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ABSTRACT 

Discontinuity-preserving Bayesian image restora- 
tion, based on Markov random fields (MRF), in- 
volves an intensity fleld, representing the image 
to be restored, and an edge (discontinuity) fleld. 
The usual strategy is to perform joint maximum 
a posteriori (MAP) estimation of the intensity and 
discontinuity fields, this requiring the specifica- 
tion of Bayesian priors. Departing from this ap- 
proach, we interpret the discontinuity locations 
as deterministic unknown parameters of the in- 
tensity field. This leads to a parameter estima- 
tion problem with the important feature of hav- 
ing an unknown number of parameters. We intro- 
duce a discontinuity-preserving image restoration 
criterion (and an algorithm to implement it) based 
on the minimum description length (MDL) principle 
and built upon a compound Gauss-Markov random field 
(CGMRF) model; the proposed formulation does 
not involve the specification of a prior for the edge 
field which is adaptively inferred from the data. 

1. INTRODUCTION 
The incorporation of discontinuity/edge detection into 

image restoration/reconstruction techniques has been an 
important research area since edges are key features of vi- 
sual perception [l], [2], [3]. Following previous work (e.g. 
[3], [4], [5]) on Markov random fields (MRF) for Bayesian 
image restoration, Jeng and Woods introduced the com- 
pound Gauss-Markov random field (CGMRF) model [6], 
[7]. This model (briefly reviewed in Section 2.1) allows 
for edge-preserving Bayesian restoration using a continuous 
(Gauss-Markov) a priori statistical model for the intensity 
field together with a discrete (binary) hidden edge field sig- 
naling discontinuities [6], [7]. To perform joint Bayesian 
estimation (e.g. MAP) of both the image and its edges, 
some prior model has also to  be specified for the edge field. 
This prior is usually not explicitly stated; instead, a joint 
intensity-edge prior is directly considered [6], [7], [8], [9]. 

Our approach avoids the specification of the edge prior 
by adopting the following perspective: the location of the 
discontinuities are deterministic parameters of the intensity 
field probability density function. Locating discontinuities 

is then a parameter estimation problem exhibiting the im- 
portant feature of having an unknown number of param- 
eters (discontinuities). This places the problem in a class 
to which the minimum description length (MDL) princi- 
ple (briefly reviewed in Section 2.2) has been successfully 
applied [lo], [ll], [12]. 

Pioneer work using MDL for image segmentation was 
done by Leclerc [14]; our work departs from Leclerc’s in 
that we model the true image as a sample of an MRF while 
in [14] it  is deterministically modelled as piecewise poly- 
nomial. The work [15] also uses MDL together with an 
MRF-type model; it pursues, however, a different goal in 
which MDL is used to build priors based on the “complez- 
ity” of the discontinuity configurations. 

This paper introduces an MDL-based discontinuity- 
preserving image restoration criterion built upon a CGMRF 
model and not requiring the specification of a Bayesian 
prior for the edge field. 

To implement the proposed criterion we apply a 
method related to  the ezpectotion-mazimiration (EM) al- 
gorithm [13]. Beyond doing without discontinuity related 
parameters (such as detection thresholds or penalties) the 
algorithm also autonomously estimates the variance of the 
observed image noise. 

2. BACKGROUND 
2.1. Compound Gauss-Markov Random Fields - CGMRF 

Let x = { x i j  : i = 1 , 2  ,..., M; j = 1 , 2  ,..., N }  be a 
realization of a Gauss-Markov random field (GMRF) X = 
{ X i ,  : i = 1,2,  ..., M; j = 1,2 ,  ..., N} defined on a M x N 
pixels image; its probability density function (pdf) is 

where x here stands for a vector containing the lexico- 
graphically ordered pixel values, and A is the inverse of 
the covariance matrix, termed potential matris [16]. Being 
Markovian, the conditional probabilities verify 

where N ; j  is the neighborhood of pixel (i, j) [3]. In ( I ) ,  the 
Gibbsian joint pdf of the MRF X can be recognized [5]. 
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Assume that only a noisy version y = x+n is observed, 
where n is a sample of a white Gaussian homogeneous noise 
field with variance U’, i.e. 

