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Focus (Initially) on Smooth Convex Functions

Consider m]ilg f(x), with f smooth and convex.
xER"

Usually assume i/ < V2f(x) < LI, V., with0<p <L
(thus L is a Lipschitz constant of V).

If &> 0, then f is p-strongly convex (as seen in Part 1) and

Fy) 2 F(x) + V)T (y =) + Slly = xI3.

Define conditioning (or condition number) as x := L/p.

We are often interested in convex quadratics:

1
f(x) = §xTAx, pl < A< LI or

1
f(x) = 5|IBx = bll3, p/ <BTB=LI
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What's the Setup?

We consider iterative algorithms

X1 = P(xk), or Xp1 = DXk, Xp—1)
For now, assume we can evaluate f(x;) and Vf(x;) at each iteration.
Later, we look at broader classes of problems:
@ nonsmooth f;
e f not available (or too expensive to evaluate exactly);
o only an estimate of the gradient is available;

@ a constraint x € Q, usually for a simple Q (e.g. ball, box, simplex);

nonsmooth regularization; i.e., instead of simply f(x), we want to
minimize f(x) + 7¢(x).

We focus on algorithms that can be adapted to those scenarios.
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

Xk+1 = Xk — g VI(xk), for some ay > 0.

Different ways to select an appropriate .

Q Hard: interpolating scheme with safeguarding to identify an
approximate minimizing .
Q Easy: backtracking. a, %64, %c‘v, %o‘z, ... until sufficient decrease in f

is obtained.
© Trivial: don't test for function decrease; use rules based on L and p.

Analysis for 1 and 2 usually yields global convergence at unspecified rate.
The “greedy” strategy of getting good decrease in the current search
direction may lead to better practical results.

Analysis for 3: Focuses on convergence rate, and leads to accelerated
multi-step methods.
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Seek « that satisfies Wolfe conditions: “sufficient decrease” in f:
f(xi — uVF(xe)) < Fxe) — crou [ V()% (0<c <1)

while “not being too small” (significant increase in the directional
derivative):

Vf(Xk_H)TVf(Xk) > —C2||Vf(Xk)||2, (Cl < 0 < 1).
(works for nonconvex f.) Can show that accumulation points x of {xx}
are stationary: Vf(x) = 0 (thus minimizers, if f is convex)

Can do one-dimensional line search for «y, taking minima of quadratic or
cubic interpolations of the function and gradient at the last two values
tried. Use brackets to ensure steady convergence. Often finds suitable «
within 3 attempts. (Nocedal and Wright, 2006, Chapter 3)
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Backtracking

Try ay = &, %, %, %, ... until the sufficient decrease condition is satisfied.

No need to check the second Wolfe condition: the ay thus identified is
“within striking distance” of an « that's too large — so it is not too short

Backtracking is widely used in applications, but doesn't work on
nonsmooth problems, or when f is not available / too expensive.
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Constant (Short) Steplength

By elementary use of Taylor's theorem, and since V2f(x) < LI,

1) < Fo) — i (1= SEL) [V F(x0)1B

1
For Qy = 1/L, f(Xk+1) < f(Xk) - Z“Vf(xk)H%,

thus IV F ()12 < 2L[F(xk) — F(xpy1)]
Summing for k =0,1,..., N, and telescoping the sum,
N
D IVA)I? < 2L[F(x0) — F(xwra)]-
k=0

It follows that Vf(xx) — 0 if f is bounded below.
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Rate Analysis

Suppose that the minimizer x* is unique.

Another elementary use of Taylor's theorem shows that

* * 2
I = 1P < = X2 = e ( § = ) I G

so that {||xx — x*||} is decreasing.
Define for convenience: Ay := f(xx) — f(x*). By convexity, have
Ay < V)T O = x*) < IV e = x| < IV F Gl lxo — X))

From previous page (subtracting f(x*) from both sides of the inequality),
and using the inequality above, we have
1 2

DNprq < A — (1/20)||VF IR\ P —| U
k1 < Ap — (1/20)|VF(xi)||° < A 2o — 2K
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Weakly convex: 1/k sublinear; Strongly convex: linear

Take reciprocal of both sides and manipulate (using (1 — €)™ > 1 +¢):

1 S 1 n 1 S 1 n k+1
Api1 — Ay 2L||X0 —X*“2 VAN 2L||X0 —X*||2’

which yields
2L|xp — x||?

o) — F(x) < =00

The classic 1/k convergence rate!

