Part 1: Applications of Sparse Optimization

Mario A. T. Figueiredo! and Stephen J. Wright?
Unstituto de Telecomunicacdes,
Instituto Superior Técnico, Lisboa, Portugal
2Computer Sciences Department,

University of Wisconsin,
Madison, WI, USA

ICCOPT, Lisbon, Portugal, July 2013

M. Figueiredo and S. Wright Sparse Optimization Applications ICCOPT, July 2013



In ce via Optimization

Many inference problems are formulated as optimization problems:

image reconstruction

image restoration/denoising

unsupervised learning

°
°
@ supervised learning
]
o statistical inference
]
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Inference via Optimization

Many inference problems are formulated as optimization problems:

image reconstruction

image restoration/denoising
supervised learning
unsupervised learning

statistical inference

Standard formulation:

observed data: y

unknown object (signal, image, vector, matrix,...): x

inference criterion:

X € argmin g(x, y)
X
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nce via Optimization

Inference criterion: X € arg min g(x, y)
X

Question 1: how to build g? Where does it come from?

Answer: from the application domain (machine learning, signal processing,
inverse problems, statistics, bioinformatics,...); we will see examples ahead.
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Inference via Optimization

Inference criterion: X € arg min g(x, y)
X

Question 1: how to build g? Where does it come from?

Answer: from the application domain (machine learning, signal processing,
inverse problems, statistics, bioinformatics,...); we will see examples ahead.

Question 2: how to solve the optimization problem?

Answer: the focus of this tutorial.
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Regularized Optimization

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + 7(x)
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Regularized Optimization

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + 7(x)

o h(x,y) — how well x “fits” /“explains” the data y;
(data term, log-likelihood, loss function, observation model,...)
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Regularized Optimization

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + 7(x)
o h(x,y) — how well x “fits” /“explains” the data y;
(data term, log-likelihood, loss function, observation model,...)
o Y(x) — knowledge/constraints/structure: the regularizer

e 7 > 0: the regularization parameter (or constant).
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Regularized Optimization

Inference criterion: X € argmin g(x, y)
X

Typical structure of g: g(x,y) = h(x,y) + 7(x)
o h(x,y) — how well x “fits” /“explains” the data y;
(data term, log-likelihood, loss function, observation model,...)
o Y(x) — knowledge/constraints/structure: the regularizer
e 7 > 0: the regularization parameter (or constant).
o Since y is fixed, we often write simply f(x) = h(x,y),

mXin f(x) + T (x)
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Regularizers

Inference criterion: min f(x) + 79 (x)

Typically, the unknown is a vector x € R”
or a matrix x € R"™m
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Regularizers

Inference criterion: min f(x) + 79 (x)

Typically, the unknown is a vector x € R”
or a matrix x € R"™m

Common regularizers impose/encourage one (or a combination of) the
following characteristics:

small norm (vector or matrix)

sparsity (few nonzeros)

specific nonzero patterns (e.g., group/tree structure)

low-rank (matrix)

smoothness or piece-wise smoothness
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Unconstrained vs Constrained Formulations

o Tikhonov regularization: min f(x) + 7¢(x)
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Unconstrained vs Constrained Formulations

o Tikhonov regularization: min f(x) + 7¢(x)

o min ()
o Morozov regularization: X
subject to f(x) <e
o min f(x)
o lvanov regularization: X
subject to  ¥(x) <9
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Unconstrained vs Constrained Formulations

o Tikhonov regularization: min f(x) + 7¢(x)

o min ()
o Morozov regularization: X
subject to f(x) <e

mXin f(x)

o lvanov regularization: i
subject to  ¥(x) <9

Under mild conditions, these are all “equivalent”.

Morozov and lvanov can be written as Tikhonov using indicator functions

(more later).

Which one is more convenient is problem-dependent.
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Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")
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Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Trivial case, A is invertible: x = A7y
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Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")
o Trivial case, A is invertible: x = A7y

o Over-determined system (m > n); least squares solution

(rank(A) = n):

X = arg min Z — (Ax);))? = argmin|ly — Ax[3 = (ATA)*ATy
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Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")
o Trivial case, A is invertible: x = A7y
o Over-determined system (m > n); least squares solution
(rank(A) = n):
= argmin Z = argmin ly — Ax|j3 = (ATA)1ATy
° Under—determlned system (m < n); minimum norm solution
(rank(A) = m):

- { arg min ||x|3
X

— = AT(AAT) 1
st. Ax=y } ( Sy
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Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

Trivial case, A is invertible: x = A~ly

Over-determined system (m > n); least squares solution

(rank(A) = n):
=arg mmZ = argmin ly — Ax|j3 = (ATA)1ATy
° Under—determlned system (m < n); minimum norm solution
(rank(A) = m):

- { arg min ||x||3
X = X

=AT(AAT)™
st. Ax=y } ( Sy

@ Non-trivial cases: resort to optimization and regularization.
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Example: Under- and Over-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Trivial case, A is invertible: x = A7y

Over-determined system (m > n); least squares solution
(rank(A) = n):
n

X = argmin Z(y,- — (Ax);))? = argmin|ly — Ax[3 = (ATA)*ATy
X 1 X
o Under-determined system (m < n); minimum norm solution
(rank(A) = m):
. 2
arg min || x
st. Ax=y
@ Non-trivial cases: resort to optimization and regularization.

@ Quadratic (Euclidean) losses and regularizers have a long and rich
history: Gauss, Legendre, Wiener, Moore-Penrose, Tikhonov, ...
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R is a norm if it satisfies:

o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R is a norm if it satisfies:
o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o [x+ X < [Ix[l + [IX]

, for any x,x" € V  (triangle inequality);
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R is a norm if it satisfies:
o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o Ilx+ x|l < x| + I
° |x||=0 = x=0.

, for any x,x" € V  (triangle inequality);
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R is a norm if it satisfies:

o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o [x+ X < [Ix[l + [IX]
° |x||=0 = x=0.

, for any x,x" € V  (triangle inequality);

Examples:

1/
o V=R" |x|lp = (Z |x,-|p) g (called #, norm, for p > 1).
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R is a norm if it satisfies:

o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o [x+ X < [Ix[l + [IX]
° |x||=0 = x=0.

