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Sequential and Parallel Image Restoration:
Neural Network Implementations

Mirio A. T. Figueiredo

Abstract—Sequential and parallel image restoration algorithms
and their implementations on neural networks are proposed in
this paper. For images degraded by linear blur and contami-
nated by additive white Gaussian noise, maximum a posteriori
(MAP) estimation and regularization theory lead to the same
high dimension convex optimization problem. The commonly
adopted strategy (in using neural networks for image restoration)
is to map the objective function of the optimization problem
into the energy of a predefined network, taking advantage of its
energy minimization properties. Departing from this approach,
we propose neural implementations of iterative minimization
algorithms which are first proved to converge. The developed
schemes are based on modified Hopfield networks of graded
elements, with both sequential and parallel updating schedules.
An algorithm supported on a fully standard Hopfield network
(binary elements and zero autoconnections) is also considered.
Robustness with respect to finite numerical precision is studied,
and examples with real images are presented.

1. INTRODUCTION

A. Image Restoration

MAGE restoration is an inverse problem which aims at

recovering an image from an observed degraded version
of it. The degradation mechanism is closely related to the
physical process involved. Typical examples are: finite resolu-
tion of sensor arrays, motion blur caused by sensor or object
movements during acquisition, refraction, multipath, and out-
of-focus blur. The acquired images are also contaminated by
noise, the nature of which depends on the particular problem
at hand.

Since the obtained images are not unique and/or do not
depend continuously on the observed data, image restoration
is in general an ill-conditioned or even ill-posed problem
[1]-[4]. Bayesian estimation and the regularization approach
are two of the classical formulations where a priori informa-
tion/constraints are incorporated in order to deal with such
difficulty. Independently of their conceptual background, both
lead to very large dimension optimization problems [1]-[3],
[5IH71

In this paper we will consider the observed image y as a
linearly transformed (for example, blurred) and noisy version
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of the original image x

y=Bx+n (€))
where B is a matrix modeling the linear observation, and
n is a white Gaussian noise (WGN) vector with covariance
matrix o21. In (1), images are represented by vectors obtained
by the usual process of lexicographically ordering the image
pixels. The exact dimensions of vectors x, y, and n, and of
matrix B, depend on the particular problem under study; if (1)
resulted from the discretization of a continuous formulation of
the observation model, then y is usually of slightly smaller
dimension than x [1]. Vectors x and y can also be considered
as having very different dimensions, as is typical in tomo-
graphic imaging, radio astronomy, electron microscopy, and
other applications [8]-[10}. The ill-conditioned or ill-posed
nature of the problem reveals itself in this vector formulation
by the fact that matrix B may have very small singuiar values,
its inversion (or pseudoinversion in the case of nonsquare B)
being then highly noise-sensitive.

Consider the original image x (M x N pixels) as a sample
of a zero mean Gauss-Markov random field (ZMGMRF),
with covariance matrix A. The maximum a posteriori (MAP)
estimation criterion corresponding to the above assumptions
yields the following minimization problem:

1
% = argmin E(x) with E(x) ExTCx - bTx. ()
In 2), Cis a MN x M N symmetric positive definite (PD)
matrix, with strictly positive diagonal elements, [6], [11], and
b is a M N-dimensional vector, defined, respectively, by

C=A"1+ iZBTB, and b= izBTy. 3)
4 o
The minimization problem expressed in (2) is equivalent to the
linear system of equations Cx = b, this emphasizing the fact
that its solution involves the inversion of matrix C. In fact,
since C is a PD matrix, E(x) is convex, and its minimizer can
be found simply by solving VE(x) = 0, which is equivalent
to Cx = b. Notice also that X = C~1b, with C and b as
given in (3), is the optimal Wiener estimate of the original
image [1], (7], [12]. An equivalent optimization problem can

be derived by using a regularization approach [3], [4], [6], [7].

B. Image Restoration Using Neural Networks

The Hopfield network is a neural structure which has been
used to deal with optimization problems [13], [14]; it is briefly
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described in Appendix A, with emphasis put on its optimiza-
tion properties. Mapping of the function to be minimized into
the network’s energy function (see Appendix A) to exploit
its energy descent ability is the common strategy. In the
field of image (and signal) restoration, recent publications
have suggested Hopfield and Hopfield-like networks applied
to the minimization problems involved {11], [15}-[18]. Neural
structures. have also been proposed in other areas of image
processing and computer vision such as stereo matching [19],
[20], edge detection [21], image segmentation [22], [23], and
surface reconstruction [24]. Main research issues have been
the representation scheme [25], i.e., how to represent the
image gray levels on a binary network, and the condition of
nonnegative autoconnections (see Appendix A) necessary to
invoke Hopfield’s convergence results. None of the mentioned
work, however, reached a fully standard Hopfield network
with binary elements, threshold-based updating rule, and zero
(or at least nonnegative) autoconnections. In this paper, a
new approach is followed: Instead of mapping the function
to be minimized into the energy of a predefined network,
neural implementations of iterative restoration schemes are
studied.

Zhou, et al. [18] introduced image restoration based on a
Hopfield network in which the image pixels are coded by the
sum of a set of binary (0 or 1) elements. This type of repre-
sentation scheme, proposed by Takeda, et al. [25] and referred
to as bit-density coding (BDC), has the important advantage
of being fault-tolerant, since many different configurations
can represent the same solution [25]. However, if used as in
[18], it leads to negative autoconnection weights, this meaning
that energy descent is not guaranteed; an additional energy
reduction check-step, which is an ad hoc and time consuming
solution, has to be used.

