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Abstract

In this paper we focus on an interpretation of Gaussian
radial basis functions (GRBF) which motivates extensions
and learning strategies. Specifically, we show that GRBF
regression equations naturally result from representing the
input-output joint probability density function by a finite
mixture of Gaussians. Corollaries of thisinterpretation are:
some special forms of GRBF representations can be traced
back to the type of Gaussian mixture used; previously pro-
posed learning methods based on input-output clustering
have a new meaning; finally, estimation techniquesfor finite
mixtures (namely the EM algorithm, and model selection
criteria) can be invoked to learn GRBF regression equa-
tions.

1. Introduction

Radial basis functions (RBF) constitute a widely used
and researched tool for (nonlinear) function approximation,
which is a central theme in pattern analysis and recognition
[1]1, [2], [31, [4]; see also [5] for a recent and comprehensive
overview and further references.

The RBF-based (often seen as a neural network [5])
input-output relation has the form

:
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where x = [z1,...,24]7 is the input, the ; are weights,
G(-) isa IR — IR (usually nonlinear) function, || - || de-
notes some norm, and the t; are called the centers. For
interpolation purposes (either strict [1], or regularized [4]),
given a set of n points {(y1,x1), ..., (yn,Xn)}, the centers
are placed at the observed points, t; = x;, for i = 1,...,n
(that is £ = n). For large data-sets it may be prohibitively
expensive to use k = n [4]; if fewer than n centers are used,
the selection of their number and location becomes the cen-
tral issue in the design of RBF network learning methods.
Several choices for G have been proposed; here, we fo-
cus on Gaussian RBF (GRBF) approximations, for which

G is a Gauss function G(r) = exp{—r?/2}. Usually, the
norm in Eq. (1) is Euclidean. Generalized versions may use
(possibly different) Mahalanobis norms, i.e.,

g(x) = zk: a; G [\/(x —t)TAT (x—t)| . ()

Although here we consider only real-valued functions,
vector-valued functions can be approximated by consider-
ing coordinate-wise GRBF approximations.

Arguably the main feature of GRBFs is their universal
approximation property [4], according to which, given any
continuous function, there is an arbitrarily close GRBF ap-
proximation. An intimately related result states that Gaus-
sian mixtures can approximate a large class of probability
density functions; in Bayesian inference, Gaussian mixture
approximations have been used to represent either the prior
[6], or the likelihood function [7].

Rather than considering an underlying function to ap-
proximate (which is the standard perspective in the RBF lit-
erature), let us consider the joint probability density func-
tion (p.d.f.) over the input-output space, fy x(y,x). If
this joint p.d.f. is represented by a finite Gaussian mix-
ture, the resulting regression function (i.e, E[Y|x]) has a
GRBF form. Although this seems to be common knowledge
in some of the RBF literature (e.g. [8]), the main purpose
of this paper is to summarize this perspective and some of
its consequences. A similar interpretation based on a non-
parametric kernel-based representation of fy x(y,x) (i.e.
using as many centers as data points) has been considered
in [9]; notice that a kernel-based representation can be seen
as an extreme case of a finite mixture with as many compo-
nents as data points.

Important consequences of the finite-mixture-based in-
terpretation of GRBF regression are:

o \We obtain a probabilistic justification for the normal-
ized GRBF form (e.g., [3]).

e Several known types of GRBF forms can be inter-
preted as resulting from different types of mixture
models (e.g., Euclidean versus Mahalanobis norms).



e The good performance of center estimation methods
based on clustering of both input and output values
(e.g., [10], [11], [12]) is clearly justified: clustering
(namely k-means and fuzzy k-means) is closely related
to finite mixture fitting.

e Selecting the dimension of the GRBF approximation
may be approached with model selection methods for
Gaussian mixtures (see [13] and references therein).