By assuming u > 0, can set oy =2/(p + L) and get a linear (geometric)
rate: Much better than sublinear, in the long run

2k 2k
*2< L_N *(12 1 2 * (12
b= <P < (75 ) o—xP=(1- 7)) Io—xIP
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Weakly convex: 1/k sublinear; Strongly convex: linear

Since by Taylor's theorem we have
Ay = Fxi) = F(x*) < (L/2) I = x*|1%,

it follows immediately that

* L 2 2k * 12
Foa) =) =5 (1~ [[x0 = X"

Note: A geometric / linear rate is generally better than almost any
sublinear (1/k or 1/k?) rate.
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Exact minimizing «ay: Faster rate?

Question: does taking ay as the exact minimizer of f along —Vf(xx) yield
better rate of linear convergence?

Consider f(x) = %XTAX (thus x* =0 and f(x*) =0.)

We have Vf(xx) = Axx. Exactly minimizing w.r.t. ay,
1 I A2 11
Q) = arg moin E(Xk — aAxk) TA(x — aAxy) = % € {Z’ ;]
Thus ( o )2
1 X, AX
f < f(xe) — = k
(Xk+1) — (Xk) 2 (X’Z—AXk)(XIZ-A?)Xk)’

so, defining z, := Axx, we have

o) = ) _
flxe) — F(x*) — (zT A=1z) (2] Az)
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Exact minimizing «ay: Faster rate?

Using Kantorovich inequality:

(T Az)(eT A z) < A e
Thus f( ) ) , ) N\2
Xk+1) — F(X* Alp (o
o e (== R
and so )\ 2
) = 7)< (1= 21 ) 1) - 76

No improvement in the linear rate over constant steplength!
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The slow linear rate is typical!

Not just a pessimistic bound!

R
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Multistep Methods: The Heavy-Ball

Enhance the search direction using a contribution from the previous step.
(known as heavy ball, momentum, or two-step)

Consider first a constant step length «, and a second parameter 3 for the
“momentum” term:

Xk4+1 = Xk — Osz(Xk) + ﬁ(Xk — Xk_1)

Analyze by defining a composite iterate vector:
X — x*
Wy = |: k *:| .
Xk—1 — X
Thus

Wit = Bwg + o(lwell),  Bi= [—sz(X*)l+(1+6)l 81

0
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Multistep Methods: The Heavy-Ball

Matrix B has same eigenvalues as

|:—OZA+/(].+,8)/ —OBI:| 7 A:diag(A]_’)\z’...,)\n),

where ); are the eigenvalues of V2f(x*).

Choose «, ( to explicitly minimize the max eigenvalue of B, obtain

4 1 2\’
=t 0 ()

Leads to linear convergence for ||xx — x*|| with rate approximately

(- 771)
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Summary: Linear Convergence, Strictly Convex f

2
o Steepest descent: Linear rate approx (1 - —);
K

2
o Heavy-ball: Linear rate approx (1 — —)

NG

Big difference! To reduce ||xx — x*|| by a factor €, need k large enough that

2\ K
(1 - —) <e < k> g| loge| (steepest descent)
K

2 k
(1 - ﬁ) <e = k> §| loge| (heavy-ball)

A factor of \/k difference; e.g. if k = 1000 (not at all uncommon in
inverse problems), need ~ 30 times fewer steps.
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Conjugate Gradient

Basic conjugate gradient (CG) step is

Xk41 = Xk + O Pr, Pk = =V (xk) + YePr—1-

Ok

Can be identified with heavy-ball, with 8, =

Ap—1

However, CG can be implemented in a way that doesn't require knowledge
(or estimation) of L and .

o Choose ay to (approximately) miminize f along py;

@ Choose v, by a variety of formulae (Fletcher-Reeves, Polak-Ribiere,
etc), all of which are equivalent if f is convex quadratic. e.g.

IV £ (x)>
IVF(xa-1)I12

Yk =
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Conjugate Gradient

Nonlinear CG: Variants include Fletcher-Reeves, Polak-Ribiere, Hestenes.

Restarting periodically with py = —Vf(xk) is useful (e.g. every n
iterations, or when py is not a descent direction).

For quadratic f, convergence analysis is based on eigenvalues of A and
Chebyshev polynomials, min-max arguments. Get

o Finite termination in as many iterations as there are distinct
eigenvalues;

@ Asymptotic linear convergence with rate approx 1 — —.

VE
(like heavy-ball.)
(Nocedal and Wright, 2006, Chapter 5)
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Accelerated First-Order Methods

Accelerate the rate to 1/k? for weakly convex, while retaining the linear
rate (related to \/k) for strongly convex case.
Nesterov (1983) describes a method that requires x.
Initialize: Choose xg, ap € (0,1); set yp < Xo.
[terate: Xgq1 ¢ Yk — %Vf(yk); (*short-step*)
find aey1 € (0,1): ag,y = (1 — apqr)ai + 2,

K
ar(l —ax)

set Oy =
2 1
ay + okt

set Vi1 < Xk+1 + Bk (k1 — Xk)-
Still works for weakly convex (k = 00).
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Separates the “gradient descent” and “"momentum’” step components.
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Convergence Results: Nesterov

If g > 1/+/k, have

. _ 1\* 4L
f(xk) — f(x*) < ¢ min ((1— ﬁ) ,m> ,

where constants ¢; and ¢ depend on xp, «p, L.

o Linear convergence “heavy-ball” rate for strongly convex f;

o 1/k? sublinear rate otherwise.