Paik, er al. [16] suggested a modified Hopfield network
of discrete valued neurons with nonzero autoconnections,
with two updating schemes (one sequential and the other
parallel) which were proved to converge. More recently, the
same authors extended their work [11] by proposing another
modified Hopfield network with a different updating rule,
based on which several restoration algorithms are implemented
and studied in terms of convergence properties.

In another direction, Abbiss, ef al. [15] and Yeh, et al. [17]
introduced Hopfield-like networks of binary elements with a
modified updating rule using two threshold levels, instead of
one. This modification guarantees energy descent, even with
negative autoconnections (as is their case), at the cost of
slightly more complex elements.

Still in [15], Abbiss, er al. suggest a network of graded
elements. Their structure implements a restoration scheme
with previously known convergence properties (the Gerchberg-
Papoulis algorithm [26]). The issues of numerical precision
and convergence acceleration are raised although not quanti-
fied.

C. Proposed Approach

As said before, the present work explores the following ap-
proach: Instead of mapping the function to be minimized into

the energy of a predefined network, neural implementations
of iterative restoration schemes are developed. The adopted
algorithms are suitable for distributed implementation, the
key feature being that the updating of each element depends
only on local information [6]. This constriction rules out any
algorithm in which a global parameter has to be determined,
e.g., the step size of gradient descent methods which are
best suited for other types of structures (see, for example,
27D.

It should be pointed out that the referred restoration cri-
terion and image model are simplistic; all the necessary
parameters (matrices A and B, and the noise variance o?)
are considered known, which is seldom true in real cases.
However, iterative algorithms with simultaneous parameter
estimation (e.g., the expectation-maximization (EM) algorithm
[281-{30]) usually involve a step in which an image es-
timate (given the current parameter estimates) is required;
the neural algorithms proposed in this paper can thus be
included as an intermediate step of a more sophisticated
restoration scheme. Reconstruction techniques which aim at
simultaneously detecting and preserving the discontinuities
of the original image also include an intermediate step in
which a quadratic problem similar to (2) has to be solved
[31], [32]. Again, the schemes proposed in this paper can be
imbedded into a more complex algorithm, as we have proposed
in [31].

An outline of the paper is next presented:

« In Section II, we describe a general class of iterative
methods along with convergence criteria. Neural im-
plementations of two instances of this class are then
introduced. The first is the well-known Gauss-Seidel
algorithm; we show that, for the problem under study,
convergence is guaranteed. The second is a modification
of the Jacobi algorithm motivated by the observation that
the original version cannot be guaranteed to converge.
This last scheme leads to a network in which all elements
update their state simultaneously. Both structures are
Hopfield-type networks of graded elements.

» Section III considers a standard Hopfield neural network
of binary elements with zero autoconnections. This net-
work implements a unit-step version of the Gauss-Seidel
algorithm. As in [11] and [18], bit-density coding (BDC)
is used (i.e., each image pixel is represented by the
sum, or average, of a set of binary elements) but in a
fundamentally different manner: each subset representing
a given pixel is interconnected in such a way that it au-
tomatically evolves towards the BDC representation. The
resulting structure is a fully-standard Hopfield network
with convergence guaranteed by the fact that it has zero
autoconnections.

» A study of the errors associated with finite numerical
precision is performed in Section IV. We show that
these errors (with respect to what would be obtained
by using infinite precision) depend not only on the
numerical resolution used, but also, as expected, on the
characteristics of matrix C.

« Finally, Section V presents simulation results while Sec-
tion VI contains some concluding remarks.
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II. IMAGE RESTORATION ALGORITHMS: IMPLEMENTATION
ON MODIFIED HOPFIELD NEURAL NETWORKS

A. A General Class of Iterative Schemes

Under the assumptions of the previous section, image
restoration involves the minimization of a huge dimension
quadratic form

% = argmin E(x) with E(x) = %xTCx - bf'x. @

which can be achieved by solving the linear system of equa-
tions Cx = b. The dimensionality of this system (M N xMN,
fora M x N pixels image) strongly demands iterative schemes,
since any direct inversion is out of the question.

A known family of iterative schemes is obtained by splitting
matrix C into C = G — H [33], [34]. This leads to the
equivalent system Gx = Hx + b which (assuming that G~}
exists) suggests the iteration

Gx(n+1)=Hx(n)+b )
or equivalently

x(n+1) = G~H(Hx(n) + b)
= x(n) — G7}(Cx(n) — b) ©®

starting with some initial condition x(0) [33], [34]. Matrix G
should be chosen so that it is easily invertible (e.g., diagonal or
triangular) and to guarantee convergence towards the solution.
Defining the error vector e(n) = x(n) — C~!b, it follows that
e(n) = (G~1H)" e(0); therefore, iteration (6) converges if
and only if matrix M = G~'H is convergent [33], [34], i.e.
lim (G™'H)" = 0. @)
n—oo
A given matrix M is convergent if and only if p(M) < 1,
where p(M) stands for the spectral radius of M, i.e., its largest
absolute eigenvalue [33], [34]. The rate of convergence of such
algorithms is defined as

R=—-logp(G™'H) ®)
and verifies
log || e(n) [l2< log || e(0) [|> ~nR ©

meaning that the logarithm of the error has an upper bound
which decreases linearly with time slope R [34]. In (9), the
notation || - ||2 stands for the Euclidean vector norm.

