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Coordinate Descent

Consider first min f (x) with f : Rn → R.

Iteration j of basic coordinate descent:

Choose index ij ∈ {1, 2, . . . , n};
Fix all components i 6= ij , change xij in a way that (hopefully) reduces
f .

Variants for the reduced step:

take a reduced gradient step: −∇ij f (x);

do a more rigorous search in the subspace defined by ij ;

actually minimize f in the ij component.

Many extensions of this basic idea, discussed below.

An old approach, revived recently because of useful application to machine
learning, and interesting possibilities as stochastic and parallel algorithms.
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Coordinate Descent: Alternating Directions

Even if the subproblem is solved exactly in each coordinate, convergence
can be slow. It does better when eigenvalues of the Hessian ∇2f (x) line
up with the principal axes.
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Block Coordinate Descent

At iteration j , choose a subset Gj ⊂ {1, 2, . . . , n} and allow only the
components in Gj to change. Fix the components xi for i /∈ Gj .

Again, the step could be a reduced gradient step along −∇Gj f (x), or a
more elaborate search.

There are many different heuristics for choosing Gk (see below), often
exploiting knowledge of the application.
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Constraints and Regularizers Complicate Things

For minx∈Ω f (x), need to put enough components into Gj to stay feasible,
as well as make progress in reducing f .

Example: min f (x1, x2) with x1 + x2 = 1. Basic coordinate relaxation does
not work from a feasible point!

(Given x1 and x2 satisfying the constraint, suppose we fix x2 and minimize
f over x1, maintaining feasibility. Because x1 = 1− x2, we cannot move!)

For separable regularizer (e.g. Group LASSO) with

ψ(x) =
∑
i∈G

ψi (x[i ]),

need to ensure that Gk is a union of the some index subsets [g ]. i.e. the
relaxation components must be consonant with the partitioning.

We’ll mostly drop the regularization terms in the description below, and
assume that we work with smooth objective f . But we mention from time
to time the extensions to constraints and regularizers.
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Decomposition and Dual SVM

Decomposition has long been popular for solving the dual (QP)
formulation of SVM, since the number of variables (N = number of
training examples) may be very large.

min
α∈RN

1

2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0.

SMO: Each Gk has two components. (Thus can maintain feasibility
with respect to the single linear constraint yTα = 0.)

LIBSVM: SMO approach (still |Gk | = 2), with different heuristic.

LASVM: Again |Gk | = 2, with focus on online setting.

SVM-light: Small |Gk | (default 10).

GPDT: Larger |Gk | (default 400) with gradient projection solver as
the subproblem solver.
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Choice of Gk and Convergence Results

Some methods (e.g. Tseng and Yun, 2010) require Gk to be chosen so
that the improvement in subproblem objective obtained over the subset Gk
is at least a fixed fraction of the improvement available over the whole
space. Undesirable, since to check it, usually need to evaluate the full
gradient ∇f (xk).

Alternative is a generalized Gauss-Seidel requirement, where each
coordinate is “touched” at least once every T iterations:

Gk ∪ Gk+1 ∪ . . . ∪ Gk+T−1 = {1, 2, . . . , n}.

Can show global convergence (e.g. Tseng and Yun, 2009; Wright, 2010).

There are also results on

global linear convergence rates

optimal manifold identification

fast local convergence for an algorithm that takes reduced steps on
the estimated optimal manifold.

All are deterministic analyses.
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Stochastic Coordinate Descent (SCD)

(Richtarik and Takac, 2012) (Nesterov, 2012)

Consider the basic (single-coordinate) setting, for minx f (x) with smooth
f .

Define Li to be the component Lipschitz constant:

‖∇i f (x + tei )−∇i f (x)‖ ≤ Li t.

(Can think of Li as a bound on the (i , i) component of the Hessian
∇2f (x) in the region of interest.)

Iteration j :

Choose ij ∈ {1, 2, . . . , n} with equal probability;

Set xj+1 = xj − eij∇ij f (xj)/Lij .

This is short-step steepest descent in the ij component.
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SCD Convergence

For convex f , have high probability convergence of f to within a specified
threshold ε of f (x∗) in O(1/ε) iterations.

Given desired precision ε and error prob ρ, define

K :=
2nR2

L(x0)

ε
log

f (x0)− f ∗

ερ
,

(where R2
L(x0) is the radius of the level set in weighted norm ‖ · ‖L). Have

high-probability convergence in K iterations:

P(f (xj)− f ∗ ≤ ε) ≥ 1− ρ, for j ≥ K .

