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Gradient Projection for Sparse Reconstruction:
Application to Compressed Sensing and Other
Inverse Problems

Mario A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright

Abstract—Many problems in signal processing and statistical technique to overcome the ill-conditioned, or even singula
inference involve finding sparse solutions to under-deterined, nature of matrixA, when trying to inferx from noiseless
or ill-conditioned, linear systems of equations. A standadl observationss = Ax or from noisy observations as in (2).

approach consists in minimizing an objective function whit Th f th I
includes a quadratic (squared ¢,) error term combined with e presence of thé, term encourages small components

a sparseness-inducing() regularization term.Basis pursuitthe Of x to become exactly zero, thus promoting sparse solutions
least absolute shrinkage and selection operglohSSO), wavelet- [11], [54]. Because of this feature, (1) has been used for
based deconvolution, andcompressed sensingre a few well- more than three decades in several signal processing prsble

known examples of this approach. This paper proposes gradig ; .
projection (GP) algorithms for the bound-constrained quadatic Where sparseness is sought; some early references are [12],

programming (BCQP) formulation of these problems. We test [37], [50], [53]._In th? 19907, _Sem'nal V_Vork on the use of
variants of this approach that select the line search paramters {1 Sparseness-inducing penalties/log-priors appeared én th
in different ways, including techniques based on the Barzili- literature: the now famou®asis pursuit denoisingBPDN,
Borwein method. Computational experiments show that thes&P [11, Section 5]) criterion and theast absolute shrinkage and

approaches perform well in a wide range of applications, o#n  ggaction operatofLASSO, [54]). For brief historical accounts
being significantly faster (in terms of computation time) than

competing methods. Although the performance of GP methods N the use of thé; penalty in statistics and signal processing,
tends to degrade as the regularization term is de-emphaside See [41], [55].

we show how they can be embedded in a continuation scheme Problem (1) is closely related to the following convex

to recover their efficient practical performance. constrained optimization problems:
min ||x subject to —Ax|2<¢ 3
|. INTRODUCTION in ) Iy Iz = 3
A. Background and
There has been considerable interest in solving the convex H;in ly — Ax||3 subjectto |x|: <t, 4)

unconstrained optimization problem
1 wheree andt are nonnegative real parameters. Problem (3) is
min =y — Ax[|3 + 7(|x]/1, (1) aquadratically constrained linear prografQCLP) whereas
x 2 (4) is aquadratic program(QP). Convex analysis can be used

wherex € R*, y € R¥, A is ank x n matrix, 7 is a to show that a solution of (3) (for anysuch that this problem
nonnegative parametefy||» denotes the Euclidean norm ofis feasible) is eithex = 0, or else is a minimizer of (1), for
v, and||v|; = ), |v;| is the/; norm of v. Problems of the somer > 0. Similarly, a solution of (4) for any > 0 is also a
form (1) have become familiar over the past three decadesinimizer of (1) for somer > 0. These claims can be proved
particularly in statistical and signal processing corgektom using [49, Theorem 27.4].

a Bayesian perspective, (1) can be seen as a maximum The LASSO approach to regression has the form (4), while

posteriori criterion for estimatings from observations the basis pursuit criterion [11, (3.1)] has the form (3) with
v = Ax+n, @) e =0, i.e, alinear program (LP)

wheren is white Gaussian noise of variane®, and the prior min [|x|;  subjectto y = Ax. ®)

on x is Laplacian (that islogp(x) = —\|x|j1 + K) [1],

[25], [54]. Problem (1) can also be viewed as a regularizatio Problem (1) also arises in wavelet-based image/signal re-
construction and restoration (hamely deconvolution)hiose
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We mention also image restoration problems under tdhe method in [39] provides the solution path for (1), for
tal variation (TV) regularization [10], [47]. In the one-a range of values of. The least angle regressiofLARS)
dimensional (1D) case, a change of variables leads to th@cedure described in [22] can be adapted to solve the
formulation (1). In 2D, however, the techniques of this pap& ASSO formulation (4). These are all essentially homotopy
cannot be applied directly. methods that perform pivoting operations involving subma-

Another intriguing new application for the optimizationtrices of A or AT A at certain critical values of the cor-
problems above izompressed sensihdCS) [6], [7], [8], responding parameterr(t, or €). These methods can be
[9], [18]. Recent results show that a relatively small numimplemented so that only the submatrix Af corresponding
ber of random projections of a sparse signal can contamnonzero components of the current vectareed be known
most of its salient information. It follows that if a signa i explicitly, so that ifx has few nonzeros, these methods may
sparse or approximately sparse in some orthonormal basis, competitive even for problems of very large scale. (See
then an accurate reconstruction can be obtained from randfamn example theSolveLasso function in the SparselLab
projections, which suggests a potentially powerful ali¢iie toolbox, available fromsparselab.stanford.edu ) In
to conventional Shannon-Nyquist sampling. In the noiselesome signal processing applications, however, the number o
setting, accurate approximations can be obtained by findingnzerox components may be significant, and since these
a sparse signal that matches the random projections of thethods require at least as many pivot operations as there
original signal. This problem can be cast as (5), where agare nonzeros in the solution, they may be less competitive
matrix A has the formA = RW, but in this cas@® represents on such problems. The interior-point (IP) approach in [58],
a low-rank randomized sensing matrie.@, a £ x d matrix which solves a generalization of (4), also requires explici
of independent realizations of a random variable), whike trconstruction ofA” A, though the approach could in principle
columns of W contain the basis over which the signal hamodified to allow iterative solution of the linear system atle
a sparse representatiop.q, a wavelet basis). Problem (1)primal-dual iteration.
is a robust version of this reconstruction process, which isAlgorithms that require only matrix-vector products invol
resilient to errors and noisy data, and similar criteriaehaing A and A” have been proposed in a number of recent