, for any x,x" € V  (triangle inequality);

Examples:
1/p
o V=R" |x|lp = (Z |x,-|p) (called #, norm, for p > 1).

° V=R" |lxfloo = lim [Ix]lp = max{|xt];..., [xn]}
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R is a norm if it satisfies:
o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o Ilx+ x|l < x| + I
° |x||=0 = x=0.

, for any x,x" € V  (triangle inequality);

Examples:
1/p
o V=R" |x|l, = (Z |x,-|p) (called #, norm, for p > 1).
i
° V=R" |lxfloo = lim [Ix]lp = max{|xt];..., [xn]}

YV =R™" || X]l, = trace(VXTX) (matrix nuclear norm)
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Norms: A Quick Review

Consider some real vector space V, for example, R"” or R"™" ...

Some function || - || : V — R is a norm if it satisfies:

o ||ax|| = || ||x]|, for any x € V and « € R (homogeneity);
o [x+ X < [Ix[l + [IX]
° |x||=0 = x=0.

, for any x,x" € V  (triangle inequality);

Examples:
1/p
o V=R" |x|l, = (Z |X,'|p) (called #, norm, for p > 1).
i
° V=R" |lxfloo = lim [Ix]lp = max{|xt];..., [xn]}
o V=R™" |X|,=trace(VXTX) (matrix nuclear norm)

Also important (but not a norm): ||x|lo = lim |||} = [{i : x; # O}|
p—0
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Norm balls

Radius r ball in £, norm: Bo(r) ={xeR": ||x]|p < r}
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Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Under-determined system (m < n); minimum norm solution:

- { argmin ||x|3
X = X

= A*(AA*) !
st. Ax=y } ( )y
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Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Under-determined system (m < n); minimum norm solution:

- { argmin ||x|3
X = X

} = A*(AA*)"ly # x (in general)
st. Ax=y
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Examples: Back to Under-Constrained Systems

A simple linear inverse problem: from y = Ax, find x (A € R™*")

o Under-determined system (m < n); minimum norm solution:

: 2

argmin ||x

X = { 5 M Il } = A*(AA*)"ly # x (in general)
st. Ax=y

o Can we hope to recover x? Yes! ...if x is sparse enough (||x|lo < k)
and A satisfies some conditions, using

X = argmin ||x|o
X

st. Ax=y

Several proofs, under different conditions (more later).

But, this is a hard problem! £3 “norm” is not convex.
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Review of Basics: Convex Sets

Convex and strictly convex sets

S isconvexif z,2' €S =VA€[0,1], da+(1—-N2' €S

non-convex

S is strictly convex if 7,2 € S = VA € (0,1), Ax+ (1 — N2’ € int(S)

convex, but
not strictly

strictly
convex
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Review of Basics: Convex Functions

Extended real valued function: f:RY - R=RU {400}
Domain: dom(f) = {x: f(z) # +o0}
f is proper if dom(f) # ()

f is convex if
VA€ [0,1],z,2" € dom(f) f(Az+ (1 —N)z') < Af(x) + (1 —N)f(z))

f is strictly convex if
VA€ (0,1),z,2" € dom(f) f(Ax+ (1 —=X)2') < Af(z)+ (1= N)f(2")

I
convex, not strictly

!
non-convex strictly convex

ICCOPT, July 2013
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Lower Semi-Continuity: Why Is It Important?

A function f : R” — R is lower semi-continuous (l.s.c.) if

Iirr;inf > f(xp), for any xp € dom(f)
X—rXo

or, equivalently, {x : f(x) < a} is a closed set, for any « € R

e ™, ifx<0 e, ifx<0
f(x)_{+oo, if x>0 f(x)_{+oo, if x>0

| |
dom(f) =] — o0, 0[, argmin, f(x) =10 dom(f) =] — 00, 0], argmin, f(x) = {0}

Unless stated otherwise, we only consider |.s.c. functions.
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Coercivity, Convexity, and Minima

f:RY 5 R=RU{+o0}
fiscoerciveif  lim f(x) = +oo
[| ]| —+o0
iff is coercive, then G = arg min f(:I:) is a non-empty set
x

iff is strictly convex, then (G has at most one element

coercive and coercive, not convex, not
strictly convex strictly convex coercive
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Another Important Concept: Strong Convexity

Recall the definition of convex function: VA € [0, 1],
fOOx + (1= A)X) < M(x) + (1= NFf(X)

i AM(@)+ (L= f(2)
e f(Az+ (1 - \)2))

x x

Az + (1= N2

convexity
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Another Important Concept: Strong Convexity

Recall the definition of convex function: VA € [0, 1],
fOOx + (1= A)X) < M(x) + (1= NFf(X)
A [B—strongly convex function satisfies a stronger condition: VA € [0, 1]

FO A+ (1= A) S M)+ (1= M) = DA =0~ 2

i AM(@)+ (L= f(2)
e f(Az+ (1 - \)2))

NS Af(z) + (1= X)f(a')
~ L et (1)

/ /

T x T T
Az + (1= N2 Az + (1= A2’
convexity strong convexity
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Another Important Concept: Strong Convexity

Recall the definition of convex function: VA € [0, 1],
fOOx + (1= A)X) < M(x) + (1= NFf(X)
A [B—strongly convex function satisfies a stronger condition: VA € [0, 1]

FO A+ (1= A) S M)+ (1= M) = DA =0~ 2

i AM(@)+ (L= f(2)
e f(Az+ (1 - \)2))

NS Af(z) + (1= X)f(a')
~ L et (1)

/ /

T x T T
Az + (1= N2 Az + (1= A2’
convexity strong convexity

Strong convexity £ strict convexity.
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A Little More on Convex Functions

Let f1, ..., fy : R” — R be convex functions. Then
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A Little More on Convex Functions

Let f1, ..., fy : R” — R be convex functions. Then

o f:R" = R, defined as f(x) = max{fi(x), ..., fu(x)}, is convex.
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A Little More on Convex Functions

Let £, ..., fy : R” — R be convex functions. Then

o f:R" = R, defined as f(x) = max{fi(x), ..., fu(x)}, is convex.

o g:R" = R, defined as g(x) = fi(L(x)), where L is affine, is convex.
Note: L is affine & L(x) — L(0) is linear; e.g. L(x) = Ax + b.
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A Little More on Convex Functions

Let £, ..., fy : R” — R be convex functions. Then

o f:R" = R, defined as f(x) = max{fi(x), ..., fu(x)}, is convex.

o g:R" = R, defined as g(x) = fi(L(x)), where L is affine, is convex.
Note: L is affine & L(x) — L(0) is linear; e.g. L(x) = Ax + b.

