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Augmented Lagrangian Methods

Consider a linearly constrained problem,

min f (x) s.t. Ax = b.

where f is a proper, lower semi-continuous, convex function.

The augmented Lagrangian is (with ρ > 0)

L(x , λ; ρ) := f (x) + λT (Ax − b)︸ ︷︷ ︸
Lagrangian

+
ρ

2
‖Ax − b‖2

2︸ ︷︷ ︸
“augmentation”

Basic augmented Lagrangian (a.k.a. method of multipliers) is

xk = arg min
x
L(x , λk−1; ρ);

λk = λk−1 + ρ(Axk − b);

(Hestenes, 1969; Powell, 1969)
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A Favorite Derivation

...more or less rigorous for convex f .

Write the problem as

min
x

max
λ

f (x) + λT (Ax − b).

Obviously, the max w.r.t. λ will be +∞, unless Ax = b, so this is
equivalent to the original problem.

This equivalence is not very useful, computationally: the maxλ
function is highly nonsmooth w.r.t. x . Smooth it by adding a
“proximal point” term, penalizing deviations from a prior estimate λ̄:

min
x

{
max
λ

f (x) + λT (Ax − b)− 1

2ρ
‖λ− λ̄‖2

}
.

Maximization w.r.t. λ is now trivial (a concave quadratic), yielding

λ = λ̄+ ρ(Ax − b).
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A Favorite Derivation (Cont.)

Inserting λ = λ̄+ ρ(Ax − b) leads to

min
x

f (x) + λ̄T (Ax − b) +
ρ

2
‖Ax − b‖2 = L(x , λ̄; ρ).

Hence can view the augmented Lagrangian process as:

� minx L(x , λ̄; ρ) to get new x ;

� Shift the “prior” on λ by updating to the latest max: λ̄+ ρ(Ax − b).

� repeat until convergence.

Add subscripts, and we recover the augmented Lagrangian algorithm
of the first slide!

Can also increase ρ (to sharpen the effect of the prox term), if needed.
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Inequality Constraints, Nonlinear Constraints

The same derivation can be used for inequality constraints:

min f (x) s.t. Ax ≥ b.

Apply the same reasoning to the constrained min-max formulation:

min
x

max
λ≥0

f (x)− λT (Ax − b).

After the prox-term is added, can find the minimizing λ in closed form
(as for prox-operators). Leads to update formula:

max
(
λ̄+ ρ(Ax − b), 0

)
.

This derivation extends immediately to nonlinear constraints
c(x) = 0 or c(x) ≥ 0.
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“Explicit” Constraints, Inequality Constraints

There may be other constraints on x (such as x ∈ Ω) that we prefer
to handle explicitly in the subproblem.

For the formulation min
x

f (x), s.t. Ax = b, x ∈ Ω,

the minx step can enforce x ∈ Ω explicitly:

xk = arg min
x∈Ω
L(x , λk−1; ρ);

λk = λk−1 + ρ(Axk − b);

This gives an alternative way to handle inequality constraints:
introduce slacks s, and enforce them explicitly. That is, replace

min
x

f (x) s.t. c(x) ≥ 0,

by
min
x

f (x) s.t. c(x) = s, s ≥ 0.
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“Explicit” Constraints, Inequality Constraints (Cont.)

The augmented Lagrangian is now

L(x , s, λ; ρ) := f (x) + λT (c(x)− s) +
ρ

2
‖c(x)− s‖2

2.

Enforce s ≥ 0 explicitly in the subproblem:

(xk , sk) = arg min
x ,s
L(x , s, λk−1; ρ), s.t. s ≥ 0;

λk = λk−1 + ρ(c(xk)− sk)

There are good algorithmic options for dealing with bound constraints
s ≥ 0 (gradient projection and its enhancements). This is used in the
Lancelot code (Conn et al., 1992).
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Quick History of Augmented Lagrangian

Dates from at least 1969: Hestenes, Powell.

Developments in 1970s, early 1980s by Rockafellar, Bertsekas, and
others.

Lancelot code for nonlinear programming: Conn, Gould, Toint,
around 1992 (Conn et al., 1992).

Lost favor somewhat as an approach for general nonlinear
programming during the next 15 years.

Recent revival in the context of sparse optimization and its many
applications, in conjunction with splitting / coordinate descent.
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Alternating Direction Method of Multipliers (ADMM)

Consider now problems with a separable objective of the form

min
(x ,z)

f (x) + h(z) s.t. Ax + Bz = c ,

for which the augmented Lagrangian is

L(x , z , λ; ρ) := f (x) + h(z) + λT (Ax + Bz − c) +
ρ

2
‖Ax − Bz − c‖2

2.

