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Gradient Projection for Sparse Reconstruction:
Application to Compressed Sensing and Other

Inverse Problems
Mário A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright

Abstract—Many problems in signal processing and statistical
inference involve finding sparse solutions to under-determined,
or ill-conditioned, linear systems of equations. A standard
approach consists in minimizing an objective function which
includes a quadratic (squared ℓ2) error term combined with
a sparseness-inducing (ℓ1) regularization term.Basis pursuit, the
least absolute shrinkage and selection operator(LASSO), wavelet-
based deconvolution, andcompressed sensingare a few well-
known examples of this approach. This paper proposes gradient
projection (GP) algorithms for the bound-constrained quadratic
programming (BCQP) formulation of these problems. We test
variants of this approach that select the line search parameters
in different ways, including techniques based on the Barzilai-
Borwein method. Computational experiments show that theseGP
approaches perform well in a wide range of applications, often
being significantly faster (in terms of computation time) than
competing methods. Although the performance of GP methods
tends to degrade as the regularization term is de-emphasized,
we show how they can be embedded in a continuation scheme
to recover their efficient practical performance.

I. I NTRODUCTION

A. Background

There has been considerable interest in solving the convex
unconstrained optimization problem

min
x

1

2
‖y−Ax‖22 + τ‖x‖1, (1)

where x ∈ R
n, y ∈ R

k, A is an k × n matrix, τ is a
nonnegative parameter,‖v‖2 denotes the Euclidean norm of
v, and‖v‖1 =

∑

i |vi| is the ℓ1 norm of v. Problems of the
form (1) have become familiar over the past three decades,
particularly in statistical and signal processing contexts. From
a Bayesian perspective, (1) can be seen as a maximuma
posteriori criterion for estimatingx from observations

y = Ax + n, (2)

wheren is white Gaussian noise of varianceσ2, and the prior
on x is Laplacian (that is,log p(x) = −λ‖x‖1 + K) [1],
[25], [54]. Problem (1) can also be viewed as a regularization
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technique to overcome the ill-conditioned, or even singular,
nature of matrixA, when trying to inferx from noiseless
observationsy = Ax or from noisy observations as in (2).

The presence of theℓ1 term encourages small components
of x to become exactly zero, thus promoting sparse solutions
[11], [54]. Because of this feature, (1) has been used for
more than three decades in several signal processing problems
where sparseness is sought; some early references are [12],
[37], [50], [53]. In the 1990’s, seminal work on the use of
ℓ1 sparseness-inducing penalties/log-priors appeared in the
literature: the now famousbasis pursuit denoising(BPDN,
[11, Section 5]) criterion and theleast absolute shrinkage and
selection operator(LASSO, [54]). For brief historical accounts
on the use of theℓ1 penalty in statistics and signal processing,
see [41], [55].

Problem (1) is closely related to the following convex
constrained optimization problems:

min
x

‖x‖1 subject to ‖y −Ax‖22 ≤ ε (3)

and

min
x

‖y −Ax‖22 subject to ‖x‖1 ≤ t, (4)

whereε andt are nonnegative real parameters. Problem (3) is
a quadratically constrained linear program(QCLP) whereas
(4) is aquadratic program(QP). Convex analysis can be used
to show that a solution of (3) (for anyε such that this problem
is feasible) is eitherx = 0, or else is a minimizer of (1), for
someτ > 0. Similarly, a solution of (4) for anyt ≥ 0 is also a
minimizer of (1) for someτ ≥ 0. These claims can be proved
using [49, Theorem 27.4].

The LASSO approach to regression has the form (4), while
the basis pursuit criterion [11, (3.1)] has the form (3) with
ε = 0, i.e., a linear program (LP)

min
x

‖x‖1 subject to y = Ax. (5)

Problem (1) also arises in wavelet-based image/signal re-
construction and restoration (namely deconvolution); in those
problems, matrixA has the formA = RW, whereR is (a ma-
trix representation of) the observation operator (for example,
convolution with a blur kernel or a tomographic projection),
W contains a wavelet basis or a redundant dictionary (that
is, multiplying by W corresponds to performing an inverse
wavelet transform), andx is the vector of representation
coefficients of the unknown image/signal [24], [25], [26].
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We mention also image restoration problems under to-
tal variation (TV) regularization [10], [47]. In the one-
dimensional (1D) case, a change of variables leads to the
formulation (1). In 2D, however, the techniques of this paper
cannot be applied directly.

Another intriguing new application for the optimization
problems above iscompressed sensing1 (CS) [6], [7], [8],
[9], [18]. Recent results show that a relatively small num-
ber of random projections of a sparse signal can contain
most of its salient information. It follows that if a signal is
sparse or approximately sparse in some orthonormal basis,
then an accurate reconstruction can be obtained from random
projections, which suggests a potentially powerful alternative
to conventional Shannon-Nyquist sampling. In the noiseless
setting, accurate approximations can be obtained by finding
a sparse signal that matches the random projections of the
original signal. This problem can be cast as (5), where again
matrixA has the formA = RW, but in this caseR represents
a low-rank randomized sensing matrix (e.g., a k × d matrix
of independent realizations of a random variable), while the
columns ofW contain the basis over which the signal has
a sparse representation (e.g., a wavelet basis). Problem (1)
is a robust version of this reconstruction process, which is
resilient to errors and noisy data, and similar criteria have
been proposed and analyzed in [8], [32].

B. Previous Algorithms

Several optimization algorithms and codes have been pro-
posed to solve the QCLP (3), the QP (4), the LP (5), and
the unconstrained (but nonsmooth) formulation (1). We review
that work here, identifying those contributions that are most
suitable for signal processing applications, which are thetarget
of this paper.