- N
o h:R" — R, defined as h(x) = Z

Flajﬁ(x), for aj > 0, is convex.
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A Little More on Convex Functions

Let £, ..., fy : R” — R be convex functions. Then

o f:R" = R, defined as f(x) = max{fi(x), ..., fu(x)}, is convex.

o g:R" = R, defined as g(x) = fi(L(x)), where L is affine, is convex.
Note: L is affine & L(x) — L(0) is linear; e.g. L(x) = Ax + b.
N

o h:R" — R, defined as h(x) = Z

Flajﬁ(x), for aj > 0, is convex.

An important function: the indicator of a set C C R”,

LciRn%R, Lc(X):{O < xec

+oo <« x¢C

If C is a closed convex set, ¢¢ is a |.s.c. convex function.
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The Case of Differentiable Functions

Let f: R" — R be twice differentiable and consider its Hessian matrix at
x, denoted V2f(x) (or Hf(x)):

or
i 0x;0x;

(V2f(x)) fori,j=1,...,n.
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The Case of Differentiable Functions

Let f : R™ — R be twice differentiable and consider its Hessian matrix at
x, denoted V2f(x) (or Hf(x)):

or
i 0x;0x;

(V2f(x)) fori,j=1,...,n.

o f is convex < its Hessian V2f(x) is positive semidefinite V,
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The Case of Differentiable Functions

Let f : R™ — R be twice differentiable and consider its Hessian matrix at
x, denoted V2f(x) (or Hf(x)):

or
i 0x;0x;

(V2f(x)) fori,j=1,...,n.

o f is convex < its Hessian V2f(x) is positive semidefinite V,

o f is strictly convex <= its Hessian V2f(x) is positive definite V
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The Case of Differentiable Functions

Let f : R™ — R be twice differentiable and consider its Hessian matrix at
x, denoted V2f(x) (or Hf(x)):

or
i 0x;0x;

(V2f(x)) , fori,j=1,...,n.

o f is convex < its Hessian V2f(x) is positive semidefinite V,
o f is strictly convex <= its Hessian V2f(x) is positive definite V

o f is 3-strongly convex < its Hessian V2f(x) = B1, with 8 > 0, V.
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More on the Relationship Between ¢; and /g

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).
w = argmin|w|o

st |JAw —y|3 <6
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More on the Relationship Between ¢; and /g

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).
w = argmin|w|o
st |JAw —y|3 <6

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

w = argmin|Aw — y|3
w

s. tlwllo <7
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More on the Relationship Between ¢; and /g

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).
w = argmin|w|o
st |JAw —y|3 <6

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

w = argmin|Aw — y|3
w

s. tlwllo <7

Under conditions, replacing o with ¢1 yields “similar” results:
central issue in compressive sensing (CS) (Candgs et al., 2006a; Donoho,
2006)
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Compressive Sensing in a Nutshell

Nx1 NxD, N<D

y A w
! @ i -

Dx1

Even in the noiseless case, it seems impossible to recover w from y
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Compressive Sensing in a Nutshell

y A w

(+ noise )

Nx1 NxD, N<D

Dx1

Even in the noiseless case, it seems impossible to recover w from y
...unless, w is sparse and A has some properties.
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Compressive Sensing in a Nutshell
y A w
! Fm -

Nx1 NxD, N<D

Dx1

Even in the noiseless case, it seems impossible to recover w from y
...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

w = argmin|wlp
w

s. t. [[Aw —y|| <0 NP-hard!
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
o can be replaced with ¢; (Candes et al., 2006b):

w = argmin|w|1
w

subject to ||[Aw — y|| < 6 convex problem
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
o can be replaced with ¢; (Candes et al., 2006b):

w = argmin|w|1
w

subject to ||[Aw — y|| < 6 convex problem
Matrix A satisfies the RIP of order k, with constant ¢, € (0,1), if
Iwllo < k = (1= ) lIwl3 < lAw] < (1 +60)llwl]3

...i.e., for k-sparse vectors, A is approximately an isometry.
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Compressive Sensing in a Nutshell

Under some conditions on A (e.g., the restricted isometry property (RIP)),
o can be replaced with ¢; (Candes et al., 2006b):

w = argmin|w|1
w
subject to ||[Aw — y|| < 6 convex problem
Matrix A satisfies the RIP of order k, with constant ¢, € (0,1), if
Iwllo < k = (1= d)[[wllz < lAwl| < (1 + 6i)llwl]3
...i.e., for k-sparse vectors, A is approximately an isometry.

Other properties (spark and null space property (NSP)) can be used;
caveat: checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch, 2012).
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Examples: Back to Under-Constrained Systems

Let X be the sparsest solution of Ax = y, where A € R™*" and m < n.

X = argmin |[x[[o s.t. Ax=y.

Consider the ¢; norm version: min ||x||1 s.t. Ax=1y
X
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Let X be the sparsest solution of Ax = y, where A € R™*" and m < n.

X = argmin |[x[[o s.t. Ax=y.
Consider the ¢; norm version: min ||x||1 s.t. Ax=1y
X

Advantage: this is a convex problem! Fact: all norms are convex.
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Examples: Back to Under-Constrained Systems

Let X be the sparsest solution of Ax = y, where A € R™*" and m < n.

X =argmin |[x]o s.t. Ax=y.
Consider the ¢; norm version: min ||x||1 s.t. Ax=1y
X

Advantage: this is a convex problem! Fact: all norms are convex.
Of course, X solves this problem too, if ||x + v|1 > ||x]]1, Vv € ker(A).

Recall: ker(A) = {x € R": Ax = 0} is the kernel (a.k.a. null space) of A.
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Examples: Back to Under-Constrained Systems

Let X be the sparsest solution of Ax = y, where A € R™*" and m < n.

x = argmin [[x|lo st. Ax=y.
Consider the ¢; norm version: mXin Ix|][1 st. Ax=y
Advantage: this is a convex problem! Fact: all norms are convex.
Of course, X solves this problem too, if ||x + v|1 > ||x]]1, Vv € ker(A).

