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Stochastic Gradient Methods

Deal with (weakly or strongly) convex f . We change the rules a bit in this
section:

Allow f nonsmooth.

Can’t get function values f (x) easily.

At any feasible x , have access only to a cheap unbiased estimate of
an element of the subgradient ∂f .

Common settings are:
f (x) = EξF (x , ξ),

where ξ is a random vector with distribution P over a set Ξ. Special case:

f (x) =
1

m

m∑
i=1

fi (x),

where each fi is convex and nonsmooth.
(We focus on this finite-sum formulation, but the ideas generalize.)
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Applications

This setting is useful for machine learning formulations. Given data
xi ∈ Rn and labels yi = ±1, i = 1, 2, . . . ,m, find w that minimizes

τψ(w) +
1

m

m∑
i=1

`(w ; xi , yi ),

where ψ is a regularizer, τ > 0 is a parameter, and ` is a loss. For linear
classifiers/regressors, have the specific form `(wT xi , yi ).

Example: SVM with hinge loss `(wT xi , yi ) = max(1− yi (wT xi ), 0) and
ψ = ‖ · ‖1 or ψ = ‖ · ‖2

2.

Example: Logistic regression: `(wT xi , yi ) = log(1 + exp(yiw
T xi )). In

regularized version may have ψ(w) = ‖w‖1.
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Subgradients

Recall: For each x in domain of f , g is a subgradient of f at x if

f (z) ≥ f (x) + gT (z − x), for all z ∈ dom f .

Right-hand side is a supporting hyperplane.

The set of subgradients is called the subdifferential, denoted by ∂f (x).

When f is differentiable at x , have ∂f (x) = {∇f (x)}.

We have strong convexity with modulus µ > 0 if

f (z) ≥ f (x)+gT (z−x)+
1

2
µ‖z−x‖2, for all x , z ∈ dom f with g ∈ ∂f (x).

Generalizes the assumption ∇2f (x) � µI made earlier for smooth
functions.
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Classical Stochastic Gradient

For the finite-sum objective, get a cheap unbiased estimate of the gradient
∇f (x) by choosing an index i ∈ {1, 2, . . . ,m} uniformly at random, and
using ∇fi (x) to estimate ∇f (x).

Basic SA Scheme: At iteration k, choose ik i.i.d. uniformly at random
from {1, 2, . . . ,m}, choose some αk > 0, and set

xk+1 = xk − αk∇fik (xk).

Note that xk+1 depends on all random indices up to iteration k, i.e.
i[k] := {i1, i2, . . . , ik}.
When f is strongly convex, the analysis of convergence of expected square
error E (‖xk − x∗‖2) is fairly elementary — see Nemirovski et al (2009).

Define ak = 1
2 E (‖xk − x∗‖2). Assume there is M > 0 such that

1

m

m∑
i=1

‖∇fi (x)‖2
2 ≤ M.
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Rate: 1/k

Thus

1

2
‖xk+1 − x∗‖2

2

=
1

2
‖xk − αk∇fik (xk)− x∗‖2

=
1

2
‖xk − x∗‖2

2 − αk(xk − x∗)T∇fik (xk) +
1

2
α2
k‖∇fik (xk)‖2.

Taking expectations, get

ak+1 ≤ ak − αkE [(xk − x∗)T∇fik (xk)] +
1

2
α2
kM2.

For middle term, have

E [(xk − x∗)T∇fik (xk)] = Ei[k−1]
Eik [(xk − x∗)T∇fik (xk)|i[k−1]]

= Ei[k−1]
(xk − x∗)Tgk ,
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... where
gk := Eik [∇fik (xk)|i[k−1]] ∈ ∂f (xk).

By strong convexity, have

(xk − x∗)Tgk ≥ f (xk)− f (x∗) +
1

2
µ‖xk − x∗‖2 ≥ µ‖xk − x∗‖2.

Hence by taking expectations, we get E [(xk − x∗)Tgk ] ≥ 2µak . Then,
substituting above, we obtain

ak+1 ≤ (1− 2µαk)ak +
1

2
α2
kM2.

