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Abstract. Consider the problem of �tting a �nite Gaussian mixture,

with an unknown number of components, to observed data. This pa-

per proposes a new minimum description length (MDL) type criterion,

termed MMDL (formixtureMDL), to select the number of components of

the model. MMDL is based on the identi�cation of an \equivalent sample

size", for each component, which does not coincide with the full sample

size. We also introduce an algorithm based on the standard expectation-

maximization (EM) approach together with a new agglomerative step,

called agglomerative EM (AEM). The experiments here reported have

shown that MMDL outperforms existing criteria of comparable compu-

tational cost. The good behavior of AEM, namely its good robustness

with respect to initialization, is also illustrated experimentally.

1 Introduction

Finite mixtures are a 
exible and powerful probabilistic modeling tool. In sta-

tistical pattern recognition, mixtures allow a formal (model-based) approach to

(unsupervised) clustering [7]; in fact, mixtures adequately describe situations

where each observation is modeled as having been produced by one of a set of

alternative mechanisms [31]. However, strict adherence to this interpretation is

not required. Mixtures can simply be seen as models able to represent arbitrar-

ily complex probability density functions (pdf's); this makes them an ideal tool

for representing complex class-conditional pdf's in supervised learning scenarios

(see[22] and references therein).

This paper is devoted to the problem of �tting Gaussian mixtures with un-

known number of components to multivariate observations. The two fundamental

issues to be dealt with are: (a) how to estimate the number of components, for

which several techniques (reviewed below) have been proposed; and (b) how to

estimate the parameters de�ning the mixture model. For this second question,
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the standard answer is the expectation-maximization (EM) algorithm, but sev-

eral authors have also advocated the (much more computationally demanding)

Markov chain Monte-Carlo (MCMC) method.

We propose a new criterion to estimate the number of components which is

shown experimentally to outperform existing methods of comparable computa-

tional cost. Our criterion is a modi�ed version of the minimum description length

(MDL) principle, based on what can be called the \equivalent sample size". We

also introduce an (EM-based) algorithm aimed at mitigating the initialization

dependence that makes EM di�cult to use in practice. From a clustering perspec-

tive, our algorithm can be seen as an agglomerative hierarchical-type scheme,

thus we term it agglomerative EM (AEM): we start with a large number of com-

ponents (clusters) and evolve towards a small number of components. From a

density estimation perspective, our algorithm has a multi-scale 
avor: we go from

a �ne-scale representation with a large number of components, thus potentially

irregular, to a smoother/coarser one with fewer components.

We review relevant previous work on mixture model �tting in Section 2,

which also serves to introduce notation and the EM algorithm. Section 3 presents

the MMDL criterion, while Section 4 is devoted to AEM. Section 5 reports

experimental results, and Section 6 presents our conclusions.

2 Fitting Mixture Models

2.1 Introduction

Let Y = [Y1; :::; Yd]
T be a d-dimensional random variable, with y = [y1; :::; yd]

T

representing one particular outcome of Y. It is said that Y has a �nite mixture

distribution if its probability density function can be written as

fY(yj�(k)) =

kX
m=1

�mfY(yj�m); (1)

where k is the number of components, each fY(yj�m) is called a component

density function, and the �m (
Pk

m=1 �m = 1) are the mixing probabilities.

Assuming that all the components have the same functional form (e.g., they are

all d-variate Gaussian), each one is fully characterized by the parameter vector

�i. Let �(k) = f�1; :::;�k; �1; :::; �k�1g be the parameter set de�ning a given

mixture (notice that �k = 1�Pk�1
m=1 �m), andM(k) be the space of all possible

k-component mixtures built from a certain class of pdf's. This paper focuses

on mixtures of Gaussian components, denoted as fY(yj�m) = N (yj�m;Cm),

where �m = (�m;Cm), if arbitrary covariance Cm and mean �m are assumed;

if a common covariance C is adopted, we simply write �m = �m.