Recall: ker(A) = {x € R": Ax = 0} is the kernel (a.k.a. null space) of A.

Next: elementary analysis by Yin and Zhang (2008), based on work by
Kashin (1977) and Garnaev and Gluskin (1984).
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Sparse Reconstruction with ¢; Optimization
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Equivalence Between /; and ¢y Optimization

e Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.

e Minimum /; solution(s): G = argmin ||x|1 s.t. Ax=y.
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Equivalence Between /; and ¢y Optimization

e Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
e Minimum /; solution(s): G = argmin ||x|1 s.t. Ax=y.

o xe G, if |x+v|1>|Xx]1, Vv € ker(A)
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Equivalence Between /; and ¢y Optimization

e Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
@ Minimum /; solution(s): G = argmin ||x||1 s.t. Ax=y.
o xe G, if |x+v|1>|Xx]1, Vv € ker(A)
o LettingS={i: x;#0} and Z={1,..,n}\S
1%+ vz = lIxs + vsllr + [lvzllx
> [IXs]lx + lvzlls = l[vsllx

= [IXllx + Ivilx = 2[lvs]la
> [|x[l1 + vl = 2Vk|v ]2

M. Figueiredo and S. Wright Sparse Optimization Applications ICCOPT, July 2013



Equivalence Between /; and ¢y Optimization

e Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
e Minimum /; solution(s): G = argmin ||x|1 s.t. Ax=y.
o xe G, if |x+v|1>|Xx]1, Vv € ker(A)
o LettingS={i: x;#0} and Z={1,..,n}\S
1%+ vz = lIxs + vsllr + [lvzllx

> [IXs]lx + lvzlls = l[vsllx

= [IXllx + Ivilx = 2[lvs]la

> [|x[l1 + vl = 2Vk|v ]2

Hence, X € G, if %”V”2 > Vk, Vv € ker(A)

...but, in general, we have only: 1 < % <+/n

(vl
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Equivalence Between /; and ¢y Optimization

e Minimum /g (sparsest) solution: X € argmin ||x||p s.t. Ax =y.
e Minimum /; solution(s): G = argmin ||x|1 s.t. Ax=y.
o xe G, if |x+v|1>|Xx]1, Vv € ker(A)
o LettingS={i: x;#0} and Z={1,..,n}\S
1%+ vz = lIxs + vsllr + [lvzllx

> [IXs]lx + lvzlls = l[vsllx

= [IXllx + Ivilx = 2[lvs]la

> [|x[l1 + vl = 2Vk|v ]2

Hence, X € G, if %”V”2 > Vk, Vv € ker(A)
...but, in general, we have only: 1 < % <+/n

(vl

However, we may have HZH; > 1, if v is restricted to a random subspace.
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Bounding the ¢1 /¢, Ratio in Random Matrices

If the elements of A € R™*" are sampled i.i.d. from N(0,1) (zero mean,
unit variance Gaussian), then, with high probability,

Ivly o Cy/m
- Y
Iv||2 log(n/m)
for some constant C (based on concentration of measure phenomena).

Thus, with high probability, X € G, if

for all v € ker(A),

4 c?
> ki & k<
M= carioen ~ 4logn

Conclusion: Can solve under-determined system, where A has i.i.d.
N(0,1) elements, by solving

min |[x|l1 s.t. Ax=b,
X

(a convex problem), if the solution is sparse enough
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Ratio ||v||1/||v||2 on Random Null Spaces

Random A € R**7, showing ratio ||v||1 for v € ker(A) with |v|]2 =1

Blue: |lv|l1 = 1. Red: ratio ~# /7. Note that ||v||; is well away from the
lower bound of 1 over the whole nullspace.
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When Data is Noisy

Sparse vector x Observed data y
2 0.2
1.5 y - AX + n 0.15 4
1 4 0.1 ul
0.5 4 0.05 I
AR , ‘ Random matrix 0 !
0.5 q -0.05 Bl
1 1 -0.1 4
15 4 -0.18 1
2 200 400 600 800 @ % £ 40 & % @
2
Under certain conditions, “perfect” 18 ~ 1
recovery is possible 1 X 1
0.5 ‘ 4
i:argmxin{Hy*Ax\|2+2)\HxH1} oL v :
0.5 q
" |
[Candés, Romberg, Tao, 2004 — 2006] s ]
[Donoho, 2006]
-20 200 400 600 800 1000
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The Ubiquitous /1 Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

1 .
min > Ax — |3 + 7llx[lx or min[[Ax =y st. [Ix|ls <

or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢
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o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

1 .
min > Ax — |3 + 7llx[lx or min[[Ax =y st. [Ix|ls <

or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢

o Widely used outside and much earlier than compressive sensing
(statistics, signal processing, neural netowrks, ...).
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o Lasso (least af
a.k.a. basis pi

1
min §||A
or, more gene

m
X

o Widely used d
(statistics, sig

Geology/geophysics
— Claerbout and Muir (1973)
Taylor et al. (1979)
Levy and Fullager (1981)
Oldenburg et al. (1983)

— Santosa and Symes (1988)
Radio astronomy

— Hégbom (1974)

— Schwarz (1978)
Fourier transform spectroscopy

— Kawata et al. (1983)

— Mammone (1983)

— Minami et al. (1985)
NMR spectroscopy

— Barkhuijsen (1985)

— Newman (1988)
Medical ultrasound

— Papoulis and Chamzas (1979)

(Tibshirani, 1996)

st |x|1 <0

x[[1 <6

ssive sensing

M. Figueiredo and S. Wright

from (Goyal et al, 2010)
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The Ubiquitous ¢; Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

1 .
min > Ax — |3 + 7llx[lx or min[[Ax =y st. [Ix|ls <

or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢

o Widely used outside and much earlier than compressive sensing
(statistics, signal processing, neural netowrks, ...).

@ Many extensions: namely to express structured sparsity (more later).
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min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢

Widely used outside and much earlier than compressive sensing
(statistics, signal processing, neural netowrks, ...).