When

αk ≡
1

kµ
,

a neat inductive argument (below) reveals the 1/k rate:

ak ≤
Q

2k
, for Q := max

(
‖x1 − x∗‖2,

M2

µ2

)
.

M. Figueiredo and S. Wright () Stochasic Optimization Methods ICCOPT, July 2013 7 / 37



Inductive Proof of 1/k Rate

Clearly true for k = 1. Otherwise:

ak+1 ≤ (1− 2µαk)ak +
1

2
α2
kM2

≤
(

1− 2

k

)
ak +

M2

2k2µ2

≤
(

1− 2

k

)
Q

2k
+

Q

2k2

=
(k − 1)

2k2
Q

=
k2 − 1

k2

Q

2(k + 1)

≤ Q

2(k + 1)
,

as claimed.
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But... What if we don’t know µ? Or if µ = 0?

The choice αk = 1/(kµ) requires strong convexity, with knowledge of the
modulus µ. An underestimate of µ can greatly degrade the performance of
the method (see example in Nemirovski et al. 2009).

Now describe a Robust Stochastic Approximation approach, which has a
rate 1/

√
k (in function value convergence), and works for weakly convex

nonsmooth functions and is not sensitive to choice of parameters in the
step length.

This is the approach that generalizes to mirror descent, as discussed later.
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Robust SA

At iteration k :

set xk+1 = xk − αk∇fik (xk) as before;

set

x̄k =

∑k
i=1 αixi∑k
i=1 αi

.

For any θ > 0, choose step lengths to be

αk =
θ

M
√

k
.

Then f (x̄k) converges to f (x∗) in expectation with rate approximately
(log k)/k1/2.

(The choice of θ is not critical.)
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Analysis of Robust SA

The analysis is again elementary. As above (using i instead of k), have:

αiE [(xi − x∗)Tgi ] ≤ ai − ai+1 +
1

2
α2
i M2.

By convexity of f , and gi ∈ ∂f (xi ):

f (x∗) ≥ f (xi ) + gT
i (x∗ − xi ),

thus

αiE [f (xi )− f (x∗)] ≤ ai − ai+1 +
1

2
α2
i M2,

so by summing iterates i = 1, 2, . . . , k , telescoping, and using ak+1 > 0:

k∑
i=1

αiE [f (xi )− f (x∗)] ≤ a1 +
1

2
M2

k∑
i=1

α2
i .
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Thus dividing by
∑

i=1 αi :

E

[∑k
i=1 αi f (xi )∑k

i=1 αi

− f (x∗)

]
≤

a1 + 1
2 M2

∑k
i=1 α

2
i∑k

i=1 αi

.

By convexity, we have

f (x̄k) = f

(∑k
i=1 αixi∑k
i=1 αi

)
≤
∑k

i=1 αi f (xi )∑k
i=1 αi

,

so obtain the fundamental bound:

E [f (x̄k)− f (x∗)] ≤
a1 + 1

2 M2
∑k

i=1 α
2
i∑k

i=1 αi

.
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By substituting αi = θ
M
√
i
, we obtain

E [f (x̄k)− f (x∗)] ≤
a1 + 1

2θ
2
∑k

i=1
1
i

θ
M

∑k
i=1

1√
i

≤ a1 + θ2 log(k + 1)
θ
M

√
k

= M
[a1

θ
+ θ log(k + 1)

] 1√
k
.

That’s it!

There are other variants — periodic restarting, averaging just over the
recent iterates. These can be analyzed with the basic bound above.
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Constant Step Size

We can also get rates of approximately 1/k for the strongly convex case,
without performing iterate averaging. The tricks are to

define the desired threshold ε for ak in advance, and

use a constant step size.

Recall the bound on ak+1 from a few slides back, and set αk ≡ α:

ak+1 ≤ (1− 2µα)ak +
1

2
α2M2.

Apply this recursively to get

ak ≤ (1− 2µα)ka0 +
αM2

4µ
.

