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Stochastic Gradient Methods

Deal with (weakly or strongly) convex f. We change the rules a bit in this
section:

o Allow f nonsmooth.
o Can't get function values f(x) easily.

o At any feasible x, have access only to a cheap unbiased estimate of
an element of the subgradient Of.

Common settings are:
f(X) = EEF(X? g)a

where £ is a random vector with distribution P over a set =. Special case:

)= 3" (),

i=1

where each f; is convex and nonsmooth.
(We focus on this finite-sum formulation, but the ideas generalize.)
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Applications

This setting is useful for machine learning formulations. Given data
x; € R” and labels y; = £1, i =1,2,..., m, find w that minimizes

ro(w)+ 3 wixi ),
i=1

where 1) is a regularizer, 7 > 0 is a parameter, and / is a loss. For linear
classifiers/regressors, have the specific form £(w 7 x;, y;).

Example: SVM with hinge loss £(w ' x;, y;) = max(1 — y;(w'x;),0) and
Y= llor v =13

Example: Logistic regression: /(w'x;, y;) = log(1 + exp(yiw " x;)). In
regularized version may have ¢¥(w) = ||w||;.
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Subgradients

Recall: For each x in domain of f, g is a subgradient of f at x if

f(z) > f(x)+g"(z - x), for all z € dom f.

o Right-hand side is a supporting hyperplane.
@ The set of subgradients is called the subdifferential, denoted by Of(x).
o When f is differentiable at x, have 0f(x) = {Vf(x)}.

We have strong convexity with modulus g > 0 if
1
f(z) > f(x)—l—gT(z—x)—i—E,qu—tz, for all x,z € dom f with g € 9f(x).

Generalizes the assumption V2f(x) = u/ made earlier for smooth
functions.
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Classical Stochastic Gradient

For the finite-sum objective, get a cheap unbiased estimate of the gradient
Vf(x) by choosing an index i € {1,2,..., m} uniformly at random, and
using Vfi(x) to estimate Vf(x).

Basic SA Scheme: At iteration k, choose iy i.i.d. uniformly at random
from {1,2,..., m}, choose some a > 0, and set

Xi41 = Xk — o Vi (X))
Note that xx41 depends on all random indices up to iteration k, i.e.
ik = s 2y K}

When f is strongly convex, the analysis of convergence of expected square
error E(||xx — x*||?) is fairly elementary — see Nemirovski et al (2009).

Define ax = %E(ka — x*[|?). Assume there is M > 0 such that

1 <& )
- . < M.
- ;21 [VAi(x)[l3 <M
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Rate: 1/k

Thus
s = x'I3
= Sl — VA ) = x|
= 2l = 1B — ok — x*) VA (k) + 51V (o)
Taking expectations, get
a1 < ax — aE[(xi — x*) TV (x)] + %%%Mz'
For middle term, have

E[O —x*) Vi, (x)] = Ejy_y Ei [k — x*) TV, (31 lig—1y]

- El'[k,]_] (Xk - X*)Tglﬁ
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. where
gk = Ej [V1i, (xi)lik-1] € Of (x«).

By strong convexity, have
* * 1 * *
O = x*) Tk > F(x) — F(x*) + Sl = X7 = pllxie = X%

Hence by taking expectations, we get E[(xx — x*)" gx] > 2uay. Then,
substituting above, we obtain

1
a1 < (1 —2puay)ag + §a%<M2'

When
o= 1
k = k,U,’

a neat inductive argument (below) reveals the 1/k rate:

M2
a < g, for Q := max <Hx1 — X*HZ, F) .
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Inductive Proof of 1/k Rate

Clearly true for k = 1. Otherwise:

1
ak+1 < (1 —2pak)ak + EaiMz

< 1—2 ai + M*
= k) KT 2k22

2 R @
< R —
—(1 k>2k+2k2
_(k—1)
T 2k2 Q
k-1 Q@

K 2(k+1)
Q
S 2kt 1)

as claimed.
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But... What if we don't know p? Or if u =07

The choice oy = 1/(ku) requires strong convexity, with knowledge of the
modulus g. An underestimate of p can greatly degrade the performance of
the method (see example in Nemirovski et al. 2009).

Now describe a Robust Stochastic Approximation approach, which has a
rate 1/v/k (in function value convergence), and works for weakly convex

nonsmooth functions and is not sensitive to choice of parameters in the
step length.

This is the approach that generalizes to mirror descent, as discussed later.
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Robust SA

At iteration k:
o set X1 = xx — o, V£, (xk) as before;
@ set

Xk =

For any € > 0, choose step lengths to be

9
MVk

Then f(xx) converges to f(x*) in expectation with rate approximately
(log k)/k*/2.

