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Abstract

Grouping images into (semantically) meaningful categories using low-level visual features is a challenging and
important problem in content-based image retrieval. Using binary Bayesian classifiers, we show how high-level con-
cepts can be understood from low-level images under the constraint that the image does belong to one of the classes
in question. Specifically, we consider the hierarchical classification of vacation images; at the highest level, images
are classified into indoor-outdoor classes, outdoor images are further classified into city-landscape classes, and finally,
a subset of landscape images is classified into sunset, forest, and mountain classes. We demonstrate that a small
codebook (the optimal size of codebook is selected using MDL principle) extracted from a vector quantizer can be
used to estimate the class-conditional densities of the observed features needed for the Bayesian methodology. The
classifiers have been built on a database of 6,931 vacation photographs. Our system achieved an accuracy of 90.8%
for indoor-outdoor classification, 94.3% for city vs. landscape classification, 94.9% for sunset vs. forest & mountain
classification, and 93.6% for forest vs. mountain classification. Our final goal isto combine multiple 2-class classifiers
into asingle hierarchical classifier.

*M. Figueiredo was partially supported by Nato Grant NATOCRG 960010 & Portuguese PRAXIS XXI program, grant no. 2/2.1/T. |. T./1580/95.



1 Introduction

Content-based image organization and retrieval has emerged as an important areain computer vision and multimedia
computing. This is mainly driven by technological breakthroughs which allow us to digitize, store, and transmit
images in a very cost effective and efficient manner. A large number of commercial organizations have large image
and video collections of programs, news segments, games, paintings, and artifacts that are being digitized. Organizing
these image and video libraries into a small number of categories and providing effective indexing is imperative for
accessing, browsing, and retrieving useful data in “real-time’. With the development of digital photography, more
and more people are able to store their vacation and personal photographs on their computers. Travel agencies are
interested in digital archives of photographs of holiday resorts. A user could query these databases to plan a vacation.
These digital databases are not a dream of the future, but have become a reality. However, in order to make these
databases more useful, we need to devel op schemes for indexing and categorizing the humungous data.

Due to the limitation of textual features as indices to image databases, there has been an intense activity in de-
veloping image retrieval methods based on image content. Various systems have been proposed for content-based
image retrieval, such as QBIC [1], Photobook [2], FourEyes [3], SWIM [4], Virage [5], Visualseek [6], Netra [7],
and MARS [8]. These systems follow the paradigm of representing images using a set of image attributes, such as
color, texture, shape, and layout which are archived along with the images in the database. A retrieval is performed
by matching the feature attributes of a query image with those of the database images. Userstypically do not think in
terms of low-level image features while querying digital databases, i.e., user queries are typically based on semantics
(e.g., show me a sunset image) and not on low-level image features (e.g., show me a predominantly red and orange
image). As aresult, most of these image retrieval systems have poor performance for specific queries. For example,
Figure 1(b) shows the top-10 retrieved results (based on color histogram features) for the query in Figure 1(a) on a
database of 2,145 images of city and landscape scenes. While the query image has a specific monument (a tower
here), some of the retrieved images include scenes of mountains and coasts. A successful grouping of these database
images into semantically meaningful classes can greatly enhance the performance of a content-based image retrieval
system. Figure 1(c) shows the top-10 retrieved results (again based on color histogram features) on a database of
760 city images for the same query; clearly, filtering out landscape images from the image database prior to querying
improvesthe retrieval result.

As we have shown in Figs. 1 (a)-(c), a successful indexing and categorization of images will greatly enhance the
performance of content-based image retrieval systems by filtering out images from irrelevant classes during matching.
Thisrather difficult problem has not been adequately addressed in current image database systems. The main challenge
is to group images into semantically meaningful categories (or index images in a database) based on low-level visual
features of the images. One attempt to solve this problem is the hierarchical indexing scheme proposed by Zhang and
Zhong [9, 10], which uses a Self-Organi zation Map (SOM) to perform clustering based on color and texture features.
This indexing scheme was further applied in [11] to create a texture thesaurus for indexing a database of large aerial
photographs. However, the success of such clustering-based indexing schemes is often limited, largely due to the low-
level feature-based representation of image content. For example, Figures 2 (a)-(d) show two images (a fingerprint
and a landscape image) and their corresponding edge direction coherence feature vectors (these features are defined
in[12]). Although, the two images denote two very different concepts, their low-level edge featuresare highly similar;
the Euclidean distance between the corresponding histogramsisonly 0.0147 (distancesin range[0,1]). This showsthe
limitations of low-level featuresin capturing semantic content in an image. Yet, as we shall show later, in constrained
environments, these very low-level features can be used to discriminate between conceptual image classes. To achieve
the goal of automatic categorization and indexing of images in a large database, we need to develop robust schemes
to identify salient image featuresthat capture a certain aspect of semantic content of these images. In other words, we
first need to specify/define pattern classes, so that the database images can be organized in a supervised fashion.

