replacing the densities with the resulting probabilities.
Abuse of the term “code length” is convenient and harmless,
since the precision itself is not important.

When is unknown, ML cannot be used; the MDL principle
stipulates that one should still look for the shortest description
(code length) of the data, which in fact must also include the
parameters themselves. The total length of the optimal code
for given -dimensional is

where is the code length for a -dimensional
and is the code length for itself (usually a constant,
independent of The MDL estimate of and is then
[after dropping ]

(12)

Notice that, if only depends on then for fixed the
MDL and ML estimates coincide. As a corollary, the MDL
estimate of coincides with its ML estimate given the
MDL estimate of

III. PROPOSEDFORMULATION

A. Discontinuity Locations as Parameters

Examining the CGMRF pdf given by (2) reveals that the
discontinuities/edges play the role of (possibly unknown)
parameters. This perspective avoids (in fact precludes) the
specification of a Bayesian prior for discontinuity estimation,
since we will be interpreting them as deterministic (albeit
unknown). Notice that the true difficulty consists in estimating
the edges; as stated above, ifand (and the other parameters)
are somehow known and fixed, the image estimate is simply
given by (5).

In general, the active (i.e., equal to one) edge variables
are a small minority; then, it is obviously more efficient to
write down their locations than to exhaustively enumerate all

3In bits, if base 2 logarithms are used, or innats, if natural logarithms are
adopted [8].
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binary variables. Formally, let be a
-dimensional parameter vector expressing the locations of

discontinuities; is just a compact description of and
exploiting the fact that only the elements that are equal

to one need to be specified. Each component of is a
triplet with
and indicating that if or, that

if

In words, (resp. is equal to one if and only if there
exists one element of which is equal to (resp.
to To clarify this notation, consider as example
an edge configuration with

and all other
’s and ’s equal to zero; then, and

Now, given that
and we have

(13)

Different description length functions could be obtained if
other ways of encoding the discontinuity configuration were
used (see, e.g., [24], [25]). For example, chain-coding [19],
[25] (as used in [34]) will favor long connected sequences of
discontinuities; this would be a direction to explore.

Finally, notice that since contains the same information
as the pair writing is exactly the same as
writing as given by (2) or (3).

B. The Global Parameters and

Two other parameters play a fundamental role in the prob-
lem at hand: the inverse of the CGMRF variance, and
the noise variance In a realistic setting, these parameters
are unknown and must be estimated from the noisy observed
data. In the sequel, we explicitly include and writing

and to emphasize that they will be
considered unknown parameters.

Parameter is a technical parameter whose only role is
preventing the prior from becoming improper.
As long as we keep the results are practically
independent of In all examples presented in Section V,
we set

C. An MDL Criterion with Incomplete Data

If was directly observed, MDL could be immediately used
by introducing (3) and (13) into (12). Since only a noisy
version of is observed, we use (which is
equal to instead of and
interpret the original image as missing data, in the sense
of [10]. Parameters and could (in principle)
be estimated from thecomplete dataset but only
is observed; also has to be estimated. The criterion then

becomes

(14)

where

(15)

The lengths and are not included, since they are
independent of i.e., with respect to and this is simply
an ML criterion. The criterion (14)–(15) can also be interpreted
as an MDL version of the (Bayesian)joint mode approachto
simultaneous image restoration and parameter estimation [2].

D. The Pseudolikelihood Approximation

Before addressing the issue of solving (14), notice the huge
difficulty in computing (15). The obstacle lies in
as given by (3), which involves the determinant of a very
large matrix This is the well-known problem
of computing the partition function, arising in parameter
estimation in MRF models [3], [6], [31], [53], [57]. Here, we
resort to Besag’s pseudolikelihood approximation [6] which,
omitting the parameters, states that

(16)

Exact formulae proposed in [3], or better approximations,
such as the one presented in [55], can only be applied to
homogeneous fields; CGMRF’s are not homogeneous.