Standard AL would minimize L(x , z , λ; ρ) w.r.t. (x , z) jointly.
However, these are coupled in the quadratic term, separability is lost

In ADMM, minimize over x and z separately and sequentially:

xk = arg min
x
L(x , zk−1, λk−1; ρ);

zk = arg min
z
L(xk , z , λk−1; ρ);

λk = λk−1 + ρ(Axk + Bzk − c).
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ADMM

Main features of ADMM:

Does one cycle of block-coordinate descent in (x , z).

The minimizations over x and z add only a quadratic term to f and
h, respectively. Usually does not alter the cost much.

Can perform the (x , z) minimizations inexactly.

Can add explicit (separated) constraints: x ∈ Ωx , z ∈ Ωz .

Many (many!) recent applications to compressed sensing, image
processing, matrix completion, sparse principal components analysis....

ADMM has a rich collection of antecendents, dating even to the 1950s
(operator splitting).

For an comprehensive recent survey, including a diverse collection of
machine learning applications, see Boyd et al. (2011).
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ADMM for Consensus Optimization

Given the unconstrained (but separable) problem

min
m∑
i=1

fi (x),

form m copies of the x , with the original x as a “master” variable:

min
x ,x1,x2,...,xm

m∑
i=1

fi (x
i ) subject to x i − x = 0, i = 1, 2, . . . ,m.

Apply ADMM, with z = (x1, x2, . . . , xm). Get

L(x , x1, x2, . . . , xm, λ1, . . . , λm; ρ) =
m∑
i=1

fi (x
i )+(λi )T (x i−x)+

ρ

2
‖x i−x‖2

2.

The minimization w.r.t. z = (x1, x2, . . . , xm) is separable!

x ik = arg min
x i

fi (x
i )+(λik−1)T (x i−xk−1)+

ρk
2
‖x i−xk−1‖2

2, i = 1, 2, . . . ,m.

Can be implemented in parallel.
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Consensus, continued

The minimization w.r.t. x can be done explicitly — averaging:

xk =
1

m

m∑
i=1

(
x ik +

1

ρk
λik−1

)
.

Update to λi can also be done in parallel, once the new xk is known (and
communicated):

λik = λik−1 + ρk(x ik − xk), i = 1, 2, . . . ,m.

If the initial λi0 have
∑m

i=1 λ
i
0 =, can see that

∑m
i=1 λ

i
k = 0 at all

iterations k . Can simplify the update for xk :

xk =
1

m

m∑
i=1

x ik .

“Gather-Scatter” implementation.
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ADMM for Awkward Intersections

The feasible set is sometimes an intersection of two or more convex sets
that are easy to handle separately (e.g. projections are easily computable),
but whose intersection is more difficult to work with.

Example: Optimization over the cone of doubly nonnegative matrices:

min
X

f (X ) s.t. X � 0, X ≥ 0.

General form:

min f (x) s.t. x ∈ Ωi , i = 1, 2, . . . ,m

Again, use a different copy x i for each set, and constrain them all to be
the same:

min
x ,x1,x2,...,xm

f (x) s.t. x i ∈ Ωi , x i − x = 0, i = 1, 2, . . . ,m.

M. Figueiredo and S. Wright () Augmented Lagrangian Methods ICCOPT, July 2013 13 / 31



ADMM for Awkward Intersections

Separable minimizations over Ωi , i = 1, 2, . . . ,m:

x ik = arg min
xi∈Ωi

(λik−1)T (x i − xk−1) +
ρk
2
‖xk − x i‖2

2, i = 1, 2, . . . ,m.

Optimize over the master variable (unconstrained, with quadratic added to
f ):

xk = arg min
x

f (x) +
m∑
i=1

(λik−1)T (x − x ik−1) +
ρk
2
‖x − x ik−1‖2

2,

Update multipliers:

λik = λik−1 + ρk(xk − x ik), i = 1, 2, . . . ,m.
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ADMM: A Simpler Form

Often, a simpler version is enough: min
(x ,z)

f (x) + h(z) s.t. Ax = z ,

equivalent to min
x

f (x) + h(Ax), often the one of interest.

In this case, the ADMM can be written as

xk = arg min
x

f (x) + ρ
2‖Ax − zk−1 − dk−1‖2

2

zk = arg min
z

h(z) + ρ
2‖Axk−1 − z − dk−1‖2

2

dk = dk−1 − (Axk − zk)

the so-called “scaled version” (Boyd et al., 2011).

Updating zk is a proximity computation: zk = proxh/ρ
(
Axk−1− dk−1

)
Updating xk may be hard: if f is quadratic, involves matrix inversion;
if f is not quadratic, may be as hard as the original problem.

M. Figueiredo and S. Wright () Augmented Lagrangian Methods ICCOPT, July 2013 15 / 31



ADMM: Convergence

Consider the problem min
x

f (x) + h(Ax), where f and h are lower

semi-continuous, proper, convex functions and A has full column rank.

The ADMM algorithm presented in the previous slide converges (for
any ρ > 0) to a solution x∗, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

As in IST/FBS/PGA, convergence is still guaranteed with inexactly
solved subproblems, as long as the errors are absolutely summable.