In this paper, we pose the image classification problem in a Bayesian framework. Specifically, we address the
problem of classifying vacation photographs. Our early experiments with 8 human subjects [12] on a database of
171 vacation images revealed the classification hierarchy as shown in Figure 3(a). A total of 11 semantic categories
were revealed from these experiments. The first four classes of forests, mountains, beach scenes, and pathways were
grouped into the class, natural scenes. The cluster of natural scenes and the sunset images were further grouped into
the landscape class. The clusters of city shots, monuments, and shots of Washington DC were grouped into city class.
Finally, the miscellaneous, face, landscape, and city classes were grouped into the top-level class of vacation scenes.
It is these groupings, which motivated us to address the issue of hierarchical classification of vacation images.

Our goal is to develop a hierarchical classifier similar to the one shown in Figure 3(a) for vacation images. To



Figure 1: Color-based retrieval results; (a) query image; (b) top-10 retrieved images from 2, 145 city and landscape
images;, (c) top-10 retrieved images from 760 city images;, clearly filtering out landscape images prior to querying
improvesthe retrieval results.
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Figure 2: Edge direction coherence vector features for (a) fingerprint and (c) landscape image; The difference, d(b, d),
between these two histogramsis 0.0147.

make the problem more tractable, we simplified the classification hierarchy as shown in Figure 3(b). The solid lines
show the classification problems addressed in this paper. At the highest level, vacation images can be divided into
indoor, outdoor, and other scenes. Outdoor shots can then be further classified into city, landscape, and other classes.
Landscape images can then be dichotomized into sunset, mountain, forest, and other classes. While the above hier-
archy is not in itself complete (a user may be interested in querying the database for images captured in the evening
- (day/night classification), images containing faces (face vs. non-face classification), or images containing text (text
vs. non-text classification)), it is a reasonable approach to simplify the image retrieval problem.

The four classification problems that we have addressed in the hierarchy are: (i) indoor vs. outdoor classification;
(i) city vs. landscape classification; (iii) sunset vs. forest & mountains classification; and (iv) forest vs. mountains
classification. The indoor vs. outdoor classification problem can be stated as follows: Given an image, classify it as
either an indoor or an outdoor image. Most of the images can be classified into either of the two classes. Exceptions
include close-up shots, pictures of a window or door, etc. Outdoor images can be further classified into city vs.
landscape images [12, 13]. City vs. landscape classification problem can be posed as follows: Given an outdoor
image, classify it as either acity or alandscape image. City scenes can be characterized by the presence of man-made
objects and structures such as buildings, cars, roads, etc. Natural scenes, on the other hand, lack these structures.
A subset of landscape images can be further classified into one of the sunset, forest, and mountain classes. Sunset
scenes can be characterized by saturated colors (red, orange, or yellow), forest scenes have predominantly green color
distribution due to the presence of dense trees and foliage, and mountain scenes can be characterized by long distance
shots of mountains (either snow covered, or barren plateaus). We assume that the input image does belong to one of
the classes under consideration. Thisrestriction is posed because, automatically rejecting images not belonging to the
specific classes (such as city or landscape) based on low-level image features aloneisin itself avery difficult problem
(see Figure 2).

The classification problems formulated above can be addressed using Bayes decision theory. The probabilistic
models required for the Bayesian approach are estimated during a training phase; in particular, the class-conditional
probability density functions of the observed features are estimated under a Vector Quantization (V Q) framework [14,
15, 16]. The Bayesian approach has the following advantages: (i) it not only provides a classification rule, but also
assigns adegree of confidencein the classification; (ii) asmall number of codebook vectors represent a particular class
of images, thereby greatly reducing the number of comparisons necessary for each classification; and (iii) it naturally
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Figure 3: Experimentswith human subjects: (a) A hierarchical organization of the 11 categories obtained from group-
ings provided by human subjects [12]; (b) Simplified semantic classification of images; solid lines show the classifi-
cation problems addressed in this paper.

allowsfor the integration of multiple features through the class-conditional densities.

The paper is organized as follows. In Section 2 we discuss the Bayesian framework for image classification. An
introduction to Vector Quantization (VQ) and density estimation is presented in Section 3. The experimenta results
are described in Section 4. Section 5 finally concludes the paper and presents directions for future research.

2 Bayesian Framework

Bayesian theory provides a formal (probabilistic) framework for image classification problems. It requires that all
assumptions be explicitly specified to build models (observation model, prior, loss function) which are then used to
derive an “optimal” decision/classification rule. Optimality here means that, under the assumed models, there does
not exist any other classification rule which has a lower expected loss. The Bayesian paradigm has been successfully
adopted in a number of image analysis and computer vision (both low and high level) problems, such as restoration,
segmentation, and classification (see [17, 18] and the references therein). However, its use in content-based retrieval
from image databasesis just being realized [ 15].