In the class of applications that motivates this paper, the
matrix A cannot be stored explicitly, and it is costly and
impractical to access significant portions ofA andATA. In
wavelet-based image reconstruction and some CS problems,
for which A = RW, explicit storage ofA, R, or W is not
practical for problems of interesting scale. However, matrix-
vector products involvingR and W can be done quite effi-
ciently. For example, if the columns ofW contain a wavelet
basis, then any multiplication of the formWv or WT v can
be performed by a fast wavelet transform (see Section III-G,
for details). Similarly, if R represents a convolution, then
multiplications of the formRv or RTv can be performed
with the help of the fast Fourier transform (FFT) algorithm.
In some CS applications, if the dimension ofy is not too large,
R can be explicitly stored; however,A is still not available
explicitly, because the large and dense nature ofW makes it
highly impractical to compute and storeRW.

Homotopy algorithms that find the full path of solutions,
for all nonnegative values of the scalar parameters in the
various formulations (τ in (1), ε in (3), and t in (4)), have
been proposed in [22], [39], [46], and [57]. The formulation
(4) is addressed in [46], while [57] addresses (1) and (4).

1A comprehensive repository of CS literature and software can be fond in
www.dsp.ece.rice.edu/cs/ .

The method in [39] provides the solution path for (1), for
a range of values ofτ . The least angle regression(LARS)
procedure described in [22] can be adapted to solve the
LASSO formulation (4). These are all essentially homotopy
methods that perform pivoting operations involving subma-
trices of A or AT A at certain critical values of the cor-
responding parameter (τ , t, or ε). These methods can be
implemented so that only the submatrix ofA corresponding
to nonzero components of the current vectorx need be known
explicitly, so that ifx has few nonzeros, these methods may
be competitive even for problems of very large scale. (See
for example theSolveLasso function in the SparseLab
toolbox, available fromsparselab.stanford.edu .) In
some signal processing applications, however, the number of
nonzerox components may be significant, and since these
methods require at least as many pivot operations as there
are nonzeros in the solution, they may be less competitive
on such problems. The interior-point (IP) approach in [58],
which solves a generalization of (4), also requires explicit
construction ofAT A, though the approach could in principle
modified to allow iterative solution of the linear system at each
primal-dual iteration.

Algorithms that require only matrix-vector products involv-
ing A and AT have been proposed in a number of recent
works. In [11], the problems (5) and (1) are solved by first
reformulating them as “perturbed linear programs” (which
are linear programs with additional terms in the objective
which are squared norms of the unknowns), then applying a
standard primal-dual IP approach [60]. The linear equations
or least-squares problems that arise at each IP iteration are
then solved with iterative methods such as LSQR [48] or
conjugate gradients (CG). Each iteration of these methods
requires one multiplication each byA and AT . MATLAB
implementations of related approaches are available in the
SparseLabtoolbox; see in particular the routinesSolveBP
andpdco . For additional details see [51].

Another IP method was recently proposed to solve a
quadratic programming reformulation of (1), different from
the one used here. Each search step is computed us-
ing preconditioned conjugate gradient (PCG) and requires
only products byA and AT [36]. The code, available at
www.stanford.edu/˜boyd/l1_ls/ , is reported to be
faster than competing codes on the problems tested in [36].

The ℓ1-magic suite of codes (which is available at
www.l1-magic.org ) implements algorithms for several of
the formulations described in Section I-A. In particular, the
formulation (3) is solved by recasting it as asecond-order
cone program(SOCP), then applying a primal log-barrier
approach. For each value of the log-barrier parameter, the
smooth unconstrained subproblem is solved using Newton’s
method with line search, where the Newton equations may be
solved using CG. (Background on this approach can be found
in [6], [9].) As in [11] and [36], each CG iteration requires
only multiplications byA and AT ; these matrices need not
be known or stored explicitly.

Iterative shrinkage/thresholding(IST) algorithms can also
be used to handle (1) and only require matrix-vector multi-
plications involvingA and AT . Initially, IST was presented
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as an EM algorithm, in the context of image deconvolution
problems [45], [25]. IST can also be derived in amajorization-
minimization (MM) framework2 [16], [26] (see also [23],
for a related algorithm derived from a different perspective).
Convergence of IST algorithms was shown in [13], [16].
IST algorithms are based on bounding the matrixAT A (the
Hessian of‖y − Ax‖22) by a diagonalD (i.e., D − AT A

is positive semi-definite), thus attacking (1) by solving a
sequence of simpler denoising problems. While this bound
may be reasonably tight in the case of deconvolution (where
R is usually a square matrix), it may be loose in the CS case,
where matrixR usually has many fewer rows than columns.
For this reason, IST may not be as effective for solving (1) in
CS applications, as it is in deconvolution problems.

Finally, we mention matching pursuit (MP) and orthogonal
MP (OMP) [5], [17], [20], [56], which are greedy schemes
to find a sparse representation of a signal on a dictionary of
functions. (MatrixA is seen as ann-element dictionary of
k-dimensional signals). MP works by iteratively choosing the
dictionary element that has the highest inner product with the
current residual, thus most reduces the representation error.
OMP includes an extra orthogonalization step, and is known
to perform better than standard MP. Low computational cost
is one of the main arguments in favor of greedy schemes like
OMP, but such methods are not designed to solve any of the
optimization problems above. However, ify = Ax, with x

sparse and the columns ofA sufficiently incoherent, then OMP
finds the sparsest representation [56]. It has also been shown
that, under similar incoherence and sparsity conditions, OMP
is robust to small levels of noise [20].