@ Many extensions: namely to express structured sparsity (more later).

o Why does ¢; yield sparse solutions? (next slides)
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The Ubiquitous ¢; Norm

o Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

.1 :
min > Ax — |3 + 7llx[lx or min[[Ax =y st. [Ix|ls <
or, more generally,

min f(x) + Al|lx|]s or minf(x) s.t. ||x|l1 <¢

Widely used outside and much earlier than compressive sensing
(statistics, signal processing, neural netowrks, ...).

@ Many extensions: namely to express structured sparsity (more later).
o Why does ¢; yield sparse solutions? (next slides)

@ How to solve these problems? (this tutorial)
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Why /¢; Yields Sparse Solution

w* = argmin,, [|Aw — y|3 vs  w*= argmin, |[[Aw —y|3
s.t. w2 <o s.t. lw|ls <o
we wa
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Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA &< y>A
w = arg min E(W—y)2+)\|w| = soft(y,\) =4 0 < |yl <A
" YHA = y< =)
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" YHA = y< =)

soft(y, A)

M. Figueiredo and S. Wright Sparse Optimization Applications ICCOPT, July 2013 29 / 67



Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA &< y>A
w = arg min E(W—y)2+)\|w| = soft(y,\) =4 0 < |yl <A
" YHA = y< =)

soft(y, A)

...by the way, how is this solved? (more later).
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Why /¢; Yields Sparse Solution

The simplest problem with ¢; regularization

1 y—XA &< y>A
w = arg min E(W—y)2 + Alw| = soft(y,A\)=¢ 0 < |yl <A
" y+A & y<-=2A

soft(y, A)

...by the way, how is this solved? (more later).

Contrast with the squared /5 (ridge) regularizer (linear scaling):

_ 1 , A
w=argmin=(w—y) +-w"=-——y
w2
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More on the Relationship Between ¢; and /g

The 4y “norm” (number of non-zeros): ||wljo = |{i: w; # 0}
Not a norm, not convex, but in the simple case...

_ 1 V oy
w = arg mM|/n E(W — y)2 + )\|W|0 = hard(y, 2>\) = { é)/ Z ii: z ;i

M. Figueiredo and S. Wright
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More on the Relationship Between ¢; and /g

The 4y “norm” (number of non-zeros): ||wljo = |{i: w; # 0}
Not a norm, not convex, but in the simple case...

_ 1 V oy
w = arg mM|/n E(W — y)2 + )\|W|0 = hard(y, 2)\) = { é)/ Z ii: z ;i

soft(y, A)

—\
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.

o Images (N x M = n pixels) are represented by vectors x € R”
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.

o Images (N x M = n pixels) are represented by vectors x € R”

o Typical images have representations x = Ww that are sparse
(lw|lo < n) on some bases (WTW = WWT =), such as wavelets.

Original 1000 x 1000 image x € R __only its 25000 largest coefficients.
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Another Application: Images

Natural images are well represented by a few coefficients in some bases.

o Images (N x M = n pixels) are represented by vectors x € R”

o Typical images have representations x = Ww that are sparse
(lw|lo < n) on some bases (WTW = WWT =), such as wavelets.

Original 1000 x 1000 image x € R __only its 25000 largest coefficients.

@ Also (even more) true with an over-complete tight frame; W is “fat”
(more columns than rows) and WWT = I, but WTW # .
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Application to Image Deblurring/Deconvolution

blurred restored

N .1
X € argmin §||AX — yII% + 7 [|x[[1

A =BW
\

wavelet basis (or tight frame)
convolution (blur)
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Application to Magnetic Resonance Imaging

. 1
X € argmin §HAX —yll3 + 7%/

A =MUW

binary mask / \ \ wavelet basis (or tight frame)

discrete Fourier transform

original acquired slices in DFT domain  reconstruction WX
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1, y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + wayp1 =[x 1w
j=1
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1, y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + wayp1 =[x 1w
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Mean squared error: minE(Y — [XT].]W)2 impossible! Px y unknown
w
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1, y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + wayp1 =[x 1w
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Mean squared error: minE(Y — [XTl]W)2 impossible! Px y unknown
w

Empirical error: min %
w

N
2 .
(v = b 1w) = min y — A
=1

design matrix: Aj = (x;); (j-th component of i-th sample, A;441) = 1)
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Machine/Statistical Learning: Linear Regression

Data N pairs (x1, y1), ..., (X, yn), where x; € RY (feature/variable
vectors) and y; € R (outputs).

Q

Goal: find “good” linear function: y = Z wix; + wayp1 =[x 1w
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y
Mean squared error: minE(Y — [XTl]W)2 impossible! Px y unknown
w

Empirical error: min %
w

2 .
(v = b 1w) = min y — A

N
=1

design matrix: Aj = (x;); (j-th component of i-th sample, A;441) = 1)

Regularization: miny, ||y — Aw||3 + 7 (w)
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, 1), ---, (X, yn), where x; € R (feature vectors)
and y; € {—1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

d
y = sign([x" 1]w) = sign (Wd+1 +y WjXJ')
=1
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, 1), ---, (X, yn), where x; € R (feature vectors)
and y; € {—1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):
d
y = sign([x" 1]w) = sign (Wd+1 +y WjXJ')
j=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Expected error: WemRi?H]E(ly([XTl]WKO) impossible! Px y unknown

N
Empirical error (EE): min & Z h(yi ([x"1]w)), where h(z) = 1,o.
w N, e’

i=1 ;
margin
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, 1), ---, (X, yn), where x; € R (feature vectors)
and y; € {—1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

d
y = sign([x" 1]w) = sign (Wd+1 +y WjXJ')
=1

Assumption: data generated i.i.d. by some underlying distribution Px y

Expected error: WemRi?H]E(ly([XTI]WKO) impossible! Px y unknown

N
Empirical error (EE): min & Z h(yi ([x"1]w)), where h(z) = 1,o.
w N, e’

i=1 ;
margin

Convexification: EE neither convex nor differentiable (NP-hard problem).
Solution: replace h: R — {0,1} with convex loss L : R — R.
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Machine/Statistical Learning: Linear Classification

N
Criterion: mMi/n Z L(y,- (WTX,‘ + b)) +7(w)

i=1 .
margin

f(w)
Regularizer: ¢ = £1 = encourage sparseness =- feature selection

Convex losses: L: R — R4 is a (preferably convex) loss function.
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Machine/Statistical Learning: Linear Classification

N
Criterion: mMi/n Z L(y,- (WTX,' + b)) +7(w)

i=1 .
margin

f(w)
Regularizer: ¢ = £1 = encourage sparseness =- feature selection

Convex losses: L: R — R4 is a (preferably convex) loss function.