2.1 Basic Elements
The Bayesian framework requiresthat all the entities involved in decision making be adequately formalized:

e Each observed image x belongsto a set 7 of possible images.

e Theset 7 is assumed to be partitioned into K classes Q@ = {wi,ws,...wk }; these classes are exhaustive and
mutually exclusive, i.e., any image « from Z belongsto one and only one class.

e Each observed image x is modeled as a sample of arandom variable X, whose class-conditional probability
density function for class w,, iswritten as fx (z|wy,).

e An a priori knowledge concerning the classes is expressed via a probability function defined on the set of
Clm, {p(wl)ap(WQ)a ,p(WK)}



e Alossfunction, £L(w,w) : 2 x  — R, specifying the loss incurred when class @ is chosen and the true classis
w. Asiscommon in classification problems, we adopt the “0/1” loss function; £(w,w) = 0, and L(w,®) = 1,
if w=# .

e Finaly, the solution of the classification problem is a decision rule 6(x) : Z — Q which maps any possible
observed image into one of the available classes.

2.2 Image Features

In many image analysis problems, it is typical that the classification is based on, say, m features extracted from the
observed image, rather than directly on the raw pixel vaues. Let y = {y(M), y® ... (™)} dencte the set of m
features based on which the classification procedure must operate. For computational simplicity it istypical to assume
that the features are conditionally independent. As aresult, the class-conditional density functions can be written as

M
fx(@|w) = fyy|w) =[] fro@® ). )
i=1

The classification problem can be stated as: “ given a set of observed features, y, from an image x, classify « into one
of the classesin (2.

2.3 Classfication Rule

In the Bayesian framework, all inferences are based on the a posteriori probability function, which is obtained by
combining the class-conditional observation modelswith the a priori class probabilities. Thisis done via Bayes law

fy(y |w)pw)
fY(y) ’ @)

where the denominator, fv (y), in Eq. (2) is the unconditional (or marginal) probability density function of the ob-
served features, which serves simply as a normalizing constant.

The adopted “0/1” loss function leads to what is the most common criterion in Bayesian classification problems:
choose the class whose a posteriori probability is maximum. This is known as the maximum a posteriori (MAP)
criterion, and is given by

plwly) =

w = d(x) = argmax {p(w | y)} = argmax {fy (y | w) p(w)} - ()

In addition to reporting the MAP classification of a given image, say wy,, the Bayesian approach also assigns a degree
of confidence to that classification, which is proportional to p(wy, | y). We next describe a procedure to estimate the
class-conditional density functions.

3 Density Estimation Using Vector Quantization

The performance of the Bayes classifier clearly depends on the ability of the feature set y to discriminate among the
various classes. Moreover, since the class-conditional densities have to be estimated from training data, the accuracy
of these estimates is also critical. Choosing the right set of features for a given classification problem is a difficult
problem and we do not discuss the issue here. We concentrate instead on estimating the class-conditional densitiesfor
which we adopt a Vector Quantization (V Q) based approach [16].

3.1 Introduction to Vector Quantization

Vector Quantization (asits nameimplies) is acompression/quanti zationtechniquethat is applied to vectors rather than
scalars. Just like scalar measurements can be quantized by rounding off or setting thresholds, VQ quantizes a group
of numbers (components of a vector) together. Thus, VQ takes as input a p-dimensional vector and quantizes it into
a p-dimensional reproduction vector. A VQ can be specified by a set of reproduction vectors and a rule for mapping
input vectors to the reproduction vectors.



In the compression and communication applications, a Vector Quantizer is described as a combination of an en-
coder and a decoder. A p-dimensiona VQ consists of two mappings. an encoder v which maps the input al phabet
(A) to the channel symbol set (M), and a decoder 5 which maps the channel symbol set (M) to the output al phabet
(A),ie,y(y) : A - Mand3(v) : M — A. A distortion measure D(y, §j) specifies the cost associated with
quantization, where § = S(+y(y)). Usualy, an optimal quantizer minimizes the average distortion under a size con-
straint on M. The generalized Lloyd algorithm for vector quantization uses the mean square error (MSE) criterion
for distortion and is equivalent to a K-means clustering algorithm [19], where K is the size of the output alphabet,
A {9:,i=1,...,K}. Aninput vector y € A isquantized into one of the K output vectors §;, also referred to as
codebook vectors, such that

These codebook vectors define a partition of the feature space, according to Eqg. (4), into the so-called Voronoi cells,
{S;,i = 1,2,...,K}. Figure 4 shows an example of such a 2-D Voronoi tessellation where the §; are shown as
sguare dots. As the data points get closer, the cells become more compact. According to Eg. (4), an input vector is
assigned the codebook vector of the cell it fallsinto. A comprehensive study of VQ, choice of distortion measures,
and use of VQ in classification and compression is presented in [20, 16].

