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ABSTRACT

We address the problem of image deconvolution urigarorm
(and other) penalties expressed in the wavelet domain. We propos

an algorithm based on the bound optimization approach; this ap-

proach allows deriving EM-type algorithms without using the con-
cept of missing/hidden data. The algorithm has provable mono-
tonicity both with orthogonal or redundant wavelet transforms. We
also derive bounds on tlig norm penalties to obtain closed form
update equations for any € ]0,2]. Experimental results show
that the proposed method achieves state-of-the-art performance.

1. INTRODUCTION AND PROBLEM FORMULATION
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In [11], we have proposed an expectation-maximization (EM)

algorithm to comput@ in an iterative way. Other wavelet-based
@pproaches to image restoration are also reviewed in [11]. The EM
algorithm proposed in [11] relies heavily on the orthogonality of
'W. However, it is well known that using orthogonal wavelet bases
yields unpleasant blocky artifacts, which can be avoided by using
over-complete translation-invariant (TI) representations (vith
more columns than lines). In denoising, Tl representations are
known to significantly reduce these artifacts and yield better SNR
improvement [5, 10, 14]. In this paper, we describe an hewnd
optimization algorithm (BOA) which, unlike the EM method pre-
sented in [11], does not rely on the orthogonalityWt. Although
BOAs have been used before in image reconstruction (mainly to-
mographic, see.g, [8, 15, 9]), to the best of our knowledge, they

Wavelet-based methods are currently the best choice for image dehave not been used for wavelet-based image deconvolution. A par-
noising problems, both in terms of performance and computational tiag| exception is the very recent work in [7], where an algorithm re-

efficacy. However, image restoration in general (e.g., deconvolu- |ated to ours has been derived in a different way, and applied only
tion) is much more challenging than simple denoising, and apply- with orthogonal representations. We should also mention the very

ing wavelets has proved to be a highly non-trivial problem.

In image reconstruction/restoration problems, we wish to esti-
mate an original image& from an observatioy, assumed to have
been produced by the linear observation model

y = Hx +n, Q)
where matrixH represents the observation operator, an$ a
sample of a zero-mean white Gaussian field of variarfcéVatrix
H can model many types of linear observations, but here we’'ll
focus on deconvolution (deblurring) problems. In this case, for 2D
imagesH is a block-circulant matrix with circulant blocks [1].
In the wavelet-based formulation, equation (1) becomes

@)

obtained by writingxk = W6, where# is the vector of representa-
tion coefficients and the set of columnsWf is a wavelet basis (or-
thogonal,W is square, or redundar¥yV has more columns than
lines). Themaximum a posterioiMAP) estimate of), (a.k.a. the
maximum penalized likelihood estimate — MPLE), is given by

y =HWS6 +n,

é\:argrrllgin{ﬂnyW@Hg* 20° logp(G)}, (3)

wherep(0) is usually a heavy-tailed prior expressing the sparse na-
ture of the wavelet coefficients of natural images [19]. Obviously,
(3) cannot be solved in closed form, everp{i®) is a Gaussian
prior, since we cannot invert matrices of the fo(l{W + AI).
Actually, HW can't even be explicitly computed or storezlg,

for 256 x 256 images, it would be 8562 x 2562 matrix.

recent work [3], where a generalized EM algorithm is proposed,
which also does not rely on orthogonality W .
The independent generalized Gaussian density (GGD, see [19])

p(O) cexp{ ~ 5310 |

is a common prior for wavelet coefficients. The logarithm of this
prior is proportional to the-th power of anl, norn? plus some
irrelevant constant, that is:logp(0) = —(7/2)||0]|5 + A. It

is known that good wavelet-based image models are obtained for
p < 1(e.g,p =~ 0.7) [19]. By resorting to the bound optimization
approach, we will derive closed form update equations under any
GGD prior with0 < p < 2. Experimental results will show that
the best performance, however, is obtained with the prior proposed
in [10], which also leads to closed form iterations.

In Section 2 we derive a BOA to solve (3). In Section 3, we
show how the approach can be used to obtain closed form updates
under GGD and other priors. Experimental results are presented
in Section 4, and Section 5 concludes the paper.

4)

2. THE BOUND OPTIMIZATION APPROACH

2.1. Introduction

Let L(@) be the function to be minimized. The well-known EM
algorithm [18] yields a sequence of estimﬁets), fort=12,..,

1For a review of bound optimization algorithms, see [12]
2Recall that thé,, norm is||v||, = (ZZ \vi|1’)1/p.
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by iteratively minimizing the so-called Q-function

A(t+1)

6" = argmin (010", 5)

where we use (throughout the paper) the notafibr- §(t>. Un-
derlying the monotonicity of EM is the followinggey property
Q(610") > L(0), with equality for@ = 6’; that is,Q(0]6") is an
upper bound ori.(8), touching it for@ = 8’. In fact,

L@y = L@ -Q@" o)+ @ )
< Q@"10) <9 = L) = L(E"),

where the first inequality results frof(8) — Q(6|0") < 0, for

any#@, and the second one from the fact that, by definition (see (5)),

Q(616') attains its minimum fof = 8. Itis well known that
the Q-function in standard EM does verify thigy property as a
consequence of Jensen’s inequality.