In the special case of ag = 1/+/k, this scheme yields

Ak

1
V'
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Beck and Teboulle

Beck and Teboulle (2009) propose a similar algorithm, with a fairly short
and elementary analysis (though still not intuitive).

Initialize: Choose xp; set y13 = xg, t1 = 1;

lterate: X < yx — %Vf(}/k)§

tiy1 < 3 <1 + ,/1+4t,3);
ty —1
tht1
For (weakly) convex f, converges with f(xx) — f(x*) ~ 1/k>.

Vi1 < Xk + (Xk — Xk—1)-

When L is not known, increase an estimate of L until it's big enough.

Beck and Teboulle (2009) do the convergence analysis in 2-3 pages;
elementary, but “technical.”

M. Figueiredo and S. Wright () First-Order Methods ICCOPT, July 2013 22 /71



A Non-Monotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of a.
Allows f to increase (sometimes a lot) on some steps: non-monotone.

Xip1 = Xk — o VF(xk), ay = argmin [[s, — az)?,

where
Sk 1= X — Xk—1, zy = Vi(xk) — VI(xk-1)-
Explicitly, we have
STz
zl z

Note that for f(x) = $xT Ax, we have

B skTAsk c [1 1]

CsTA% T [L ]
BB can be viewed as a quasi-Newton method, with the Hessian
approximated by a;ll.

o =

a
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Comparison: BB vs Greedy Steepest Descent

G=————
ﬁb}
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There Are Many BB Variants

0 use ag = skTsk/sszk in place of ay = sszk/szzk;
o alternate between these two formulae;
@ hold ay constant for a number (2, 3, 5) of successive steps;

o take ay to be the steepest descent step from the previous iteration.

Nonmonotonicity appears essential to performance. Some variants get
global convergence by requiring a sufficient decrease in f over the worst of
the last M (say 10) iterates.

The original 1988 analysis in BB's paper is nonstandard and illuminating
(just for a 2-variable quadratic).

In fact, most analyses of BB and related methods are nonstandard, and
consider only special cases. The precursor of such analyses is Akaike
(1959). More recently, see Ascher, Dai, Fletcher, Hager and others.
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Extending to the Constrained Case: x €

How to change these methods to handle the constraint x € Q 7

(assuming that Q is a closed convex set)

Some algorithms and theory stay much the same,

...if we can involve the constraint x € Q explicity in the subproblems.

Example: Nesterov's constant step scheme requires just one calculation to
be changed from the unconstrained version.
Initialize: Choose xg, ap € (0, 1); set yp < Xo.
lterate: Xxq1 < argminycq %Hy — vk — %Vf(yk)” %;
find ak41 € (0,1): aiﬂ = (1 — agy1)as + 2L,

K
ak(l—ak) .
set = )
IBk oo

set Y1 ¢ Xkt1 + Be(Xk+1 — Xk)-

Convergence theory is unchanged.
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Regularized Optimization

How to change these methods to handle regularized optimization?
mXin f(x) + 7(x),
where f is convex and smooth, while v is convex but usually nonsmooth.
Often, all that is needed is to change the update step to
Xk = arg mXin [[x — d(xx)|I3 + A (x).

where ®(x) is gradient descent step, or something more complicated
(such as heavy ball, with ®(xx, xx_1), or some other accelerated method).

This is the shrinkage/tresholding step; how to solve it with a nonsmooth
1?7 That's the topic of the following slides.
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Handling Nonsmoothness (e.g. /; Norm)

Convexity = continuity (on the domain of the function).

Convexity # differentiability (e.g., ¥(x) = [|x||1)-

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f(x') > f(x)+v'(x — x)

Subdifferential: 0f(x) = {all subgradients of f at x}
If f is differentiable, 0f(x) = {Vf(x)}

x
linear lower bound nondifferentiable case
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

fiR SR = of :RY 2R (power set of RY)

f(x)
Example: —ox — 1, x< -1
f(x) = —X, -1<x<0 /
x?/2, x>0
(=2}, x<-1 1 "
[-2, 1], x=-1 9flx)
of(x)=¢ {-1}), —-1<x<0
-1, 0], x=0 X
{x}, x>0 .