C. Proposed Approach

The approach described in this paper also requires only
matrix-vector products involvingA and AT , rather than
explicit access toA. It is essentially a gradient projection (GP)
algorithm applied to a quadratic programming formulation of
(1), in which the search path from each iterate is obtained by
projecting the negative-gradient direction onto the feasible set.
(See [3], for example, for background on gradient projection
algorithms.) We refer to our approach as GPSR (gradient
projection for sparse reconstruction). Various enhancements to
this basic approach, together with careful choice of stopping
criteria and a final debiasing phase (which finds the least
squares fit over the support set of the solution to (1)), are
also important in making the method practical and efficient.

Unlike the MM approach, GPSR does not involve bounds
on the matrixATA. In contrasts with the IP approaches
discussed above, GPSR involves only one level of iteration.
(The approaches in [11] and [36] have two iteration levels—an
outer IP loop and an inner CG, PCG, or LSQR loop. Theℓ1-
magicalgorithm for (3) has three nested loops—an outer log-
barrier loop, an intermediate Newton iteration, and an inner
CG loop.)

GPSR is able to solve a sequence of problems (1) efficiently
for a sequence of values ofτ . Once a solution has been

2Also known as bound optimization algorithms (BOA). For a general
introduction to MM/BOA, see [33].

obtained for a particularτ , it can be used as a “warm-start”
for a nearby value. Solutions can therefore be computed for a
range ofτ values for a small multiple of the cost of solving
for a singleτ value from a “cold start.” This feature of GPSR
is somewhat related to that of LARS and other homotopy
schemes, which compute solutions for a range of parameter
values in succession. In particular, “warm-starting” allows
using GPSR within a continuation scheme (as suggested in
[31]). IP methods such as those in [11], [36], andℓ1-magic
have been less successful in making effective use of warm-
start information, though this issue has been investigatedin
various contexts (see,e.g., [30], [35], [61]). To benefit from
a warm start, IP methods require the initial point to be not
only close to the solution but also sufficiently interior to the
feasible set and close to a “central path,” which is difficultto
satisfy in practice.

II. PROPOSEDFORMULATION

A. Formulation as a Quadratic Program

The first key step of our GPSR approach is to express (1)
as a quadratic program; as in [28], this is done by splitting
the variablex into its positive and negative parts. Formally,
we introduce vectorsu andv and make the substitution

x = u− v, u ≥ 0, v ≥ 0. (6)

These relationships are satisfied byui = (xi)+ and vi =
(−xi)+ for all i = 1, 2, . . . , n, where (·)+ denotes the
positive-part operatordefined as(x)+ = max{0, x}. We thus
have‖x‖1 = 1T

nu + 1T
nv, where1n = [1, 1, . . . , 1]T is the

vector consisting ofn ones, so (1) can be rewritten as the
following bound-constrained quadratic program (BCQP):

min
u,v

1

2
‖y−A(u− v)‖22 + τ 1T

nu + τ 1T
nv,

s.t. u ≥ 0 (7)

v ≥ 0.

Note that theℓ2-norm term is unaffected if we setu← u+s

andv ← v + s, wheres ≥ 0 is a shift vector. However such
a shift increases the other terms by2 τ 1T

ns ≥ 0. It follows
that, at the solution of the problem (7),ui = 0 or vi = 0, for
i = 1, 2, . . . , n, so that in factui = (xi)+ and vi = (−xi)+
for all i = 1, 2, . . . , n, as desired.

Problem (7) can be written in more standard BCQP form,

min
z

cT z +
1

2
zT Bz ≡ F (z),

s.t. z ≥ 0, (8)

where

z =

[

u

v

]

, b = ATy, c = τ 12n +

[

−b

b

]

and

B =

[

AT A −ATA

−ATA ATA

]

. (9)
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B. Dimensions of the BCQP

It may be observed that the dimension of problem (8) is
twice that of the original problem (1):x ∈ R

n, while z ∈
R

2n. However, this increase in dimension has only a minor
impact. Matrix operations involvingB can be performed more
economically than its size suggests, by exploiting its particular
structure (9). For a givenz = [uT vT ]T , we have

Bz = B

[

u

v

]

=

[

AT A(u− v)
−ATA(u− v)

]

,

indicating thatBz can be found by computing the vector
differenceu−v and then multiplying once each byA andAT .
Since∇F (z) = c+Bz (the gradient of the objective function
in (8)), we conclude that computation of∇F (z) requires one
multiplication each byA and AT , assuming thatc, which
depends onb = AT y, is pre-computed at the start of the
algorithm.

Another common operation in the GP algorithms described
below is to find the scalarzT Bz for a givenz = [uT , vT ]T .
It is easy to see that

zT Bz = (u− v)T AT A(u− v) = ‖A(u− v)‖22,

indicating that this quantity can be calculated using only a
single multiplication byA. SinceF (z) = (1/2)zTBz + cT z,
it follows that evaluation ofF (z) also requires only one
multiplication byA.

C. A Note Concerning Non-negative Solutions

It is worth pointing out that when the solution of (1) is
known in advance to be nonnegative, we can directly rewrite
the problem as

min
x

(τ 1n −ATy)T x +
1

2
xTAT Ax,

s.t. x ≥ 0. (10)

This problem is, as (8), a BCQP, and it can be solved with
the same algorithms. However the presence of the constraint
x ≥ 0 allows us to avoid splitting the variables into positive
and negative parts.

III. G RADIENT PROJECTIONALGORITHMS

In this section we discuss GP techniques for solving (8). In
our approaches, we move from iteratez(k) to iteratez(k+1)

as follows. First, we choose some scalar parameterα(k) > 0
and set

w(k) = (z(k) − α(k)∇F (z(k)))+. (11)

We then choose a second scalarλ(k) ∈ [0, 1] and set

z(k+1) = z(k) + λ(k)(w(k) − z(k)). (12)

Our approaches described next differ in their choices ofα(k)

andλ(k).