Figure 4: Voronoi Tessellation for 2-D data pointsin two clusters.

3.2 VQ asaDensity Estimator

Vector quantization provides an efficient tool for density estimation [16]. Consider n training samples from aclass w.
In order to estimate the class-conditional density of the feature vector y(?) giventhe class w, i.e., fyo (¥ | w), a
vector quantizer is used to extract ¢ (with ¢ < n, hopefully ¢ < n) codebook vectors, v}i) (1 <j <q),fromthen
training samples. It has been shown (see [16]) that in the so-called high-resolution approximation (i.e., for sufficiently
small Voronoai cells), the class-conditional density can be approximated as a piecewise-constant function over each cell
S§9, with value

iy

7 5
Vol(S) ©)

Fyo@® |w) ~

where mg.’) and Vol (S](.’)) aretheratio of training samplesfalling into cell Sj(.’) and the volume of the cell S ](.’) , respec-
tively. This approximation fails if the Voronoi cells are not sufficiently small, as is the case when the dimensionality
of the feature vector y(*) is large. The class-conditional densities can then be approximated using a kernel-based
approach [16, 15], approximating the density by a mixture of Gaussians, each centered at a codebook vector. In most
VQ agorithms, the codebook vectors are iteratively selected by minimizing the M SE (mean square error) whichisthe
sum of the Euclidean distances of each training sample fromits closest codebook vector. Hence, an identity covariance
matrix can be assumed for the Gaussian components used to represent the densities [15], resulting in the following



(approximate) class-conditional densities:

q
Py @@ [w) oo Y m xexp(~[ly® — o$?|2/2). 6)
j=1

A more comprehensive approach would be to use the Mahalanobis distance [19] in estimating the codebook vec-
tors; but, if feature dimensionality is high and the number of training samples is small, the estimated covariance
matrices are likely to be singular.

3.3 Selecting Codebook Size

A key issue in using vector quantization for density representation is the choice of the codebook size. It is clear that,
givenatraining set, the V Q-approximated likelihood (probability) of that training set will keepincreasing asthedimen-
sion of the codebook grows; in the limit, we would have a code vector for each training sample, with the corresponding
probability equal to one. To address thisissue, we adopt the minimum description length (MDL) principle [21]. MDL
is an information-theoretic criterion which has recently been used for several problems in computer vision and im-
age processing (see [22], and references therein). We start by noting that the VQ learning algorithm basically looks
for the maximum likelihood estimates of the parameters of the mixture in Eq. (6). The first key observation behind
MDL is that looking for an ML estimate is equivalent to looking for the Shannon code for which the observations
have the shortest code-length [21]; this is so because Shannon’s optimal code-length?, for some set of observations,
V:{y®(1),...,y®(n)}, obeying somejoint probability density function f(|6,)), issimply [23, 22]

L(Y|6)) = —log f(V|w, b)) ™

Under the assumption of independent samples, (¥ (j) (1 < j < n), thejoint likelihood in Eq. (7) can be written as
LY6q) = =D 1og fHD (j)|w, 8y)); 8)
Jj=1

inour case, each of the marginasin the above likelihood is the onein Eq. (6) and 6, contains the codebook vectors,
{v}i) : 1 < j < ¢}, and the weights m'?. The second fundamental fact is that the parameters themselves are
also part of the code, in the following sense: a code word representing )) can not be decoded by itself; only a full
knowledge of f(V|6,)) (i.e., of its parameters) allows reconstructing the code and respective decoder. Accordingly,
the MDL criterion states that the description code-length to be minimized by the estimate must include not only the
data code-length but also the code-lengths of the parameters. The resulting criterion for the choice of ¢ (codebook
size) isthen

qg= argmqin {LYV|0) + L(Oy)} - 9

Finally, concerning the parameters description length, L(6,,), the commonly adopted choiceis
L(8,)) = (¢(q)/2)logn, where n is the sample size and ((q) = ¢ + ¢ dim(y(?) is the number of real-valued
parameters needed to specify a ¢*"*-order model and dim () represents the dimension of the feature space [21]. Thisis
an asymptotically optimal choice, which isonly valid when all the parameters depend on all the data, whichis not the

case in the present problem. The weights my) are, in fact, estimated from all the data; however, each v Jgi) is estimated
from the m;i) samplesthat fall in the associated cell. Accordingly, we use the following parameter description length

d1m (’) i
L) = %logn y—L Zlog @, (10)

wherethefirst term accountsfor theweights m ; while the second one correspondsto the codebook vectorsthemselves.

Lin bits or nats, if base-2 or natural logarithms are used, respectively [23].