Fermat's Rule: x € argminy f(x) & 0 € 0f(x)
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A Key Tool: Moreau's Proximity Operators

Moreau (1962) proximity operator

~ o1
% € argmin S{|x — y|[3 + w(x) =: prox,(y)

...well defined for convex v, since || - —y||3 is coercive and strictly convex.
Example: (seen above) prox, | (y) = soft(y, 7) = sign(y) max{|y| — 7,0}

Block separability: x = (x1,...,xy) (a partition of the components of x)

Y(x) = Z_w,-(x,-) = (prox,(y))i = proxy,(yi)

Relationship with subdifferential: z = prox,(y) < z—y € 9¢(z)

Resolvent: z = prox,(y) < 0€0yY(z)+(z—y) & y€(0Y+1)z
prox,(y) = (0 + 1)ty
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Important Proximity Operators

o Soft-thresholding is the proximity operator of the /1 norm.
o Consider the indicator tg of a convex set S;

1 1
prox,(u) = argmin |x — [+ 15(x) = arg min 5 x — y[3 = Ps(u)

...the Euclidean projection on S.

@ Squared Euclidean norm (separable, smooth):

y
1+7

proxT”,”g(y) = arg mXin [|x — )/H% + T”X“% =

o Euclidean norm (not separable, nonsmooth):

(k=) il > 7
pI’OXT”.Hz(y) { 0 if || x|l < 7
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More Proximity Operators

e prox,a
T (@) =—ry
wr if x<0 rz—w fr<w
i oum@ =40 ifz=0 softjyz(x) = 4 0 if 7 € [w,]

@z otherwise z-w fx>w

V() + Olum) ()

i ¢ & Io(R) differentiable at 0 prox, (softiyz(x))
¥'(0) =0

= el <w

iv max{jz| —w,0} sign(z)w ifw< |2] <2
if 2] > 2w

Sign(z)
v mll w::f'u ):z 0and p+ grpi—! = |z|
. = if |z| < w/V2K z/(2k + 1) if |z] < w2k +1)/V2x
" \wyBRlal —w2/2_otherwise x — wyFRsign(z) otherwise

" 2 . max{[z[ — w0
Vi wlzl +7lz|? + K|zl sign(z)prox, Wmm%

(2w) " sign(z). (wm =

wlz| - In(1 + wlz|)

such that pi+2 — zpi+! = wq
Her=t where W is the Lambert W-function
400 otherwise
T > N
—In(z —w) +In(~w) if z € w,0] s(E+e+ ViE—aP+1) ifr<ije
xiii In@-=z)+In@) if z€]0,3[ 1(1 T@— \/Iz—ﬁt—zﬂ) i1/
+00 otherwise 2 .
0 otherwise
w<0<m (see Figure 1)
. [—rkln@) +72*/24+az ifz>0 1 N rie=:
s otherwive | T (7 70+ VE=aF T A7)
w rh@Fertwr ! ifz>0 7>0
+o0 otherwise such that p* + (a — 2)p? — kp=w
i @ e i z>0 7>0
* +o0 otherwise such that qwp? + p? — zp = K
sz —w) —Fh@E-2) elwal
xvii if z €lw.®| such that p* — (w +@ + 2)p*+
+ otherwise (W — & — R+ (w+W)z)p = Wz — WK — DK
= . (Combettes and Pesquet, 2011)
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Another Key Tool: Fenchel-Legendre Conjugates

The Fenchel-Legendre conjugate of a proper convex function f — denoted
by f*: R" - R — is defined by

f*(u) = supx’ u — f(x)

X

Main properties and relationship with proximity operators:
@ Biconjugation: if f is convex and proper, f** = f.

@ Moreau's decomposition:  proxg(u) + proxs«(u) = u

...meaning that, if you know prox,, you know prox,., and vice-versa.

o Conjugate of indicator: if f(x) = tc(x), where C is a convex set,

f*(u) =supx’ u—1c(x) =supxu=oc(u) (support function of C).
X xeC
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From Conjugates to Proximity Operators

Notice that |u| = sup,c(_11 xTu=op_15(u), thus |- [* =11 1.

Using Moreau's decomposition, we easily derive the soft-threshold:

prox, . =1—prox,  =1-P_, ;= soft(-, 7)
P_:7(2) soft(z,T)
—7 -7 ‘ /
. - >

Conjugate of a norm: if f(x) = 7|x||, then f* = L) <r}s

where % + % =1 (a Holder pair, or Holder conjugates).

Thatis, || - ||, and || - || are dual norms:

Izllq =sup{x"z: ||Ix|l, <1} = sup x"z=0g,1)(2)
x€Bp(1)
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From Conjugates to Proximity Operators

o Proximity of norm:

Proxeij, = I = Pey(m)

where By(7) = {x: |Ix|lq <7} and % + /la = 1.
o Example: computing prox). . (notice / is not separable):

. 1 1
Since sti= 1,
ProXe| . = I = Pay(r)

... the proximity operator of £, norm is the residual of the projection
on an /1 ball.