The two networks that will be introduced in this section
to implement instances of the iterative scheme (6) have a
common structure, which is depicted in Fig. 1. Each element
is characterized by its state z;(t) and computes its fotal input
(TT) u;(¢t) which is a weighted (by the interconnection matrix)
sum of the states of all other elements, plus a bias input I;.
When its turn arrives (this depending on the particular visiting
schedule being used) the element updates its state as a function
of its TIL, its bias input, and (possibly) of its previous state

z;(t + 1) = fluilt), L, z:(2)).

Bias inputs
P

Umn

Interconnection matrix

= 1

Fig. 1.
elements.

General structure of the modified Hopfield network of graded

B. Sequential Algorithm

Taking matrix G as the lower triangular part of C yields
the Gauss-Seidel algorithm [33], [34]. Iteration (6), for this
choice of G, can be written explicitly as

z;(n+1)
1 j=i-1 j=MN
= |bi- S Cymiln+1) = Y Cizi(n)
" i=1 j=i+l

(10)

fori=1,2,...,MN and n = 1,2,..., since when z;(n + 1)
is being computed, all new components of x(n + 1), up to
z;_1(n + 1), are already known [34].

In the sequel, we will use a different time variable ¢
which is incremented every time a component is updated.
The Gauss-Seidel algorithm is implemented by the following
neural structure and updating scheme [35]:

Network 1: Define a network of M N real valued elements
{z; € R, i« = 1,2,...,MN}, each assigned to one
image pixel. Let W;; = —C;;/Cy; be the interconnection
strength between elements i and j, and I, = b/Cj;
be the bias input to element i. Let a cyclic sequential
visiting schedule to the elements be adopted, ie., i =
1,2,3,...,MN,1,2,...,MN,1,..., and the network be
initialized with any finite state. At time ¢, an element i,
chosen according to the visiting schedule, updates its state
according to

MN
.’I)i(t+ 1) = wi(t) +ui(t) with u,(t) = Z W,‘j(l?j(t) + I

7=1

an
We stress the fact that the iteration variable ¢ used in (11)
is not the same as the variable n used in (10); one n step
in (10) is equivalent to a full sweep over all the elements
of the network (M N steps with ¢). To prove convergence,
we invoke the known fact that the Gauss-Seidel algorithm
converges if the system matrix is positive definite (PD) and
has positive diagonal elements [33], [34]. As matrix C verifies

this conditions, convergence is guaranteed.
To gain some further insight into the iterative process
defined by (11), and to try to loosen the strict schedule
imposed, we now look at it from the energy (function E(x) is
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usually called energy) descent point of view, using an approach
that can be found in [33]. Each iteration of the form (11)
specifies a new value z;(t + 1) which is such that the ith
equation of system Cx = b is satisfied. But since system
Cx = b is equivalent to VE(x) = 0, its ith equation is
equivalent to

OE(x)
6:1,‘1‘

= ViE(x) =0.

This means that z;(t + 1) is the value that yields the lower
possible E(x), under the constraint that only the 7th coordinate
of vector x can be changed. Two cases have to be considered.
If, at the current position x(t), for at least one coordinate z;,
V;E(x) # 0, one updated value z;(¢ + 1) will be different
from z;(t), and so E(x(¢t + 1)) < E(x(t)). Suppose now
that at the current position x(t), V;E(x(t)) = 0 for all s;
this is equivalent to stating that all equations of the system
Cx = b are satisfied, and so x(¢) is its (unique) solution. In
conclusion, from an energy reduction point of view, Network
1 proceeds by minimizing F(x) successively with respect to
each visited coordinate. These considerations also make clear
that the visiting schedule has no influence on the convergence
of the algorithm, as long as no coordinate is left out.

Observe that W;; = —1 (for all ¢). Thus, the updated value
z;(t + 1) does not depend on z;(t), i.e., the adopted scheme
naturally leads to a network which behaves like having zero
autoconnection weights. This is made clear if (11) is rewritten
as

MN
Ti(t+ 1) = wi(t) with us(t) = Y Wyz;(t) + L (12)
i=1

in which the new weights Wi’j are defined as

Wy o« i#
Wif”{o < i=j (13

Next, we describe relations between the neural algorithm
just presented and some previous work:

* Network 1 has some similarity with the one proposed
by Paik, et al. [11], [16]. There are, however, some
fundamental differences that should be noted. Unlike in
the network of Paik, et al., which uses unit-steps, the
updating rule of Network 1 as given by (11) or (12)
is optimal in the sense that the new value is the one
that yields the maximum possible energy reduction, given
that only one element is allowed to change. Thus, when
compared to Network 1, the network of [16] progresses
with much slower unit steps. Another difference is that
instead of continuous-valued neurons, [16] has adopted
discrete valued neurons. Our perspective is that this
aspect (the discrete nature of the elements) should be
included in the numerical analysis of the algorithm. In
other words, a discrete valued version of an algorithm
is nothing more than its implementation using finite
numerical precision, the effect of which will be studied in
Section IV. Furthermore, [16] considers bounded values.
This restriction, however, does not need to be considered

when convergence is being analyzed, since the Gauss-
Seidel algorithm is a coordinatewise contraction iteration
(i.e., it always moves closer to the solution) [33]. So, as
long as the solution vector has all the components inside
the bounds, this characteristic is irrelevant with respect to
convergence of any contraction iteration.