(The choice of 6 is not critical.)

oy =
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Analysis of Robust SA

The analysis is again elementary. As above (using i instead of k), have:

. 1
iE[(xi — x*)Tgi] < ai — ajp1 + EQ%M2-

By convexity of f, and g; € Of(x;):
F(x*) > £(x) + &" (x* = x),

thUS 1
i E[f(x) — f(x*)] < ai — aip1 + 5“:2M2v

so by summing iterates i = 1,2, ..., k, telescoping, and using ax4+1 > 0:

k K
* 1 2 2
'E_l o E[f(x) — F(x)] < a1+ EM E_l as.
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Thus dividing by >, _; a;:

E

ko o f(x Lppzsk o2
Zi:lkalf(xl) _ f(X*) S ai + 2M ZI:]. al )
Doic1 i i

By convexity, we have

so obtain the fundamental bound:

Eff (%) — F(x7)] <
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By substituting a; = %ﬂ' we obtain

a1 +10221 1]I-
MZ;:lW

! + 6% log(k + 1)

=M 9+0|og(k+1)

Elf () — F(x7)] <

-

That's it!

There are other variants — periodic restarting, averaging just over the
recent iterates. These can be analyzed with the basic bound above.
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Constant Step Size

We can also get rates of approximately 1/k for the strongly convex case,
without performing iterate averaging. The tricks are to

o define the desired threshold ¢ for aj in advance, and
@ use a constant step size.

Recall the bound on ax11 from a few slides back, and set ay = «:

1
a1 < (1 —2ua)ag + EazMz.

Apply this recursively to get
aM?
< (1 —2pa)kag + ——-.
ag < ( pa)ag + i
Given € > 0, find o and K so that both terms on the right-hand side are
less than €/2. The right values are:

2¢q M? ao
=—, K:=—I (—) .
R VE dep? %€\ 2
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Constant Step Size, continued

Clearly the choice of o guarantees that the second term is less than €/2.
For the first term, we obtain k from an elementary argument:
(1 —2ua)kag < ¢/2
< klog(1l —2ua) < —log(2ap/¢)
= k(—2pa) < Iog(Zao/e) since log(1 + x) < x

~ k > 2;L_a IOg(zaO/E),

from which the result follows, by substituting for « in the right-hand side.

If 11 is underestimated by a factor of 5, we undervalue « by the same
factor, and K increases by 1/3. (Easy modification of the analysis above.)

Thus, underestimating o gives a mild performance penalty.
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Constant Step Size: Summary

PRO: Avoid averaging, 1/k sublinear convergence, insensitive to
underestimates of p.

CON: Need to estimate probably unknown quantities: besides i, we need
M (to get o) and ap (to get K).

We use constant size size in the parallel SG approach HOGWILD!, to be
described later.

But the step is chosen by trying different options and seeing which seems
to be converging fastest. We don't actually try to estimate all the
quantities in the theory and construct o that way.
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Mirror Descent

The step from xi to xxy1 can be viewed as the solution of a subproblem:
. T 1 2
Xk+1 = argmin V£, (x¢) " (z = x) + 5— 1z — xk|l2,
z 2ak

a linear estimate of f plus a prox-term. This provides a route to handling
constrained problems, regularized problems, alternative prox-functions.

For the constrained problem min,cq f(x), simply add the restriction z € Q
to the subproblem above.

We may use other prox-functions in place of (1/2)||z — x||3 above. Such
alternatives may be particularly well suited to particular constraint sets €.

Mirror Descent is the term used for such generalizations of the SA
approaches above.
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Mirror Descent cont'd

Given constraint set €, choose a norm || - || (not necessarily Euclidean).
Define the distance-generating function w to be a strongly convex function
on Q with modulus 1 with respect to || - ||, that is,

(W(x) ='(2) T (x—2) > ||x—z||>, forall x,z € Q,

where w/(-) denotes an element of the subdifferential.

Now define the prox-function V(x, z) as follows:
V(x,2) = w(z) —w(x) — ' (x)T(z - x).

This is also known as the Bregman distance. We can use it in the
subproblem in place of 3| - [|2:

. 1
Xkt1 = argmin Vi (i) T (2 = x) + a—kV(Z,Xk)-
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Bregman distance is the deviation of w from linearity:

M. Figueiredo and S. Wright () Stochasic Optimization Methods ICCOPT, July 2013 19 / 37



Bregman Distances: Examples

For any Q, we can use w(x) := (1/2)||x — x||3, leading to the “universal’
prox-function

V(x,2) = (1/2)|Ix — 2|3

For the simplex

n
Q={xeR": x>0, inzl},
i=1
we can use instead the 1-norm || - ||1, choose w to be the entropy function

n
w(x) = Zx,- log xi,
i=1
leading to Bregman distance (Kullback-Liebler divergence)

V(x,2) = zlog(zi/xi),
i=1

which is standard measure of distance between two probability
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Applications to SVM

SA techniques have an obvious application to linear SVM classification. In
fact, they were proposed in this context and analyzed independently by
researchers in the ML community for some years.

