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Augmented Lagrangian Methods

o Consider a linearly constrained problem,
min f(x) s.t. Ax=b.
where f is a proper, lower semi-continuous, convex function.

@ The augmented Lagrangian is (with p > 0)

L(x, A p) 1= F(x) + AT (Ax — b) + §||Ax b2
v, ~—_——
Lagrangian “augmentation”

@ Basic augmented Lagrangian (a.k.a. method of multipliers) is
X, = arg mXin L(x, Ak—1; p);
A = Ak—1 + p(Axx — b);
(Hestenes, 1969; Powell, 1969)
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A Favorite Derivation

...more or less rigorous for convex f.

@ Write the problem as
min max f(x) + AT(Ax — b).
X

Obviously, the max w.r.t. A will be +00, unless Ax = b, so this is
equivalent to the original problem.

o This equivalence is not very useful, computationally: the max)
function is highly nonsmooth w.r.t. x. Smooth it by adding a
“proximal point” term, penalizing deviations from a prior estimate A:

1 -
mXin {mfx f(x)+ AT (Ax — b) — 2—p||)\ - )\||2} .
o Maximization w.r.t. A is now trivial (a concave quadratic), yielding

A= X+ p(Ax — b).
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A Favorite Derivation (Cont.)

o Inserting A = A + p(Ax — b) leads to
. T P 2 _ 3.
min f(x) + X' (Ax — b) + §HAX — b||* = L(x, A\ p).
@ Hence can view the augmented Lagrangian process as:

o min, £(x,\; p) to get new x;
o Shift the “prior” on X by updating to the latest max: A + p(Ax — b).

© repeat until convergence.

Add subscripts, and we recover the augmented Lagrangian algorithm
of the first slide!

@ Can also increase p (to sharpen the effect of the prox term), if needed.
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Inequality Constraints, Nonlinear Constraints

@ The same derivation can be used for inequality constraints:

min f(x) s.t. Ax > b.
o Apply the same reasoning to the constrained min-max formulation:

X

i f(x) — AT(Ax — b).
min max (x) = A" (Ax = b)

o After the prox-term is added, can find the minimizing A in closed form
(as for prox-operators). Leads to update formula:

max (X + p(Ax — b),0) .

@ This derivation extends immediately to nonlinear constraints
c(x)=0o0rc(x)>0.
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“Explicit” Constraints, Inequality Constraints

@ There may be other constraints on x (such as x € Q) that we prefer
to handle explicitly in the subproblem.

o For the formulation min f(x), st. Ax=b, x€Q,

the miny step can enforce x € Q explicitly:
X, = argmin L(x, Ak_1;p);
k g min (X, k=13 )
Ak = Ap—1 + p(Axk — b);
o This gives an alternative way to handle inequality constraints:
introduce slacks s, and enforce them explicitly. That is, replace

min f(x) s.t. ¢(x) >0,

by
min f(x) s.t. ¢(x)=s, s>0.

M. Figueiredo and S. Wright () Augmented Lagrangian Methods ICCOPT, July 2013 6 /31



“Explicit” Constraints, Inequality Constraints (Cont.)

@ The augmented Lagrangian is now

L(x,5.% p) = £() + AT (c(x) = ) + Sllc(x) = s[3.

o Enforce s > 0 explicitly in the subproblem:
(xk, sk) = argmin L(x,s, A\k_1;p), s.t. s>0;
X,S
Ak = Ak—1 + p(c(xk) — sk)
@ There are good algorithmic options for dealing with bound constraints

s > 0 (gradient projection and its enhancements). This is used in the
Lancelot code (Conn et al., 1992).

M. Figueiredo and S. Wright () Augmented Lagrangian Methods ICCOPT, July 2013 7/31



Quick History of Augmented Lagrangian

o Dates from at least 1969: Hestenes, Powell.

o Developments in 1970s, early 1980s by Rockafellar, Bertsekas, and
others.

o Lancelot code for nonlinear programming: Conn, Gould, Toint,
around 1992 (Conn et al., 1992).

o Lost favor somewhat as an approach for general nonlinear
programming during the next 15 years.

@ Recent revival in the context of sparse optimization and its many
applications, in conjunction with splitting / coordinate descent.
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Alternating Direction Method of Multipliers (ADMM)

o Consider now problems with a separable objective of the form

min f(x) + h(z) st. Ax+ Bz=c,

for which the augmented Lagrangian is
L(x,z,\; p) = f(x)+h(z) + \T(Ax + Bz — ¢) + gHAX — Bz — ¢|3.

o Standard AL would minimize L£(x, z, A; p) w.r.t. (x, z) jointly.
However, these are coupled in the quadratic term, separability is lost

o In ADMM, minimize over x and z separately and sequentially:
Xy = arg mXin L(X,zk—1, \k—1; p);
Z, = arg mzin L(xk, 2, Ak—1: p);
Ak = Ak—1 + p(Axx + Bz — ).
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ADMM

Main features of ADMM:
@ Does one cycle of block-coordinate descent in (x, z).