@ Projection on ¢; ball has no closed form, but there are efficient (linear
cost) algorithms (Brucker, 1984), (Maculan and de Paula, 1989).
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Geometry and Effect of prox,

Whereas {1 promotes sparsity, /o, promotes equality (in absolute value).

\
4

Xy

Xq Xy

@
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From Conjugates to Proximity Operators

The dual of the ¢ norm is the ¢5 norm.

pI'OXT“,Hz(’U/) =Uu-— P{m||m||2§7-}(u)

gyl < Jull <7
Tufllulle = lulla >7

Prox, ;’,"’u

Tar, 2ex{0: el = 7}

vector soft thresholding
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Group Norms and their Prox Operators

M
Group-norm regularizer: 1(x) = Z Aml|XGplp-
m=1
In the non-overlapping case (Gi, ..., G, is a partition of {1,..., n}), simply
use separability:
(proxy (1)) g, = Proxa, i, (uc,)-

i2-iIn the tree-structured case, can get a complete ordering of the groups:
G < Gy... < Gy, where (G <X G') & (GC G')or (GNG' =0).

Define M,, : R" — RN:

(Mm(u)) G = Proxy, 1.1, (U6n)
(Mm(u))e, = ug,,, where Gm={1,....n}\ Gn,
Then
proxy, =y o---ollxoll

...only valid for p € {1,2, 00} (Jenatton et al., 2011).
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Matrix Nuclear Norm and its Prox Operator

min{m,n}
o Recall the trace/nuclear norm: || X||. = Z oj.
i=1
@ The dual of a Schatten p-norm is a Schatten g-norm, with
(l] + [—1J = 1. Thus, the dual of the nuclear norm is the spectral norm:
||X||OO = max {017 e Umin{m,n}} .
o If Y = UAVT is the SVD of Y, we have
prox .. (Y) = UAVT = Piximax(on,...omngmam <} (UAVT)
= Usoft(A, 7) V.
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Atomic Norms: A Unified View

vectors

matrices

Prox

atomic set

oo

20

residual of
projection
on 51 ball

spectral

X2

rox

residual of

S.V. proj.
on flw

atomic set

A = setof

all orthogonal
matrices

1%

(P

vector soft
thresholding

A = setofall
vectors with
norm 1

IA| = 0o

Frobenius

X7

matrix soft
threshold.

A = al

matrices of
unit Frobenius
norm.
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Another Use of Fenchel-Legendre Conjugates

@ The original problem: mXin f(x) + ¥(x)
o Often this has the form: mXin g(Ax) +1(x)
o Using the definition of conjugate g(Ax) = sup, u’ Ax — g*(u)
min g(Ax) +1(x) = ir;f supu’ Ax — g*(u) + ()
— sup(—g"(u) + inf uT Ax+ ¥(x)

= sup(—g"(u)) — sup —xTATu —1(x)

~ /

Y*(-ATw)
= —infg*(u) +¥*(—ATv)

o The problem inf, g*(u) + ¢*(—AT u) is sometimes easier to handle.
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Basic Proximal-Gradient Algorithm

Use basic structure:
X, = arg mXin |x — ¢(xk)||§ + (x).

with ®(xx) a simple gradient descent step, thus

Xk+1 = ProXe, (xk — aka(xk))

This approach goes by many names, such as
e “proximal gradient algorithm” (PGA),
o ‘“iterative shrinkage/thresholding” (IST),
o “forward-backward splitting” (FBS)

It it has been reinvented several times in different communities:
optimization, partial differential equations, convex analysis, signal
processing, machine learning.
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Convergence of the Proximal-Gradient Algorithm

o Basic algorithm: xx11 = prox,, (xk — aka(xk))

o generalized (possibly inexact) version:
Xk4+1 = (1 - )\k)Xk + )\k (prOXakw (Xk - aka(Xk) + bk) + ak)

where a, and by are “errors” in computing the prox and the gradient;
Ak is an over-relaxation parameter.

o Convergence is guaranteed (Combettes and Wajs, 2006) if

vV 0<infag <supay < %
vV A E (07 1], with inf A, >0
300 llakll < oo and 3T bkl < oo
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Proximal-Gradient Algorithm: Quadratic Case

o Consider the quadratic case (of great interest): f(x) = 1||Bx — b]|3.

o Here, Vf(x) = BT(Bx — b) and the IST/PGA/FBS algorithm is
Xk+1 = ProXe, (xk — akBT(Bx — b))

can be implemented with only matrix-vector multiplications with B
and BT.