been proposed and analyzed in [8], [32]. works. In [11], the problems (5) and (1) are solved by first
reformulating them as “perturbed linear programs” (which
B. Previous Algorithms are linear programs with additional terms in the objective

which are squared norms of the unknowns), then applying a
Several optimization algorithms and codes have been p d ) bplying

andard primal-dual IP approach [60]. The linear equation
posed to solve the QCLP (3), the QP (4), the LP (5), a least-squares problems that arise at each IP iteratien ar

the unconstrained (but nonsmooth) formulation (1). Weawvi then solved with iterative methods such as LSQR [48] or

tha_\t work he_re, identifying those _con_tribution_s that aresmoconjugate gradients (CG). Each iteration of these methods
suitable for signal processing applications, which aretdinget requires one multiplication each by and AT. MATLAB

of this paper. implementations of related approaches are available in the

In_theAcIass of gppllcatlc(;ns thl‘?‘t, lmotlvz?jte_s Fh's palper, t(%eparseLanolbox; see in particular the routiné&olveBP
matrix A cannot be stored explicitly, and it is costly an ndpdco . For additional details see [51].

impractical to access significant portions Afand AT A.. In Another IP method was recently proposed to solve a

}/vaveLe_t-rl]a fefl g;ge reFo_nstructlon a;lr;d Is{omev(\:fs_ prOble[ﬂ?adratic programming reformulation of (1), different rfro
or whic - » explicit storage ofA, R, or IS0t the one used here. Each search step is computed us-

practical f%r prot.)Iemls.of mtergi}‘lfng scelljle.dHoweve.r, m?ft_r ing preconditioned conjugate gradient (PCG) and requires
vgctolr pFro ucts |n\|/o V]'cn%{ anl C%;L_ € done quite eI - only products byA and AT [36]. The code, available at
ciently. For example, if the columns contain a wavelet www.stanford.edu/"boyd/I1_lIs/ , is reported to be

. T T
Ea&s, ]Ehen a(‘jni; mul;uphcatlonlof the f?rPWv or ‘Z v Carll” aster than competing codes on the problems tested in [36].
e performed by a fast wavelet transform (see Section III- 'The /¢;-magic suite of codes (which is available at

for details). Similarly, if R represents a convolution, thenwww.ll-magic.org ) implements algorithms for several of

S 7
multiplications of the formRv or R"v can be performed the formulations described in Section I-A. In particuldre t

. , . ! Mormulation (3) is solved by recasting it assacond-order

In some CS ap|_oI|_cat|0ns, if the dlmen5|_on3o_fs not too I_arge, cone program(SOCP), then applying a primal log-barrier

R can be explicitly stored; howevea is still not ava|labl_e approach. For each value of the log-barrier parameter, the

E?(prl]'lc't.ly’ beca}usle the large and éjensfee‘nNaturbenakes ' smooth unconstrained subproblem is solved using Newton’s
Ighly iImpractical to compute and sto ) .__method with line search, where the Newton equations may be
Homotopy algorithms that find the full path of SOIUtIOnSsolved using CG. (Background on this approach can be found

for all nonnegative values of the scalar parameters in th?[e], [9].) As in [11] and [36], each CG iteration requires

various formulat_ion57( in (1), e in (3), andt in (4)), have_ only multiplications byA and A”; these matrices need not
been proposed in [22], [39], [46], and [57]. The formulatio e known or stored explicitly

(4) is addressed in [46], while [57] addresses (1) and (4 “Iterative shrinkage/thresholdin@ST) algorithms can also

1A comprehensive repository of CS literature and software lwa fond in be_ US_Ed t(_) han_dle (1) and Only_r.equ"e matrix-vector multi-
www.dsp.ece.rice.edu/cs/ . plications involvingA and AT, Initially, IST was presented
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as an EM algorithm, in the context of image deconvolutioobtained for a particular, it can be used as a “warm-start”
problems [45], [25]. IST can also be derived imajorization- for a nearby value. Solutions can therefore be computed for a
minimization (MM) framework’ [16], [26] (see also [23], range ofr values for a small multiple of the cost of solving
for a related algorithm derived from a different perspestiv for a singler value from a “cold start.” This feature of GPSR
Convergence of IST algorithms was shown in [13], [16]s somewhat related to that of LARS and other homotopy
IST algorithms are based on bounding the matiX A (the schemes, which compute solutions for a range of parameter
Hessian of|ly — Ax||2) by a diagonalD (i.e, D — ATA values in succession. In particular, “warm-starting” \ato
is positive semi-definite), thus attacking (1) by solving asing GPSR within a continuation scheme (as suggested in
sequence of simpler denoising problems. While this boufigil]). IP methods such as those in [11], [36], afidmagic
may be reasonably tight in the case of deconvolution (whenave been less successful in making effective use of warm-
R is usually a square matrix), it may be loose in the CS cassart information, though this issue has been investigated
where matrixR usually has many fewer rows than columnsvarious contexts (see&.g, [30], [35], [61]). To benefit from
For this reason, IST may not be as effective for solving (1) ima warm start, IP methods require the initial point to be not
CS applications, as it is in deconvolution problems. only close to the solution but also sufficiently interior teet
Finally, we mention matching pursuit (MP) and orthogondkasible set and close to a “central path,” which is diffi¢alt
MP (OMP) [5], [17], [20], [56], which are greedy schemesatisfy in practice.
to find a sparse representation of a signal on a dictionary of
functions. (Matrix A is seen as am-element dictionary of
k-dimensional signals). MP works by iteratively choosing th
dictionary element that has the highest inner product With t A Formulation as a Quadratic Program