Since is a Gaussian MRF, the conditional pdf’s are also
Gaussian

(17)

where denotes a Gauss function with meanand
variance The local means and variances, and
which obviously depend on (i.e. on and and
are given by

(18)

where and and

(19)
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Introducing (13), (4), and the pseudolikelihood approximation
(16), together with (17), (18) and (19), into (15) leads (after
dropping additive constants and common factors) to

(20)

Some manipulation allows rewriting (20) as

(21)

As a final observation, notice that resorting to the pseudo-
likelihood approximation is not necessary in one-dimensional
(1-D) problems. In 1-D, each discontinuity breaks the potential
matrix into two independent subblocks and the determinant
can be factored into two subdeterminants; as a result, an
exact expression for can be obtained (see [13],
for details). In 2-D, only configurations of discontinuities
which split the image into two disjoint areas lead to a sim-
ilar factorization; this, of course, can not be guaranteed in
general.

IV. I MPLEMENTATION

A. A Weaker Optimality Criterion

The joint minimization (14) is extremely hard to implement;
alternatively, we consider (as in [14]) a weaker criterion, the
partial optimal solution(POS) [31], [53], which is defined as
a joint solution of

(22)

(23)

(24)

(25)

Although POS’s are, of course, not necessarily global minima
of the objective function (21), they are almost always local
minima exhibiting the following obvious properties:

• is the MAP estimate given and

• and are the MDL estimates given and

• is the ML estimate given and

• is the ML estimate given and

It is easy to solve (22), (24), and (25), since
is convex with respect to and

leading to

(26)

(27)

(28)

Recall that stands for and stands for
the pair is equivalent to

It is not possible to obtain a closed-form solution for
(23). Alternatively, we adopt the ICM algorithm; i.e.,

is successively minimized with respect
to each line variable. By computing the difference between
the objective function for and keeping all
other variables constant, we get the decision criterion

otherwise
(29)

where we obtain (30), shown at the bottom of the page, which
is simply a comparison with a threshold depending on a set of
surrounding line variables (an analogous criterion is obtained
for each Notice that we were led to edge interactions, not
explicitly includeda priori, but rather implicitly contained in
the partition function of the CGMRF.

B. Algorithm

The proposed algorithm is composed of two nested loops.
The inner loop is basically an iterative restoration/parameter-
estimation scheme. Formally, it consists in cyclicly solving
(22)–(25). As shown in [14] and [53], the only stationary
points of this scheme are POS’s; more specifically, they
are POS’s where (22), (24), and (25) are global maxima
[see (26)–(28)], while (23) is a coordinate-wise maximum
(characteristic of ICM). The order by which (22)–(25) are
solved is irrelevant to this fact; nevertheless, different orders
can lead to slightly different POS’s. Experimentally, we found
that these differences are negligible.

(30)
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Fig. 1. Structure of the proposed algorithm.

The outer loop is a continuation-type scheme similar to the
simulated tearingalgorithm we have proposed in [15]. The
function to be minimized is embedded into
a family

(31)

indexed by the control parameter The family members are
defined by i.e.,
by multiplying the observed image by For we
clearly have thus is an empty (zero-dimensional)
vector, and we only have to solve (22), (24), and (25), by
applying (26)–(28), which are global maxima (in the POS
sense) easy to obtain. These solutions are then tracked by
slowly varying up to i.e., up to the original
objective function As will be seen in
the experiments presented ahead, this continuation scheme
provides a sequence of POS’s of increasing quality, i.e.,
decreasing values of the objective function.

The complete structure of the algorithm is depicted in Fig. 1.
Equation (26) is solved with the Gauss–Seidel method [17].
The ICM scheme used to solve (23) consists in cyclicly apply-
ing (29) to all edge variables until a stationary configuration
is reached (typically two to four sweeps). The convergence

Fig. 2. Synthetic image: (a) original and three noisy versions with (b)
� = 10:0, (c) � = 20:0, and (d)� = 40:0.

Fig. 3. Results obtained from the noisy images of Fig. 2; first, second and
third columns correspond to Fig. 2 (b), (c), and (d), respectively. The first row
contains the images restored by the proposed algorithm, the second row shows
the corresponding discontinuity configurations, and the third row displays the
images resulting from not taking discontinuities into account.

condition of the inner loop is verified when the differences
between consecutive estimates ofand both fall below
some threshold (2% in all examples presented ahead); of
course, the number of iterations spent in the inner loop
is highly dependent on this threshold. Parameterevolves
linearly according to
where is the iteration number of the outer loop (starting at

and going up to is the initial value, and
is the total number of iterations of the outer loop; clearly, for

we have
Initial estimates of and are obtained by the following

ad hocprocedures. The initial estimate of is taken as the
variance of the difference between the observed image and
a median filtered version of it. Concerning i) horizontal
and vertical first-order difference images are obtained from the
noisy image; ii) these images are squared and median filtered;
iii) the means of the two images are computed; iv) finally,
the initial estimate of is set to the average value of these
two means.
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Fig. 4. Some image estimates (with the gray levels multiplied by1=�) and associated edge configurations obtained along the algorithm for the indicated
values of parameter�; from the noisy image of Fig. 2 (c). The final estimate corresponds to� = 1:0:

Fig. 5. Description length, SNR, and the estimates of� and �; versus
iteration number, for the examples of Fig. 3.