A. Basic Gradient Projection: TheGPSR-BasicAlgorithm

In the basic approach, we search from each iteratez(k) along
the negative gradient−∇F (z(k)), projecting onto the non-
negative orthant, and performing a backtracking line search
until a sufficient decrease is attained inF . (Bertsekas [3,
p. 226] refers to this strategy as “Armijo rule along the
projection arc.”) We use an initial guess forα(k) that would
yield the exact minimizer ofF along this direction if no new
bounds were to be encountered. Specifically, we define the
vectorg(k) by

g
(k)
i =

{

(∇F (z(k)))i, if z
(k)
i > 0 or (∇F (z(k)))i < 0,

0, otherwise.

We then choose the initial guess to be

α0 = argmin
α

F (z(k) − αg(k)),

which we can compute explicitly as

α0 =
(g(k))Tg(k)

(g(k))T Bg(k)
. (13)

To protect against values ofα0 that are too small or too large,
we confine it to the interval[αmin, αmax], where0 < αmin <
αmax. (In this connection, we define the operator mid(a, b, c)
to be the middle value of its three scalar arguments.) This
technique for settingα0 is apparently novel, and produces an
acceptable step much more often than the earlier choice of
α0 as the minimizer ofF along the direction−∇F (z(k)),
ignoring the bounds.

The complete algorithm is defined as follows.

Step 0 (initialization): Given z(0), choose parametersβ ∈
(0, 1) andµ ∈ (0, 1/2); setk = 0.

Step 1: Compute α0 from (13), and replaceα0 by
mid(αmin, α0, αmax).

Step 2 (backtracking line search): Chooseα(k) to be the
first number in the sequenceα0, βα0, β

2α0, . . . such that

F ((z(k) − α(k)∇F (z(k)))+) ≤

F (z(k))− µ∇F (z(k))T (z(k) − (z(k) − α(k)∇F (z(k)))+),

and setz(k+1) = (z(k) − α(k)∇F (z(k)))+.
Step 3: Perform convergence test and terminate with approx-

imate solutionz(k+1) if it is satisfied; otherwise set
k ← k + 1 and return toStep 1.

Termination tests used in Step 3 are discussed below in
Subsection III-D.

The computation at each iteration consists of matrix-vector
multiplications involving A and AT , together with a few
(less significant) inner products involving vectors of length n.
Step 2 requires evaluation ofF for each value ofα(k) tried,
where each such evaluation requires a single multiplication
by A. Once the value ofα(k) is determined, we can find
z(k+1) and then∇F (z(k+1)) with one more multiplication
by AT . Another multiplication byA suffices to calculate the
denominator in (13) at the start of each iteration. In total,the
number of multiplications byA or AT per iteration is two
plus the number of values ofα(k) tried in Step 2.
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B. Barzilai-Borwein Gradient Projection: TheGPSR-BB Al-
gorithm

Algorithm GPSR-Basic ensures that the objective function
F decreases at every iteration. Recently, considerable attention
has been paid to an approach due to Barzilai and Borwein
(BB) [2] that does not have this property. This approach
was originally developed in the context of unconstrained
minimization of a smooth nonlinear functionF . It calculates
each step by the formulaδ(k) = −H−1

k ∇F (z(k)), whereHk

is an approximation to the Hessian ofF at z(k). Barzilai
and Borwein propose a particularly simple choice for the
approximationHk: They set it to be a multiple of the identity
Hk = η(k)I, whereη(k) is chosen so that this approximation
has similar behavior to the true Hessian over the most recent
step, that is,

∇F (z(k))−∇F (z(k−1)) ≈ η(k)
[

z(k) − z(k−1)
]

,

with η(k) chosen to satisfy this relationship in the least-squares
sense. In the unconstrained setting, the update formula is

z(k+1) = z(k) − (η(k))−1∇F (z(k));

this step is taken even if it yields an increase inF . This
strategy is proved analytically in [2] to be effective on simple
problems. Numerous variants have been proposed recently,
and subjected to a good deal of theoretical and computational
evaluation.

The BB approach has been extended to BCQPs in [15],
[52]. The approach described here is simply that of [52,
Section 2.2]. We chooseλk in (12) as the exact minimizer
over the interval[0, 1] and chooseη(k) at each iteration in
the manner described above, except thatα(k) = (η(k))−1 is
restricted to the interval[αmin, αmax]. In defining the value of
α(k+1) in Step 3 below, we make use of the fact that forF
defined in (8), we have

∇F (z(k))−∇F (z(k−1)) = B
(

z(k) − z(k−1)
)

.

Step 0 (initialization): Given z(0), choose parametersαmin,
αmax, α(0) ∈ [αmin, αmax], and setk = 0.

Step 1: Compute step:

δ
(k) =

(

z(k) − α(k)∇F (z(k))
)

+
− z(k). (14)

Step 2 (line search):Find the scalarλ(k) that minimizes
F (z(k) + λ(k)

δ
(k)) on the intervalλ(k) ∈ [0, 1], and

setz(k+1) = z(k) + λ(k) δ
(k).

Step 3 (updateα): compute

γ(k) = (δ(k))T B δ
(k); (15)

if γ(k) = 0, let α(k+1) = αmax, otherwise

α(k+1) = mid

{

αmin,
‖δ(k)‖22

γ(k)
, αmax

}

.

Step 4: Perform convergence test and terminate with approx-
imate solutionz(k+1) if it is satisfied; otherwise set
k ← k + 1 and return toStep 1.

SinceF is quadratic, the line search parameterλ(k) in Step
2 can be calculated simply using the following closed-form
expression:

λ(k) = mid

{

0,
(δ(k))T∇F (z(k))

(δ(k))T B δ
(k)

, 1

}

.