current residual, thus most reduces the representatiam. err . .
OMP includes an extra orthogonalization step, and is knownThe first key step of our GPSR approach is to express (1)

to perform better than standard MP. Low computational co@® @ quadratic program; as in [28], this is done by splitting
is one of the main arguments in favor of greedy schemes | variablex into its positive and negative parts. Formally,
OMP, but such methods are not designed to solve any of g introduce vectors andv and make the substitution
optimization problems above. However, yf = Ax, with x
sparse and the columns Afsufficiently incoherent, then OMP
finds the sparsest representation [56]. It has also beenrshow]ese relationships are satisfied by = (

Il. PROPOSEDFORMULATION

x=u-v, u>0, v>0. (6)

,Ti)+ and v =

_that, under similar incoherenc_e and sparsity conditiondPO (—a;); for all i = 1,2,...,n, where (-). denotes the

is robust to small levels of noise [20]. positive-part operatodefined agz), = max{0,z}. We thus
have |x|; = 17u + 1%v, where1,, = [1,1,...,1]T is the

C. Proposed Approach vector consisting ofn ones, so (1) can be rewritten as the

The approach described in this paper also requires of@lowing bound-constrained quadratic program (BCQP):
matrix-vector products involvingA and AT, rather than 1
explicit access ta\. It is essentially a gradient projection (GP) min 3 ly —Au-v)3+71 u+71lv,
algorithm applied to a quadratic programming formulatidn o st w>0 @
(1), in which the search path from each iterate is obtained by -
projecting the negative-gradient direction onto the felasset. v20.
(See [3], for example, for background on gradient projectio
algorithms.) We refer to our approach as GPSRadient
projection for sparse reconstructiprivarious enhancements toa shift increases the other terms by 17s > 0. It follows

this basic approach, together with careful choice of stogpi . a B
criteria and a final debiasing phase (which finds the Iee{g'tat’ at the solution of the problem (#); = 0 or v; = 0, for
1,2,...,n, so that in factu; = (z;)+ andv; = (—2;)+

squares fit over the support set of the solution to (1)), a?e: ) :
also important in making the method practical and efficient. O alli=1,2,...,n, as Qeswe_d.

Unlike the MM approach, GPSR does not involve bounds Problem (7) can be written in more standard BCQP form,
on the matrix ATA. In contrasts with the IP approaches ) T T
discussed above, GPSR involves only one level of iteration. min cz+oz Bz= F(z),

Note that the/s-norm term is unaffected if we set+ u-+s
andv «— v + s, wheres > 0 is a shift vector. However such

z

(The approachesin [11] and [36] have two iteration levela—a s.t. z >0, (8)

outer IP loop and an inner CG, PCG, or LSQR loop. The

magicalgorithm for (3) has three nested loops—an outer log¢here

barrier loop, an intermediate Newton iteration, and an linne

CG loop.) zZ = [
GPSR is able to solve a sequence of problems (1) efficiently

for a sequence of values af. Once a solution has beengnd

“], b=ATy, c:712n+[_bb}

)

2Also known as bound optimization algorithms (BOA). For a e B =

{ ATA —ATA }
introduction to MM/BOA, see [33].

—ATA ATA
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B. Dimensions of the BCQP A. Basic Gradient Projection: Th&PSR-BasicAlgorithm

It may be observed that the dimension of problem (8) is In the basic approach, we search from each itexétealong
twice that of the original problem (1)x € R", while z € the negative gradientVF(z"), projecting onto the non-
R2". However, this increase in dimension has only a minéegative orthant, and performing a backtracking line dearc
impact. Matrix operations involving can be performed more until a sufficient decrease is attained in. (Bertsekas [3,
economically than its size suggests, by exploiting itsipalar P- 226] refers to this strategy as “Armijo rule along the

structure (9). For a givem = [u” vT]T, we have projection arc.”) We use an initial guess faf*) that would
yield the exact minimizer of" along this direction if no new
Bz—B { u } _ { ATA(u—-v) bounds were to be encountered. Specifically, we define the
v —ATA(u—-v) |’ vectorg(®) by

differenceu—v and then multiplying once each by andA”.

SinceV F(z) = ¢+ Bz (the gradient of the objective function
in (8)), we conclude that computation ®fF'(z) requires one We then choose the initial guess to be
multiplication each byA and A”, assuming that, which

indicating thatBz can be found by computing the vector *) { (VF(z®));, if Zf_’“) >0 or (VF(z®)); <0,
g =

0, otherwise.