Given ε > 0, find α and K so that both terms on the right-hand side are
less than ε/2. The right values are:

α :=
2εµ

M2
, K :=

M2

4εµ2
log
(a0

2ε

)
.
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Constant Step Size, continued

Clearly the choice of α guarantees that the second term is less than ε/2.

For the first term, we obtain k from an elementary argument:

(1− 2µα)ka0 ≤ ε/2

⇔ k log(1− 2µα) ≤ − log(2a0/ε)

⇐ k(−2µα) ≤ − log(2a0/ε) since log(1 + x) ≤ x

⇔ k ≥ 1

2µα
log(2a0/ε),

from which the result follows, by substituting for α in the right-hand side.

If µ is underestimated by a factor of β, we undervalue α by the same
factor, and K increases by 1/β. (Easy modification of the analysis above.)

Thus, underestimating µ gives a mild performance penalty.
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Constant Step Size: Summary

PRO: Avoid averaging, 1/k sublinear convergence, insensitive to
underestimates of µ.

CON: Need to estimate probably unknown quantities: besides µ, we need
M (to get α) and a0 (to get K ).

We use constant size size in the parallel SG approach Hogwild!, to be
described later.

But the step is chosen by trying different options and seeing which seems
to be converging fastest. We don’t actually try to estimate all the
quantities in the theory and construct α that way.
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Mirror Descent

The step from xk to xk+1 can be viewed as the solution of a subproblem:

xk+1 = arg min
z
∇fik (xk)T (z − xk) +

1

2αk
‖z − xk‖2

2,

a linear estimate of f plus a prox-term. This provides a route to handling
constrained problems, regularized problems, alternative prox-functions.

For the constrained problem minx∈Ω f (x), simply add the restriction z ∈ Ω
to the subproblem above.

We may use other prox-functions in place of (1/2)‖z − x‖2
2 above. Such

alternatives may be particularly well suited to particular constraint sets Ω.

Mirror Descent is the term used for such generalizations of the SA
approaches above.
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Mirror Descent cont’d

Given constraint set Ω, choose a norm ‖ · ‖ (not necessarily Euclidean).
Define the distance-generating function ω to be a strongly convex function
on Ω with modulus 1 with respect to ‖ · ‖, that is,

(ω′(x)− ω′(z))T (x − z) ≥ ‖x − z‖2, for all x , z ∈ Ω,

where ω′(·) denotes an element of the subdifferential.

Now define the prox-function V (x , z) as follows:

V (x , z) = ω(z)− ω(x)− ω′(x)T (z − x).

This is also known as the Bregman distance. We can use it in the
subproblem in place of 1

2‖ · ‖
2:

xk+1 = arg min
z∈Ω
∇fik (xk)T (z − xk) +

1

αk
V (z , xk).
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Bregman distance is the deviation of ω from linearity:

ω

x z

V(x,z)
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Bregman Distances: Examples

For any Ω, we can use ω(x) := (1/2)‖x − x̄‖2
2, leading to the “universal”

prox-function
V (x , z) = (1/2)‖x − z‖2

2

For the simplex

Ω = {x ∈ Rn : x ≥ 0,
n∑

i=1

xi = 1},

we can use instead the 1-norm ‖ · ‖1, choose ω to be the entropy function

ω(x) =
n∑

i=1

xi log xi ,

leading to Bregman distance (Kullback-Liebler divergence)

V (x , z) =
n∑

i=1

zi log(zi/xi ),

which is standard measure of distance between two probability
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Applications to SVM

SA techniques have an obvious application to linear SVM classification. In
fact, they were proposed in this context and analyzed independently by
researchers in the ML community for some years.

Codes: SGD (Bottou), PEGASOS (Shalev-Schwartz et al, 2007).

Tutorial: Stochastic Optimization for Machine Learning, Tutorial by N.
Srebro and A. Tewari, ICML 2010 for many more details on the
connections between stochastic optimization and machine learning.