@ The minimizations over x and z add only a quadratic term to f and
h, respectively. Usually does not alter the cost much.

Can perform the (x, z) minimizations inexactly.

Can add explicit (separated) constraints: x € Qy, z € Q,.

Many (many!) recent applications to compressed sensing, image
processing, matrix completion, sparse principal components analysis....

ADMM has a rich collection of antecendents, dating even to the 1950s
(operator splitting).

For an comprehensive recent survey, including a diverse collection of
machine learning applications, see Boyd et al. (2011).
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ADMM for Consensus Optimization

Given the unconstrained (but separable) problem

m
min Z fi(x),
i=1
form m copies of the x, with the original x as a “master” variable:

m
min Zﬂ(xi) subjectto x' —x =0, i=1,2,...,m.

x,x1 x2 ... xm £
i=1

Apply ADMM, with z = (x1,x2,...,x™). Get

£l o X AL N ) = 3 ) () () + 2 2
i=1

The minimization w.r.t. z = (x!,x2,...,x™) is separable!

Xj, = argmin fi(Xi)"i‘()‘L—l)T(Xi_Xk—l)‘*’%Hxi_xk—lnga 1=12,...,m.
Xl

Can be implemented in parallel.
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Consensus, continued

The minimization w.r.t. x can be done explicitly — averaging:
22 (i)
X = — X+ —N_1].
23 (s gl

Update to A’ can also be done in parallel, once the new x is known (and
communicated):

=N 4 o(X —x), i=1,2,....m.

If the initial A} have >/, A\j =, can see that >, Al =0 at all
iterations k. Can simplify the update for x:

m
1§:i
X = — X«
m < k

i=1

“Gather-Scatter” implementation.
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ADMM for Awkward Intersections

The feasible set is sometimes an intersection of two or more convex sets

that are easy to handle separately (e.g. projections are easily computable),
but whose intersection is more difficult to work with.

Example: Optimization over the cone of doubly nonnegative matrices:

m)in f(X) st. X>=0, X>0.

General form:
min f(x) st. x€Q;, i=1,2,....m

Again, use a different copy x’ for each set, and constrain them all to be
the same:

min f(x) st. xX'eQ;, X —x=0, i=1,2,...,m.

x,xt x2,... xm
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ADMM for Awkward Intersections

Separable minimizations over ;, i =1,2,..., m:
i . )\i T, i Pk U2 —1.2
xi = arg min (\ey) 70— xia) + o — X3, P =12,

i

Optimize over the master variable (unconstrained, with quadratic added to
f):

Xk = arg m|n f(x)+ Z()\ — Xj_1) + %HX — X113,

Update multipliers:

}-(= };_1+pk(xk—x,’;), i=1,2,...,m
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ADMM: A Simpler Form

o Often, a simpler version is enough: min f(x) + h(z) s.t. Ax = z,

)

equivalent to mXin f(x) 4+ h(Ax), often the one of interest.
@ In this case, the ADMM can be written as
Xk = arg mXin f(x) + 5| Ax — zk—1 — dk—1l3
2 = argmin h(z) + 5| Axk-1 — z — di1 3
di = dk—1 — (Axk — 2x)
the so-called “scaled version” (Boyd et al., 2011).
o Updating z is a proximity computation: zx = prox,,(Axk—1 — dk—1)

o Updating xx may be hard: if f is quadratic, involves matrix inversion;
if £ is not quadratic, may be as hard as the original problem.
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ADMM: Convergence

o Consider the problem min f(x) + h(Ax), where f and h are lower
X
semi-continuous, proper, convex functions and A has full column rank.

@ The ADMM algorithm presented in the previous slide converges (for
any p > 0) to a solution x*, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

o As in IST/FBS/PGA, convergence is still guaranteed with inexactly
solved subproblems, as long as the errors are absolutely summable.

@ The recent explosion of interest in ADMM is quite clear in the
citation record of the paper by Eckstein and Bertsekas (1992).

157
0 AL._-_._._L._L._L-J_._._._I_I_I_IJ_[
1993

1998 2003 2008 2013

On the douglas—rachford splitting method and the proximal point algorithm for maximal menotone operators
J Eckstein, DP Bertsekas - Mathematical Programming, 1992
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ADMM for a More General Problem

J
o Consider the problem min Zgj(HU)x), where HU) ¢ RPI*",
x€eR" |
and g1, ..., gy are |.s.c proper convex fuctions.

e Map it into min f(x) + h(Ax) as follows (with p = pl+---+ py):

o f(x)=0
HD)
o A= | 1 | e RPN,
H)
Z(1) y
o h:RPTHPI SR p : = Zgj(z(i))
z(J) Jj=1

o We'll see next that this leads to a very convenient version of ADMM.
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ADMM for a More General Problem (Cont.)