L(z)
hing
o Misclassification loss: L(z) = 1,9 o
@ Hinge loss: L(z) = max{1 — z,0}
squared
| 1 o error loss
(*] Logistic loss: L(Z) - w misclassification loss w
@ Squared loss: L(z) = (z — 1)?
-2 -1 0 1 2 7
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Machine/Statistical Learning: General Formulation

This formulation cover a wide range of linear ML methods:

N
min D Ly (Ix" 1w)) +7eb(w)
i=1

~

F(w)

Least squares regression: L(z) = (z —1)?, (w) = 0.

Ridge regression: L(z) = (z — 1)?, 9(w) = ||w]|3.

Lasso regression: L(z) = (z —1)2, (w) = ||w]1

Logistic regression: L(z) = log(1l + exp(—2z)) (ridge, if ¥(w) = ||w]|3
Sparse logistic regression: L(z) = log(1 + exp(—z)), ¥(w) = [|w]1
Support vector machines: L(z) = max{1 — z,0}, ¥(w) = ||w||3
Boosting: L(z) = exp(—z),
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Machine/Statistical Learning: Nonlinear Problems

What about non-linear functions?

D
Simply use y = ¢(x,w) = Z w; ¢j(x), where ¢; : RY 5 R
j=1

Essentially, nothing changes; computationally, a lot may change!

N

min Y- Ly 9(x,w) + o(w)

i=1

~

F(w)

Key feature: ¢(x, w) is still linear with respect to w, thus f inherits the
convexity of L.

Examples: polynomials, radial basis functions, wavelets, splines, kernels,...

Recover the linear case, letting D = d + 1, fj(x) =x;, and fy41 =1.
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Structured Sparsity

{1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality
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Structured Sparsity

{1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality

Can we promote less trivial sparsity patterns? How?
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Structured Sparsity

{1 regularization promotes sparsity

A very simple sparsity pattern: prefer models with small cardinality

Can we promote less trivial sparsity patterns? How?

Group/structured regularization.

M. Figueiredo and S. Wright
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)
o density inside each group
@ sparsity with respect to the groups which are selected

@ choice of groups: prior knowledge about the intended sparsity patterns
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Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

o density inside each group
@ sparsity with respect to the groups which are selected

@ choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)
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Structured Sparsity and Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

o density inside each group
@ sparsity with respect to the groups which are selected
@ choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)

Many applications:
o feature template selection (Martins et al., 2011)
o multi-task learning (Caruana, 1997; Obozinski et al., 2010)

@ learning the structure of graphical models (Schmidt and Murphy,
2010)
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“Grid" Sparsity

For feature spaces that can be arranged as a grid (examples next)

dense sparse
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“Grid" Sparsity

For feature spaces that can be arranged as a grid (examples next)

dense sparse group sparse
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For feature spaces that can be arranged as a grid (examples next)

B

dense sparse group sparse

Goal: push entire columns to have zero weights

The groups are the columns of the grid
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Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common
formulation is

S T
y =arg max X w,

yE{l,...,K}

Weight vector w = (wq, ..., wg) € RX? has a natural group/grid
organization:
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Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common

formulation is
~ _ T
y =arg max X w,

yE{l,...,K}

Weight vector w = (wq, ..., wg) € RX? has a natural group/grid
organization:

input features
,_H

dense sparse group sparse

labels

Simple sparsity is wasteful: may still need to keep all the features

Structured sparsity: discard some input features (feature selection)

ICCOPT, July 2013
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Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features

Example: simultaneous regression (seek function into R — RP)

shared features

—
group sparse

sparse

tasks

dense
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Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features

Example: simultaneous regression (seek function into R — RP)

shared features

e T

dense sparse group sparse

tasks

Goal: discard features that are irrelevant for all tasks

Approach: one group per feature (Caruana, 1997; Obozinski et al., 2010)
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Example: Magnetoencephalograpy (ME

Group: localized cortex area at localized time period (Bolstad et al., 2009)
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Group Sparsity

] o D features
|:||:I O - |
O Og
|
m 1]

M. Figueiredo and S. Wright Sparse Optimization Applications ICCOPT, July 2013 45 / 67



Group Sparsity

o D features

o M groups Gi,..., Gy, each
Gnm CA{1,...,D}

@ parameter subvectors xi, ..., xy
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Group Sparsity

o D features

o M groups Gi,..., Gy, each

Gnm CA{1,...,D}
‘ @ parameter subvectors xi, ..., xy

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

M
Y(x) =D IIxc, |2
m=1
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Group Sparsity

o D features

o M groups Gi,..., Gy, each

Gnm CA{1,...,D}
‘ @ parameter subvectors xi, ..., xy

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

M
Y(x) =D IIxc, |2
m=1

o Intuitively: the /1 norm of the /> norms

o Technically, still a norm (called a mixed norm, denoted /5 1)
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Group Sparsity

o D features
% o M groups Gi,..., Gy, each
Gnm CA{1,...,D}
‘ @ parameter subvectors xi, ..., xy

Group-Lasso (Bakin, 1999; Yuan and Lin, 2006):

M
$0) =3 Amllxe, 2
m=1

o Intuitively: the /1 norm of the /> norms
o Technically, still a norm (called a mixed norm, denoted /5 1)

o Weighted version: A, are prior weights for groups (groups may have
different sizes)
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Lasso versus group-Lasso

w1

| 00w) = fun| + s + s
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Lasso versus group-Lasso
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Composite Absolute Penalties (Zhao et al., 2009)

A mixed-norm regularization:

M 1/r
P(x) = (ZIIXMIQ)
m=1

The r-norm of the g-norms (r > 1,9 > 1)