The computational load of the algorithm is, of course, highly
dependent on the image size, on the convergence threshold

Fig. 6. Natural image: (a) original and three noisy versions with (b)
� = 10:0, (c) � = 20:0, and (d)� = 40:0.

of the inner loop, and on the total number of iterations of
the outer loop From the involved expressions (basically,
(27), (28), (30) and the Gauss–Seidel updates for (26)), a rough
(over)estimate can be obtained; for an image

’ (32)
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Fig. 7. Results obtained from the noisy images of Fig. 6; first, second and
third columns correspond to Fig. 6 (b), (c), and (d), respectively. The first row
contains the images restored by the proposed algorithm, the second row shows
the corresponding discontinuity configurations, and the third row displays the
images resulting from not taking discontinuities into account.

where ’ denotes the total number offloating point
operations (FLOP’s), is the number of iterations of
the Gauss–Seidel scheme used to solve (26), is the
number of iterations spent in the ICM algorithm, and the
(average) number of inner loop iterations. For typical values,

we get ’ MFLOP’s (millions of
FLOP’s). On a reasonably fast workstation, this represents a
few seconds.

V. EXPERIMENTAL EXAMPLES

A. Introduction

This section reports a set of experimental results. The initial
parameter of the outer loop was always set to this
value is sufficiently low to assure that the first estimate of
is 0. As in any continuation method, the quality of the results
depends strongly on however, some simple tests showed
that there is no point in going above (see [15]).
We took but very similar results would be obtained
with, e.g., or some serious degradation

Fig. 8. Description length, SNR, and the estimates of� and �; versus
iteration number, for the examples of Fig. 7.

appears for values below As mentioned above,
all tests were performed with

B. Synthetic Images

Fig. 2 presents the original image and three noisy versions
of it (with and used in the first
set of experiments. In Fig. 3, the results obtained from these
noisy images are displayed: the first row shows the final image
estimates obtained by the proposed scheme, while the second
row exhibits the corresponding discontinuity configurations;
the images in the third row were obtained without considering
discontinuities (but taking the parameter estimates provided by
the proposed scheme); notice how edges are unduly smoothed.

With the purpose of illustrating the working of the algo-
rithm, some intermediate image and edge estimates are shown
in Fig. 4 (the image estimates presented were multiplied by

to have a similar mean gray level). Fig. 5 plots the
evolutions of the description length, the signal-to-noise ratio
(SNR4), and the estimates of and versus the iteration

4The definition used isSNR = 10 log
10 (s

2
orig=s

2
dif

); wheres2orig is the
average of squares of the original (undegraded) image ands

2
dif

is the average
of squares of the difference between the considered image and the undegraded
one [25].
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Fig. 9. Natural images (original versions). (a) Building. (b) Lena. (c) farm.

number of the outer loop. Abscissa 0 corresponds to the
initial values of the description length and SNR (i.e., for
the noisy images), and to the initial estimates ofand

(obtained as described above). When computing the de-
scription length and the SNR, is multiplied by to
cancel the effect of having multiplied by and, thus,
obtain meaningful plots; for similar reasons, the plotted values
of and are multiplied by and respectively.
Note how the SNR in the first iterations is even lower
than the SNR of the observed noisy image; this is due
to the fact that the first estimates are oversmoothed and
obtained with parameter estimates still far from the final
values. See also how the first estimates obtained by the
algorithm (iteration 1) are quite different from the initial ones;
this demonstrates robustness with respect to initialization. We
present a final observation: The continuation procedure does,
in fact, provide a sequence of estimates with decreasing values
of the objective function (the description length), as is apparent
in Fig. 5.