If f is strongly convex with respect to ‖ · ‖L, with modulus µL in this
norm, there is expected convergence at a linear rate:

E [f (xj)− f ∗] ≤
(

1− µL
4n

)j
(f (x0)− f ∗).
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Extension to Blocks

It’s straightfoward. For partition of {1, 2, . . . , n} into [1], [2], . . . , [m],
redefine Li to be the block Lipschitz constant for block i :

‖∇[i ]f (x + Ui t)−∇[i ]f (x)‖ ≤ Li‖t‖.

Iteration j :

Choose block ij ∈ {1, 2, . . . ,m} with equal probability;
Set xj+1 = xj − Eij∇[ij ]f (xj)/Lij .

(Ei is the matrix that adds 0 to the components i /∈ ij , to get a full vector
in Rn.)

Convergence results are similar to coordinate case, if we define L-weighted
norm:

‖x‖L :=

(
m∑
i=1

Li‖x[i ]‖2

)1/2

and weighted measure of level set size:

RL(x) := max
y

max
x∗∈X∗

{‖y − x∗‖W : f (y) ≤ f (x)}.
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Extension to Separable Regularizers

Consider regularized problem

min
x

f (x) + ψ(x).

For the given block partition [1], [2], . . . , [m], suppose the regularizer is
separable:

ψ(x) =
m∑
i=1

ψi (x[i ]).

For partition i , find the step by solving:

P(x , i) : min
d

dT∇[i ]f (x) +
Li

2
‖d‖2 + ψi (x[i ] + d).

Iteration j :

Choose partition ij ∈ {1, 2, . . . ,m} with equal probability;

Solve P(xj , ij) to obtain step d[ij ];

Set xj+1 = xj + Eij d[ij ].

M. Figueiredo and S. Wright () Coordinate Descent ICCOPT, July 2013 11 / 33



Stochastic Coordinate Descent: Key Constants

To prepare for a parallel asynchronous variant of SCD, consider again
min f (x), where f : Rn → Rn is smooth and convex.

For simplicity, describe single-coordinate case (not blocks).

Need some more constants that characterize the problem:

Lmax = maxi=1,2,...,n Li (“max diagonal of Hessian”);

Lres = restricted Lipschitz constant: ‖∇f (x)−∇f (x + tei )‖ ≤ Lrest
(“max row-norm of Hessian”)

R = supk dist(xk ,S): maximum distance of iterates from solution set.
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Diagonalicity of Hessian

The ratio Lres/Lmax is particularly important — it measures the degree of
diagonal dominance in the Hessian ∇2f (x) (Diagonalicity).

We have

1 ≤ Lres

Lmax
≤
√

n.

Closer to 1 if Hessian is nearly diagonally dominant (eigenvectors
close to principal coordinate axes).

Closer to
√

n otherwise.

If A is m × n Gaussian random matrix and f (x) = (1/2)‖Ax − b‖2
2, the

ratio is 1 + O(
√

n/m) (good case!)

Smaller Lres/Lmax ⇒ easier to solve with coordinate descent!
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That Picture Again!

Lres/Lmax is smaller in the left figure, larger in the right figure.
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Asynchronous Unconstrained SCD

Similar computation model to Hogwild!: asynchronous with maximum
delay τ . Consider single-coordinate form.

At each iteration j :

Choose ij with equal probability from {1, 2, . . . , n};
Update the ij component:

xj+1 = xj −
γ

Lmax
∇ij f (xk(j)),

where k(j) is some iterate prior to j but no more than τ cycles old:
j − k(j) ≤ τ . Here γ is a constant steplength.

Each core runs this process concurrently and asynchronously.
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Asynchronous USCD: Linear Convergence (Liu, Wright, 2013)

Choose some ρ > 1 and pick γ small enough to ensure that

ρ−1 ≤
E(‖∇f (xj+1)‖2)

E(‖∇f (xj)‖2)
≤ ρ.

Not too much change in gradient over each iteration, so not too much
price to pay for using old information, in the asynchronous setting.