The recent explosion of interest in ADMM is quite clear in the
citation record of the paper by Eckstein and Bertsekas (1992).
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ADMM for a More General Problem

Consider the problem min
x∈Rn

J∑
i=1

gj(H
(j)x), where H(j) ∈ Rpj×n,

and g1, ..., gJ are l.s.c proper convex fuctions.

Map it into min
x

f (x) + h(Ax) as follows (with p = p1 + · · ·+ pJ):

� f (x) = 0

� A =

H
(1)

...
H(J)

 ∈ Rp×n,

� h : Rp1+···+pJ → R̄, h


z

(1)

...
z (J)


 =

J∑
j=1

gj(z
(j))

We’ll see next that this leads to a very convenient version of ADMM.
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ADMM for a More General Problem (Cont.)

Resulting instance of

xk = arg min
x
‖Az−zk−dk‖2

2 =
( J∑
j=1

(H(j))TH(j)
)−1( J∑

j=1

(H(j))T (z
(j)
k−1 + d

(j)
k−1)

)
z

(1)
k = arg min

u
g1 + ρ

2‖u − H(1)xk−1 + d
(1)
k−1‖

2
2 = proxg1/ρ

(
H(1)xk−1 − d

(1)
k−1

)
...

...
...

...

z
(J)
k = arg min

u
gJ + ρ

2‖u − H(J)xk−1 + d
(J)
k−1‖

2
2 = proxgJ/ρ

(
H(J)xk−1 − d

(J)
k−1

)
dk = dk−1 − Axk + zk

Key features: matrices are handled separately from the prox operators; the
prox operators are decoupled (can be computed in parallel); requires a
matrix inversion (can be a curse or a blessing).

(Afonso et al., 2010; Setzer et al., 2010; Combettes and Pesquet, 2011)
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Example: Image Restoration using SALSA
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Example: Image Restoration using SALSA
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ADMM for the Morozov Formulation
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ADMM for the Morozov Formulation
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ADMM for the Morozov Formulation
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ADMM for Sparse Inverse Covariance

max
X�0

log det(X )− 〈X ,S〉 − τ‖X‖1,

Reformulate as

max
X�0

log det(X )− 〈X , S〉 − τ‖Z‖1 s.t. X − Z = 0.

Subproblems are:

Xk := arg max
X

log det(X )− 〈X , S〉 − 〈Uk−1,X − Zk−1〉

− ρk
2
‖X − Zk−1‖2

F

:= arg max
X

log det(X )− 〈X , S〉 − ρk
2
‖X − Zk−1 + Uk/ρk‖2

F

Zk := proxτ/ρk (Xk + Uk);

Uk+1 := Uk + ρk(Xk − Zk).
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Solving for X

Get optimality condition for the X subproblem by using
∇X log det(X ) = X−1, when X is s.p.d. Thus,

X−1 − S − ρk(X − Zk−1 + Uk/ρk) = 0,

which is equivalent to

X−1 − ρkX − (S − ρkZk−1 + Uk) = 0.

Form eigendecomposition

(S − ρkZk−1 + Uk) = QΛQT ,

where Q is n × n orthogonal and Λ is diagonal with elements λi . Seek X
with the form QΛ̃QT , where Λ̃ has diagonals λ̃i . Must have

1

λ̃i
− ρk λ̃i − λi = 0, i = 1, 2, . . . , n.

Take positive roots: λ̃i = [λi +
√
λ2
i + 4ρk ]/(2ρk), i = 1, 2, . . . , n.

M. Figueiredo and S. Wright () Augmented Lagrangian Methods ICCOPT, July 2013 30 / 31



References I

Afonso, M., Bioucas-Dias, J., and Figueiredo, M. (2010). Fast image recovery using variable
splitting and constrained optimization. IEEE Transactions on Image Processing,
19:2345–2356.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122.

Combettes, P. and Pesquet, J.-C. (2011). Signal recovery by proximal forward-backward
splitting. In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pages
185–212. Springer.

Conn, A., Gould, N., and Toint, P. (1992). LANCELOT: a Fortran package for large-scale
nonlinear optimization (Release A). Springer Verlag, Heidelberg.

Eckstein, J. and Bertsekas, D. (1992). On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Programming,
5:293–318.

Hestenes, M. (1969). Multiplier and gradient methods. Journal of Optimization Theory and
Applications, 4:303–320.

Powell, M. (1969). A method for nonlinear constraints in minimization problems. In Fletcher,
R., editor, Optimization, pages 283–298. Academic Press, New York.

Setzer, S., Steidl, G., and Teuber, T. (2010). Deblurring poissonian images by split bregman
techniques. Journal of Visual Communication and Image Representation, 21:193–199.

M. Figueiredo and S. Wright () Augmented Lagrangian Methods ICCOPT, July 2013 31 / 31