Resulting instance of

J 1 J ' )
Xk = arg mXin ”AZ—Zk—dk”% = (Z(H(J))TH(J)) (Z(HU))T(Z/SQ]_ + d;?lﬂ)
Jj=1 j=1

z,((l) =argmingy + §llu— HO x4 + d,£1_)1||§ = prox
u

gl/P(H(l)Xk_l - dl(<1—)1)

)

z,) = arg ijn g+ 5|u— HUx, 1 + d,EJ_)1||% = prox (H(J)xk_l — d,Ej_)l)

gi/p
di = di—1 — Axi + 2

Key features: matrices are handled separately from the prox operators; the
prox operators are decoupled (can be computed in parallel); requires a
matrix inversion (can be a curse or a blessing).

(Afonso et al., 2010; Setzer et al., 2010; Combettes and Pesquet, 2011)
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Example: Image Restoration using SALSA

AN . 1
Problem: X € argmin §||Ax —yl|3+ 7 [|Px]1
X

J
Template: min Zgj(H(j)z)

1
Mapping: .J = 2. g1(2) = 5|z — yl3,  92(z) =7 |zl

HD = A, H? = P,

Convergence conditions: g1 and g2 are closed, proper, and convex.

G = { ‘/; } has full column rank.

Resulting algorithm: SALSA
(split augmented Lagrangian shrinkage algorithm) [Afonso, Bioucas-Dias, F, 2009, 2010]
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Example: Image Restoration using SALSA

Key steps of SALSA:
Moreau proximity operator of g1(z) = 3 |z — yH%,
pros,, () = argmin =12 — y[3 + 5 | - u]f = LE
Moreau proximity operator of g2(z) = T||z]|1,
prox,, ,,(u) = soft <u,7’/,u>

Matrix inversion:

Zgt1 = [A*A+P*P}_1<A ( (1) +d(1)> +P*( (2) +d}(€2)>>

...next slide!
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Example: Image Restoration using SALSA

~ .1
Problem: X € arg min §||Ax —ylZ+ 7 ||x|1
X
v observation matrix

Template: min Zgj (H(j)z) A =BW

Jj=1 synthesis matrix

1
Mapping: J =2, gi(z) = §||Z—Y||ga 92(z) = 7 ||z|)s

HY — A =BW H® =1,

Convergence conditions: (1 and g2 are closed, proper, and convex.

G = [ BIVV } has full column rank.
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Example: Image Restoration using SALSA

J -1 -1
Frame-based analysis: [Z H(J ] = [W*B*BW + I]
=1

DFT
v

Periodic deconvolution: B = U*DU diagonal matrix

1 -1
O(nlogn) [(WBBW+1] —1- W*U*W

matrix inversion lemma + WW?* = 1

v subsampling matrix: MIM™* = I
Compressive imaging (MRl): B = MU
O(nlogn) [w*U*M*MUW + I] ~1- W' U'M'MUW
y— subsampling matrix: SS* =
Inpainting (recovery of lost pixels): B = S
g [W*s"sW +1] —1- SW'S'SW
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Example: Image Restoration using SAL

blurred restored

9x9 uniform blur,

40dB BSNR
undecimated Haar frame, (; regularization. TV regularization

~==FISTA ===FISTA
' SpaRSA SpaRSA

..... TWIST == TwIST

—SALSA —SALSA

10° -
10" 10° 10! 10° 10° 10!

seconds seconds
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Example: Image Restoration

Image inpainting
(50% missing)

Alg. Calls to B,B# | Iter. | CPU time | MSE | ISNR
(sec.) MSE | (dB)

FISTA 1022 340 2638 9201 | 18.96
TwIST 271 124 1127 100.92 | 18.54
SALSA 84 28 20.88 77.61 | 19.68

seconds
Conjecture: SALSA is fast because it's blessed by the matrix inversion
The inverted matrix (e.g., A* A + I)is (almost) the Hessian of the data term;

...second-order (curvature) information (as Newton’s method)
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ADMM for the Morozov Formulation

1
Unconstrained optimization formulation: ~ min 5 ||AX — yH% + TC(X)
X

Constrained optimization (Morozov) formulation: min C(X)
X
basis pursuit denoising, if ¢(x) = ||x||;

[Chen, Donoho, Saunders, 1998]

st. |[Ax—yl3 <¢

Both analysis and synthesis can be used:

* frame-based analysis, C(X) = ||PX||1
* frame-based synthesis c(x) = ||x]|1
A=BW
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ADMM for the Morozov Formulation