Can choose γ small enough to satisfy this property but large enough to get
a linear rate.
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Analysis: Essentially Strongly Convex f

Essentially strongly convexity parameter µ:

f (x)− f (y) ≥ 〈∇f (y), x − y〉+
µ

2
‖x − y‖2

for all x , y ∈ Ω with PS(x) = PS(y). Weaker than usual strong convexity.1

As a special case of the convergence analysis, consider the regime in which

τ + 1 ≤
√

nLmax

2eLres
.

Define

ρ = 1 +
2eLres√
nLmax

, ψ = 1 +
2τρτLres√

nLmax
,

and choose steplength γ = 1/ψ.

Then obtain an expected linear convergence rate:

E(f (xj)− f ∗) ≤
(

1− µ

2nLmax

)j

(f (x0)− f ∗).

1Example: f (Ax) is essentially strongly convex if f (.) is strongly convex.
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Converges to precision ε with probability at least 1− η for

K ≥ 2nLmax

µ

∣∣∣∣log
f (x0)− f ∗

ηε

∣∣∣∣
The regime on τ is somewhat restrictive, but the degradation as τ exceeds
this bound is not too severe. (Choose smaller γ.)

If f (x) = ‖Ax − b‖2 where A ∈ Rm×n is a Gaussian random matrix, then
Lres/Lmax is bounded by 1 + O(

√
n/m).
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Discussion

Recall that short-step steepest descent on a strongly convex f gives linear
convergence with rate approx:

1− 2

(L/µ) + 1
≈ 1− 2µ

L
.

By comparison, n steps of asynchronous short-step steepest descent gives
decrease factor approx:

1− µ

2Lmax
.

When Lmax ∼ L, suggests that about 4 times as many iterations would be
needed by SCD. But we can run it in parallel!

Bound on τ is a measure of potential parallelization. When ratio Lres/Lmax

is favorable, get τ = O(
√

n). Can expect linear rate even on O(
√

n) cores
running asynchronously in parallel.
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Analysis: Weakly Convex f (µ = 0): Sublinear (1/k)

Defining ψ and γ as above, and assuming

τ + 1 ≤
√

nLmax

2eLres
,

we have

E(f (xj)− f ∗) ≤ 1

(f (x0)− f ∗)−1 + j
4nLmaxR2

.

Roughly “1/k” behavior.

To achieve precision ε with probability at least 1− η, need

K ≥ 4nLmaxR2

(
1

ηε
− 1

f (x0)− f ∗

)
.
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Asynchronous Constrained SCD (CSCD)

min f (x) subject to x ∈ Ω,

where Ω is separable Ω = Ω1 × Ω2 × · · ·Ωn.

At each iteration j :

Choose ij with equal probability from {1, 2, . . . , n};
Update the ij component:

xj+1 = PΩj

(
xj −

γ

Lmax
∇ij f (xk(j))

)
,

where k(j) is some iterate prior to j but no more than τ cycles old:
j − k(j) ≤ τ . Here γ is a constant steplength.

Each core runs this process concurrently and asynchronously.
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Implemented on 4-socket, 40-core Intel Xeon

min
x

‖Ax − b‖2 + 0.5‖x‖2

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1). Lres/Lmax ≈ 2.2. Choose γ = 1.
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Implemented on 4-socket, 40-core Intel Xeon

min
x≥0

(x − z)T (ATA + 0.5I )(x − z) ,

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1) and z is a Gaussian random vector.
Lres/Lmax ≈ 2.2. Choose γ = 1.
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Application: Sparse Inverse Covariance

Recall the sparse inverse covariance selection problem

max
X�0

log det(X )− 〈X ,S〉 − τ‖X‖1,

where ‖X‖1 is the “element-wise” norm of the symmetric positive definite
n × n matrix X .

Each step: choose a single entry of X , indexed by (i , j) (and it symmetric
counterpart (j , i)) and find scalar θ that maximizes the objective for
X + θeie

T
j + θeje

T
i .

Surprisingly, we can find θ exactly! Need some linear algebra tricks, facts
about matrix logs and determinants, and simple calculus.

Suppose we know W = X−1. Then can show

det(X + θeie
T
j + θeje

T
i ) = (det X )(1 + 2Wijθ + θ2(W 2

ij −WiiWjj)).
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The problem of maximizing along θ is equivalent to

max
θ

log(1 + 2Wijθ + θ2(W 2
ij −WiiWjj))− 2Sijθ − 2τ |Xij + θ|.