p(ylx, 2) = (2*aZ)-MN’2 e x P { - g I l Y - x l 1 2 } .  1 (2) 

Compound Gauss-Markov random fields (CGMRF) 
are a special class of GMRF’s in which the potential ma- 
trix is parametrized by a collection of binary (0 or l )  edge 
variables; these variables, when equal t o  1, break the corre- 
lation between neighbor pixels thus allowing for edge pre- 
serving Bayesian restoration [6], [7], [SI, [9]. This is in con- 
trast  with homogeneous GMRF’s which do not take edges 
into account. Let h and v be the edge fields signaling, re- 
spectively, horizontal and vertical discontinuities. T h e  pdf 
of a first order (Nij is the set of four nearest neighbors of 
( i , j ) ,  i.e. Ni, = { ( i , j  - I ) ,  ( i , j  + l ) , ( i  - l , j) ,  ( i  + 1 , i ) ) )  
CGMRF X, given an  edge configuration (h, v), is 

+Wh( l -hs j ) ( z t~  - Z t - 1 j ) 2 $ ( 1 - 2 ( w u  +wh))z?j]>, (3) 

where p ,  W h ,  and wu are parameters; roughly, p is the in- 
verse of a “globat” variance of the CGMRF, while wh and 
wu control the relative vertical and horizontal “smoothness” 
of the field. 

Expression (3) can be written in vector notation as 

(4) 
where the dependence of matrix A(h, v) on parameters W h ,  

W. and p is not explicitly indicated. The factor multiplying 
the exponential in (4) is the normalizing constant, recip 
rocal of the partition function Z(h,v) [3]; in this case, it 
depends on the edge configuration (h,v). 

Higher order models are obtained by assuming neigh- 
bors other than just the four nearest ones; here, without 
loss of generality, we only consider the first order case for 
which A(h,v) is block tridiagonal with tridiagonal blocks 
[20]. Equation (3) requires corrections at the image bound- 
aries which we do not mention here. 

The condition (1 - 2(wu + W h ) )  > 0 is sufficient for 
having det A(h, v) # 0 ,  for any (h, v). In isotropic mod- 
els, the only ones considered here, wu = W h  = w and the 
above condition is simply w < 1/4. Weak membrane type 
models (see e.g. [17]), lacking the (1  - 4w)z?] term, are 
non-normalizable since for most discontinuity configura- 
tions matrix A(h,v) is singular; p(xlh,v) becomes a so 
called improper prior [18]. For MAP estimation this is not 
a difficulty; however for parameter estimation, requiring 
the explicit use of Z(h,v), they can not be used. 

The joint MAP estimate of x, h and v, given y, is 

f G - arg max {p(x,h,vly)}, ( ’ ’ x,h,v ( 5 )  

= arg max {P(Y 1x1 P(Xlh, v) P(h, v)} 9 (6) 
x,h,v 

where p(h,v) is the prior probability function of the edge 
fields which has t o  be specified. 

2.2. The Minimum Description Length Principle 

The MDL principle, an information-theoretical con- 
cept proposed by Rissanen, allows the estimation of param- 
eters along with their number [lo], [ll], [12]. I t  generalizes 
maximum likelihood (ML) estimation to  cases where not 
only the parameters but also their number are unknown. 

T h e  ML estimate of a k-dimensional p a r a m z r  vec- 
tor O(k) ,  given observation x, is defined as @(k)ML = 
arg max{p(xl@(k))} (subscript (k) indicates that  a vector 
is k-dimensional). Conventional ML is inadequate when k 
is unknown; in this case, the MDL principle stipulates that  
one should look for the shortest description (code length) 
of the data,  which also includes the parameters themselves. 
The total length of the optimal code for x, given a certain 
k-dimensional @(k), is 

L(x,@(k), k, = L(xl@(k)) + L ( @ ( k ) )  + L ( k ) ,  

where L(xl@(k)) = - logp(xl@(k)) (according to coding 
theory [ll], [19]), L ( @ ( k ) )  is the code length for a k- 
dimensional @ ( k ) ,  and L ( k )  is the code length for k itself 
(usually a constant). The  MDL estimate of k and @(k) is 
then (after dropping L ( k ) )  

(7) 
Notice that,  if L ( @ ( k ) )  only depends on k, then for fixed k 
the MDL and ML estimates coincide. 