4 Experimental Results

The Bayesian paradigm was applied to generate a hierarchical classification of vacation photographs. Imageswerefirst
classified into indoor and outdoor classes. Outdoor imageswere then classified into city and landscape classes. Finaly,
a subset of landscape images was classified into sunset, forest, and mountain classes. Experiments were conducted
on two databases (both independently and combined) of 5,081 (indoor vs. outdoor classification) and 2,716 (city
vs. landscape classification and further classification of landscape images) images. The two databases, henceforth
referred to as database D1 and database D2, had 866 images in common, thus the entire database contains 6,931
images. These images were collected from various sources (Corel stock photo library, scanned personal photographs,
key frames from digitized video of television serials, and images downloaded from the web) and are of varying sizes
(from 150 x 150 to 750 x 750). The color images are represented by 24-bits per pixel and stored as JPEG images.
The ground truth for all the images was assigned by a single subject. We next describe the featuresthat were extracted
from the images.

4.1 Image Features

The accuracy of the Bayesian classifiers depends on the underlying low-level representation of the images. The
more discriminative the features, better is the classification accuracy and using just any feature will not yield good
classification results. For example, outdoor images tend to have uniformity in spatial color distributions, such as the
sky is on top and typically blue in color. Indoor images tend to have more varied color distributions and have more
uniform lighting (most are close up shots). Thus, it seems logical to use spatia color distribution as a feature for
discriminating between indoor and outdoor images. On the other hand, shape features may not be useful, since similar
shapes and objects (people, furniture, plants, edges due to walls, etc.) can be present in both indoor and outdoor
images. We thus, use spatial color information features that represent these qualitative attributes of indoor and outdoor
classes. Specificaly, first and second order color momentsin the LUV color space were used as color features (it was
pointed out in [24] that color momentsin the LUV color space yielded better results during image retrieval than color
moments in other color spaces). The image was divided into 10 x 10 sub-blocks and six features (3 each for mean
and standard deviation) were extracted. As another set of features for indoor vs. outdoor classification, we extract
sub-block MRSAR features as described in [25].

We look for similar qualitative attributes in city vs. landscape classification problem, and further classification of
landscape images. City images usually have strong vertical and horizontal edges due to the presence of man-made
objects. Non-city (natural) images tend to have edges randomly distributed in all directions. A feature based on the
distribution of edge directions can discriminate between these two categories of images[12]. On the other hand, color
features would not have sufficient discriminatory power as man-made objects have arbitrary color distributions (two
buildings need not have the same color). In the case of classification of landscape images into further categories, such
as sunset, forest, and mountain, global color distributions seem to adequately describe these classes. Sunset pictures
typically have highly saturated colors (mostly yellow and red); mountain images tend to have a sky in the background
(typicaly blue); and forest scenes tend to have more greenish distributions (presence of dense foliage). Based on
the above observations, we use edge direction features (histograms and coherence vectors) for city vs. landscape
classification and color features (histograms and coherence vectors) in the H SV color space for further classification
of landscape images [12]. Table 1 briefly describes the qualitative attributes of the various classes and the features
used to represent them.

4.2 Vector Quantization

A number of experiments were conducted to study the robustness and limitations of the various classifiers. The
LVQ_PAK package [26] was used for vector quantization. For every class, half of the database images were used to
train the VQ for each of the image features. The MDL principle [21] described in Section 3.3 was used to determine
the codebook size from the training samples for the various classifiers. We present the results of applying the MDL
principle to the indoor vs. outdoor classifier for the spatial color moment features. Figures 5(a)-(c) show the plots
of L(Y|6,)) + L(64)) (criterion to be minimized in Eqg. (9)) vs. the codebook size, ¢, for the spatial color moment
features for (a) indoor, (b) outdoor, and (c) both the classes. As can be seen in the figures, ¢ ~ 10 minimizes the
criterion in Eq. (9) for the indoor class, while ¢ ~ 15 minimizes the criterion for the outdoor class. Combining the
two yields ¢ ~ 30 as the optimal number of codebooks for the indoor vs. outdoor classifier based on the training



Classification Qualitative Low-level

Problem Attributes Features

Indoor vs. spatial color & 10 x 10 sub-block color
Outdoor lighting distributions momentsin LUV space
City vs. distribution of edge direction histograms

Landscape edges & coherence vectors

Sunset vs. global color distributions color histograms &
Forest vs. & saturation values coherence vectors
Mountain in HSV space

Tablel: Featuresaliency: Qualitativeattributes of variousclassification problemsaddressed in the paper and respective
low-level features used for discrimination.

samples. Hence, 15 codebook vectors were extracted for both indoor and outdoor classes. Based on asimilar analysis
( see [13]), 20 codebook vectors were extracted for each of the city and landscape classes. For further classification
of landscape images, a codebook of 5 vectors was selected for each class. The codebook vectors for each class were
then stored as representatives for the class. Table 2 shows the number and dimensionality of the codebook vectors for
the various classification problems using the features geared towards the classification (color-moments for indoor vs.
outdoor, edge direction coherence vectors for city vs. landscape, and color coherence vectors for further classification
of landscape images).