The maximum likelihood (ML) estimate of �(k), based on a set of n inde-

pendent observations yobs = fy(1); :::;y(n)g, isb�(k) = argmax
�(k)

L
�
�(k);yobs

�
; (2)



where L
�
�(k);yobs

�
is the log-likelihood function

L
�
�(k);yobs

�
= log

nY
i=1

fY(y
(i)j�(k)) =

nX
i=1

log

kX
m=1

�mfY(y
(i)j�m): (3)

In general, Eq. (2) has no closed-form solution but it can be approached quite

easily via the expectation-maximization (EM) algorithm [16], [31].

2.2 The EM Algorithm for Gaussian Mixtures

Behind the EM algorithm is the interpretation of the set of observations yobs =
fy(1); :::;y(n)g as incomplete data, with the missing information being a corre-

sponding set of labels zmiss = fz(1); :::; z(n)g [16], [31]. Each of these labels has

the form z(i) = [z
(i)
1 ; :::; z

(i)

k ]T , with z
(i)
m = 1 and z

(i)
p = 0, for p 6= m, if and

only if y(i) was produced by the m-th component of the mixture. This complete

data setup agrees with the interpretation of a mixture density as a model of a

two-step data generation process: �rst, randomly choose one of the k available

\data generators" with probabilities f�1; :::; �kg; then, produce a sample from

the chosen \generator".

The loglikelihood function based on the complete data fyobs; zmissg, denoted
Lc(�(k);yobs; zmiss), is easily found to be (for details see [31])

Lc

�
�(k);yobs; zmiss

�
=

nX
j=1

kX
m=1

z(j)m log
h
�mfY(y

(j)j�m)
i
: (4)

In its general form, the EM algorithm proceeds by successively applying two

steps to produce a sequence of parameter estimates f b�(1)

(k);
b�(2)

(k); :::;
b�(t)

(k); :::g:

E-step: Compute the expected value of the complete loglikelihood, conditioned

on the observed data and on the current parameter estimate b�(t)

(k),

Q

�
�(k); b�(t)

(k)

�
=

Z
Lc

�
�(k);yobs; zmiss

�
fZmiss

(zmissj b�(t)

(k);yobs) dzmiss:

M-step: Update the parameter estimates according to

b�(t+1)

(k) = argmax
�(k)

Q

�
�(k); b�(t)

(k)

�
: (5)

Under mild conditions [16], EM converges to a (local) maximum of L
�
�(k);yobs

�
.

The key to the e�cient implementation of this algorithm is the choice of an

observed/missing data structure, i.e., the function Lc

�
�(k);yobs; zmiss

�
, such

that the E and M steps have simple closed-form expressions. This is the case in



Eq. (4), which is linear in the missing variables, thus reducing the E-step to the

computation of the conditional expectation of the z
(i)
m variables [16], [31],

w(i;t)
m � E

�
z(i)m j b�(t)

(k);yobs

�
=

b�(t)m fY(y
(i)jb�(t)m )

kX
j=1

b�(t)j fY(y
(i)jb�(t)j )

: (6)

The M-step also has a simple closed form solution (recall that �m = f�m;Cmg):

b�(t+1)m =
1

n

nX
i=1

w(i;t)
m (7)

b�(t+1)m =

 
nX
i=1

w(i;t)
m

!
�1 nX

i=1

y(i) w(i;t)
m (8)

bC(t+1)
m =

 
nX
i=1

w(i;t)
m

!
�1 nX

i=1

�
y(i) � b�(t+1)m

��
y(i) � b�(t+1)m

�T
w(i;t)
m : (9)

The main di�culties in using EM for mixture model �tting are: its critical

dependence on initialization; the possibility of convergence to a point on the

boundary of the parameter space with unbounded likelihood (i.e., one of the

�m parameters approaching zero with the corresponding covariance becoming

arbitrarily close to singular).