¢ Under the zero mean Gauss-Markov random field, linear
blur, and additive white Gaussian noise assumptions,
Besag’s iterated conditional modes (ICM) algorithm [5]
is equivalent to the Gauss-Seidel scheme, as we observed
in [6]. A relation between ICM and the iterative solution
of a system of equations was already recognized in [5],
although no use was made of it to study convergence.

C. Parallel Algorithm

The distributed structure of neural networks is fully ex-
ploited if, instead of updating just one element at each step,
all elements change state simultaneously. To obtain a parallel
algorithm, matrix G is taken as a diagonal matrix

G:diag{el,EQ,...,eMN}. (14)

Tterative scheme (6), with G as given by (14), is neurally
implemented as next described [35]:

Network 2: Define a network of M N real valued elements
{z; € R, i = 1,2,...,MN}, each assigned to one image
pixel. Let H;; = —C;; /e; be the interconnection weight between
elements ¢ and j, and J; = b; /e, be the bias input to element ¢. At
each iteration ¢, all elements update their states simultaneously,
according to

MN
Ti(t+1) =z(t) +ui(t) with w(t)=) Hyz;(t) + J.
=1
' (15)
Sufficient convergence conditions on the parameters ¢; are
given by the following theorem (which is proved in Appendix
B):
Theorem 1: Let Cx = b be the system to be solved. Iteration
(6), with G as given by (14), i.e., the iterative process defined
by (15), converges if

1 MN
>3 ; |Cijls Yizt,.mn- (16)

If matrix C verifies the diagonal dominance conditions

1 My
Cii > 53 1Cy| an
j=1
or equivalently, since C;; > 0
MN
Ci> Y. |Cyl (18)
J=1, j#i

then the Jacobi algorithm (obtained with G = diag(C))
converges and can be used [33], [34]. However, the diagonal
dominance condition on C cannot be guaranteed a priori. This
observation suggested replacing diag(C) by G as given by
(14).
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To study the effect of parameters €; on the convergence rate,
let us consider the simpler case ¢; = €, 4 = 1,2,...,MN,
that is G = eI (known as Richardson’s method [33]) for
which convergence condition (16) reduces to ¢ > p(C)/2
(see Appendix B). It can be shown (see [34]) that the best
convergence rate is obtained with

c=¢ — /\max(C) + )\min(c) _ p(C) (
~opt= 2 T2
a9

In (19), Amin(C) and Amax(C) stand respectively for the
minimum and maximum eigenvalues of matrix C; since C is
positive definite (PD), Amin(C) and Amax(C) are positive and
Amax(C) = p(C). Still in (19), £(C) = Amax(C)/Amin(C)
stands for the condition number of C; this is the commonly
used measure of the numerical difficulty of inverting a ma-
trix [33], [34] (larger condition numbers correspond to more
difficult matrices). By looking at (19) we can conclude that
if C is very well conditioned, i.e., Amin(C) ~ p(C), it is
advantageous to increase € up to eopy ~ p(C). If not, ie.,
Amin(C) < p(C), then eop¢ ~ p(C)/2 and the convergence
rate cannot be much increased.

In [16]), a different parallel algorithm intended to solve the
same problem was presented. Its convergence proof is based
on the condition C;; > p(C), for all diagonal elements C;; of
matrix C [16]. However, it can be shown that C;; < p(C), for
i=1,2,..., MN, for any PD matrix, as is the case of C. To
prove this, notice that since C is PD, and using the definition
of matrix norm induced by the Euclidean vector norm (which
in the particular case of real symmetric matrices coincides
with the spectral radius) [33], [34]

p(C) =|IC|l, = (X {x"Cx} >elCe; =Cii  (20)
x||2=

<)

for all i, where e; is a vector with a 1 in position ¢ and zero
elsewhere, which clearly satisfies || e; ||2= 1. So the condition
imposed in [16] is never verified (except for the trivial diagonal
matrix) and the presented theorem cannot be used to assure
convergence.

We now present a different implementation of the algorithm
of Network 2, which can be considered if certain conditions
are verified. If the underlying Gauss-Markov random field is
assumed stationary with free boundary conditions, then matrix
A-1 is block Toeplitz [36]. If matrix BTB is also block
Toeplitz (which is the case if the blur mechanism can be
written as a convolution) then matrix C is block Toeplitz and
the iterative process of Network 2, with G equal to €I, can be
written as a successive convolution

x(t+1) = x(t) + (x(t) xh) + g 1)

where * stands for 2D convolution and h is a convolution
kernel easily obtainable from H. Iteration (21) can be imple-
mented on convolution oriented image processing hardware,
as depicted in Fig. 2.

III. SEQUENTIAL ALGORITHM: IMPLEMENTATION
ON A STANDARD HOPFIELD NEURAL NETWORK

The two networks described, if implemented in hardware,
require a special purpose design. The structure we introduce

Observed
image

y

Image memory

x(t)*h + x(t)

Fig. 2. Convolution-oriented implementation of the parallel algorithm of
Network 2.

in this section, being standard, can be implemented on any
general purpose neural architecture able to be configured as
a Hopfield network of binary elements (there are now optical
implementations of the Hopfield network which can be used
if very fast operation is required [37]-{40]).