3. PROPOSED FORMULATION 
3.1. Discontinuity Locations as Parameters 

We interpret discontinuity locations as deterministic 
but unknown parameters of p(x) rather than as a random 
field. This does not involve the specification of a Bayesian 
prior for the discontinuities since we are now dealing with a 
parameter estimation problem. A difficulty arises: not only 
the locations of the discontinuities, but also their number, 
are unknown. To solve this we adopt the MDL principle. 

Notice that we can focus on estimating the disconti- 
nuities alone. With fixed h and v, the joint a posteriori 
probability density function p(x, h,vly) a p(xlh, v) p(y1x) 
(considering (2) and (4)) is convex with respect t o  x and 
its maximizer is simply 

(8) f (h,  v) = (a2A(h, v) + I)-’ Y ,  

which can be obtained by, e.g., deterministic relaxation [17], 
[20]. This shows that the only difficulty lies in estimating 
the discontinuities. 

Let @(k) = [81,82, ..., 8kIT be a k-dimensional param- 
eter vector expressing the locations of the discontinuities; 
@(k) is just  a compact description of h and v; if there are 
few discontinuities, when compared to  the image dimen- 
sion, it is shorter to specify their locations than to use h 
and v explicitly. Each component of @(k) is a triplet ( i ,  j, b) 
reporting that h,, = 1, if b = 1, or that  v l j  = 1, if b = 0: 
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Since i E (1 ,..., M}, j E { I ,  ..., N}, and b E { O , l } ,  

L(@(k)) = k(l0g M + log N + log 2) = k log(2MN) (9) 

is the natural choice. 

3.2. An MDL Criterion with Incomplete Data 

If x was observed, MDL could be directly used by in- 
troducing (4) into (7). Since only y is observed we use 
p(x,  yl@(k)) instead of p(xIO(k)) and interpret the true im- 
age x as missing data [13]. The  obtained criterion is (with 
explicit dependence on U’, which we also wish t o  estimate) 

where 

L(x,Y,@(k),a’) = -logP(X,Yl@(k),a’) + L(@(k)) 

= -logP(Ylx, U’) - logP(xlqk))  

+ L ( @ ( k ) ) .  (11) 

The  length L(u’)  is not included in (11) since i t  is constant 
(with respect to k); in other words, relatively to  U’, (10) is 
an ML criterion. Following the equivalence between (h,v) 
and function p(xl@(k)) is as given by (4) 

3.3. The Pseudo-likelihood Approximation 

Before addressing the issue of how to  find the mini- 
mum of the description length function ( l l ) ,  notice that 
there is a huge difficulty in computing it. This obstacle 
lies in p(xI@(k)), as given by (4), which involves the deter- 
minant of an enormous matrix ( M N  x M N  for a M x N 
image). This is the well known problem of computing the 
partition function, arising in parameter estimation with 
MRF models. Here we resort t o  Besag’s pseudo-likelihood 
approximation [5] which, omitting the parameters, states 
that  

P(x) nP(zt, I{ZSI : (k , l )  E N13}); (12) 
13 

recall we are dealing with an MRF. 

ities are also Gaussian, 
Since X is a Gaussian MRF the conditional probabil- 

P(zt31{xt 3 - 1 , z 1  3 t 1 ! 2 t - 1  3,z1-l-1 3 } , @ ( k ) ) = n / ( 9 * j , x ? 3 )  

(13) 
where N(u, +’) denotes a Gauss function with mean U and 
variance y5’. The  local mean and variance which depend 
on @(k) (i.e. on h and v) are: 

qIJ(@(k)) = x ; j ( @ ( k ) )  c w  [Kt3 21-1 3 + E:j 2 1  3-1+ 
- 
h l t l 3  2 1 t 1 3  + = a  3 t 1  z: I t 1  1 ,  (14) 

where stands for (1 - h, , ) ,  

Finally, introducing (9), (2), and the pseudelikelihood 
approximation (12) (together with (13), (14) and (15)) into 
(11) leads (dropping additive constants) t o  

q x ,  Y, q k ) ,  U’) = 

4. ALGORITHM 
To minimize the description length function (16) we 

have devised an EM-type scheme. T h e  EM nature of the 
algorithm is justified by the fact that  x is missing and so 
we are facing a problem of parameter estimation from in- 
complete data  [13]. The fast (albeit suboptimal) algorithm 
herein considered restricts the solutions, with respect to 
the discontinuities, t o  those obtained by comparing all the 
pairwise differences with a varying threshold. A range of 
thresholds is then swept and the MDL criterion is used to 
select the optimal one. The  algorithm runs as follows: 