Codes: SGD (Bottou), PEGASOS (Shalev-Schwartz et al, 2007).

Tutorial: Stochastic Optimization for Machine Learning, Tutorial by N.
Srebro and A. Tewari, ICML 2010 for many more details on the
connections between stochastic optimization and machine learning.

Related Work: Zinkevich (ICML, 2003) on online convex programming.
Aiming to approximate the minimize the average of a sequence of convex
functions, presented sequentially. No i.i.d. assumption, regret-based
analysis. Take steplengths of size O(k~1/2) in gradient Vfi(xx) of latest
convex function. Average regret is O(k~1/?).
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Parallel Stochastic Gradient

Several approaches tried, for f(x) = > fi(x).
o Dual Averaging: Average gradient estimates evaluated in parallel on

different cores. Requires message passing / synchronization (Dekel et
al, 2011; Duchi et al, 2010).

o Round-Robin: Cores evaluate Vf; in parallel and update centrally
stored x in round-robin fashion. Requires synchronization (Langford
et al, 2009).

@ Asynchronous: HOGWILD!: Each core grabs the centrally-stored x
and evaluates Vfo(x.) for some random e, then writes the updates
back into x (Niu, Ré, Recht, Wright, NIPS, 2011).

HoGwiLDp!: Each processor runs independently:
@ Sample jj uniformly from {1,2,..., m};
O Read current state of x and evaluate g; = Vfi(x);
O Update x < x — agj;
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HocawiLp! Convergence

o Updates can be old by the time they are applied, but we assume a
bound 7 on their age.

o Nui et al (2011) analyze the case in which the update is applied to
just one v € e, but can be extended easily to update the full edge e,
provided this is done atomically.

@ Processors can overwrite each other's work, but sparsity of V£, helps
— updates to not interfere too much.

Analysis of Niu et al (2011) recently simplified / generalized by Richtarik
(2012).

In addition to L, 1, M, ag defined above, also define quantities that
capture the size and interconnectivity of the subvectors x.
e pi = |{j : fi and f; have overlapping support}|;

°op=>31", pi/m?: average rate of overlapping subvectors.

M. Figueiredo and S. Wright () Stochasic Optimization Methods ICCOPT, July 2013 23 /37



HocGwiLD! Convergence

Given € € (0,a9/L), we have

min E(f(q) - f(x7)) < e

0<j<
for constant step size

_ e
(14 27p)LM?|E|?

Ok

and k > K, where

1+ 27p)LM?m? 2L
k= L2 )M m Iog( = 1)
e €

Broadly, recovers the sublinear 1/k convergence rate seen in regular SGD,
with the delay 7 and overlap measure p both appearing linearly.
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HocwiLD! Performance

—Hogwild
4 4
--AIG
g s -—RR g a
Q.2 Q.2
» »
1 M et 1
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8
Number of Splits Number of Splits Number of Splits
SVM MC CUTS
RCV1 Netflix Abdomen

HoGwiLbp! compared with averaged gradient (AlG) and round-robin (RR).
Experiments run on a 12-core machine. (10 cores used for gradient
evaluations, 2 cores for data shuffling.)
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HocwiLD! Performance

SVM

MC

CUTS

data set |size (GB) p A time (s) | speedup
RCV1 0.9 4.4E-01 | 1.0E+00 10 4.5
Netflix 1.5 2.5E-03| 2.3E-03 301| 5.3
KDD 3.9 3.0E-03 | 1.8E-03 878| 5.2
JUMBO 30 2.6E-07| 1.4E-07 | 9,454| 6.8
DBLife 0.003 (8.6E-03 | 4.3E-03 230 8.8
Abdomen 18 9.2E-04 | 9.2E-04 | 1,181 4.1
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Stochastic Gradient for Regularized Objectives

Suppose a regularized objective:

m

F(x) +7e(x) = D £i(x) + (),

i=1
with ) convex, nonsmooth, simple, as usual.

Since convergence theory for SG applies to nonsmooth convex functions,
can write this as

=3 160 + 7o),

and apply the previous algorithm and analysis. The subgradient estimate
used at each step would be

Vfi(x)+ 7h, forany h € 0v(x),

for some randomly selected i € {1,2,..., m}.
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However this approach ignores the structure in ). When 9(x) = ||x||1, it
typically produces nonsparse solutions.