This perspective opens the door to the derivation of EM-style

form D — \;, where); are the eigenvalues ®. If no \; is larger
than D, the eigenvalues abI — B are all non-negative and thus
DI » B. Itturns out that it is easy to computt®||,

IBl2 = [HWHW)"||l2 = [HWW H" ||, = [H|; = 1

assuming the following: the convolution operator is normalized
(|IH||3 = 1); the columns of matriW correspond to a normal-
ized tight framej.e, WW7T = I, although, of courseW’w
may not equal, becausdV is not necessarily orthogonal [4, 17].
We have also used the fact that, for any matix ||AAT||; =
|AT A||2. Consequently, we have the Hessian bolnek T.

Finally, to use (6), we need the gradien{f2)|y—H W9||3,
at@’, which is simplyW”H (y — HW#'). Plugging this gra-
dient, and the Hessian boul2l=1, into (7), we finally have

gty ®)

= argmin {[10 = @[3 — 20% logp(0) },
where

¢=0 +W'H" (y - HW®'). 9)

algorithms, where the Q-function (or bound function) doesn’t have Notice that (8) corresponds to applying the pure denoising rule as-
to be derived from missing-data considerations, as in standard EM,sociated to the priop(8) to the “noisy coefficients’p. In (9),

but using any properties dt(@), such as convexity or bounded
Hessian matrix [12]. These bound optimization algorithms (BOA)
have two (obvious) properties, of which we will make use below:

Property 1: Any function Q. (6|0’) differing from Q(8|6") by
an additive constant and/or a multiplicative factor (both in-
dependent of) defines the same algorithm.

Property 2: Let L(6) = L1(0) + L2(0) (as in (3)); consider two
bounds,Q1(0|0’) > L1(0) andQ2(6|0") > L2(H), both
with equality for@ = 8’. Then, all the following functions
upper-bound.(6) (with equality for@ = 6'): Q1(0]6") +
Q2(010"), L1(0) + Q2(016"), andQ1(0|0") + L2(8).

2.2. Hessian Bound

Let us consider that(0) is convex and has bounded Hessian, that
is, there is some matrid such that, for any, VQL(H) < D,
whereV2L(6) denotes the Hessian computedand A < B

(for two square matriceA andB of the same dimension) means
that matrixB — A is positive semi-definite. Under this condition,
and for any®’, we have the bound

L(6) < L(6")+(6—-0")"VL(6')+ %(9—0’)%(0—0’), (6)

whereV L(6’) denotes the gradient df(0) at6’. Invoking Prop-
erty 1 to drop additive constants, we finally have the Q-function
/ T ’ / 1 T
Qele) =20 (VL(G)—D0)+§0 Deé. 7)

Invoking Property 2, we will now derive a Hessian bound for
the first term in (3). We begin by computing the Hessian

B= v%Hy ~HWO|3 = (HW)"HW = W H'HW.

The fact thatf” B8 = |[HWE||3 > 0, for any 8, shows that
|ly—H W4 ||3 is indeed convex, though not necessarily strictly so.

If the spectral norm oB (its largest eigenvalue) is bounded
above by somé, i.e,, | B||2 < D, thenB < DI, wherel denotes
an identity matrix. In fact, the eigenvalues bl — B are of the

the multiplications byH andH” can be done efficiently via FFT,
since these matrices represent convolutions. For the multiplica-
tions byW andW7, when these matrices correspond to orthogo-
nal or redundant wavelet bases, there are very efficient algorithms
which do not explicitly use these matrices [17]. The computational
cost of each iteration i©(N log N), for N x N images.

3. SOLVING THE UPDATE EQUATION

We focus only on independent prioiisg., for which log p(8) =
Zi log p(6;). In this case, (8) can be solved separately with re-
spect to each component:

é\ft*l) = arg néin {(61 —¢:)? =207 logp(&-)} .

(10)

There are two standard cases for which (10) has simple closed
form solutions. For a zero-mean Gausian prior with varighge ),
since—202 logp(0;) = %7607 + A (where A is an irrelevant
constant), the solution is simply

0D = (1+ 0 1) g (11)

For a Laplacian priori(e., a GGD prior withp = 1), we have
—202 logp(#:) = o7 |0;| + A, and the solution is

é\iﬂl) = soft ((JS“ o2 T/2>

where softz,§) = sign(z) max{0, |z| — ¢} denotes the well-
knownsoft thresholdunction [19].