Related Work: Zinkevich (ICML, 2003) on online convex programming.
Aiming to approximate the minimize the average of a sequence of convex
functions, presented sequentially. No i.i.d. assumption, regret-based
analysis. Take steplengths of size O(k−1/2) in gradient ∇fk(xk) of latest
convex function. Average regret is O(k−1/2).
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Parallel Stochastic Gradient

Several approaches tried, for f (x) =
∑m

i=1 fi (x).

Dual Averaging: Average gradient estimates evaluated in parallel on
different cores. Requires message passing / synchronization (Dekel et
al, 2011; Duchi et al, 2010).

Round-Robin: Cores evaluate ∇fi in parallel and update centrally
stored x in round-robin fashion. Requires synchronization (Langford
et al, 2009).

Asynchronous: Hogwild!: Each core grabs the centrally-stored x
and evaluates ∇fe(xe) for some random e, then writes the updates
back into x (Niu, Ré, Recht, Wright, NIPS, 2011).

Hogwild!: Each processor runs independently:

1 Sample ij uniformly from {1, 2, . . . ,m};
2 Read current state of x and evaluate gij = ∇fij (x);

3 Update x ← x − αgij ;
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Hogwild! Convergence

Updates can be old by the time they are applied, but we assume a
bound τ on their age.

Nui et al (2011) analyze the case in which the update is applied to
just one v ∈ e, but can be extended easily to update the full edge e,
provided this is done atomically.

Processors can overwrite each other’s work, but sparsity of ∇fe helps
— updates to not interfere too much.

Analysis of Niu et al (2011) recently simplified / generalized by Richtarik
(2012).

In addition to L, µ, M, a0 defined above, also define quantities that
capture the size and interconnectivity of the subvectors xe .

ρi = |{j : fi and fj have overlapping support}|;
ρ =

∑m
i=1 ρi/m2: average rate of overlapping subvectors.
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Hogwild! Convergence

Given ε ∈ (0, a0/L), we have

min
0≤j≤k

E (f (xj)− f (x∗)) ≤ ε,

for constant step size

αk ≡
µε

(1 + 2τρ)LM2|E |2

and k ≥ K , where

K =
(1 + 2τρ)LM2m2

µ2ε
log

(
2La0

ε
− 1

)
.

Broadly, recovers the sublinear 1/k convergence rate seen in regular SGD,
with the delay τ and overlap measure ρ both appearing linearly.
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Hogwild! Performance

Hogwild! compared with averaged gradient (AIG) and round-robin (RR).
Experiments run on a 12-core machine. (10 cores used for gradient
evaluations, 2 cores for data shuffling.)
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Hogwild! Performance
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Stochastic Gradient for Regularized Objectives

Suppose a regularized objective:

f (x) + τψ(x) =
m∑
i=1

fi (x) + τψ(x),

with ψ convex, nonsmooth, simple, as usual.

Since convergence theory for SG applies to nonsmooth convex functions,
can write this as

1

m

m∑
i=1

[fi (x) + τψ(x)] ,

and apply the previous algorithm and analysis. The subgradient estimate
used at each step would be

∇fi (x) + τh, for any h ∈ ∂ψ(x),

for some randomly selected i ∈ {1, 2, . . . ,m}.
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However this approach ignores the structure in ψ. When ψ(x) = ‖x‖1, it
typically produces nonsparse solutions.

We noted earlier that for objective f , the step can be obtained from the
subproblem

xk+1 = arg min
z
∇fik (xk)T (z − xk) +

1

2αk
‖z − xk‖2

2.

A natural extension to the regularized case f + τψ would be:

xk+1 = arg min
z
∇fik (xk)T (z − xk) +

1

2αk
‖z − xk‖2

2 + τψ(z),

which can be solved via the prox operator for ψ. (FOBOS, COMID; Duchi
and Singer, 2009)

Because of high variance in the gradient estimates ∇fi , behavior of this
approach can be erratic, with poor sparsity.
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Example

For scalar x ∈ R, define

fi (x) =

(
4

i − 1

m − 1
− 2

)
x .