(When (δ(k))T B δ
(k) = 0, we setλ(k) = 1.) The use of this

parameterλ(k) removes one of the salient properties of the
Barzilai-Borwein approach, namely, the possibility thatF may
increase on some iterations. Nevertheless, in our problems,
it appeared to improve performance over the more standard
non-monotone variant, which setsλ(k) ≡ 1. We also tried
other variants of the Barzilai-Borwein approach, including one
proposed in [15], which alternates between two definitions of
α(k). The difference in performance were very small, so we
focus our presentation on the method described above.

In earlier testing, we experimented with other variants of GP,
including the GPCG approach of [43] and the proximal-point
approach of [59]. The GPCG approach runs into difficulties
because the projection of the HessianB onto most faces of
the positive orthant defined byz ≥ 0 is singular, so the inner
CG loop in this algorithm tends to fail.

C. Convergence

Convergence of the methods proposed above can be de-
rived from the analysis of Bertsekas [3] and Iusem [34], but
follows most directly from the results of Birgin, Martinez,
and Raydan [4] and Serafini, Zanghirati, and Zanni [52].
We summarize convergence properties of the two algorithms
described above, assuming that termination occurs only when
z(k+1) = z(k) (which indicates thatz(k) is optimal).

Theorem 1:The sequence of iterates{z(k)} generated by
the either the GPSR-Basic of GPSR-BB algorithms either
terminates at a solution of (8), or else converges to a solution
of (8) at an R-linear rate.

Proof: Theorem 2.1 of [52] can be used to show that
all accumulation points of{z(k)} are stationary points. (This
result applies to an algorithm in which theα(k) are chosen by
a different scheme, but the only relevant requirement on these
parameters in the proof of [52, Theorem 2.1] is that they lie in
the range[αmin, αmax], as is the case here.) Since the objective
in (8) is clearly bounded below (by zero), we can apply [52,
Theorem 2.2] to deduce convergence to a solution of (8) at an
R-linear rate.

D. Termination

The decision about when an approximate solution is of
sufficiently high quality to terminate the algorithms is a
difficult one. We wish for the approximate solutionz to be
reasonably close to a solutionz∗ and/or that the function
value F (z) be reasonably close toF (z∗), but at the same
time we wish to avoid the excessive computation involved
in finding an overly accurate solution. For the problem (7),
given that variable selection is the main motivation of the
formulation (1) and that a debiasing step may be carried out
in a postprocessing phase (see Subsection III-E), we wish the



TO APPEAR IN THE IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007. 6

nonzero components of the approximate solutionz to be close
to the nonzeros of a true solutionz∗.

These considerations motivate a number of possible termi-
nation criteria. One simple criterion is

‖z− (z− ᾱ∇F (z))+‖ ≤ tolP, (16)

wheretolP is a small parameter and̄α is a positive constant.
This criterion is motivated by the fact that the left-hand side is
continuous inz and zero if and only ifz is optimal. A second,
similar criterion is motivated by perturbation results forlinear
complementarity problems (LCP). There is a constantCLCP

such that

dist(z,S) ≤ CLCP ‖min(z,∇F (z))‖

where S denotes the solution set of (8), dist(·) is the dis-
tance operator, and themin on the right-hand side is taken
component-wise [14]. With this bound in mind, we can define
a convergence criterion as follows:

‖min(z,∇F (z))‖ ≤ tolP. (17)

A third criterion proposed recently in [36] is based on
duality theory for the original formulation (1). It can be shown
that the dual of (1) is

max
s

−
1

2
sT s− yT s

s.t. −τ1n ≤ AT s ≤ τ1n. (18)

If s is feasible for (18), then

1

2
‖y −Ax‖22 + τ‖x‖1 +

1

2
sT s + yT s ≥ 0, (19)

with equality attained if and only ifx is a solution of (1) and
s is a solution of (18). To define a termination criterion, we
invert the transformation in (6) to obtain a candidatex, and
then construct a feasibles as follows:

s ≡ τ
Ax− y

‖AT (Ax− y)‖∞

(see [36]). Substituting these values into the left-hand side of
(19), we can declare termination when this quantity falls below
a thresholdtolP . Note that this quantity is an upper bound on
the gap betweenF (z) and the optimal objective valueF (z∗).

None of the criteria discussed so far take account of the
nonzero indices ofz or of how these have changed in recent
iterations. In our fourth criterion, termination is declared when
the set of nonzero indices of an iteratez(k) changes by
a relative amount of less than a specified thresholdtolA.
Specifically, we define

Ik = {i | z
(k)
i 6= 0},

Ck = {i | (i ∈ Ik andi /∈ Ik−1) or (i /∈ Ik andi ∈ Ik−1)},

and terminate if
|Ck|/|Ik| ≤ tolA. (20)

This criterion is well suited to the class of problems addressed
in this paper (where we expect the cardinality ofIk, in later
stages of the algorithm, to be much less than the dimension
of z), and to algorithms of the gradient projection type, which
generate iterates on the boundary of the feasible set. However,

it does not work for general BCQPs (e.g., in which all the
components ofz are nonzero at the solution) or for algorithms
that generate iterates in the interior of the feasible set.

It is difficult to choose a termination criterion from among
these options that performs well on all data sets and in all
contexts. In the tests described in Section IV, unless otherwise
noted, we use (17), withtolP = 10−2, which appeared to
yield fairly consistent results. We may also impose some large
upper limit maxiter on the number of iterations.