2.3 Estimating the Number of Components

It is well known that the ML criterion can not be used to estimate the num-

ber of mixture components because M(k) � M(k+1); for example, �(k) =

f�1; :::;�k; �1; :::; �k�1g and �0

(k+1) = f�01; :::;�0k;�0k+1; �01; :::; �0k�1; �0kg, such
that �k = �0k = �0k+1 and �k = �0k+1 +�0k (where, of course, �k = 1�Pk�1

j=1 �j ,

and �0k+1 = 1�Pk

j=1 �
0

j) represent intrinsically indistinguishable mixture den-

sities. Consequently, the maximized likelihood L( b�(k);yobs) is a non-decreasing
function of k, thus useless as a model selection criterion. This is a particular in-

stance of the identi�ability problem (see, e.g., [31]). As also pointed out in [31],

classical (�2 based) hypothesis testing is not useful here because the necessary

regularity conditions are not met.

Several approaches are available to estimate the number of components of

a mixture; from an algorithmic standpoint, they can be divided into two main

classes: EM-based techniques and stochastic techniques.

EM-based approaches use the (�xed k) EM algorithm to obtain a sequence

of parameter estimates for a range of values of k, f b�(k); k = kmin; :::; kmaxg,
with the estimate of k being de�ned as the minimizer of some cost function,bk = argmin

k

n
C
�b�(k); k

�
; k = kmin; :::; kmax

o
: (10)



Most often, this cost function includes the maximized log-likelihood function

plus an additional term whose role is to penalize large values of k.

Under this general formulation, we �nd the MDL criterion [23] in which the

cost function is

CMDL

�b�(k); k
�
= �L

�b�(k);yobs

�
+
N(k)

2
logn; (11)

where N(k) is the number of parameters needed to specify a k-component mix-

ture. For arbitrary means and covariances, N(k) = (k � 1) + k(d + d(d + 1)=2)

(recall that d is the dimension of Y); if a common covariance is assumed, then

N(k) = (k � 1) + kd+ d(d+ 1)=2.

Several EM-based approaches also use approximate versions of the Bayes

factor (the correct Bayesian model selection criterion [9]), such as the evidence-

based Bayesian (EBB) criterion [25], the approximate weight of evidence (AWE)

[1], and Schwarz's Bayesian inference criterion (BIC) [5]. Although derived in

a di�erent framework, BIC formally coincides with MDL and is also given by

Eq. (11). The minimum message length (MML) criterion [20], Akaike's informa-

tion criterion (AIC) [35], and Bezdek's partition coe�cient (PC) [3] are other

approaches in this class. As pointed out in [25], EBB, MDL/BIC, and MML

perform comparably and outperform all other methods against which they were

tested. Concerning AWE, it is argued in [5] that MDL/BIC provides a better

approximation to the true Bayes factor. The AIC and PC criteria were shown in

[20] (based on tests on 20 di�erent mixtures) to be outperformed by MML and

MDL/BIC. Accordingly, any new method in this class need only be compared

against EBB, MDL/BIC, or MML. Finally, drawbacks of MML and EBB are:

MML can not be used for certain values of d (for example d = 9 and d > 24)

[25]; both EBB and MML depend on arbitrarily chosen parameters which can

critically in
uence its results.

Resampling-based schemes [14] (which have also been used in a clustering

framework [8]) and cross-validation approaches [30] are (computationally) much

closer to stochastic techniques (see below) than to the methods in the previous

paragraph and will not be further considered here.

Stochastic approaches involve Markov chain Monte Carlo (MCMC) sampling

and are far more computationally intensive than EM. MCMC is used in two

di�erent ways: to implement model selection criteria to actually estimate k (e.g.,

[2], [18], [26]); and, in a more \fully Bayesian" way, to sample from the full a

posteriori distribution with k considered unknown [19], [21]. Despite their formal

appeal, we think that MCMC-based techniques are still far too computationally

demanding to be useful in pattern recognition applications. For example, tests

reported in [21], using small samples (n = 245; 155; 82) of univariate data, require

100000 MCMC sweeps following a so-called burn-in period of another 100000

sweeps; this is a huge amount of computation for such small problems.