The final estimates of are 10.9, 20.8, and 37.7; the
errors are below 10%, which can be considered as reasonable.
Underestimation in the higher noise situation is caused by
saturation effects, i.e., although noise with was added
to the original image, the result is bounded to the interval [0,
255], and thus the resulting noise has smaller effective standard
deviation. The similarity among the final estimates, under
the three different noise conditions, reveals a good degree of
consistency.

C. Natural Images

The first set of tests with natural images is parallel to
the one performed with synthetic images described in the

Fig. 10. Example based on the image of Fig. 9(a). (a) Noisy version. (b)
Restored image. (c) Corresponding edge configuration. (d) Smoothed image
(no edges considered).

Fig. 11. Example based on the image of Fig. 9(b). (a) Noisy version. (b)
Restored image. (c) Corresponding edge configuration. (d) Smoothed image
(no edges considered).

previous subsection. Figs. 6–8 report the results obtained; all
explanations and comments of the preceding subsection also
apply to these experiments. The final estimates ofare now
11.0, 20.1, and 35.7; the first two are again good estimates,
with errors below 10%. Underestimation in the higher noise
situation was already justified in the previous subsection.
Again, a good consistency among the threeestimates is
apparent.

The next set of tests uses the natural images of Fig. 9
(building, Lena, and farm), with Figs. 10–13
show the results. The apparent loss of texture is typical of
CGMRF-type priors which are surface models rather than
texture models. Notice also how the images restored with-
out discontinuities are oversmoothed. The plots in Fig. 13
were obtained as the previous ones; the finalestimates
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Fig. 12. Example based on the image of Fig. 9(c). (a) Noisy version. (b)
Restored image. (c) Corresponding edge configuration. (d) Smoothed image
(no edges considered).

are now 20.4, 20.2, and 20.9, respectively, i.e., with errors
below 5%.

Table I summarizes the results in terms of SNR, comparing
the noisy images with the restored images obtained with and
without discontinuities. A conclusion that can be drawn from
these results is that the SNR obtained without considering
edges is always worse than the one obtained with the edge-
preserving technique; sometimes, it is even worse than the
SNR of the noisy image itself.

D. MAP Estimates Obtained by the MFA Algorithm

The most closely related edge-preserving image restoration
method is the MAP estimator (see Section III-B) with a
linear edge penalty function
as, e.g., in [20], [48], [49], and [56]. This is a nonadaptive

Fig. 13. Description length, SNR, and the estimates of� and �; versus
iteration number, for the examples of Figs. 10–12.

TABLE I
SUMMARY OF QUANTITATIVE RESULTS IN TERMS OF SNR

criterion that has to be hand tuned; naturally, with an adequate
choice of parameters, the results will be extremely close to
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Fig. 14. Results obtained with the (user supervised) MFA algorithm.

those obtained with the proposed adaptive scheme (since the
underlying prior is the same). This fact was confirmed by
means of the MFA algorithm (as described in [56]) with the
noisy images of Figs. 10–12. The true and the estimated
(by our method) values were used; parameterwas tuned
to yield the best possible results. Fig. 14 shows the resulting
discontinuity configurations and restored images, which are in
fact very similar to those in Figs. 10–12. The SNR values are
20.8 dB, 20.3 dB, and 20.0 dB, which are also very close to
those obtained with our method (see Table I). We stress that
these results could only be obtained with user interaction and
not in an unsupervised manner as in the method proposed in
this paper.

VI. CONCLUDING REMARKS

In this paper we have introduced a new approach to un-
supervised discontinuity-preserving image restoration using
compound Gauss–Markov random fields and the minimum
description length principle. The main features are that i) no
Bayesian prior concerning the edges/discontinuities is needed

and ii) no knowledge of the hyperparameters (noise and
original field variances) is required. To deal with the result-
ing optimization problem, a deterministic continuation-type
iterative technique was developed.

Experiments were carried out with synthetic and natural
images, contaminated by noise with different variances. Our al-
gorithm was able to achieve edge-preserving restoration while
simultaneously correctly estimating the noise standard devia-
tion and the global variance of the original field. Particularly
relevant are the good noise standard deviation estimates (errors
always below 10%, sometimes well below 5%) testifying for
the good performance of the technique. The advantage of using
a discontinuity-preserving approach, over a nondiscontinuity-
preserving one, was evidenced both visually and quantitatively
(in terms of SNR).
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