2. Regression, Gaussian Mixtures, and GRBFs

If X and Y are random variables whose joint p.d.f. is
frx(y,x), the regression function (of y on x), given by

7= 9:00= EYIx) = [ (o) do.
is the function that minimizes the integrated risk (or ex-
pected risk) under the quadratic loss

o] = / Frx 0 - gx)dydx.  (3)

For example, if there is an underlying (a.k.a. true) function
g:(+) suchthat Y = ¢;(X) + N, where N is a random vari-
able (usually called noise in this context), then fy x(y,x)
depends on g;(-), the sampling p.d.f. fx(x), and the p.d.f.
of Nr fN (n)

fyrx(,x) = fn(y — 9:(x)) fx (x).

Let us write Z = (Y, X) for the concatenation of the in-
put and output random variables. Recalling that finite Gaus-
sian mixtures have the universal approximation property, let
us represent fy x(y,x) = fz(z) by such a mixture,

Z“’J

where N (z|u;,C;) denotes a (d + 1)-variate Gaussian
p.d.f. with mean p; and covariance matrix C;. Each co-
variance matrix has the following block structure

(zlpj, Cy), (4)
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C;= (5)
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where C}'Y is a scalar, C} X is (1 x d), CX¥ = (CY*)T
is (d x 1) and CXX is (dx d). Similarly, each ((d+1) x 1)

mean vector can 1)6 written as
T T
X T
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It turns out that, from this representation, the regression
function g,.(x) = E[Y|z] can be easily obtained in closed-

form. Since fy (y|x)

Bl = [

= frx(y,x)/ fx(x),
k

ij/\/
j=1

/(Zk:wj (v, x|p;,C )) dy’

Z“’J

(y7 X|H/j7 CJ)

dy

X|H/J ’ C;(X) E[Y|X7 p’ja CJ]

>

which is a weighted average of the conditional means of
each mixture component. We may now obtain several spe-
cial cases by considering particular types of Gaussian mix-
ture representations.

e Suppose that each component models Y and X as
independent. Of course, this does not mean that Y’
and X are globally independent; moreover, mixtures
of Gaussians under this restriction maintain their uni-
versal approximation property. In this case, C XY =

(CYX)T = 0,and E[Y |x, p;, Cj] = E[Y |, C;] =
,u}”. The resulting regression equation is
(x|}, CF )y

ij J
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which has the Mahalanobls GRBF form (see Eq. (2)),
but normalized, as in [3],

k
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where G(r) = exp{-Z}, t; = pl, A; = CXX,
and

(x|uX, CF¥)
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o If the CX* matrices are assumed diagonal, say
CFX =071, Eq. (8) simplifies to

T a6 [l
S ®
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which is a more standard (still normalized) GRBF rep-
resentation. Of course, we can further impose o ? = o
and obtain an even simpler GRFB regression equation.

gr(x) =



o Finally, let us address the unrestricted case where the
C; matrices are arbitrary. Since each component mod-
els Y and X as jointly Gaussian, it is well known that

E[Y|Xauj7 CJ] = :u‘}/ + C?X(C;(X)il(x - H/;()

This means that the regression equation becomes

zk;aj(x) G {\/(x —t)TA; (x— ti)]
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gr(x) =

where
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this can be seen as a extended GRBF representation
with input-dependent weights (rather than the usual
fixed weights). Since GRBF forms with fixed weights
are a special case of this representation, nothing is lost
in terms of universal approximation properties.

aj(x) =

3. Learning Strategies

In practice, the regression function has to be learnt from
a set of n samples {(y1,x1), ..., (Yn, X, ) }; the joint density
is, of course, unknown. The equivalence between GRBF
regression and the joint Gaussian mixture suggests that we
learn this mixture from the data; the parameters of the
GRBF regression equation are simple functions of the pa-
rameters of the joint mixture. The standard approach to
obtaining maximum likelihood (ML) estimates of the pa-
rameters of a finite mixture is the well-known expectation-
maximization (EM) algorithm [14]. If incremental, rather
than batch, learning is desired, on-line versions of EM may
be used [15]. Of course is may be argued that by learn-
ing the joint density we are solving a more general problem
than regression [16]; this is of course true, and specially rel-
evant for small samples. The main advantage of EM is its
simplicity, and we only advocate its use for large samples.