1 1 3

Figure 5: Determining codebook size for spatial color moment features for the indoor vs. outdoor classification
problem; (&) indoor class; (b) outdoor class; (c) indoor and outdoor classes combined; x-axis represents the codebook
size and y-axis represents the optimality criterion to be minimized.

Classification # of Codebook Feature
Problem Vectors/ Class | Dimensionality
Indoor/Outdoor 15 600
City/Landscape 20 145
Sunset/Forest/Mountain 5 640

Table 2: Vector Quantization: # and dimensionality of codebook vectors extracted for the various classifiers.

4.3 Classification

Given an input image, the classifier compares the extracted features with the stored codebook vector features of
a particular class (say, “city” class) and estimates the class-conditional probabilities for each of the features using
Eqg. (6). These probabilities are then used to estimate the a posteriori probability (Eg. (2)) that the image comes
from the city class, given the extracted feature vectors. We present classification accuracies on a set of independent



test patterns (hold-out error) as well as on the training patterns (re-substitution error). We have done the various
classifications based on individual features and also based on a combination of various features. As we show later,
each of the individual features chosen for the classification problems has sufficient discrimination power for that
particular classification problem, and combining other features does not improve the resullts.

4.3.1 Indoor Vs. Outdoor Classification

Database D1 was used to train the indoor vs. outdoor classifier. This database consisted of 2,470 indoor and 2,611
outdoor images. Apart from the color moment features, we a so used the sub-block MRSAR features [25], the edge
direction features , and the color histogram features for the classification. MRSAR features yielded an accuracy of
around 75% on the test set, edge direction and color histogram features yielded an accuracy of around 60%, and
the color moment features yielded a much higher accuracy of around 90%. These results show that the spatial color
distribution (probably capturing lighting effects) is more suited for indoor vs. outdoor classification. A combination
of color and texture features did not yield a better accuracy than the color moment features. Table 3 shows the
classification results for the color moment features for the indoor vs. outdoor classification problem. The classifier
performed with an accuracy of 94.2% and 88.2% on the training set and an independent test set (Testl in Table 3),
respectively. On adifferent test set (Test2 in Table 3) of 1, 850 images from database D2, the classifier performed with
an accuracy of 89.5%. The classifier performed with an overall accuracy of 90.8% on the entire database of 6,931
images. Szummer et al. [25] and Yiu [27] report classification accuracies of approximately 90% on databases of size
1,324 and 500 images, respectively. Thus, our classifier performanceis comparableto those reported in the literature.
A major advantage of the Bayesian classifier is its efficiency due to the small number of codebook vectors needed to
represent the training data. A more detailed analysis of the Bayesian approach is presented in Section 4.4.

Figure 6 shows a representative subset of the misclassified indoor and outdoor scenes. Presence of bright shots ei-
ther from some light source or from sunshine through windows and doors seems to be amain cause of misclassification
of indoor images. The main reasons for the misclassification of outdoor images are as follows: (i) uniform lighting
along the image mostly as a result of a close-up shot and (ii) dark images (some of the indoor images used in the
training set were dark digital images and hence, most dark pictures are classified as indoor scenes). The results show
that spatial color distribution captured in the sub-block color moment features has sufficient discrimination power for
theindoor vs. outdoor classification problem.

Test Data DataSize | Accuracy (%)
Training Set 2,541 94.2
Test1 2,540 88.2
Test2 1,850 88.7
Entire Database | 6,931 90.8

Table 3: Classification accuracies (in %) for color moment features for various test data; Testl and Test2 are two
independent test sets.

4.3.2 City Vs. Landscape Classification

The city vs. landscape classification problem and further classification of landscape images into sunset, forest, and
mountain classes using the Bayesian framework has been addressed in detail in [13]. We present the gist of the results
here. Table 4 showsthe classification results for the city vs. landscape classification problem using database D2. Edge
direction coherence vector provides the best individual accuracy of 95.2% for the training data and 92.4% for the test
data. A total of 155 images were misclassified (a classification accuracy of 94.3%) when the edge direction coherence
vector was combined with the color histogram feature. Figure 7 shows a representative subset of the misclassified city
and landscape scenes. Most of the misclassifications for city images could be attributed to the following reasons: (i)
long distance city shots at night (which made it difficult to extract edges), (ii) top view of city scenes (lack of vertical
edges), (iii) highly textured buildings, and (iv) trees obstructing the buildings. Most of the misclassified landscape
images had strong vertical edges from tree trunks, close-ups of stems, fences, etc., that led to their assignment to the
City class.
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Figure 6: A subset of (a) misclassified indoor and (b) outdoor images using the color moment features; the corre-
sponding confidence values (in %) associated with the true class are presented.