To obtain a standard binary Hopfield network a coding
scheme has to be used. In this paper, we adopt the bit
density coding (BDC) scheme in which each element of x
is represented by the average of a set of L binary elements

L
zi(t) = %Zfij(t), for i =1,2,...,MN (22)
=1

where f;; € {0,1}, as proposed by Takeda, et al. [25], and
adopted by Zhou, et al. [18] for image restoration. Each
z; can take values in a discrete and bounded set, z; €
{0,%,2,...,1}. As we have observed in Section II, the
bounded nature of the available set of values poses no con-
vergence problems as long as the solution vector coordinates
belong to the interval [0, 1]; choosing other bounds is simply
a matter of renormalization. The discrete nature of the set
of values has numerical precision implications that will be
studied in the next section.

A. An Auxiliary Subnetwork

Let us now introduce an interconnected set of binary ele-
ments that “knows” how to evolve towards a BDC represen-
tation of its input. Its structure has some resemblance to the
Hamming network [14].

Network 3: Assume a standard Hopfield network of L binary
elements {f; € {0,1}, ¢=1,2,...,L}. Let the autoconnection
weights be zero and all other interconnection weights be equal to
~1/L. All elements have a common bias input of b —1/(2L).
Assume that b € [0,1] and that the standard Hopfield updating
rule (see Appendix A) is followed.

Let R(x) stand for the operator that yields the nearest
integer to its argument z. If z = n 4 0.5, n being an integer,
then take R(z) = n. The behavior of Network 3 is described
by the next theorem (which is proved in Appendix C).
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From other elements

I; (bias input)

Continuous - valued element

To other elements

Fig. 3. Continuous valued elements of Network 1.

Theorem 2: Network 3 evolves until exactly R(bL) elements
are in state 1.

Network 3 is thus an automatic BDC calculator which is
used as a building block of the complete Hopfield network we
are proposing for image restoration.

B. The Proposed Network

The complete binary network is built by replacing each
continuous element z; of Network 1, represented in Fig. 3, by a
subnet equal to a full Network 3 {f;;, 7=1,2,...,L}, with
each z; represented as in (22). In formal terms, the network
is defined as follows:

Network 4: Define a network of M N L binary valued ele-
ments {f;; € {0,1}, ¢ = 1,2,...,MN, j = 1,2,...,L}.
Let T;; w1, the interconnection weight between elements (75) and
(kl), be given by

0 & i=kandj=1,
Tjmu=4q -1/L < i=kandj#l, (23)
Wu/L < i#k

and the bias input to element (¢j) be H;; = I, — 1/(2L), where
I; and W, are as given in Network 1. The network is initialized
with any state and follows the standard Hopfield updating rule
(see Appendix A).

Observe that convergence is guaranteed by the fact that the
autoconnections are zero. The total input to each element can
be divided into two parts, ui;(t) = uf(t) + ul;(t), the first
one from outside its own subset, and the second one from its
own subset. The external part is given by

MN L
ufi(t) = Z ETij,klfkl(t) + Hy;

k=1 l=1

ki
MN L
Wi
-S4
k=1 =1
ki
MN
= Z Wirzr(t) + I; —
1

o=
ki

1
2L

From other elements

I; (bias input)

To other elements

Fig. 4. Subset of elements of Network 4 interpreted as the replacement of
each graded element of Network 1 by one Network 3.

where (¢ + 1) is the updated value that would be computed
by Network 1. This total external input uZ(t) = z(t +
1) — 1/(2L), being the same to all elements of the ith
subnet {f;;, 7 = 1,...,L}, can be viewed as a common bias
input (referred to as b — 1/(2L) in the definition of Network
3). The subnetwork will then take a step towards the BDC
representation of z;(¢t + 1), as would be given by (11) in
Network 1. That is, each time an element f;; changes state,
the value z; represented by its subset according to (22) moves
one 1/L-step in the direction of the BDC representation of
z;(t + 1), as would be given by (11) in Network 1. The
steps of Network 4 follow the same direction as those of
Network 1, towards the solution, but have 1/L length. The
interpretation of the ¢th subnet of Network 4, as a replacement
for the continuous valued elements of Network 1 is depicted
in Fig. 4. The summation blocks, represented in Fig. 4, do not
really exist, since in a standard Hopfield network each element
is responsible for computing its own total input; their inclusion
in the figure is intended to illustrate the relation between
Networks 1 and 4. However, it is possible to implement a
network using exactly the structure represented in Fig. 4, thus
using much fewer connections at the cost of not having a
fully standard Hopfield network.

In conclusion, the proposed binary network is a 1/L-step-
size version of Network 1. Fault-tolerance is assured since
the BDC scheme has many possible solutions, as is clear
from (22). Should one element fail, another element would,
later, automatically turn itself on to replace the damaged one.
In other words, the energy of the binary network has many
minima (since the autoconnections are zero, all the fixed points
are minima of the standard Hopfield energy, see Appendix A)
all of them corresponding to different BDC representations of
the unique solution with respect to x.

IV. THE EFFECT OF FINITE NUMERICAL PRECISION

In this section we examine the effect of finite numerical pre-
cision on the proposed algorithms. Consider that intermediate
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computations can be made with infinite precision but that each
neuron (pixel) can only store values using some finite word
length. We will assume that the elements of Networks 1 and
2 can store L equidistant different values between 0 and 1.
For Network 4, this is true by construction. As noted before,
the bounded nature of the available set of values poses no
convergence problem and other bounds are simply a matter of
renormalization. The important numerical limitation is related
to the discreteness of the set of values and not to its bounded
nature.