. k k
depends orb = A'y, is pre-computed at the start of the o = afgmoan(z( ) — ag )),
algorithm. which we can compute explicitly as
Another common operation in the GP algorithms describe(J1 P plcitly
below is to find the scalaz’ Bz for a givenz = [u”, vT]7. (g Tgk)
It is easy to see that Q0= T ONT (k) (13)
(")’ Bg
z'Bz = (u—-v)TATA(u—-v) = ||[A(u—-v)|3 To protect against values af, that are too small or too large,

we confine it to the intervalamin, @mad, where0 < amin <
indicating that this quantity can be calculated using only @y, (In this connection, we define the operator taid, c)
single multiplication byA. SinceF'(z) = (1/2)z"Bz+c’z, to be the middle value of its three scalar arguments.) This
it follows that evaluation ofF(z) also requires only one technique for settingy, is apparently novel, and produces an
multiplication by A. acceptable step much more often than the earlier choice of
oo as the minimizer ofF along the direction—VF(z*)),
ignoring the bounds.
C. A Note Concerning Non-negative Solutions The complete algorithm is defined as follows.

It is worth pointing out that when the solution of (1) isStep O (initialization): Given z(*), choose parameters e
known in advance to be nonnegative, we can directly rewrite (0,1) andp € (0,1/2); setk = 0.

the problem as Step 1: Compute «y from (13), and replaceayg by
mid(amina o, Oémax)-

min (71, — ATy)'x + 1 xTAT Ax, Step 2 (backtracking line search): Choosea®) to be the

x 2 first number in the sequeneg, S, 3%ag, . .. such that

s.t. x > 0. (20)
o o 4 be solved with F((z® - o®MVF@E")),) <

This problem is, as (8), a BCQP, and it can be solved wit k BT (, (K k k k

the sgme algorithms.( I2|owever the presence of the constraintF(z( )) a MVF(Z( )) (z( - (Z( - )VF(Z( )))+)’

x > 0 allows us to avoid splitting the variables into positive  and setz(*t1) = (z(*) — oFIVF(2)), .

and negative parts. Step 3: Perform convergence test and terminate with approx-
imate solutionz*+1) if it is satisfied; otherwise set
k — k+1 and return toStep 1

Termination tests used in Step 3 are discussed below in
In this section we discuss GP techniques for solving (8). fubsection 11I-D.

Ill. GRADIENT PROJECTIONALGORITHMS

our approaches, we move from iteraté) to iteratez(*+1) The computation at each iteration consists of matrix-vecto
as follows. First, we choose some scalar parameter > 0 multiplications involving A and A, together with a few
and set (less significant) inner products involving vectors of léng.
wk) — (Z(k) _ O[(k)VF(Z(k)))JF' (11) Step 2 requires evaluatioq @t for e_ach valge oty (k) trie_d, .
where each such evaluation requires a single multiplinatio
We then choose a second scaldf e [0,1] and set by A. Once the value o) is determined, we can find
z*t) and thenVF(z(*+1)) with one more multiplication
2D = 20 4 \B) (w (k) _ z(R)), (12) by AT. Another multiplication byA suffices to calculate the

denominator in (13) at the start of each iteration. In tatad
Our approaches described next differ in their choiceat number of multiplications byA or A” per iteration is two
and \(F), plus the number of values @f(*) tried in Step 2.
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B. Barzilai-Borwein Gradient Projection: Th6PSR-BB Al- SinceF is quadratic, the line search parameé? in Step

gorithm 2 can be calculated simply using the following closed-form
Algorithm GPSR-Basic ensures that the objective functidrPression:

F' decreases at every iteration. Recently, considerabletimtte (6N F(z0)

has been paid to an approach due to Barzilai and Borwein AF) = mid {O, T }

(BB) [2] that does not have this property. This approach (0")T B

was originally developed in the context of unconstraine(tql/\/hen (é(k))TB(s(k) — 0, we setA\(®) — 1.) The use of this

minimization of a smooth(krgonlinear functiaf. It calculates parametenr(¥) removes one of the salient properties of the
— g1 (k) o . .
each step by the formul&h =1 Vg(z )(;C)where@lfk_ Barzilai-Borwein approach, namely, the possibility tamay
IS an apprQX|mat|on to the HeSS|an ) at z. I_BarZ| & increase on some iterations. Nevertheless, in our problems
and B(_)rwe_ln propose a p_artlcularly S|m_ple ch0|c¢ for_thﬁ appeared to improve performance over the more standard
approm(m)atlonHk: Tr(1e)y set it to be a multiple of the 'dent'tynon-monotone variant. which seté® = 1. We also tried
— pk k) i imati ' = =

f’“ =1 | I,gvl;ergn |shchosen so that this aEproxmatlorbther variants of the Barzilai-Borwein approach, inclugene

as swrr]u ar behavior to the true Hessian over the most recepl,,seq in [15], which alternates between two definitiohs o
step, that is, a®). The difference in performance were very small, so we

VF(Z(k)) _ VF(Z(kfl)) ~ n(k) [Z(k) _ Z(kfl)] focus our presentation on the method described above.
’ In earlier testing, we experimented with other variants Bf G

with (¥) chosen to satisfy this relationship in the least-squart¥luding the GPCG approach of [43] and the proximal-point

sense. In the unconstrained setting, the update formula is @PProach of [59]. The GPCG approach runs into difficulties
because the projection of the HessiBnonto most faces of

2 = 20 — () IV P (z () the positive orthant defined by> 0 is singular, so the inner

this step is taken even if it yields an increase finh This CG loop in this algorithm tends to fail.