Technically, this is also a norm, called a mixed norm, denoted ¢, ,

M. Figueiredo and S. Wright Sparse Optimization Applications ICCOPT, July 2013
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Composite Absolute Penalties (Zhao et al., 2009)

A mixed-norm regularization:

M 1/r
P(x) = (ZIIXMIQ)
m=1

The r-norm of the g-norms (r > 1,9 > 1)

Technically, this is also a norm, called a mixed norm, denoted ¢, ,

@ The most common choice: £3 1 norm

@ Another frequent choice: {4, 1 norm (Quattoni et al., 2009; Graga et al.,
2009; Eisenstein et al., 2011; Wright et al., 2009)
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Three Scenarios

o Non-overlapping Groups
o Tree-structured Groups

o Graph-structured Groups
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Non-overlapping Groups

Assume that Gy, ..., Gy (where G, C {1,...,d}) constitute a partition:

M
UJGm={1,...d} and i#j= GnG=10
i=1
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Trivial choices of groups recover unstructured regularizers:
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UJGm={1,...d} and i#j= GnG=10
i=1

M
D(x) =Y Amlxe, 2
m=1

Trivial choices of groups recover unstructured regularizers:
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o /(1-regularization: d singleton groups G, = {m}
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Non-overlapping Groups

Assume that Gy, ..., Gy (where G, C {1,...,d}) constitute a partition:

M
UJGm={1,...d} and i#j= GnG=10
i=1

M
D(x) =Y Amlxe, 2
m=1

Trivial choices of groups recover unstructured regularizers:
o (y-regularization: one large group G = {1,...,d}
o /(1-regularization: d singleton groups G, = {m}
Examples of non-trivial groups:
o label-based groups

o task-based groups
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)
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Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

@ What is the sparsity pattern?
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Tree-Structured Groups

Assumption: if two groups overlap, one is contained in the other
= hierarchical structure (Kim and Xing, 2010; Mairal et al., 2010)

@ What is the sparsity pattern?

o If a group is discarded, all its descendants are also discarded
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Graph-Structured Groups

In general: groups can be represented as a directed acyclic graph

A

B Oy

set inclusion induces a partial order on groups (Jenatton et al., 2009)

feature space becomes a poset

sparsity patterns: given by this poset
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Matrix Inference Problems

Sparsest solution:

o From Bx = b € RP, find
x €R" (p < n).

e ming||x|lo st. Bx=0>b

@ Yields exact solution, under
some conditions.
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Matrix Inference Problems

Sparsest solution: Lowest rank solution:

o From Bx = b € RP, find e From B(X) = b € R”, find
x €R" (p < n). X e R™" (p < mn).

e miny ||x|]jo s.t. Bx=05b e miny rank(X) s.t. B(X)=05b

@ Yields exact solution, under o Yields exact solution, under some
some conditions. conditions.

Both NP—hard (in general); the same is true of noisy versions:

i k(X) s.t. |IB(X)— b|2
Xg;gﬂmfa"( ) st [|B(X) — b3
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Matrix Inference Problems

Sparsest solution: Lowest rank solution:

o From Bx = b € RP, find e From B(X) = b € R”, find
x €R" (p < n). X e R™" (p < mn).

e miny ||x|]jo s.t. Bx=05b e miny rank(X) s.t. B(X)=05b

@ Yields exact solution, under o Yields exact solution, under some
some conditions. conditions.

Both NP—hard (in general); the same is true of noisy versions:

i k(X) s.t. |IB(X)— b|2
Xgnﬂgn’,‘x"ra”( ) st [|B(X) — b3

Under some conditions, the same solution is obtained by replacing rank(X)
by the nuclear norm || X||« (as any norm, it is convex) (Recht et al., 2010)
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Matrix Nuclear Norm (and Other Norms)

@ Also known as trace norm; the /1-type norm for matrices X € R™*"

min{m,n}

o Definition: || X[, = trace(VXTX) = Z oi,
i=1

the o; are the singular values of X.
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Matrix Nuclear Norm (and Other Norms)

@ Also known as trace norm; the /1-type norm for matrices X € R™*"

min{m,n}

o Definition: || X[, = trace(VXTX) = Z oi,
i=1

the o; are the singular values of X.

min{m,n} 1/a

o Particular case of Schatten g-norm: || X||q = Z (/)7
i=1
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Matrix Nuclear Norm (and Other Norms)

@ Also known as trace norm; the /1-type norm for matrices X € R™*"

min{m,n}

o Definition: || X[, = trace(VXTX) = Z oi,
i=1

the o; are the singular values of X.
min{m,n} 1/a
o Particular case of Schatten g-norm: || X||q = Z (/)7
i=1

min{m,n}
- [
i—1 i

o Spectral norm: ||X||s = max {01,...,0,“],,{,,,,,,}}

@ Two other notable Schatten norms:

o Frobenius norm: ||X]l2 = || X]||r =
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7/ X ||
X e — N —
f(X) T(X)
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7/ X ||
X e — N —
f(X) T(X)

Linear observations: B : R™<" — RP, (B(X)) = (B, X),

B(jy € R™", and (B, Z B;iX;j = trace(BT X)
ij
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7/ X ||
X e — N —

f(X) TP(X)
Linear observations: B : R™<" — RP, (B(X)) = (B, X),
B(jy € R™", and (B, Z B;iX;j = trace(BT X)

ij

Particular case: matrix completion, each matrix B;) has one 1 and is zero
everywhere else.

Why does the nuclear norm favor low rank solutions?
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Nuclear Norm Regularization

Tikhonov formulation: min ||B(X) — b||3 + 7/ X ||
X e — N —
F(X) T(X)
Linear observations: B : R™<" — RP, (B(X)) = (B, X),
B(jy € R™", and (B, Z B;iX;j = trace(BT X)
ij

Particular case: matrix completion, each matrix B;) has one 1 and is zero
everywhere else.