Test EDH | EDCV | CH | CCV | EDH & | EDH & | EDCV & | EDCV &
Data CH Cccv CH Cccv
Training Set 94.7 | 95.2 | 83.7 | 83.5 94.8 95.4 95.2 95.3
Test Set 92.0 | 924 | 754 | 76.0 92.5 92.8 93.3 93.0
Entire Database | 93.4 | 93.8 | 79.6 | 79.8 93.7 94.1 94.3 94.2

Table 4. Classification accuracies (in %) for city vs. landscape classification problem; the features are abbreviated as
follows: edge direction histogram (EDH), edge direction coherence vector (EDCV), color histogram (CH), and color
coherence vector (CCV).

We also computed the classification accuracy using the edge direction coherence vector on an independent test
set of 568 outdoor images from database D1. A total of 1,177 images of the 4, 181 outdoor images in database D1
contained close ups of human faces. We removed these images for city vs. landscape classification. Recent advances
in face detection a gorithms show that faces can be detected rather reliably with a high degree of accuracy [28]. Of the
remaining images, we extracted 568 test images that were not part of database D2. The edge direction featuresyielded
an accuracy of 91.5% with 49 misclassifications out of the 568 images. Combining color histogram features with the
edge direction coherence vector features reduced the misclassification in the above experiment to 48, again showing
that edge direction features have enough discriminative power for the city vs. landscape classification problem.

4.3.3 Further Classification of L andscape | mages

A subset of 528 landscape images of database D2 were classified into the sunset, mountain, and forest classes. Of
these 528 images, a human subject labeled 177, 196, and 155 images as bel onging to the forest, mountain, and sunset
classes, respectively. A 2-stage classifier was constructed. First, we classify an image into either sunset or the forest
& mountain class. We next address the forest vs. mountain classification problem. Table 5 shows the classification
results for the classification of landscape images into sunset vs. forest & mountain classes. The color coherence
vector provides the best accuracy of 96.2% for the training data and 93.5% for the test data. Color features do much
better than the edge direction features here, since color distributions remain more or less constant for natural images
(blue sky, green grass, trees, plants, etc). A total of 26 images were misclassified (a classification accuracy of 95.1%)
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Figure 7: A subset of the (a) misclassified city images and (b) landscape images; the corresponding confidence values
(in %) associated with the true class using a combination of edge direction coherence vector and color histogram
features.

when the color coherence vector was combined with edge direction coherence vector. We find that there is not much
improvement in the classification accuracy with the combination of features. This shows that color coherence vector
has sufficient discrimination ability for the given classification problem.

Test EDH | EDCV | CH | CCV | EDH& | EDH & | EDCV & | EDCV &
Data CH CcCcv CH ccv
Training Set 88.3 | 88.3 | 96.2 | 96.2 95.9 95.9 95.5 95.9
Test Set 86.3 | 89.0 | 89.7 | 93.5 90.1 93.9 90.5 94.3
Entire Database | 87.4 | 88.7 | 93.0 | 94.9 93.0 94.9 93.0 95.1

Table 5: Classification accuracies (in %) for sunset vs. forest & mountain classification.

Table 6 shows the classification results for the individual features for forest vs. mountain classes (373 imagesin
the database). Color coherence vector providesthe best accuracy of 94.7% for the training dataand 91.4% for the test
data. A total of 24 images were misclassified (a classification accuracy of 93.6%) when the color histogram feature
was combined with either of the edge direction features. Again, the combinations of features did not perform better
than the individual color features, showing that color features are quite adequate for this classification problem.

Test EDH | EDCV | CH | CCV | EDH& | EDH & | EDCV & | EDCV &
Data CH Cccv CH Cccv
Training Set 83.4 78.1 | 92.0 | 94.7 94.1 92.5 93.6 93.1
Test Set 87.1 772 | 914 | 914 93.0 91.9 93.5 93.0
Entire Database | 85.3 7.7 | 917 93.1 93.6 92.2 93.6 93.0

Table 6: Classification accuracies (in %) for forest vs. mountain classification.

4.4 Comparison with Previous Approaches

Indoor vs. outdoor classification problem was earlier addressed by Szummer and Picard [25]. The classification of
outdoor images into city vs. landscape and further classification of landscape images is addressed in [12]. Both the

12



approaches use a K-NN classifier for the respective classifications. Leave-one-out method of testing was used to
measure the classification performance. A main drawback of a K-NN classifier is that all the samples need to be
stored and every test image has to be compared with the samples present in the database to make a decision. Recently,
there has been an added interest in using Bayesian inference for semantic content characterization in videos[29]. The
approach shows how Bayesian networks can be trained for characterizing the semantic content in video, such as action,
crowd, close-up, or man-made set vs. natural scenery shots. A set of low-level features is combined with hand-coded
probability models to characterize the above concepts.