E. Debiasing

Once an approximate solution has been obtained using one
of the algorithms above, we optionally perform adebiasing
step. The computed solutionz = [uT , vT ]T is converted to
an approximate solutionxGP = u− v. The zero components
of xGP are fixed at zero, and the least-squares objective‖y−
Ax‖22 is then minimized subject to this restriction using a CG
algorithm (see for example [44, Chapter 5]). In our code, the
CG iteration is terminated when

‖y−Ax‖22 ≤ tolD ‖y −AxGP ‖
2
2, (21)

wheretolD is a small positive parameter. We also restrict the
number of CG steps in the debiasing phase tomaxiterD .

Essentially, the problem (1) is being used to select the
“explanatory” variables (components ofx), while the debi-
asing step chooses the optimal values for these components
according to a least-squares criterion (without the regulariza-
tion term τ‖x‖1). Similar techiques have been used in other
ℓ1-based algorithms,e.g., [42]. It is also worth pointing out
that debiasing is not always desirable. Shrinking the selected
coefficients can mitigate unusually large noise deviations[19],
a desirable effect that may be undone by debiasing.

F. Warm Starting and Continuation

The gradient projection approach benefits from a good
starting point. This suggests that we can use the solution of
(1), for a given value ofτ , to initialize GPSR in solving (1) for
a nearby value ofτ . The second solve will typically take fewer
iterations than the first one; the number of iterations depends
on the closeness of the values ofτ and the closeness of the
solutions. Using this warm-start technique, we can efficiently
solve for a sequence of values ofτ . We note that it is important
to use the non-debiased solution as starting point; debiasing
may move the iterates away from the true minimizer of (1).

One motivation for solving for a range ofτ values is that
we often wish to obtain solutions for a range of values ofτ ,
possibly using some test based on the solution sparsity and
the goodness of least-squares fit to choose the “best” solution
from among these possibilities.

Another important application of warm-starting iscontinu-
ation, as recently suggested in [31]. It has been noted recently
that the speed of GPSR may degrade considerably for smaller
values of the regularization parameterτ . However, if we use
GPSR to minimize (1) for a larger value ofτ , then decreaseτ
in steps toward its desired value, running GPSR with warm-
start for each successive value ofτ , we are often able to
identify the solution much more efficiently than if we just
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ran GPSR once for the desired value ofτ from a “cold
start.” We illustrate this claim with a computational example
in Section IV-D.

G. Analysis of Computational Cost

It is not possible to accurately predict the number of GPSR-
Basic and GPSR-BB iterations required to find an approximate
solution. We can however analyze the cost of each iteration
of these algorithms. The main computational cost per iteration
is a small number of inner products, vector-scalar multiplica-
tions, and vector additions, each requiringn or 2n floating-
point operations, plus a modest number of multiplications by
A andAT . WhenA = RW, these operations entail a small
number of multiplications byR, RT , W, andWT . The cost
of each CG iteration in the debiasing phase is similar but
lower; just one multiplication by each ofR, RT , W, and
WT plus a number of vector operations. We next analyze the
cost of multiplications byR, RT , W, andWT for various
typical problems; let us begin by recalling thatA = RW is
a k × n matrix, and thatx ∈ R

n, y ∈ R
k. Thus, if R has

dimensionsk × d, thenW must be ad× n matrix.
If W contains an orthogonal wavelet basis (d = n), matrix-

vector products involvingW or WT can be implemented
using fast wavelet transform algorithms withO(n) cost [40],
instead of theO(n2) cost of a direct matrix-vector product.
Thus, the cost of a product byA or AT is O(n) plus that of
multiplying by R or RT which, with a direct implementation,
is O(k n). When using redundant translation-invariant wavelet
systems,W is d × d(log2(d) + 1), but the corresponding
matrix-vector products can be done withO(d log d) cost, using
fast undecimated wavelet transform algorithms [40].

As mentioned above, direct implementations of products
by R and RT have O(k d) cost. However, in some cases,
these products can be carried out with significantly lower
cost. For example, in image deconvolution problems [25],
R is a k × k (d = k) block-Toeplitz matrix with Toeplitz
blocks (representing 2D convolutions) and these products can
be performed in the discrete Fourier domain using the FFT,
with O(k log k) cost, instead of theO(k2) cost of a direct
implementation. If the blur kernel support is very small (say
l pixels) these products can be done with even lower cost,
O(kl), by implementing the corresponding convolution. Also,
in certain applications of CS, such as MR image reconstruction
[38], R is formed from a subset of the discrete Fourier
transform basis, so the cost isO(k log k) using the FFT.

IV. EXPERIMENTS

This section describes some experiments testifying to the
very good performance of the proposed algorithms in sev-
eral types of problems of the form (1). These experiments
include comparisons with state-of-the-art approaches, namely
IST [16], [25], and the recentl1_ls package, which was
shown in [36] to outperform all previous methods, includ-
ing the ℓ1-magic toolbox and the homotopy method from
[21]. The algorithms discussed in Section III are written
in MATLAB and are freely available for download from
www.lx.it.pt/˜mtf/GPSR/ .

For the GPSR-BB algorithm, we setαmin = 10−30, αmax =
1030; the performance is insensitive to these choices, similar
results are obtained for other small settings ofαmin and large
values ofαmax. We discuss results also for a nonmonotone
version of the GPSR-BB algorithm, in whichλk ≡ 1. In
GPSR-Basic, we usedβ = 0.5 andµ = 0.1.

A. Compressed Sensing (CS)

In our first experiment, we consider a typical CS scenario
(similar to the one in [36]), where the goal is to reconstruct
a length-n sparse signal (in the canonical basis) fromk
observations, wherek < n. In this case, thek × n matrix
A is obtained by first filling it with independent samples of a
standard Gaussian distribution and then orthonormalizingthe
rows. In this example,n = 4096, k = 1024, the original
signal x contains 160 randomly placed±1 spikes, and the
observationy is generated according to (2), withσ2 = 10−4.
Parameterτ is chosen as suggested in [36]:

τ = 0.1 ‖ATy‖∞; (22)

notice that forτ ≥ ‖ATy‖∞ the unique minimum of (1) is
the zero vector [29], [36].