2.4 Initialization of EM

The EM algorithm requires an initial parameter setting b�(1)

(k) or an initial asso-

ciation of each observation to one of the components (i.e., an initial setting of

w
(i;1)
m ) [16], [31]. This is a critical issue because EM converges to a local maxi-

mum of the likelihood function: the �nal estimate depends on the initialization.

There are several di�erent approaches to deal with this di�culty. Running EM

several times, from random initializations, and then choosing the �nal estimate

that leads to the highest local maximum of the likelihood is a commonly used

technique (e.g., [17] and [25]). Another common procedure is to use some clus-

tering method to provide an initial partition of the data [17]. Finally, we mention

the deterministic annealing (DA) EM algorithm (DAEM); DA is a fast surrogate

of the (stochastic) simulated annealing approach to global optimization, which

has been successfully applied in several problems [27]. In particular, for mixture

estimation, DAEM avoids some of the initialization dependence of EM [10], [32],

[36]. All these choices pay a high price in terms of computational e�ciency.

3 The MMDL Criterion

It was shown in [25] that MDL/BIC (although simpler) performs comparably

with EBB and MML, although it sometimes slightly underestimates the true

k. A similar conclusion can be obtained from the many (20) tests described

in [20]. It was also reported in [11] and [29] that MDL/BIC tends to slightly

underestimate the true order. In order to overcome this problem, let us look

again at the MDL criterion in Eq. (11). The meaning of the MDL cost function

is the total code length of a two-part code for the observed data yobs and the

parameter estimate b�(k) (see [23], for details and motivation): �rst encode the

data, given b�(k); then, encode b�(k). Formally, Eq. (11) is of the form

CMDL

�
yobs;

b�(k)

�
= L

�
yobs;

b�(k)

�
= L

�
yobsj b�(k)

�
+ L

�b�(k)

�
; (12)

where L(yobsj b�(k)) = �L(b�(k);yobs) is the well-known Shannon's optimal

code length1. The second code-length, L( b�(k)), results from the following rea-

soning. To obtain �nite-length codewords for b�(k), its (real-valued) elements are

truncated to some �nite precision. With a coarse precision, L( b�(k)) is small but

the encoded parameters may be far from the optimal ones and so the �rst part

of the code may become longer. With a �ner resolution, the encoded parameters

will be close to the optimal ones, but longer codewords are required. As shown

1 As is usually done, we are ignoring the integer constraint on code-lengths and dis-

regarding that we are dealing with densities, not probability masses. Discretization

would lead to probability masses and a common (thus irrelevant) additional code

length term [23].



in [23], the optimal code-length for each real parameter, asymptotically for large

n, is (1=2) logn; this leads to Eq. (11).

In most problems where the MDL/BIC criterion is used, all data points have

equal importance in estimating each component of the parameter vector. This is

not the case in mixtures, where each data point has its own weight in estimating

di�erent parameters, as is clear from Eqs. (8) and (9). This fact is revealed if we

compute the Fisher information of a parameter of the m-th mode of the mixture

(denoted generically as �m) which leads to (see [31])

I(�m) = n�m I1(�m); (13)

where I1(�m) denotes the Fisher information associated with a single observation

known to have been produced by the m-th component density, i.e.,

I1(�m) = �E
�
@2

@�2m
log fY (yj�m)

�
:

What Eq. (13) shows is that a parameter �m \sees" an equivalent sample size

equal to n�m, rather than n. This is intuitively acceptable because �m will basi-

cally be estimated from the data that \was generated" by the m-th component

of the mixture; the expected amount of this data is precisely n�m. Applying this

fact, while keeping the classical MDL code-length for the mixing probabilities

(because these are estimated from all the data), we �nally obtain the MMDL

cost function

CMMDL

�b�(k); k
�
= �L

�b�(k);yobs

�
+
k � 1

2
logn+

N(1)