strategy is proved analytically in [2] to be effective on pim
problems. Numerous variants have been proposed recerfily,Convergence
and subjected to a good deal of theoretical and computationaConvergence of the methods proposed above can be de-
evaluation. rived from the analysis of Bertsekas [3] and lusem [34], but

The BB approach has been extended to BCQPs in [1fllows most directly from the results of Birgin, Martinez,
[52]. The approach described here is simply that of [53nd Raydan [4] and Serafini, Zanghirati, and Zanni [52].
Section 2.2]. We choosgy in (12) as the exact minimizer We summarize convergence properties of the two algorithms
over the intervall0,1] and choose;*) at each iteration in described above, assuming that termination occurs onlytwhe
the manner described above, except thet = (n(*))~1 is  z(k+1) — 5(¥) (which indicates thaz(®) is optimal).
restricted to the intervdbumin, amay. In defining the value of  Theorem 1:The sequence of iteratq:&(k)} generated by
alk*1) in Step 3 below, we make use of the fact that for the either the GPSR-Basic of GPSR-BB algorithms either
defined in (8), we have terminates at a solution of (8), or else converges to a swluti

_ _ of (8) at an R-linear rate.
VF(z") - V(") =B (Z(k) -2 1)) ‘ Proof: Theorem 2.1 of [52] can be used to show that

all accumulation points ofz(*)} are stationary points. (This

Step O (initialization): Given z(®), choose parametersy,, esult applies to an algorithm in which thé*) are chosen by

max (9 € [amin, amay], and setk = 0. a different scheme, but the only relevant requirement osethe
Step 1: Compute step: parameters in the proof of [52, Theorem 2.1] is that theyrlie i
the rang€amin, @max, @s is the case here.) Since the objective
6 = (z(k) - a(k)VF(z(k))) — 2z, (14) in (8) is clearly bounded below (by zero), we can apply [52,
* Theorem 2.2] to deduce convergence to a solution of (8) at an
Step 2 (line search):Find the scalarA\(¥) that minimizes R-linear rate. ]

F(z® + X® §*)) on the intervalA® e [0,1], and
setz(FtD) — z(#) 1 \(k) §(F)

D. Termination
Step 3 (updatec): compute

The decision about when an approximate solution is of
A = (§*NH)TB §*). (15) sufficiently high quality to terminate the algorithms is a
difficult one. We wish for the approximate solutiento be
reasonably close to a solutias® and/or that the function
162 } value F(z) be reasonably close t&'(z*), but at the same
» max

if v =0, let a**1) = qnayx Otherwise

W time we wish to avoid the excessive computation involved
in finding an overly accurate solution. For the problem (7),

Step 4: Perform convergence test and terminate with approgiven that variable selection is the main motivation of the
imate solutionz**+1) if it is satisfied; otherwise set formulation (1) and that a debiasing step may be carried out

k — k+1 and return toStep 1 in a postprocessing phase (see Subsection IlI-E), we wish th

O[(kJrl) = mid {O{min,
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nonzero components of the approximate solutidn be close it does not work for general BCQP®.§, in which all the

to the nonzeros of a true solutiari. components of. are honzero at the solution) or for algorithms
These considerations motivate a number of possible terrthiat generate iterates in the interior of the feasible set.
nation criteria. One simple criterion is It is difficult to choose a termination criterion from among

these options that performs well on all data sets and in all
contexts. In the tests described in Section IV, unless wfiser
wheretolP is a small parameter andis a positive constant. noted, we use (17), witholP = 102, which appeared to
This criterion is motivated by the fact that the left-handesis yield fairly consistent results. We may also impose somgelar
continuous inz and zero if and only it is optimal. A second, upper limitmaxiter on the number of iterations.

similar criterion is motivated by perturbation results fioear

complementarity problems (LCP). There is a const@nér E. Debiasing

such that

|z - (2 — aVF(2))]| < tolP, (16)

Once an approximate solution has been obtained using one

dist(z, S) < Crcp |min(z, VF(2))|| of the algorithms above, we optionally performdabiasing

) o . step. The computed solutian = [u”, v7|T is converted to
where S denotes the so.lutlon set (_)f (8), dist is th_e dis- an approximate solutiorgp — u — v. The zero components
tance operatqr, and th@n on the rlgh_t-ha.nd side is take.nof xcp are fixed at zero, and the least-squares objedive
component-wise [14]. With this bognd in mind, we can defing 12 is then minimized subject to this restriction using a CG
a convergence criterion as follows: algorithm (see for example [44, Chapter 5]). In our code, the
|min(z, VF(z))| < tolP. (17) CG iteration is terminated when

A third criterion proposed recently in [36] is based on ly — Ax|[3 < tolD [ly — Axcpll3, (21)
duality theory for the original formulation (1). It can becstn

i wheretolD is a small positive parameter. We also restrict the
that the dual of (1) is

number of CG steps in the debiasing phasenaxiterD

1 7 T Essentially, the problem (1) is being used to select the
max —=—s8's—y s u ; . . )
s 2 explanatory” variables (components af), while the debi-
s.t. 71, < ATs < r1,,. (18) asing step chooses the optimal values for these components

according to a least-squares criterion (without the reigda
tion term 7||x||;). Similar techiques have been used in other
(19) {1-based algorithmse.g, [42]. It is also worth pointing out
that debiasing is not always desirable. Shrinking the sedec
with equality attained if and only ik is a solution of (1) and coefficients can mitigate unusually large noise deviat{a8$,
s is a solution of (18). To define a termination criterion, we desirable effect that may be undone by debiasing.
invert the transformation in (6) to obtain a candidateand