A Bayesian classifier generatesan “ optimal” classification rule under the assumed models. The VQ paradigm used
tolearnthe class-conditional densitiesissimilar to aneura netinitslearning. Hence, the advantagesand disadvantages
of the Bayesian approach are similar to that of alearning algorithm using neural nets. The main advantages are:

o It providesalearning paradigm, wherein, the class-conditional feature distributions are learnt from the training
samples. Thus, the entire training set need not be stored in the database, and only the learnt codebook vectors
need be stored. Moreover, the number of comparisons required for a decision as compared to say a K-NN
classifier, are greatly reduced (from the size of the training set to the codebook size, e.g., from 6,931 imagesto
30 codebook vectorsfor the indoor vs. outdoor problem).

e The Bayesian paradigm not only provides a classification rule but also assigns a degree of confidence in the
classification. The confidence values can be used in areject option, wherein, results with low confidence values
arergjected.

e The Bayesian paradigm allows for a simple method for the integration of multiple features through the class-
conditional densities.

Our classifiers are very much similar to the Bayesian network model described in [29]. We differ in our approach
for training the Bayesian classifiers. Vector Quantization is used to extract afew codebook vectors which in turn are
used to estimate the class-conditional probability distributions. We further show how the MDL principle can be used
to select an optimal size of codebook vectorsfor agiven classifier and feature vector.

45 Discussion

Although, the Bayesian approach has a number of advantages, it has some limitations as well. The accuracy of the
Bayesian approach, like any other learning paradigm, depends on two main issues:

e Feature Saliency: A feature with alow discrimination power against the pattern classes in consideration (say,
indoor vs. outdoor) yields low accuracy values. For example, the edge direction and color histogram features
yield accuracies of about 60% for the indoor vs. outdoor problem, yet they yield over 94% accuracy for the city
vs. landscape problem. How can the feature extraction stage be automated to extract robust features?

e Training Set: More comprehensive a training set, better is the performance of the classifier. Table 7 shows the
classification accuracies with increasing training set sizes on an independent test set for the indoor vs. outdoor
classification problem. We can see that increasing the training set size improves the classification accuracy.
When we trained the Vector Quantizer with all the available 5, 081 images using the color moment features, the
system achieved a classification accuracy of around 94% on the training data (over 98% with alarger codebook
size of 200 vectors). Thisshowsthat the system still has ability to learn and more the training samples, the better
it can perform. A main limitation due to the above observation is that, the more biased a training set, the worse
isthe classifier performance over independent test sets. |'s there an automatic means to select a comprehensive
training set that model s the underlying population well? Or can the system progressively learn over time, as new
datais presented? We are currently looking at ways to add progressive/incremental learning into the classifiers.

5 Conclusion and Future Work

Content-based indexing and retrieval has emerged as an important areain computer vision and multimedia computing.
User queries are typically based on semantics and not on low-level image features. It is a challenging problem to
provide high-level semantic indices into large databases. In this paper, we show that certain high-level semantic
categories can be learnt using low-level image features under certain constraints (test image does belong to one of the
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Training | Ind. Test | Accuracy
Set Size | Set Size (%)
700 2,540 75.3

1,418 | 2,540 79.8
1,768 | 2,540 86.0
2,192 | 2,540 86.4
2,541 | 2,540 88.2

Table 7: Effect of increasing the size of training data on classification accuracies for the indoor vs. outdoor classifier;
Test and training sets were different.

classes in concern), albeit the “right” set of features are used for each level of classification. Specifically, we have
developed a hierarchical classifier for classifying vacation images. At thetop level, vacation images are classified into
indoor and outdoor categories. The outdoor images are then classified into city and landscape classes (we assume
a face detector that separates close-up images of people in outdoor images into the “other” category) and finaly, a
subset of landscape classes are classified into the sunset, forest, and mountain class. The classification problems have
been formalized using the Bayesian framework wherein Vector Quantization is used to estimate the class-conditional
probability densities of the observed features. The Bayesian approach has the following advantages: (i) it not only
provides a classification rule, but also assigns a degree of confidence in the classification; (ii) a small number of
codebook vectorsrepresent a particular class of images, thereby greatly reducing the number of comparisonsnecessary
for each classification; and (iii) it naturally allowsfor the integration of multiple features through the class-conditional
densities. Classifications based on local color moments, color histograms, color coherence vectors, edge direction
histograms, and edge direction coherence vectors as features show promising results.

The accuracy of the above classifiers depends on the feature set used, the training samples, and their ability to
learn from the training samples. We are currently working on adding a progressive/incremental learning paradigm
to the classifiers, so that they can improve their performance over time as more training data is presented. Another
challenging issue is to introduce reject option. In the simplest form, the a posteriori class probabilities can be used
for regjection (rejecting images with say less than 60% probability of belonging to any class). We are looking at other
means of adding the regject option into the system. Finally, we intend to add other classifiers into the system, such as
day vs. night classification, people vs. non-people classification, text vs. non-text classification, etc. These classifiers
can be added along with the present hierarchy to generate semantic indices into the database.
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