This is a very important feature in large-scale applications, such as
image processing, where fast algorithms exist for computing these

products (e.g. fast Fourier transforms or wavelet transforms), but

these matrices cannot be formed and stored explicitly.

@ In this case, some more refined convergence results are available.

o Even more refined results are available if ¢(x) = 7/x||1

M. Figueiredo and S. Wright () First-Order Methods ICCOPT, July 2013 44 /71



More on IST/FBS/PGA for the (,-¢; Case

o Problem: X € G = arg min 1B x — b3+ 7||x|1 (recall BTB < LI)
xeRn

o IST/FBS/PGA becomes | xi+1 = soft(xx — aBT(Bx - b), ar)
with o < 2/L.

o Thezeroset: ZC{l,...,n}: Xe G=Xxz=0

o Zeros are found in a finite number of iterations (Hale et al., 2008):
after a finite number of iterations (xx)z = 0.

o After that, if BBz = pul, with > 0 (thus k(B Bz) = L/u < o),
we have linear convergence

1—& -
Xk —X]|2

X — Xl <
[l Xk+1 ||2_1+,,i

for the optimal choice &« = 2/(L + 1) (see unconstrained theory).
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Heavy Ball Acceleration: FISTA

o FISTA (fast iterative shrinkage-thresholding algorithm) is
heavy-ball-type acceleration of IST (based on Nesterov (1983)) (Beck
and Teboulle, 2009).

Initialize: Choose o < 1/L, xo; set y1 = xo, t; = 1;

lterate:  Xg 4= Prox, oy (Yo — @V (yk));

tkpl < 3 (1+\/1+4tf);
te — 1

tk+1

Yi+1 < Xk + (XK — Xk—1)-

@ Acceleration:

FISTA: f(x¢) — F(R) ~ O (1(12) IST: f(x) — F(R) ~ O (/1() .

@ When L is not known, increase an estimate of L until it's big enough.
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Heavy Ball Acceleration: TwIST

o TwlIST (two-step iterative shrinkage-thresholding (Bioucas-Dias and
Figueiredo, 2007)) is a heavy-ball-type acceleration of IST, for

min 318 x — b3 + T(x)
o lIterations (with a < 2/L)

X1 = (7= B) xk + (L= )xk—1 + BProxg,y (xk — a BT (Bx — b))

o Analysis in the strongly convex case: pul < BTB < LI, with p > 0.
Conditioning (as above) K = L/ < o0.

o Optimal parameters: v = p?+1, f = u+L’ where p = 1+§ yield
linear convergence

—
1+k

k1 — X|2 < I3k — || (versus Lt for IST)
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[llustration of the TwIST Acceleration
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Acceleration via Larger Steps: SpaRSA

o The standard step-size ay < % in IST too timid

@ The SpARSA (sparse reconstruction by separable approximation)
framework proposes bolder choices of «, (Wright et al., 2009):

V" Barzilai-Borwein (see above), to mimic Newton steps — or at least get
the scaling right.
V" keep increasing «y until monotonicity is violated: backtrack.

o Convergence to critical points (minima in the convex case) is
guaranteed for a safeguarded version: ensure sufficient decrease w.r.t.
the worst value in previous M iterations.
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Another Approach: Gradient Projection

® miny 3|[Bx — b||3 + 7||x||1 can be written as a standard QP:
1
min EHB(U —v) = b3+ ru"1+7u"1 st. u>0, v>0,
u,v
where u; = max{0, x;} and v; = max{0, —x;}.

. u . . .
o With z = [ y ] problem can be written in canonical form
1
min EZTQZ +cTz st z >0
z

@ Solving this problem with projected gradient using Barzilai-Borwein
steps: GPSR (gradient projection for sparse reconstruction)
(Figueiredo et al., 2007).
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Speed Comparisons

o Lorenz (2011) proposed a way of generating problem instances with
known solution X: useful for speed comparison.

o Define: Ry = X=Xz 5pg p = % (where L(x) = f(x) + 7¢(x)).

X112

Typical CS example: A = [I U] (512 x 1024), X has 80 non-zeros, 7 = (.1

r
108
1075 1

10—10 1

+— N — N
100 100

IST, GPSR, SpaRSA, FISTA, YALLL1, NESTA, fpc
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More Speed Comparisons

Typical CS example: A = [I U R] (512 x 1536), X has 120 non-zeros, T = 0.1
1o 4
10—5 4

10—10 4

n

A > N | _
100 200 100 200
IST, GPSR, SpaRSA, FISTA, YALL1, NESTA, fpc
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Even More Speed Comparisons

A difficult problem: A is very coherent, 7 is small 7 = 1073

All the solvers struggle...