If s is feasible for (18), then

1 1
Slly = Ax3 + 7l + 5575 +y7s 2 0,

then construct a feasibkeas follows: F. Warm Starting and Continuation
sS=1 Ax—y The gradient projection approach benefits from a good
T(Ax — . . . ;
[AT(Ax —y)llw starting point. This suggests that we can use the solution of

(see [36]). Substituting these values into the left-hade sif (1), for a given value of, to initialize GPSR in solving (1) for
(19), we can declare termination when this quantity fallsle a nearby value of. The second solve will typically take fewer
a thresholdolP . Note that this quantity is an upper bound oiiterations than the first one; the number of iterations ddpen
the gap betweei’(z) and the optimal objective valuB(z*). on the closeness of the values ofand the closeness of the
None of the criteria discussed so far take account of tiselutions. Using this warm-start technique, we can effityen
nonzero indices of or of how these have changed in recergolve for a sequence of valuesofWe note that it is important
iterations. In our fourth criterion, termination is de@drwhen to use the non-debiased solution as starting point; defgasi
the set of nonzero indices of an itera#®*) changes by may move the iterates away from the true minimizer of (1).

a relative amount of less than a specified threshojda. One motivation for solving for a range of values is that
Specifically, we define we often wish to obtain solutions for a range of valuesg pf

e possibly using some test based on the solution sparsity and
I = {ilz" #0}, the goodness of least-squares fit to choose the “best” snluti
Ch. = {ilieIyandi¢I,_y)or(i¢Z,andie€Z;_1)}, from among these possibilities.

Another important application of warm-startingdsntinu-
ation, as recently suggested in [31]. It has been noted recently
that the speed of GPSR may degrade considerably for smaller
This criterion is well suited to the class of problems adseels values of the regularization parameterHowever, if we use
in this paper (where we expect the cardinalityZaf in later GPSR to minimize (1) for a larger value of then decrease
stages of the algorithm, to be much less than the dimensionsteps toward its desired value, running GPSR with warm-
of z), and to algorithms of the gradient projection type, whicktart for each successive value of we are often able to
generate iterates on the boundary of the feasible set. Hawewdentify the solution much more efficiently than if we just

and terminate if
|Ck|/|Zk| < tolA. (20)
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ran GPSR once for the desired value offrom a “cold For the GPSR-BB algorithm, we satin = 1073°, amax =
start.” We illustrate this claim with a computational exdep 103°; the performance is insensitive to these choices, similar
in Section IV-D. results are obtained for other small settingswaf, and large
values of amax. We discuss results also for a nonmonotone
version of the GPSR-BB algorithm, in which, = 1. In

G. Analysis of Computational Cost )
Igs_PSR-Basm, we used = 0.5 andp = 0.1.

It is not possible to accurately predict the number of GPS
Basic and GPSR-BB iterations required to find an approximate i
solution. We can however analyze the cost of each iteratifn Compressed Sensing (CS)
of these algorithms. The main computational cost per immat  In our first experiment, we consider a typical CS scenario
is a small number of inner products, vector-scalar muttipli (similar to the one in [36]), where the goal is to reconstruct
tions, and vector additions, each requiringor 2n floating- a lengthn sparse signal (in the canonical basis) frdm
point operations, plus a modest number of multiplicatiops wbservations, wheré < n. In this case, thé x n matrix
A andA”. When A = RW, these operations entail a smallA is obtained by first filling it with independent samples of a
number of multiplications byR, R”, W, andW7'. The cost standard Gaussian distribution and then orthonormalittieg
of each CG iteration in the debiasing phase is similar buaws. In this examplep = 4096, £ = 1024, the original
lower; just one multiplication by each d®, R”, W, and signal x contains 160 randomly place#t1 spikes, and the
W7 plus a number of vector operations. We next analyze tidservationy is generated according to (2), witf = 10~*,
cost of multiplications byR, R, W, and W7 for various Parameter is chosen as suggested in [36]:
typical problems; let us begin by recalling thAt= RW is T )
gz X npmatrix, and thatx € R", y € R*. Thus, if R has 7=0.1[|A7ylloo; (22)
dimensionsk x d, thenW must be ad x n matrix. notice that forr > ||[ATy|| the unique minimum of (1) is

If W contains an orthogonal wavelet basis= n), matrix- the zero vector [29], [36].
vector products involvingWw or W7 can be implemented The original signal and the estimate obtained by solving
using fast wavelet transform algorithms with(n) cost [40], (1) using the monotone version of the GPSR-BB (which is
instead of theO(n?) cost of a direct matrix-vector product.essentially the same as that produced by the nonmonotone
Thus, the cost of a product by or AT is O(n) plus that of GPSR-BB and GPSR-Basic) are shown in Fig. 1. Also shown
multiplying by R or R” which, with a direct implementation, in Fig. 1 is the reconstruction obtained after the debiasing
is O(k n). When using redundant translation-invariant wavelgtrocedure described in Section IlI-E; although GPSR-BB
systems,W is d x d(log,(d) + 1), but the corresponding does an excellent job at locating the spikes, the debiased
matrix-vector products can be done witt{d log d) cost, using reconstruction exhibits a much lower mean squared &rror
fast undecimated wavelet transform algorithms [40]. (MSE) with respect to the original signal. Finally, Fig. kal