Constrained problem:  min ¢(x)
X

st. |[Ax—yl2<e

...can be written as In}in C(X) + LB (e,y) (A X)

Ble,y) = {x eR" : [[x—y[2 <¢}

J
. which has the form - min » ~ g;(HWu)  (P1)
Jj=1

ucRd 4
with J =2, g¢1(z) = ¢(2), HD —1 I
6|4
gQ(Z) = lE(e)y) (Z)7 H(Q) =A

full column rank

Resulting algorithm: C-SALSA (constrained-SALSA)
[Afonso, Bioucas-Dias, F, 2010,2011]
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ADMM for the Morozov Formulation

Moreau proximity operator of LB(E,‘,y) is simply a projection on an {5 ball:

. 1 )
prox,, ., (1) = argmin (3 + 5llz — ull3

_{u < Ju-yl2<e

Tl RSE € lu-yl>e

As SALSA, also C-SALSA involves inversion of the form
—1 1
[W*B*BW + I] or [B*B + P*P}
...all the same tricks as above.
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ADMM for the Morozov Formulation

Image deconvolution benchmark problems:

Experiment | blur kernel o2
[l 9 % 9 uniform 0.562
2A Gaussian 2 R
2B Gaussian 8 NESTA: [Becker, Bobin, Candés, 2011]
3A hij =1/(1+i% +42) | 2
3B hip =1/ ++5°) | 8 SPGL1: [van den Berg, Friedlander, 2009]

Frame-synthesis

Expt. Avg. calls to B, BH (min/max) Iterations CPU time (seconds)
SPGL1 NESTA C-SALSA SPGLI | NESTA | C-SALSA | SPGLI [ NESTA [ C

I 1029 (659/1290) | 3520 (3501/3541) | 398 (388/406) 340 880 134 441.16 590.79 100.72]
2A 511 (279/663) 4897 (4777/4981) | 451 (442/460) 160 1224 136 202.67 798.81 98.85
2B 377 (141/532) 3397 (3345/3473) | 362 (355/370) 98 849 109 120.50 || | 557.02 81.69
3A 675 (378/772) 2622 (2589/2661) | 172 (166/175) 235 656 58 266.41 423.41 42.56
3B 404 (300/475) 2446 (2401/2485) | 134 (130/136) 147 551 41 161.17 354.59 29.57

Expt. Avg. calls to B, B (min/max) Iterations CPU time (seconds)

. NESTA C-SALSA NESTA | C-SALSA | NESTA

Frame-anaIySIs T 2881 (2861/2889) | 413 (404/419) 720 38 353.88 | |

2A 2451 (2377/2505) | 362 (344/371) 613 109 291.14

2B 2139 (2065/2197) | 290 (278/299) 535 87 254.94

3A 2203 (2181/2217) | 137 (134/143) 551 42 261.89

3B 1967 (1949/1985) | 116 (113/119) 492 39 236.45

. Expt. Avg. calls to B, B (min/max) Iterations CPU time (seconds)

Total-variation NESTA CSALSA | NESTA | C-SALSA | NESTA | C-SALSA

1 7783 (7767/7795) | 695 (680/710) 1945 232 3198 [ | B

2A 7323 (7291/7351) | 559 (536/578) 1830 150 279.36

2B 6828 (6775/6883) | 299 (269/329) 1707 100 265.35 2547

3A 6594 (6513/6661) 176 (98/209) 1649 59 250.37 15.08

3B 5514 (5417/5585) | 108 (104/110) 1379 37 210.94 9.23
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ADMM for Sparse Inverse Covariance

m [ X)—(X,S) —71||X
Xax ogdet( ) ( 5 > H Hl;
Reformulate as

max logdet(X) — (X,S) — 7||Z]1 st. X—Z=0.
X>0

Subproblems are:
X = arg max logdet(X) — (X,S) — (Ux—1,X — Zk_1)
Pk
- 7HX - Zk1ll7
= argmax log det(X) — (X, S) - %Hx — Zi1 + Ui/ pill%

/o (Xi + Uk);
Uk+1 = Uk + pr(Xk — Zk).

Zy = prox
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Solving for X

Get optimality condition for the X subproblem by using
Vx logdet(X) = X~1, when X is s.p.d. Thus,

T =S = pi(X = Zk—1 + Uk/pk) = 0,
which is equivalent to
Xt — piX = (S = pxZk—1+ Ux) = 0.
Form eigendecomposition
(S = prZi—1 + Uk) = QAQT,

where @ is n x n orthogonal and A is diagonal with elements A;. Seek X
with the form QAQT, where A has diagonals ;. Must have

—pkAi—Ai=0, i=12....n

2=

Take positive roots: \; = [\ + /A2 +4pi]/(20k), i = 1,2,...,n
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