10—2 '
1,000 1,000

IST, GPSR, SpaRSA, FISTA, YALL1, NESTA, fpc
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Acceleration by Continuation

o IST/FBS/PGA can be very slow if 7 is very small and/or f is poorly
conditioned.

o A very simple acceleration strategy: continuation/homotopy

Initialization: Set 7o > T, starting point X, factor o € (0,1), and k = 0.

Iterations: Find approx solution x(7x) of min, f(x) + 7xt(x), starting from X;
if 7« = 77 STOP;

Set 7411 « max(7r,07k) and X « x(7%);

o Often the solution path x(7), for a range of values of 7 is desired,
anyway (e.g., within an outer method to choose an optimal 7)

@ Shown to be very effective in practice (Hale et al., 2008; Wright
et al., 2009). Recently analyzed by Xiao and Zhang (2012).
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Acceleration by Continuation: An Example

Classical sparse reconstruction problem (Wright et al., 2009)

X € arg mXin 1B x = bl3 + 7x]1

with B € R1024x409 (thys x € R40% and b € R1024),

- SpaRSA monot.
—%— SpaRSA
) —&— GPSR-BB
10" F | —e—FpPC
SpaRSA monot. w/ cont.
% SpaRSA w/ cont.
© GPSR-BB w/ cont.

CPU time (seconds)
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A Final Touch: Debiasing

Consider problems of the form X € arg m]ilg HIBx— b||3 + 7|x]|1
x€ER"

Often, the original goal was to minimize the quadratic term, after the
support of x had been found. But the #; term can cause the nonzero
values of x; to be “suppressed.”

Debiasing:
v find the zero set (complement of the support of x):

Z(x) =11, ..., n} \ supp(x).

v solve min, ||Bx — b||3 sit. xz(z) = 0. (Fix the zeros and solve an
unconstrained problem over the support.)

Often, this problem has to be solved using an algorithm that only
involves products by B and BT, since this matrix cannot be
partitioned.
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Effect of Debiasing

Original (n = 4096, number of nonzeros = 160)
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Example: Matrix Recovery (Toh and Yun, 2010)

— . 1
W ek i 519(4) - Ul + M

linear operator

The proximal algorithm (IST) is as before: / ...its adjoint

Xpi1 = svty 5, (Xk B ®F(B( X)) — U))

Matrix completion: q)(X) = X (subset of entries) |Q| =p

| Unknown M [ [ IST [ APG (FISTA) —|
| n/r | P l p/dr | m ‘ iter #sv error | iter  #sv error |
100/10 5666 3 8.21e-03 7723 61  1.88e-01 655 13 1.06e-03
200/10 | 15665 4 1.05e-02 | 12180 96 2.45e-01 812 12 1.02e-03
500/10 | 49471 5 1.21e-02 | 10900 203 5.91e-01 | 1132 16 7.63e-04
Unknown M continuation — APG + continuation
n/r | P | p/dr m iter  #sv error iter  #sv error

100/10 5666 3 8.21e-03 | 429 32 1.06e-03 74 10 1.46e-04
200/10 | 15665 1.05e-02 | 278 49 4.38e-04 73 10 1.02e-04
500/10 | 49471 1.21e-02 | 484 125 5.50e-04 72 10 8.06e-05

(SIS

...the importance of acceleration!
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Conditional Gradient

Also known as “Frank-Wolfe" after the authors who devised it in the
1950s. Later analysis by Dunn (around 1990). Suddenly a topic of
enormous renewed interest; see for example (Jaggi, 2013).

min f(x

xeN ( )’

where f is a convex function and Q is a closed, bounded, convex set.
Start at xp € . At iteration k:

v = argmin v Vf(x);
veQ

2

X1 o= Xk + ap(ve — xk), o = PEY

o Potentially useful when it is easy to minimize a linear function over
the original constraint set Q;

o Admits an elementary convergence theory: 1/k sublinear rate.
@ Same convergence theory holds if we use a line search for ay.
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Conditional Gradient for Atomic-Norm Constraints

Conditional Gradient is particularly useful for optimization over
atomic-norm constraints.

min f(x) s.t. ||x||a < T.
Reminder: Given the set of atoms A (possibly infinite) we have

lIx]|.4 := inf {an : X:ana, caZO}.

acA acA

I'he search direction v is 73y, where
3, ;= argmin (a, Vf(xy)).
k gae (a, VI(xx))

That is, we seek the atom that lines up best with the negative gradient
direction —V £ (xx).
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Generating Atoms

We can think of each step as the “addition of a new atom to the basis.”
Note that xi is expressed in terms of {3g, a1, ..., 3k}.

If few iterations are needed to find a solution of acceptable accuracy, then
we have an approximate solution that's represented in terms of few atoms,
that is, sparse or compactly represented.

For many atomic sets A of interest, the new atom can be found cheaply.