We noted earlier that for objective f, the step can be obtained from the
subproblem

. 1
Xj+1 = arg min Vi, () T (z = xi) + THZ — xcll5-
QK

A natural extension to the regularized case f + 7 would be:

) 1
Xk4+1 = arg mzm vfik(xk)T(Z —xk) + 27”(“2 - Xk”% + 11(2),

which can be solved via the prox operator for 1. (FOBOS, COMID; Duchi
and Singer, 2009)

Because of high variance in the gradient estimates Vf;, behavior of this
approach can be erratic, with poor sparsity.
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For scalar x € R, define

F(x) = (4 ,;__11 - 2) x.

(Coefficient of x is in range [—2,2].) We have (1/m) ", fi(x) = 0 for

all x! Define 7 =1 and 9¥(x) = |x|. Then the composite objective is
f(x) + T(x) = [x],

with minimizer x* = 0. Suppose we start at the solution and take a

prox-SG step, as above. The subproblem is

o—1 1
X1 1= argmin 4072 o)z 4 |z| + —Z22.
z m-—1 2

o If iy is less than m/4, we have x; > 0;
o If iy is greater than 3m/4, we have x; < 0;
@ Otherwise, x; = 0.
With about 50% likelihood, we have x; # 0 — moves away from solution!
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Does Averaging Help?

If we run classical SG for many iterates, arbitrarily many of them will be
nonzero.

What if we take the weighted average of the primal iterates?

k
- Dis1 QiXi
X = ==———.
This is almost certain to be nonzero, for all iterates.

But dual averaging may help! We average all gradients seen so far, and
use this as the first-order terms in the subproblem.
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Dual Averaging

(Nesterov, 2009) For min f(x) with f convex, nonsmooth. Use
subgradients g; € 9f(x;) and average, to obtain

Step:

Xi41 = min g x + l||x — xo|3, for some constant 7 > 0.
X \/I

@ The last term is always centered at the first iterate xg.
o Gradient information is averaged over all steps, with equal weights.
@ v is constant - results can be sensitive to this value.

@ The approach still works for convex nondifferentiable f, where V£ (x;)
is replaced by a vector from the subgradient Of(x;).
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Dual Averaging: Convergence

Nesterov proves convergence for averaged iterates:

k
_ 1
Xk+1 = k——i-l ;Xi-

Provided the iterates and the solution x* lie within some ball of radius D
around xp, we have

C

\/;7
where C depends on D, a uniform bound on [|[Vf(x)|
of stabilizing term).

f(Rig1) — F(X7) <

, and ~y (coefficient

Note: There's averaging in both primal (x;) and dual (Vf(x;)) spaces.

Generalizes easily and robustly to the case in which only estimated
gradients or subgradients are available.

Averaging smooths the errors in the individual gradient estimates.
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Regularized Dual Averaging (RDA)

Dual averaging was extended to the regularized case by Xiao (2010):

1
min — Z fi(x) + T(x).
i=1
Subproblem introduces regularization term explicitly:
Xkl = arg mXin gl x + mip(x) + \/_||x — x|
Optimality conditions:

0 € gk + T0Y(x) + 2_7(X —Xp)-

Vk

Optimality conditions for original problem:

0 € VF(*) + T9u(x*).

In the limit, have g — Vf(x*), 7/Vk — 0, so the subproblem is
consistent with the original problem.
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Manifold Identification in RDA

Under convexity assumptions, can show that gx approaches Vf(x*) in
expectation, with decreasing variance, at rate k=1/%. (Faster if f is
strongly convex).

Thus, under the usual assumptions of partial smoothness of ¢, and
nondegeneracy at x*, a dense sequence of (non-averaged) iterates {x*}

eventually stays on the optimal manifold M, with probability
1— O(k=1/%).

(The O(-) constant does not depend on problem dimension n.)

Motivates a 2-phase algorithm in which we switch to a different strategy
(e.g. approximate reduced Newton method) on the low-dimensional
manifold identified by RDA.

(Lee, Wright, 2011)
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Computations

Next slide shows computations with MNIST data set (logistic regression
for classifying digits 6 and 7).

o RED: Regularized Dual Averaging

BLUE: Regularized Dual Averaging, with second phase
GREEN: Truncated Gradient

LIGHT BLUE: Stocastic Gradient

PURPLE: Lasso-PatternSearch (a type of two-metric gradient
projection) (Shi et al, 2008)

Vertical line indicates switch from RDA to reduced-space search.

o The second phase makes convergence faster (BLUE)

o RDA (and accelerated variant) gives sparser solutions.
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