A. Sequential Algorithms

Since both Network 4 and the discrete version of Network
1 implement versions of the same basic algorithm, they can
be simultaneously analyzed. Both structures follow the same
update direction which is as given by (11). The evolution of
the discrete versions of Networks 1 and 4, can be written,
respectively, as

MN

1
silt+1) =m(t) + T R( L S Wiai(t)+LL| 4
7=1
and
1 MN
.Ti(t + 1) = l‘,(t) + Z Sgn RV L Z W,](L‘J(t) + L1I;
j=1
(25)

In (24) and (25), R(-) stands for the already mentioned
operator that returns the nearest integer to its argument, and
Sgn(-) stands for the sign function which is defined as

1 « >0
Sgn(z)=< 0 « z=0 (26)
-1 &« z<0.

From (24) and (25) it is clear that the fixed points of both
schemes are characterized by

MN 1
> Wiz + I <gpr for i=12. MN. @7
j=1

This condition underlies the following theorem (which is
proved in Appendix D).

Theorem 3: Let x be a fixed point of Network 4 and of the
L-levels discrete version of Network 1. The square root of the
mean square error (RMSE) of x with respect to the exact solution
x* = C~'b, is upper bounded as follows:

_ Ix=xl, _ (C)
RMSE = TN <=7

Theorem 3 states that the RMSE bound depends, in a natural
expectable way, on the number of quantization levels L, and on
the condition number of matrix C. A better conditioned matrix
C leads to a lower bound for the RMSE. We can also interpret
inequality (28) in terms of the degradation model parameters.
Let us multiply E(x) by 2, which does not affect the problem
and makes the following discussion simpler; having done so,
we get C = 02A~1 + BTB, and b = BTy. Inspecting matrix
C makes clear that, from a numerical point of view, what MAP

(28

1T

estimation (and regularization) does is add to an ill-conditioned
matrix BT B another matrix ¢2 A ~! which is well conditioned,
thus producing a better conditioned matrix. For a given fixed
B, the condition number of C (and thus the RMSE bound)
gets better when the noise variance increases. Assume now
that we have noise-free data (¢2 = 0) in order to focus our
analysis on matrix B. Assume also that B is square and that
the blur is symmetric (B is a symmetric matrix); then, the
eigenvalues of C = BTB are the squares of those of B and
the same is true for the condition number

_ _pBTB) [ p(B)
K/(BTB) = Amin(BT:B) - ()\min(B)

with Apin(B) here standing for the minimum absolute eigen-
value of B. Milder blurs, i.e., those for which the diagonal
elements of B are much larger then the off-diagonal elements,
have a smaller range of eigenvalues (recall Gerschgorin’s
theorem [34]) and thus a smaller (better) condition number
than stronger blurs; these are characterized by having relatively
large off-diagonal elements, when compared to the diagonal
elements, and consequently a larger range of eigenvalues and
a worse condition number. In conclusion, the numerical error
is directly proportional to the severity of the blur (as measured
by the condition number of matrix BTB) and inversely
proportional to the noise power. Although at first sight this
fact may seem counterintuitive, it does make sense: When
the noise power increases, the restoration process becomes
fundamentally low-pass, thus more numerically robust; on
the other hand, the deblurring process is basically high-p:ss
and consequently less numerically robust. Recall that we are
talking about the RMSE with respect to the exact solution
C~1b, and not to the true original image.

2
) =x%B) (29

B. Parallel Algorithm

For Network 2, the parameters ¢; can be adjusted and this
exerts influence on the numerical error bound. Let us again
consider the simpler case where we have all the ¢; equal to
€. The RMSE bound depends on ¢ as stated in the following
theorem (which is also proved in Appendix D):

Theorem 4: Let x be a fixed point of the L-levels discrete
version of Network 2, with e; = ¢, for i = 1,2,..., MN. The
square root of the mean square error (RMSE) of x with respect
to the exact solution x* = C~'b, is upper bounded as follows:

| x—x" || €
vVMN 2LAmin (C)

The numerical error bound depends, again in an intuitively
logical way, on the number of quantization levels, and on the
minimum eigenvalue of C; badly conditioned systems, which
have very small minimum eigenvalues, present worse error
bounds. On the other hand, when parameter ¢ is increased
up to €opt, according to (19), in order to maximize the
convergence rate, the error bound also increases; there is a
trade-off between convergence rate and numerical error in the
interval p(C)/2 = emin < € < €opt; TaNGE € > Eopt, Where
both convergence rate and the RMSE bound deteriorate as ¢ is
increased, should be avoided; for € < enin, convergence can
no longer be guaranteed by Theorem 4.

RMSE = |

(30)
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To establish a comparison with the RMSE bound for the
sequential algorithm, assume that ¢ is chosen equal to eqpy
and rewrite (30) as

opt _ K(C)(K(C)+1
RS < Amin(C) ~ 2L ( 27(C) )

(€Y

For well conditioned matrices, x(C) ~ 1 and the error bound
is the same as for the sequential scheme. However, for ill-
conditioned matrices, x(C) > 1 and the error bound is two
times better than the one given by (28).

Finally, recall that the bounds that were derived in this
section are only valid if we are working with pixel values
in [0; 1]. If other ranges of values are desired, the bounds will
be affected by an appropriate multiplicative constant, e.g., 256
if the image values are in [0; 256].

V. EXAMPLES

All examples presented were obtained by simulating the
networks on a conventional computer using (512 x 512
pixels / 8 bits-per-pixel) digital images. We have verified that
the results produced by all the studied schemes are visually
similar, which is natural since they result from different
implementations of the same restoration criterion; accordingly,
we will only present the ones corresponding to Network 1 (in
fact a 256-levels discrete version) which is clearly the best
suited for implementation on a conventional computer. To
assess the importance of the visiting schedule, three options
were tested: cyclic; cyclic with alternating directions; and
random. We concluded that there was no difference in the
visual results nor in the convergence rate.