As mentioned above, direct implementations of productiepicts the solution of minimaly-norm to the undetermined
by R and R” have O(kd) cost. However, in some casessystemy = Ax, which is equal toA” (AAT) 1y,
these products can be carried out with significantly lower In Fig. 2, we plot the evolution of the objective function
cost. For example, in image deconvolution problems [25)without debiasing) versus iteration number and CPU time,
R is ak x k (d = k) block-Toeplitz matrix with Toeplitz for GPSR-Basic and both versions of GPSR-BB. The GPSR-
blocks (representing 2D convolutions) and these produats BB variants are slightly faster, but the performance oftalée
be performed in the discrete Fourier domain using the FFJpdes is quite similar on this problem. Fig. 3 shows how the
with O(klogk) cost, instead of theé(k?) cost of a direct objective function (1) and the MSE evolve in the debiasing
implementation. If the blur kernel support is very smally(saphase. Notice that the objective function (1) increasesndur
[ pixels) these products can be done with even lower cogie debiasing phase, since we are minizing a different fonct
O(kl), by implementing the corresponding convolution. Alsadn this phase.
in certain applications of CS, such as MR image reconstrncti

[38], R is formed from a subset of the discrete Fourie&PUTWlEs(AVERAGEOVERlOTAB"EI

RUNS) OF SEVERAL ALGORITHMS ON THE

transform basis, so the cost@k log k) using the FFT. EXPERIMENT OFFIG. 1.
[ Algorithm | CPU time (seconds)

IV. EXPERIMENTS GPSR-BB monotone 0.59
This section describes some experiments testifying to the gggs-gssﬂzonmonotone g-gé
very good performance of the proposed algorithms in sev- GPSR-BB monotone + debias 0.89
eral types of problems of the form (1). These experiments GPSR-BB nonmonotone + debids 0.82
include comparisons with state-of-the-art approachesieha GPSR-Basic + debias 0.98
. 11_1Is 6.56
IST [16], [25], and the recentl Is package, which was ST 276

shown in [36] to outperform all previous methods, includ-

ing the ¢;-magic toolbox and the homotopy method from | 4e | reports average CPU times (over 10 experiments)

[21]. The algorithms discussed _in Section Il are Writte?equired by the three GPSR algorithms as well asibys
in MATLAB and are freely available for download from

www. IX.it.pt mtf/ GPSR/ . SMSE = (1/n)||% — x||3, wherex is an estimate ok.
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Original (n = 4096, number of nonzeros = 160)

| |

1 | M 1
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GPSR reconstruction (k = 1024, tau = 0.08, MSE = 0.0072)
i
|

1%%‘”% (T it TR M”.lilllll i
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Fig. 1. From top to bottom: original signal, reconstructidga the minimization of (1) obtained by GPSR-BB, reconstinrt after debiasing, the minimum
norm solution given byA” (AAT)~1y.

and IST. To perform this comparison, we first run fiels R). For each data set, we first run GPSR-BB (the monotone
algorithm and then each of the other algorithms until eackersion) and store the final value of the residual; we then run
reaches the same value of the objective function reacheddrged omp_qr and SolveOMP until they reach the same
[1_lIs. The results in this table show that, for this problem, atiesidual norm. Finally, we compute average MSE (with respec
GPSR variants are about one order of magnitude faster tharthe truex) and average CPU time, over the 10 runs.
I1_Is and 5 times faster than IST. Fig. 4 plots the average reconstruction MSE and the av-
An indirect performance comparison with other codes arage CPU times, as a function of the number of nonzero
this problem can be made by referring to [36, Table 1], whiatomponents irx. We observe that all methods basically obtain
shows thatl_|s outperforms the homotopy method from [21]exact reconstructions forn up to almost 200, with the OMP

(6.9 second vs 11.3 seconds). It also outperfofpamagicby
about two orders of magnitude and thdco algorithms from
SparselLalby about one order of magnitude.

solutions (which are equal up to some numerical fluctuajions
starting to degrade earlier and faster than those produged b
solving (1). Concerning computational efficiency, our main

focus in this experiment, we can observed that GPSR-BB is
clearly faster than both OMP implementations, except in the

B. Comparison with OMP X
) o case of extreme sparseness € 50 non-zero elements in the
Next, we compare the computational efficiency of GPS&)QG—vectorx).

algorithms against OMP, often regarded as a highly efficient

method that is especially well-suited to very sparse cases. N

We use two efficient MATLAB implementations of OMP;C- Scalability Assessment

the greed_omp_qgr function of theSparsifytoolbox (avail- To assess how the computational cost of the GPSR algo-

able at www.see.ed.ac.uk/"tblumens/sparsify ), rithms grows with the size of matriA, we have performed

which is based on QR factorization [5], [17], and the funatioan experiment similar to the one in [36, Section 5.3]. Thaide

SolveOMP of the SparselLabtoolbox, which is based onis to assume that the computational cosDis:*) and obtain

the Cholesky factorization. Becaugeeed_omp_qgr requires empirical estimates of the exponemt We consider random

each column of the matriR to have unit norm, we use sparse matrices (with the nonzero entries normally disteidh)

matrices with this property in all our comparisons. of dimensions(0.1n) x n, with n ranging from10* to 10°.
Since OMP is not an optimization algorithm for minimizingeach matrix is generated with aboB8h nonzero elements