The mixture-based interpretation also explains the suc-
cess of (and gives a formal justification to) learning methods
that find the centers by performing clustering using both in-
put and output values [10], [11], [12]. In fact, many cluster-
ing algorithms (namely k-means, and fuzzy k-means), can
be seen as approximate versions of the EM algorithm for
Gaussian mixtures. However, the EM algorithm has an im-
portant advantage; by using EM to learn the GRBF parame-
ters, we not only learn the center locations (as input-output
clustering methods do) but also the width (or widths, or Ma-
halanobis distance matrices) and weights of each compo-
nent. That is, we learn the whole set of parameters of the
GRBF representation with a single simple algorithm.

A central issue in GRBF regression is the selection of
an appropriate dimension (number of centers) for the rep-
resentation. The standard tradeoff of model order selection

problems arises: with too many centers, the learned repre-
sentation may over-fit the data and have poor generalization
properties; a representation with too few components may
not be rich enough to approximate the underlying relation.
Under the interpretation here studied, selecting the dimen-
sion of the GRBF representation becomes equivalent to se-
lecting the number of components of the joint mixture. Sev-
eral model selection criteria for finite mixtures have been
proposed; see recent work in [13], [17], and references
therein. For lack of space, we do not focus on this issue
here; in the examples presented ahead we use the method
that we have proposed in [13].

Finally, a relevant feature of the EM approach for
learning the GRBF parameters concerns unlabeled sam-
ples [8]. Suppose that, in addition to the data
{(y1,%1), .-, (Yn, Xn) }, we have a set of m unlabeled sam-
ples {Xp+1, ..., Xntm}, 1.€, Without the corresponding re-
sponses; then, these responses can be treated as missing
data, and we can use an adequate version of the EM al-
gorithm. We can also use a set of outputs (without the cor-
responding inputs) {yn+1, .-, Ynt1}, Dy treating the corre-
sponding inputs as missing data.

4. lllustrative Examples

We illustrate the ideas here presented with a couple of
simple examples. A more thorough experimental evalua-
tion, for which there is no space here, is clearly needed.

Fig. 1 shows the function used in the example, f(z) =
sin(6.5(z — 0.5)) + 4 exp(—6(x — 0.5)), and a set of 200
samples generated as described in the caption of that figure.
In Fig. 2, the Gaussian mixture fitted to the samples (under
the constraint of diagonal covariances) is shown, together
with the corresponding regression function (Eq. (8) or (9),
which are equivalent because, in this case, X € IR). Fi-
nally, Fig. 3 displays the Gaussian mixture fitted to the same
data, now with unconstrained covariances, and the corre-
sponding regression function (Eg. (10)). Notice that this
extended GRBF regression (Eq. (10)) can not be learned by
standard methods due to the input-dependent weights. The
extended regression achieved a smaller MSE using fewer
components due to its more flexible nature.

5. Conclusions

By representing the joint input-output probability den-
sity functions by Gaussian mixtures, the resulting regres-
sion equations have GRBF form. By exploiting this fact,
we have presented an extended version of GRBF approxi-
mations where the weights are input-dependent. This equiv-
alence also suggests that we may learn the GRBF represen-
tation by using the EM algorithm to fit the input-output joint
mixture; this possibility was illustrated experimentally.
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Figure 1. Left: the test function f(z) =
sin(6.5(z — 0.5)) + 4exp(—6(x — 0.5)%). Right:
200 (z,y) random samples such that the z’s
are uniformly distributed over [0, 1], and each
y is given by y = f(z) + n, where n is zero-
mean Gaussian with variance 1.25.
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Figure 2. Left: a Gaussian mixture, with di-
agonal covariance matrices, fitted to the data
from Fig. 1. Right: the corresponding re-
gression function (solid line) together with

the original function (dashed line).
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Figure 3. Left: a Gaussian mixture, with ar-
bitrary covariance matrices, fitted to the data
from Fig. 1. Right: the corresponding regres-
sion function (solid line) plotted together with
the original function (dashed line).
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