Why does the nuclear norm favor low rank solutions? Let Y = UAVT be
the singular value decomposition, where A = diag (1, ..., Omin{m,n}); then
1
argmin =||Y = X||Z + 7| X|« = U soft(X,7) VT
X 2 ——

may yield zeros

...singular value thresholding (Ma et al., 2011; Cai et al., 2010)
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples yi, ..., y, € R? of a Gaussian r.v. Y ~ N (p, C); the
log-likelihood is

L(P) = log p(y1, .., yn|P) = log det(P) — trace(SP) + constant
where S =157 (y; — p)(y; — p)7 and P = C~1 (inverse covariance).
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples yi, ..., y, € R? of a Gaussian r.v. Y ~ N (p, C); the
log-likelihood is

L(P) = log p(y1, .., yn|P) = log det(P) — trace(SP) + constant
where S =157 (y; — p)(y; — p)7 and P = C~1 (inverse covariance).
Zeros in P reveal conditional independencies between components of Y:

Pj=0 < Y LYj{Yi, k#iJj}

...exploited to infer (in)dependencies among Gaussian variables. Widely
used in computational biology and neuroscience, social network analysis, ...
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples yi, ..., y, € R? of a Gaussian r.v. Y ~ N (p, C); the
log-likelihood is

L(P) = log p(y1, .., yn|P) = log det(P) — trace(SP) + constant
where S =157 (y; — p)(y; — p)7 and P = C~1 (inverse covariance).

Zeros in P reveal conditional independencies between components of Y:

Pi=0 & Yi L Yi{Ys, k#i,j}

...exploited to infer (in)dependencies among Gaussian variables. Widely

used in computational biology and neuroscience, social network analysis, ...

Sparsity (presence of zeros) in P is encouraged by solving
gi% — log det(P) + trace(SP) +7 ||vect(P)|1
— ~ . ~ J/
f(P) ¥(P)

where vect(P) = [P11, ..., Pad] "
ICCOPT, July 2013
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Atomic-Norm Regularization

Key concept in sparse modeling: synthesize “object” using a few atoms:

lA|

X = E Ci aj
i=1

o A is the set of atoms (the atomic set), or building blocks.
@ ¢ > 0 are weights; x is simple/sparse object = ||c|lo < |A]
o Formally, A is a compact subset of R”
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Atomic-Norm Regularization

Key concept in sparse modeling: synthesize “object” using a few atoms:

lA|

X = E Ci aj
i=1

o A is the set of atoms (the atomic set), or building blocks.
@ ¢; > 0 are weights; x is simple/sparse object = ||c|jo < |A]
o Formally, A is a compact subset of R”

The (Minkowski) gauge of A is:

[x]la =inf{t >0: x € tconv(A)}

Assuming that A centrally symmetry about the origin
(ae A = —acA), || .aisanorm, called the atomic norm
Chandrasekaran et al. (2012).
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Atomic-Norm Regularization

The atomic norm

[x]la=inf{t>0: x € tconv(A)}
lA| | A|

:inf{;c;: x:;c,-a,-, c,-EO}

...assuming that the centroid of A is at the origin.
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Atomic-Norm Regularization

The atomic norm

[x]la=inf{t>0: x € tconv(A)}
lA| | A|

:inf{Zc;: X:ZC,'a,', C,'EO}
i=1 i=1
...assuming that the centroid of A is at the origin.

o a={3]- o] [5)- 5]} a4 i :

o conv(A) = Bi(1) (41 unit ball).

Example: the ¢; norm as an atomic norm [ ~1/5 }

o |xla =inf{t>0: xetB(l)}
= [Ix[lx
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Atomic Norms: More Examples

Examples with easy forms:
e sparse vectors
A= {£e}il,
conv(.A) = cross-polytope
lzlla = llzl

e Jow-rank matrices

*symmetric
matrices

A={A:rank(A) =1,||A||lr =1}

conv(A) = nuclear norm ball

[z]la = llz(.
e binary vectors

A= {1}V
conv(A) = hypercube

[z]la = |2/l
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an lvanov formulation
min f(x) s.t. ||x]jla <§

(for some 0 > 0) tends to recover x with sparse atomic representation.
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Given an atomic set A, we can adopt an lvanov formulation
min f(x) s.t. ||x]jla <§
(for some 0 > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an lvanov formulation
min f(x) s.t. ||x]jla <§
(for some 0 > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?

Yes! The conditional gradient! (more later.)

It is also possible to tackle the Tikhonov and Morozov formulations

minf(x) + 7|[x||l4 and  min|x||4 s.t. f(x) <e
X X

(more later).
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Deep Learning

There is much recent interest in deep learning (a.k.a. deep belief networks
(DBN) or deep neural networks) — very popular in speech and image
processing.

o Based heavily on neural networks (70s and 80s). Idea is to mimic the
neuron interconnections in a cortex.

o DBN transforms the data vector into another data vector, via a highly
structured (usually layered) sequence of simple operations.

@ The operations at each layer are simple (e.g. linear transformation,
logistic function) but their composition is nonconvex.

o Aim: Make the transformed data vector (the output from the DBN)
easier to use in learning tasks than the original data vector. e.g. can
apply SVN on the transformed vector, or thresholding of a single
output, or max of multiple outputs.

o Use labelled data vectors to train the network i.e. choose the
parameters of the transformations at each layer.
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Deep Learning: Example

| 1000 neurons |
i 1
500 neurons |
Example of a deep belief net-

w 1
- W work for autoencoding (Hin-
¢ 0] « inear ton, 2007). Output (at top)
. units depends on input (at bot-
4

tom) of an image with 28 X
/A 28 pixels.  Transformations

parametrized by Wiy, Wa, Ws,
i) Wy; output is a highly nonlin-
1000 neurons I ear function of these parame-

I
w
ters.
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Deep Learning Algorithms

Deep learning problems have separable, nonconvex objectives.
@ There is one loss term f; for each labelled data vector.
@ Unknowns are the parameters of the network.

@ Commonly use heuristics such as pretraining: fix the parameters in all
but one layer, and solve just for these parameters.

Regularization terms are used to induce sparsity or structure on the
parameters.

@ Stochastic gradient algorithms are a workhorse approach.
Quasi-Newton and inexact Newton methods based on batches of data
have also been applied with success.
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e Many inference, learning, signal/image processing problems can be
formulated as optimization problems.

Sparsity-inducing regularizers play an important role in these problems
There are several way to induce sparsity

It is possible to formulate structured sparsity

It is possible to extend the sparsity rationale to other objects, namely
matrices

@ Atomic norms provide a unified framework for sparsity/simplicity
regularization
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