Example: For the constraint ||x|[; < 7, the atoms are
{xe : i=1,2,...,n}. if iy is the index at which [[Vf(xk)]i| attains its
maximum, we have

ak = —sign([VF(x)]i) €

Example: For the constraint ||x|lc < 7, the atoms are the 2" vectors with
entries 1. We have

[3k]i = —sign[Vf(xk)]i, =1,2,...,n.
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More Examples

Example: Nuclear Norm. For the constraint || X||. < 7, for which the
atoms are the rank-one matrices, we have A, = ukva, where uy and v
are the first columns of the matrices Uy and V) obtained from the SVD
VI(Xy) = UcZg VkT.

Example: sum-of-/>. For the constraint

m
> lxallz <7,
i=1

the atoms are the vectors a that contain all zeros except for a vector uf;
with unit 2-norm in the [i] block position. (Infinitely many.) The atom 3
contains nonzero components in the block ix for which [[[Vf(x)]jill is
maximized, and the nonzero part is

uii) = =V / IV )i 1l -
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Other Enhancements

Reoptimizing. Instead of fixing the contribution ay from each atom at
the time it joins the basis, we can periodically and approximately
reoptimize over the current basis.

@ This is a finite dimension optimization problem over the
(nonnegative) coefficients of the basis atoms.

@ It need only be solved approximately.

o If any coefficient is reduced to zero, it can be dropped from the basis.

Dropping Atoms. Sparsity of the solution can be improved by dropping
atoms from the basis, if doing so does not degrade the value of f too
much (see (Rao et al., 2013)).

In the important least-squares case, the effect of dropping can be
evaluated efficiently.
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Interior-Point Methods

Interior-point methods were tried early for compressed sensing, regularized
least squares, support vector machines.

@ SVM with hinge loss formulated as a QP, solved with a primal-dual
interior-point method. Included in the OOQP distribution (Gertz and
Wright, 2003); see also (Ferris and Munson, 2002).

o Compressed sensing and LASSO variable selection formulated as
bound-constrained QPs and solved with primal-dual; or second-order
cone programs solved with barrier (Candes and Romberg, 2005)

However they were mostly superseded by first-order methods.

o Stochastic gradient in machine learning (low accuracy, simple data
access);

o Gradient projection (GPSR) and prox-gradient (SpaRSA, FPC) in
compressed sensing (require only matrix-vector multiplications).
Is it time to reconsider interior-point methods?
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Compressed Sensing: Splitting and Conditioning

Consider the #>-¢1 problem
1 5
min < ||Bx — b||3 + 7|x[|1,
x 2
where B € R™*", Recall the bound constrained convex QP formulation:

. 2 T
Lmin §||B(u —v)=b|5+ 71" (u+v).

B has special properties associated with compressed sensing matrices (e.g.

RIP) that make the problem well conditioned.

(Though the objective is only weakly convex, RIP ensures that when
restricted to the optimal support, the active Hessian submatrix is well
conditioned.)
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Compressed Sensing via Primal-Dual Interior-Point

Fountoulakis et al. (2012) describe an approach that solves the
bounded-QP formulation.

@ Uses a vanilla primal-dual interior-point framework.

@ Solves the linear system at each interior-point iteration with a
conjugate gradient (CG) method.

@ Preconditions CG with a simple matrix that exploits the RIP
properties of B.

Matrix for each linear system in the interior point solver has the form

Tg _RBT -1
M:z[BB BB] [US 0],

-B™B B'B 0 v-iT

where U = diag(u), V = diag(v), and S = diag(s) and T = diag(t) are
constructed from the Lagrange multipliers for the bound u > 0, v > 0.
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The preconditioner replaces B B by (m/n)l. Makes sense according to
the RIP properties of B.

p_m[l =N _[uU?s 0
o [ 0 viT]’

Convergence of preconditioned CG depends on the eigenvalue distribution
of P71 M. Gondzio and Fountoulakis (2013) shows that the gap between
largest and smallest eigenvalues actually decreases as the interior-point
iterates approach a solution. (The gap blows up to co for the
non-preconditioned system.)

Overall, the strategy is competitive with first-order methods, on random
test problems.
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Preconditioning: Effect on Eigenvalue Spread / Solve Time

Matrix-vector products per CG/PCG call

§ Spread of A(MYA(P~"M) per call of CG/PCG
—— Unpreconditioned CG 10 PR
| [ = Preconditioned CG (_)'
10 : | )
£
T .
a 10
[ .
g S 324
2 3 .o
E Fopinnnningy “|
ik - ]
10 @10 '] 3
E i
107
10’ 10
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22
Number of CG/PCG call

number of CG/PCG call

Red = preconditioned, Blue = non-preconditioned.
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