Using u to denote an element in the subdifferential of ∂| · | at Xij + θ, we
set the derivative of the subproblem to zero:

2
Wij + θ(W 2

ij −WiiWjj)

1 + 2Wijθ + θ2(W 2
ij −WiiWjj)

− 2Sij − 2τu.

The θ and u that satisfy this expression can be obtained by following the
same procedure as for the prox-operator for ‖x‖1.

Try setting u = +1 and solve a quadratic for θ. If Xij + θ ≥ 0, we are
done.

Try setting u = −1 and solve a quadratic for θ. If Xij + θ ≤ 0, we are
done.

Otherwise set θ = −Xij ; we must have u ∈ [−1, 1] for this value of θ.

Finally, update W = X−1 to reflect the rank-2 change to X using
Sherman-Morrison-Woodbury.

Requires O(p2) steps per iteration.
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Application: Extreme Linear Programming

State-of-the-art solvers for large linear programs (LPs) are based on
simplex and interior-point methods. An alternative approach based on

augmented Lagrangian / proximal-point

iterative solvers for the bounded-QP subproblems (SOR, CG)

were studied in the late 1980s

O. L. Mangasarian and R. DeLeone, “Serial and Parallel Solution of
Large-Scale Linear Program by Augmented Lagrangian Successive
Overrelaxations,” 1987.

S. J. Wright, “Implementing Proximal-Point Methods for Linear
Programming,” JOTA, 1990

These showed some promise on random, highly degenerate problems, but
were terrible on the netlib test set and other problems arising in practice.

M. Figueiredo and S. Wright () Coordinate Descent ICCOPT, July 2013 26 / 33



But this approach has potential appeal for:

Cases in which only crude approximate LP solutions are needed.

No matrix factorizations or multiplications are required. (Thus may
be good for special problems, at extreme scale.)

Multicore implementation is easy, when asynchronous solver is used
on the QP subproblems.
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Basics of the Approach

Primal-dual pair:
min
x

cT x s.t. Ax = b, x ≥ 0

max
u

bTu s.t. ATu ≤ c.

“Proximal method of multipliers” subproblem is a bound-constrained
convex QP:

x(β) := arg min
x≥0

cT x − ūT (Ax − b) +
β

2
‖Ax − b‖2 +

1

2β
‖x − x̄‖2

2,

where (x̄ , ū) is an estimate of the primal-dual solution and β is a penalty
parameter.

Can solve a sequence of these, with updates to ū and x̄ , and possible
increases in β, in the familiar style of augmented Lagrangian.

Solve the QP using SCD on 32 cores.
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LP Rounding Approximations

There are numerous NP-hard problems for which approximate solutions can
be found using linear programming followed by rounding. Typical process:

Construct a MIP formulation;

Relax to an LP (replace binary variables by [0, 1] intervals);

Solve the LP approximately;

Use LP solution to construct a feasible MIP solution (“rounding”).

Examples: Vertex cover, set cover, set packing, multiway cut, maximal
independent set.
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Vertex Cover

Given a graph with edge set E , vertex set V , seek a subset of vertices such
that every edge touches the subset. Cost to select a vertex v is cv .

Binary programming formulation:

min
∑
v∈V

cvxv s.t. xu + xv ≥ 1 for (u, v) ∈ E ; xv ∈ {0, 1} for all v ∈ V .

Relax the binary constraint to xv ∈ [0, 1] to get an LP. Very large, but
matrix A is highly sparse and structured.
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Sample Results

instance vertex cover multiway cuts

n size(A) n size(A)

frb59-26-1 126K 616K 1.3M 3.6M
Amazon 203K 956K 6.8M 21.3 M
DBLP 146K 770K 10.7M 33.7M
Google+ 82K 1.5M 7.6M 24.1M

Table: Problem Sizes
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Computation Times (Seconds)

Run on 32 cores Intel machine for max of one hour. Compared with Cplex
IP and LP solvers. Times shown for reaching solutions of similar quality.

instance Cplex IP Cplex LP Us

frb59-26-1 VC - 5.1 0.65
Amazon VC 44 22 4.7
DBLP VC 23 21 3.2

Google+ VC - 62 6.2
frb59-26-1 MC 54 360 29
Amazon MC - - 131
DBLP MC - - 158

Google+ MC - - 570

(Cplex IP sometimes faster than LP because the IP preprocessing can
drastically simplify the problem, for some data sets.)
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