(Coefficient of x is in range [−2, 2].) We have (1/m)
∑m

i=1 fi (x) = 0 for
all x! Define τ = 1 and ψ(x) = |x |. Then the composite objective is

f (x) + τψ(x) = |x |,

with minimizer x∗ = 0. Suppose we start at the solution and take a
prox-SG step, as above. The subproblem is

x1 := arg min
z

(
4

i0 − 1

m − 1
− 2

)
z + |z |+ 1

2α0
z2.

If i0 is less than m/4, we have x1 > 0;

If i0 is greater than 3m/4, we have x1 < 0;

Otherwise, x1 = 0.

With about 50% likelihood, we have x1 6= 0 — moves away from solution!
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Does Averaging Help?

If we run classical SG for many iterates, arbitrarily many of them will be
nonzero.

What if we take the weighted average of the primal iterates?

x̄k =

∑k
i=1 αixi∑k
i=1 αi

.

This is almost certain to be nonzero, for all iterates.

But dual averaging may help! We average all gradients seen so far, and
use this as the first-order terms in the subproblem.
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Dual Averaging

(Nesterov, 2009) For min f (x) with f convex, nonsmooth. Use
subgradients gi ∈ ∂f (xi ) and average, to obtain

ḡk =
1

k

k∑
i=1

gi .

Step:

xk+1 := min
x

ḡT
k x +

γ√
k
‖x − x0‖2

2, for some constant γ > 0.

The last term is always centered at the first iterate x0.

Gradient information is averaged over all steps, with equal weights.

γ is constant - results can be sensitive to this value.

The approach still works for convex nondifferentiable f , where ∇f (xi )
is replaced by a vector from the subgradient ∂f (xi ).
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Dual Averaging: Convergence

Nesterov proves convergence for averaged iterates:

x̄k+1 =
1

k + 1

k∑
i=0

xi .

Provided the iterates and the solution x∗ lie within some ball of radius D
around x0, we have

f (x̄k+1)− f (x∗) ≤ C√
k
,

where C depends on D, a uniform bound on ‖∇f (x)‖, and γ (coefficient
of stabilizing term).

Note: There’s averaging in both primal (xi ) and dual (∇f (xi )) spaces.

Generalizes easily and robustly to the case in which only estimated
gradients or subgradients are available.

Averaging smooths the errors in the individual gradient estimates.
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Regularized Dual Averaging (RDA)

Dual averaging was extended to the regularized case by Xiao (2010):

min
1

m

m∑
i=1

fi (x) + τψ(x).

Subproblem introduces regularization term explicitly:

xk+1 = arg min
x

ḡT
k x + τψ(x) +

γ√
k
‖x − x0‖2.

Optimality conditions:

0 ∈ ḡk + τ∂ψ(x) +
2γ√

k
(x − x0).

Optimality conditions for original problem:

0 ∈ ∇f (∗) + τ∂ψ(x∗).

In the limit, have ḡk → ∇f (x∗), γ/
√

k → 0, so the subproblem is
consistent with the original problem.
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Manifold Identification in RDA

Under convexity assumptions, can show that ḡk approaches ∇f (x∗) in
expectation, with decreasing variance, at rate k−1/4. (Faster if f is
strongly convex).

Thus, under the usual assumptions of partial smoothness of φτ and
nondegeneracy at x∗, a dense sequence of (non-averaged) iterates {xk}
eventually stays on the optimal manifold M, with probability
1− O(k−1/4).

(The O(·) constant does not depend on problem dimension n.)

Motivates a 2-phase algorithm in which we switch to a different strategy
(e.g. approximate reduced Newton method) on the low-dimensional
manifold identified by RDA.

(Lee, Wright, 2011)
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Computations

Next slide shows computations with MNIST data set (logistic regression
for classifying digits 6 and 7).

RED: Regularized Dual Averaging

BLUE: Regularized Dual Averaging, with second phase

GREEN: Truncated Gradient

LIGHT BLUE: Stocastic Gradient

PURPLE: Lasso-PatternSearch (a type of two-metric gradient
projection) (Shi et al, 2008)

Vertical line indicates switch from RDA to reduced-space search.

The second phase makes convergence faster (BLUE)

RDA (and accelerated variant) gives sparser solutions.
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