Step 0 Initialization: set k = %and an initial value for the 
noise variance estimate 62; get an initial estimate 2 
using (8). From these, compute and store the corre- 
sponding description length value. Also, initialize a 
threshold parameter denoted y t o  some high value. 

Step 1 From the current estimate 2, aEd the observed im- 
age y, update the ML estimate U’ according to  

Step 2 From the turret estimate 2, update the disconti- 
nuity estimates (h, c) according to  

~ I J  = 1 lzij - 21-1 31 > ’)’ i- VIJ = 1 * I z i ~  - 21 3-11 > Y, 

where y is the_current value of the threshold param- 
eter. Update k by counting the number of signaled 
discontinuities. 

Step 3 From the recently updated (G,  c )  and U’, obtain a 
- 

new image estimate according t o  (8). 
h 

Step 4 From (G,?), Z, 2, and U’, compute and store the 
description length (16). 

Step 5 Decrease parameter y by some predefined amount; 
if i t  has not reached a (also predefined) lower limit 
go back to  Step 1, otherwise go t o  Step 6. 

Step 6 Final step: from the stored list of description 
lengths (see Step 4) find the minimum value and 
elect the respective image and discontinuity esti- 
mates as the final results. 
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Observe the similarity of Step 3 to  the E-step of the 
EM algorithm (since X is Gaussian and the observation 
mechanism considers additive Gaussian noise the MAP es- 
timate coincides with the conditional expectation). The 
role of the M-step is here played by Step 1 and Step 2. 

Since, in practice, we deal with digital images, i.e. 
their pixels only assume integer gray levels, say 0,1,  .... 255, 
an important fact can be exploited: the smallest possible 
non-zero difference is 1 and the largest is 255. So, threshold 
7 can be swept from 255 down to  1 in unit steps. Moreover, 
a rough upper bound on the pixel differences (much better 
than 255) is easy to obtain and use as a starting point. 

Finally, we call the attention to the fact that the de- 
veloped algorithm is a first approach, putting in evidence 
the global features of the criterion introduced. I t  searches 
only a small subset of all possible configurations and a more 
sophisticated scheme wiU be necessary to  fully exploit the 
potential of the proposed formulation. 

5. EXPERIMENTAL EXAMPLES 
Two experimental examples illustrate the behavior of 

the proposed technique. Both use 256 levels digital images 
and assume p = 2.0 and w = 0.249. 

5.1. Synthetic Image 
This example considers the synthetic image of Fig. 

l (a )  and its noisy version (c’ = 30’) of Fig. l (b) .  Fig. 
2 shows a sequence of discontinuity configurations cor- 
responding to the iteration numbers indicated, i.e. ob- 
tained for successively lower values of discontinuity detec- 
tion threshold 7. Fig. 3 plots the evolution of the descrig 
tion length based on which the configuration of iteration 30 
(see Fig. 2) was chosen as the solution. At this iteration, 
the noise standard deviation estimate was = 30.8. 

Frgure 1: Synthetic image (a); noisy (0’ = 30’) version (b). 

5.2. Natural Image 
4(a)) is now considered; its 

noisy version (c’ = 40’) is shown in Fig.4(b). A sequence 
of discontinuity configurations is presented in Fig. 5, while 
Fig. 6 plots the evolution of the description length based 
on which configuration 32 was elected. At this iteration, 
the noise standard deviation estimate was 

A natural image (Fig. 

= 41.4. 
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Figure 4 :  Natural image (a); noisy (0’ = 40’) version (b). 
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Figure 5: Edge configurations at the iterations indicated by 
the numbers; the chosen one (see Fig. 6) is signaled by “*”. 
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Fi ure 7: Restored images: (a) from the synthetic image, and 
(bg from the natural image. 
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