Instead of modeling the original image as a Gauss-Markov
random field via the specification of its covariance matrix A,
its inverse A~! (called in [36] the potential matrix) which is
highly structured and sparse, is specified. We considered x as
a first-order field, for which matrix A~ is block tridiagonal
with tridiagonal blocks [36].

Fig. 5 presents the original undegraded image used in
the following examples. The image of Fig. 6(a) is artifi-
cially blurred by a 9 x 9 uniform low-pass filter, and Fig.
6(b) presents its restored version. An example with a 9 X
9 Gaussian-shaped blur (variance 3.0) is exhibited in Fig.
7(a)—(b), while Fig. 8(a)-(b) shows a test with a large uniform
motion blur (1 x 31).

In the preceding cases, no noise was artificially added;
however, the algorithm assumed noise with standard deviation
o = 1. In the next two examples, noise was artificially added,
after a mild Gaussian-shaped blur (3 x 3). Figs. 9(a) and
10(a) present the degraded images while Figs. 9(b) and 10(b)
present the ones resulting from the restoration process. In
the cases where noise is the main degradation present, the
restored images do not look visually good, i.e., they appear
too smooth. This is due to the fact that, in this case, the
restoration process is basically a low-pass filter and the human
visual system would accept more noise in exchange for the
high-image frequency components (detail) lost [1].

The algorithm was also tested on nonartificially degraded
data: a side-scan sonar image of the ocean bottom. The original

Fig. 5.

Original undegraded image.

and restored images are shown in Fig. 11(a)—(b), respectively.
To adjust the parameters, several values were tested and those
providing the visually better results were selected; the result
shown was obtained by assuming a 5 x 5 Gaussian-shaped
blur and o = 3.

In all the preceding examples, Network 1 always reached
convergence after about 15 ~ 20 iterations, as is clear from the
typical energy evolution along the iterations, presented in Fig.
12 (relative to the uniform blur case of Fig. 6). By iterations we
mean a set of visits to all elements of the network, in order to
perform meaningful comparisons with the parallel algorithm.

Network 2, being related to the Jacobi algorithm, is pre-
dictably slower and convergence is usually attained after
30 ~ 40 iterations, depending on the choice of the parameters
€;. Fig. 13 plots the energy evolution of Network 2, for three
different choices of e: 0.26 (which is the minimum value
given by Theorem 1 as guaranteeing convergence in this case);
0.36; and 0.46. The plot reveals that faster convergence can
be obtained by using ¢ =0.36, but the scheme becomes slower
if € is further increased up to 0.46. This is in accordance with
(19), which states that the optimal value for e, in terms of
convergence rate, is slightly above the minimum value that
guarantees convergence.

Network 4, due to its unit step size, has a much slower
convergence rate than Networks 1 and 2. For this network,
convergence is highly dependent on the number of neurons per
pixel (parameter L) and on the initial condition. If the network
is initialized with some BDC representation of the observed
image, convergence is reached after about L ~ 2L iterations.
Fig. 14 shows a typical example of the energy evolution for
this network. Here, one iteration stands for one visit to all
subnets, i.e., MN updates.

Figs. 12-14 try to give an idea of the time evolution of
the studied schemes. The exact time, however, is completely
dependent on the particular hardware used and so it is not
very significant. The proposed schemes are specially suited
to be implemented on neural hardware and, as pointed out
in Section I-C, are under a special restriction: the updating of
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Fig. 6.
image.

(a) Image degraded by a 9 x 9 uniform low-pass filter; (b) restored

each element (pixel) depends only on local information. If this
restriction was lifted, other better algorithms (e.g., optimal step
gradient descent) could be adopted in which information has to
be shared by all the pixels. For these reasons, we think it is un-
fair to compare the proposed neural algorithms with standard
algorithms using a standard machine which is an unfavorable
environment for the former. As a final comment, note that the
quality of the images resulting from the restoration processes is
fundamentally determined by the restoration criterion adopted
and not by the particular algorithm used to implement it. We do
not propose new restoration criteria, but rather introduce new
neural implementations of a well known classical approach.

VI. CONCLUSION

In this paper neural network implementations of iterative
image restoration algorithms were developed. Starting with a
general family of iterative schemes, two classes of network

Fig. 7. (a) Image degraded by a 9 x 9 Gaussian-shaped low-pass filter; (b)
restored image.

implementations were proposed: one using graded neurons
and the other one using binary neurons. We can conclude
that the adopted strategy, which consists in implementing
known algorithms instead of directly mapping the problem
into a neural network, has an important advantage: all results
concerning the implemented schemes can be directly imported
and used to study convergence and other numerical issues. Two
networks of graded elements were proposed (one operating
in sequential mode and the other in parallel mode), proved
to converge, and studied in terms of numerical precision.
The binary network, which is a zero autoconnection standard
Hopfield network with its well known convergence property,
was also analyzed from the numerical point of view.

In all the examples presented, except the one with the
side-scan sonar image, there is knowledge of the degradation
process parameters. In realistic situations, this is seldom true.
This fact stresses the importance of adaptive algorithms able
to perform, simultaneously, both restoration and parameter es-
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4

Fig. 8.
image.