3.1. Bounding the GGD Priors, forp # 1,2

For a GGD prior, withl < p < 2, the update equation (8) doesn'’t
have a closed form solution [19]. We circumvent this difficulty by
invoking Property 2 and deriving a bound for the prior term, to
be added to the Hessian bound underlying (8). Sif&g;, (for

1 < p < 2)is convey, it makes sense to use a quadratic bound. It
is easy to check th#? is indeed upper bounded as follows:

o <ot (B2 + 2 e, @)
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with equality for|9| = |6’|. By adding this bound to the bound of ~MATLAB toolbox. We employ Daubechies-2 (Haar) wavelets;
the log-likelihood (and dropping additive constants) we obtain other wavelets lead to very similar results. The algorithm is ini-
, ) ) tialized with a Wiener filter estimate, as described in [11]. The
Q(0:16) = (0: — ¢i)” + 07 As (13) GGD parameters used wepe= 0.7 and = 0.25, which were
found to lead to the best performance. However, the rule (18) out-
o2rp = performs the GGD, and has no free parameters to be adjusted. Of
Ai = 5 ((Gi) ) 2. course, for GGD priors witlhy < 1, and for the prior correspond-
o . L ing to rule (18),L(0) is not convex, and the final results depend
Minimizing this Q(6;]6;) w.r.t. 8, is trivial and leads to on the initialization.
In the first experiment, we replicate the experimental condition
of [13]. The blur point spread function is;; = (1 + 42 4 )71,
fori,j = —7,...,7, and the noise variance is set¢® = 2 and
o® = 8. The SNR improvements obtained are shown in Table 1.
Our BOA outperforms [13], although [13] uses a much more so-
phisticated wavelet transform and prior model, as well as our pre-
vious method [11]. The degraded and restored images are shown
in Fig. 1, while Fig. 2 plots the the objective function and the SNR
improvement along the iterations, fof = 8 and rule (18).

where

0 = (14 1) g (14)

Since we expect several coefficient estimﬂé&to approach zero,
this form is not convenient, as some of thecan become arbitrar-
ily large. After observing thatl + ;) ™" = A\ ' (1+ A1), we
define a new set of variables = A, ! and rewrite (14) as

9T = ¢ (14 7i)7h (15)

We thus store variables that may approach zero (rather than infin-
ity), and avoid any numerical problems.

For0 < p < 1, the update equation (8) also doesn't have a
closed-form solution [19]. Sincgf||} is not convex, we can use a
bound tighter than a quadratic one. It's a simple exercise to check
that|0|?, for 0 < p < 1, is upper bounded as follows:

OF < [0lp0'P™" + (1= p) 16" (16)
The complete bound is then
Q(8:167) = (6: — ¢:)* + 1031 &,

where¢; = o 7p|0;|P~*, and the corresponding minimizer is

61" = soft(g.,/2). (17)
That is, in this case, we have to apply a soft-threshold function
with varying threshold values at each iteration.
3.2. Other Priors

Of course we are not limited to independent GGD priors. For ex-
ample, we can use the denoising rule from [10],

at+1) -1 2 2
6,7 = ¢, max {0,¢{ — 307} (18) " Fig. 1 Blurred and noisy images with (af = 2 and (b)o> = 8,

Although originally derived in an empirical-Bayes approach, it and corresponding restored images ((c) and (d), respectively).
was shown to be the MAP estimate under a certain prior [10].
Other independent priors can be handled using the approach
described in subsection 3.1, as long as we can derive quadratic or
I, upper bounds on their logarithms. Non independent priors (such - Table 1. SNR improvements for the first set of experiments.

as the one in [6]) can also be used in (8), although the solution caf Method 2=2] o2=28
no longer be obtained separately for each coefficient. It is alsg BOA, with rule (18) 7 46dB | 5.24dB
very simple to modify the algorithm to include the estimation of BOA with GG [')rior (=07 7=035 | 7.39dB 5'24dB
the noise variance (s in [11]). Best resultin [11’] 6.93dB | 4.88dB

Results by Jalobearat al [13] 6.75dB | 4.85dB

4. EXPERIMENTS

In this section, we present a set of experimental results illustrat- ~ Next, we consider the setup of [20] and [2]: uniform blur of
ing the performance of the proposed approach, in comparison wittsize9 x 9, and the noise variance such that the SNR of the noisy
some recent state-of-the-art methods [11, 13, 16, 20]. In all thdmage, with respect to the blurred image without noise (BSNR), is
experiments, we use the Tl wavelet transform from\ttevelals 40dB (this corresponds te? ~ 0.308). The SNR improvements
obtained are summarized in Table 2, showing that our method out-
performs those in [20] and [2].

In the final set of tests we have used the blur filter and noise

3Available from http://www-stat.stanford.eduivavelab/
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