The original signal and the estimate obtained by solving
(1) using the monotone version of the GPSR-BB (which is
essentially the same as that produced by the nonmonotone
GPSR-BB and GPSR-Basic) are shown in Fig. 1. Also shown
in Fig. 1 is the reconstruction obtained after the debiasing
procedure described in Section III-E; although GPSR-BB
does an excellent job at locating the spikes, the debiased
reconstruction exhibits a much lower mean squared error3

(MSE) with respect to the original signal. Finally, Fig. 1 also
depicts the solution of minimalℓ2-norm to the undetermined
systemy = Ax, which is equal toAT (AAT )−1y.

In Fig. 2, we plot the evolution of the objective function
(without debiasing) versus iteration number and CPU time,
for GPSR-Basic and both versions of GPSR-BB. The GPSR-
BB variants are slightly faster, but the performance of all three
codes is quite similar on this problem. Fig. 3 shows how the
objective function (1) and the MSE evolve in the debiasing
phase. Notice that the objective function (1) increases during
the debiasing phase, since we are minizing a different function
in this phase.

TABLE I
CPUTIMES (AVERAGE OVER 10 RUNS) OF SEVERAL ALGORITHMS ON THE

EXPERIMENT OFFIG. 1.

Algorithm CPU time (seconds)

GPSR-BB monotone 0.59
GPSR-BB nonmonotone 0.51
GPSR-Basic 0.69
GPSR-BB monotone + debias 0.89
GPSR-BB nonmonotone + debias 0.82
GPSR-Basic + debias 0.98
l1_ls 6.56
IST 2.76

Table I reports average CPU times (over 10 experiments)
required by the three GPSR algorithms as well as byl1_ls

3MSE = (1/n)‖bx − x‖2

2
, wherebx is an estimate ofx.
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Fig. 1. From top to bottom: original signal, reconstructionvia the minimization of (1) obtained by GPSR-BB, reconstruction after debiasing, the minimum
norm solution given byAT (AAT )−1y.

and IST. To perform this comparison, we first run thel1_ls
algorithm and then each of the other algorithms until each
reaches the same value of the objective function reached by
l1_ls. The results in this table show that, for this problem, all
GPSR variants are about one order of magnitude faster than
l1_ls and 5 times faster than IST.

An indirect performance comparison with other codes on
this problem can be made by referring to [36, Table 1], which
shows thatl1_ls outperforms the homotopy method from [21]
(6.9 second vs 11.3 seconds). It also outperformsℓ1-magicby
about two orders of magnitude and thepdco algorithms from
SparseLabby about one order of magnitude.

B. Comparison with OMP

Next, we compare the computational efficiency of GPSR
algorithms against OMP, often regarded as a highly efficient
method that is especially well-suited to very sparse cases.
We use two efficient MATLAB implementations of OMP:
the greed_omp_qr function of theSparsifytoolbox (avail-
able at www.see.ed.ac.uk/˜tblumens/sparsify ),
which is based on QR factorization [5], [17], and the function
SolveOMP of the SparseLabtoolbox, which is based on
the Cholesky factorization. Becausegreed_omp_qr requires
each column of the matrixR to have unit norm, we use
matrices with this property in all our comparisons.

Since OMP is not an optimization algorithm for minimizing
(1) (or any other objective function), it is not obvious how
to compare it with GPSR. In our experiments, we fix the
matrix size (1024× 4096) and consider a range of degrees of
sparseness: the numberm of non-zeros spikes inx (randomly
located values of±1) ranges from 5 to 250. For each value
of m we generate 10 random data sets,i.e., triplets (x, y,

R). For each data set, we first run GPSR-BB (the monotone
version) and store the final value of the residual; we then run
greed_omp_qr and SolveOMP until they reach the same
residual norm. Finally, we compute average MSE (with respect
to the truex) and average CPU time, over the 10 runs.

Fig. 4 plots the average reconstruction MSE and the av-
erage CPU times, as a function of the number of nonzero
components inx. We observe that all methods basically obtain
exact reconstructions form up to almost 200, with the OMP
solutions (which are equal up to some numerical fluctuations)
starting to degrade earlier and faster than those produced by
solving (1). Concerning computational efficiency, our main
focus in this experiment, we can observed that GPSR-BB is
clearly faster than both OMP implementations, except in the
case of extreme sparseness (m < 50 non-zero elements in the
4096-vectorx).

C. Scalability Assessment

To assess how the computational cost of the GPSR algo-
rithms grows with the size of matrixA, we have performed
an experiment similar to the one in [36, Section 5.3]. The idea
is to assume that the computational cost isO(nα) and obtain
empirical estimates of the exponentα. We consider random
sparse matrices (with the nonzero entries normally distributed)
of dimensions(0.1 n) × n, with n ranging from104 to 106.
Each matrix is generated with about3n nonzero elements
and the original signal withn/4 randomly placed nonzero
components. For each value ofn, we generate 10 random
matrices and original signals and observed data according to
(2), with noise varianceσ2 = 10−4. For each data set (i.e.,
each pairA, y), τ is chosen as in (22). The results in Fig. 5
(which are average for 10 data sets of each size) show that all
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Fig. 2. The objective function plotted against iteration number and CPU
time, for GPSR-Basic and the monotone and nonmonotone versions of the
GPSR-BB, corresponding to the experiment illustrated in Fig. 1.