(a) Image degraded by a 1 X 31 uniform motion blur; (b) restored

timation. One approach to this problem in which the proposed
algorithms can be imbeded as part of a more complex scheme
is the (already mentioned) expectation-maximization (EM)
algorithm [28]-[30]. There are also other possible directions
such as adaptive versions of the iterated conditional modes
algorithm [41].

APPENDIX A
THE HOPFIELD NETWORK

The Hopfield network is formed by a number, say M, of
binary elements {n; € {0,1}, ¢ = 1,2,..., M}, whose
outputs are fed back to all other elements via a weight matrix
denoted by T (T3; is the connection weight between element ¢
and element 7). Each element also has a bias input I;. At each
iteration, a single element ¢ changes its state according to

ni(t+1) = {(1]1 Z:Eg i 8

Fig. 9. (a) Image contaminated by (¢ = 30) white Gaussian noise after a 3
X 3 Gaussian-shaped blur; (b) restored image.

where
M

ul(t) = ZTij"j(t) + Ii
j=1

is referred to as the total input (TI) to element ¢. As shown
in [13], if the weights are symmetric (T;; = T};) and the
autoconnections zero (7;; = 0), this network converges to
fixed points which are local minima of the energy function

M M

M
E(t) = -% SO0 Tnittns (6 = S Tani()

i=1 j=1

The zero autoconnections condition was further studied by
Ye, et al. [17], leading to the following conclusion: If the
autoconnections are nonnegative (T;; > 0) the network keeps
its energy reduction property; on the other hand, the fixed
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Fig. 10. (a) Image contaminated by (¢ = 90) white Gaussian noise after a
3 x 3 Gaussian-shaped blur; (b) restored image.

Fig. 11.
image.

(a) Original side-scan sonar image of the ocean floor; (b) restored

points of the network’s evolution are local minima of the
energy if and only if the autoconnections are nonpositive
(Ti; < 0). So, the configurations suitable for optimization
applications must have zero autoconnections.
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Fig. 12. Typical evolution of the energy E(x) for the algorithm of Network 1.
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Fig. 13. Evolution of the energy E(x) for the algorithm of Network 2, using
three different values for parameter e.
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Fig. 14. Typical evolution of the energy E(x) for the algorithm of Network 4.

APPENDIX B
PROOF OF THEOREM 1

The proof of Theorem 1 is based on the following theorem
(see [34]):

Theorem 5: Let G be a non-singular and symmetric matrix,
and C = G — H be positive definite (PD). Then, M = G™'H
is convergent if and only if Q = G+ H=2G — C is PD.

According to Theorem 5, M is convergent if and only if
Q is PD. A sufficient condition is diagonal dominance. Since
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the elements of Q are
Qi; = 2, —Ciy <« i=3]
TEL -0y = it
the diagonal dominance condition on matrix Q is

MN
26, —Ci > Y |Gy
Jj=1, j#i

or
1 MN
g; > 5 Zl |C,'j|
j=

since C;; > 0. This concludes the proof of Theorem 1.

In the particular case of taking all £; equal to some value
€, we have G = €I, and Q = 2¢I — C. For this case the PD
condition on Q becomes

Amin(Q) = Amin(26I- C) = 26 — Aax (C) = 26 — p(C) > 0

since a matrix is PD if and only if all its eigenvalues are
positive. Finally, 2¢ — p(C) > 0 is equivalent to € > p(C)/2.

APPENDIX C
PROOF OF THEOREM 2

To prove Theorem 2, let n; be the number of elements in
state 1, and rewrite it as n; = bL + 4. The total input to each
element in state 0, denoted by 4, and to each element in state
1, denoted by u!, is equal to, respectively

1 1 1/1
0o_ _ _ —__{ =
u'=—=(bL+8)+b 5T L(2+5)
1 1 1/1
L= ——(bL+6-1 - —=={z_5s).
u L( + )+b 5T L(2 6)

Three situations have to be analyzed (recall that only one
element is allowed to change state at each iteration):
e If § < —%, then u® > 0 and »! > 0 and so state 1
elements keep their 1 state, and state O elements switch
to 1.
« If =3 < § < £, then u® < 0 and u! > 0 and so both
state 1 and state O elements keep their values.
« If § > 1, then v’ < 0 and u! < 0 and so state O elements
keep their O state, and state 1 elements switch to 0.
This proves that the only fixed points of the network’s
evolution verify n; = R(bL).

APPENDIX D
PROOF OF THEOREMS 3 AND 4

Proof of Theorem 3. The starting point of the proof is the
fixed-point expression (27). Given the definitions of W;; and
of I;, and knowing that Cj; > 0, the conditions stated in (27)
can be rewritten as

MN C.:
b; —;c,-jzj(t) < §f fori=1,2,...,MN. (32

Invoking the definition of maximum norm of a vector, ||X||cc =
max{|z;|}, (32) implies that
max{C;;}
b - o & ———22,
I b= Ox Jlo < 250
The bound can now be derived as

IC b —x]z _ |C}(b—Cx) [l

RMSE = TN iy
e el b~ Cx s
- vMN
<[/ G [l b - Cx 1o
__ oG _wO

2L Amin(C) 2L

where we have invoked the following facts:

a) For any n-dimensional vector X, ||x||2 < v/7||%)}co-

b) As stated in (20), max{Cj;} < p(C).

¢) Since C is a PD matrix, [C7'|lz = 5=y

Proof of Theorem 4. The proof of Theorem 4 follows exactly
the same lines as that of Theorem 3, with e taking the place
of max{C;}.
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