(1) (or any other objective function), it is not obvious hovand the original signal witm/4 randomly placed nonzero

to compare it with GPSR. In our experiments, we fix theomponents. For each value of we generate 10 random

matrix size (024 x 4096) and consider a range of degrees ofatrices and original signals and observed data according t

sparseness: the numberof non-zeros spikes ir (randomly (2), with noise variance? = 10~%. For each data set.€,,

located values oft1) ranges from 5 to 250. For each valuesach pairA, y), 7 is chosen as in (22). The results in Fig. 5

of m we generate 10 random data sets,, triplets (x, y, (which are average for 10 data sets of each size) show that all
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Fig. 2. The objective function plotted against iterationmier and CPU

time, for GPSR-Basic and the monotone and nonmonotoneoversif the .
GPSR-BB, corresponding to the experiment illustrated m Ei It has been pointed out recently that the speed of GPSR

can degrade as the value of becomes small [31]. (This

observation is confirmed by the CPU times of the cold-started
GPSR algorithms have empirical exponents below 0.9, thums of GPSR shown in Fig. 6.) The GPSR approaches can
much better tharl_Is (for which we founda: = 1.21, in  be improved by adding a continuation heuristic, as sugdeste
agreement with the valué.2 reported in [36]); IST has an in [31] and explained in Section IlI-F. Our simple heuristic
exponent very close to that of GPSR algorithms, but a worstarts by settingr = 0.8||A”y|/, then decreases in by
constant, thus its computational complexity is approxafhyat a constant factor in five steps until the desired value d$
a constant factor above GPSR. Finally, notice that, acngrdiobtained. GPSR is run from a “cold start” at the first (larjest
to [36], £1-magichas an exponent close 103, while all the value of 7, then run from a warm start for each of the other
other methods considered in that paper have exponents$io fag values in the sequence.

than 2. We illustrate the performance of this heuristic by using the
same test problem as in Section IV-A, but wittf = 0.
D. Warm Starting and Continuation In this noiseless case, CS theory states that it is possible t

As mentioned in Section I1I-F, GPSR algorithms can benefconstruck accurately by solving (5). Since the solution of
from being warm-started, that is, initialized at a pointsgo (1) @pproaches that of (5), asgoes to zero, it makes sense
to the solution. This property can be exploited to find minimi" this problem to work with small values of _

(1) for a sequence of values of at a modest multiple of ~ Fig- 7 shows the average (over 10 runs) of the CPU times
the cost of solving only for one value of We illustrate this "€auired by GPSR-BB and GPSR-Basic with and without
possibility in a problem withk = 1024, n = 8192, which we continuation, as well all_ls, for several values of,, where

wish to solve for9 different values ofr, we definesd = || ATyl /7. Although the original versions of
. the GPSR algorithms are slower thln Is, for 8 sufficiently
7 € {0.05,0.075,0.1, ...,0.275} [ A"y || - large ¢ sufficiently small), the continuation schemes are faster

As shown in Fig. 6, warm starting does indeed significantf?@n!1_Is for the whole range of values.

reduce the CPU time required by GPSR. The total CPU time ) )

of the 9 runs was abo6t5 seconds, less than twice that of thd=- Image Deconvolution Experiments

first run, which is abou8.7 seconds. The total time required In this subsection, we illustrate the use of the GPSR-BB al-
using a cold-start for each value ofwas aboutl 7.5 seconds. gorithm in image deconvolution. Recall that (see Sectia) I-
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image; these problems have been studied in [25], [26] (and
other papers). In this experimen®V represents the inverse
orthogonal wavelet transform, with Haar wavelets, dRd

is a matrix representation of the blur operation; we have
k = n = 2562, and the difficulty comes not form the
indeterminacy of the associated system, but from the very
ill-conditioned nature of matrbRW. Parameterr is hand-
tuned for the best SNR improvement. In each case, we first
run IST and then run the GPSR algorithms until they reach
the same final value of the objective function; the final value
of MSE are essentially the same. Table Ill lists the CPU times
required by GPSR-BB algorithms and IST, in each of these
rﬁ}(periments, showing that GPSR-BB is two to three times

on the wavelet coefficients, can be formulated as (1).
stress that the goal of these experiments is not to assess the
performance€.g, in terms of SNR improvement) of the crite-
rion form (1). Such an assessment has been comprehensively
carried out in [25], [26], and several other recent works on
this topic. Rather, our goal is to compare the speed of the
proposed GPSR algorithms against the competing IST.

We consider three standard benchmark problems summa-
rized in Table Il, all based on the well-known Cameraman

V{,gster than IST.

TABLE Il

IMAGE DECONVOLUTION EXPERIMENTS.

Experiment | blur kernel o2
1 9 x 9 uniform 0.562
2 hi; =1/ +35%) | 2
3 hi; =1/ +35%) | 8
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TABLE IlI
CPU TIMES (IN SECONDS) FOR THEIMAGE DECONVOLUTION
EXPERIMENTS.

Experiment| GPSR-BB | GPSR-BB IST
monotone | nonmonotone
1 1.69 1.04 3.82
2 1.11 0.84 2.63
3 1.21 1.01 2.38

V. CONCLUSIONS
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compressed sensing and other inverse problems in signal
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of-the-art algorithms, the proposed methods are significan
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been observed when the regularization parametisr small,
but in such cases the gradient projection methods can (B4
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efficient practical performance. The new algorithms arey eas
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