GPSR algorithms have empirical exponents below 0.9, thus
much better thanl1_ls (for which we foundα = 1.21, in
agreement with the value1.2 reported in [36]); IST has an
exponent very close to that of GPSR algorithms, but a worse
constant, thus its computational complexity is approximately
a constant factor above GPSR. Finally, notice that, according
to [36], ℓ1-magic has an exponent close to1.3, while all the
other methods considered in that paper have exponents no less
than 2.

D. Warm Starting and Continuation

As mentioned in Section III-F, GPSR algorithms can benefit
from being warm-started, that is, initialized at a point close
to the solution. This property can be exploited to find minima
(1) for a sequence of values ofτ , at a modest multiple of
the cost of solving only for one value ofτ . We illustrate this
possibility in a problem withk = 1024, n = 8192, which we
wish to solve for9 different values ofτ ,

τ ∈ {0.05, 0.075, 0.1, ..., 0.275} ‖ATy‖∞.

As shown in Fig. 6, warm starting does indeed significantly
reduce the CPU time required by GPSR. The total CPU time
of the 9 runs was about6.5 seconds, less than twice that of the
first run, which is about3.7 seconds. The total time required
using a cold-start for each value ofτ was about17.5 seconds.
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Fig. 3. Evolution of the objective function and reconstruction MSE, vs
CPU time, including the debiasing phase, corresponding to the experiment
illustrated in Fig. 1.

It has been pointed out recently that the speed of GPSR
can degrade as the value ofτ becomes small [31]. (This
observation is confirmed by the CPU times of the cold-started
runs of GPSR shown in Fig. 6.) The GPSR approaches can
be improved by adding a continuation heuristic, as suggested
in [31] and explained in Section III-F. Our simple heuristic
starts by settingτ = 0.8‖ATy‖∞, then decreases inτ by
a constant factor in five steps until the desired value ofτ is
obtained. GPSR is run from a “cold start” at the first (largest)
value of τ , then run from a warm start for each of the other
five values in the sequence.

We illustrate the performance of this heuristic by using the
same test problem as in Section IV-A, but withσ2 = 0.
In this noiseless case, CS theory states that it is possible to
reconstructx accurately by solving (5). Since the solution of
(1) approaches that of (5), asτ goes to zero, it makes sense
for this problem to work with small values ofτ .

Fig. 7 shows the average (over 10 runs) of the CPU times
required by GPSR-BB and GPSR-Basic with and without
continuation, as well asl1_ls, for several values ofβ, where
we defineβ = ‖ATy‖∞/τ . Although the original versions of
the GPSR algorithms are slower thanl1_ls, for β sufficiently
large (τ sufficiently small), the continuation schemes are faster
than l1_ls for the whole range of values.

E. Image Deconvolution Experiments

In this subsection, we illustrate the use of the GPSR-BB al-
gorithm in image deconvolution. Recall that (see Section I-A)
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wavelet-based image deconvolution, under a Laplacian prior
on the wavelet coefficients, can be formulated as (1). We
stress that the goal of these experiments is not to assess the
performance (e.g., in terms of SNR improvement) of the crite-
rion form (1). Such an assessment has been comprehensively
carried out in [25], [26], and several other recent works on
this topic. Rather, our goal is to compare the speed of the
proposed GPSR algorithms against the competing IST.

We consider three standard benchmark problems summa-
rized in Table II, all based on the well-known Cameraman
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Fig. 6. CPU times for a sequence of values ofτ with warm starting and
without warm starting (cold starting).
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Fig. 7. CPU times of the GPSR-BB and GPSR-Basic algorithms, with and
without continuation, as a function ofβ = ‖AT y‖∞/τ .

image; these problems have been studied in [25], [26] (and
other papers). In this experiments,W represents the inverse
orthogonal wavelet transform, with Haar wavelets, andR

is a matrix representation of the blur operation; we have
k = n = 2562, and the difficulty comes not form the
indeterminacy of the associated system, but from the very
ill-conditioned nature of matrixRW. Parameterτ is hand-
tuned for the best SNR improvement. In each case, we first
run IST and then run the GPSR algorithms until they reach
the same final value of the objective function; the final values
of MSE are essentially the same. Table III lists the CPU times
required by GPSR-BB algorithms and IST, in each of these
experiments, showing that GPSR-BB is two to three times
faster than IST.

TABLE II
IMAGE DECONVOLUTION EXPERIMENTS.

Experiment blur kernel σ2

1 9 × 9 uniform 0.562

2 hij = 1/(i2 + j2) 2
3 hij = 1/(i2 + j2) 8
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TABLE III
CPU TIMES (IN SECONDS) FOR THE IMAGE DECONVOLUTION

EXPERIMENTS.

Experiment GPSR-BB GPSR-BB IST
monotone nonmonotone

1 1.69 1.04 3.82
2 1.11 0.84 2.63
3 1.21 1.01 2.38

V. CONCLUSIONS

We have proposed gradient projection algorithms for solving
a quadratic programming reformulation of a class of convex
nonsmooth unconstrained optimization problems arising in
compressed sensing and other inverse problems in signal
processing and statistics. In experimental comparisons tostate-
of-the-art algorithms, the proposed methods are significantly
faster (in some cases by orders of magnitude), especially
in large-scale settings. Instances of poor performance have
been observed when the regularization parameterτ is small,
but in such cases the gradient projection methods can be
embedded in a simple continuation heuristic to recover their
efficient practical performance. The new algorithms are easy
to implement, work well across a large range of applications,
and do not appear to require application-specific tuning. Our
experiments also evidenced the importance of adebiasing
phase, in which we use a linear CG method to minimize the
least squares cost of the inverse problem, under the constraint
that the zero components of the sparse estimate produced by
the GP algorithm remain at zero.

MATLAB implementations of the algorithms discussed in
this paper are available atwww.lx.it.pt/˜mtf/GPSR .
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