2

kX
m=1

log (n�m)

= �L
�b�(k);yobs

�
+
N(k)

2
logn+

N(1)

2

kX
m=1

log�m| {z }
< 0

(14)

where N(1) is the number of real parameters de�ning each component (see the

paragraph after Eq. (11)). The MMDL cost function can also be interpreted

from a BIC-type perspective as the inclusion of some of the o(1) terms that are

dropped to obtain the classical form.

In summary, the MMDL criterion introduces a lower penalty than MDL/BIC;

notice that the new term that appears in Eq. (14) when compared with Eq. (11)

is necessarily negative. This is a result of the identi�cation of the amount of data

which is e�ectively used in estimating the parameters of each component of the

mixture.

4 The Algorithm

To implement the MMDL criterion we propose a new (EM-based) algorithm. Let

kmax be some number known to be considerably larger than the true/optimal k



(say, ktrue) and kmin be another number such that, for sure, kmin < ktrue. The

basic structure of the algorithm is as follows:

Initialization:
Set k  kmax.

Let b�(1)

(k) be some initial k-component mixture estimate.

Main Loop:
While k � kmin, repeat:

{ Run EM, using b�(1)

(k) as initialization, until a stopping condition is

met. Store the resulting mixture parameter estimate b�(k).

{ Compute and store CMMDL

�b�(k); k
�
.

{ Obtain a (k � 1)-component mixture, \close" (in a sense to be

speci�ed below) to the k-component one speci�ed by b�(k).

Let b�(1)

(k�1) represent this (k � 1)-component mixture.

{ Set k  k � 1

Choosing the optimal k:
Find the minimum of the stored MMDL cost function values:

bkMMDL = argmin
k

n
CMMDL

�b�(k); k
�
; k = kmin; kmin + 1; :::; kmax

o
:

The �nal mixture parameter estimate is b�
(bkMMDL)

.

The crucial aspect of the algorithm is the use of a (k�1)-component mixture,

\close" to the current k-component one, to initialize the next run of EM. This is

done by looking for the pair of components that are closer to each other and less

probable and merge them into a single new component (see details below). For

this reason, our algorithm shares some of the spirit of agglomerative hierarchical

clustering schemes [7], thus we call it agglomerative EM (AEM). The �rst run

of EM, due to the excessive number of components, is somewhat insensitive to

initialization. Of course we are not claiming that AEM is guaranteed to �nd

the globally optimal mixture estimate; it is known that even MCMC may have

di�culties escaping from local maxima of the likelihood function [24].

AEM can be used with any criterion other than MMDL, or even when ktrue is

known: in this case, simply set kmin = ktrue and skip the phase where the optimal

k is chosen. Naturally, AEM can also be based on modi�ed versions of EM [16].

Finally, observe that the computational requirements of AEM are the minimum

possible for any EM-based method doing unknown order mixture �tting. EM

only has to be applied once for each value of k, instead of the common approach

of using a set of random initializations for each k.

4.1 Initialization.

For low dimensions (d = 1; 2), the initial mixture is composed of kmax compo-

nents uniformly spread over the region occupied by the observed data (de�ned



by the minimum and maximum observed values of each coordinate). For higher

dimensions, a better initialization is obtained by clustering the data into kmax
groups using successive binary splitting and K-means optimization at each stage

[7]. As long as kmax is large enough, AEM is quite insensitive to initialization.

4.2 Stopping Conditions for EM.

Each run of EM is stopped if at least one of the following two conditions is true:

Condition 1:

8>>>><>>>>:
max

�k b�(t)m � b�(t�1)m k
k b�(t)m k ; m = 1; 2; :::; k

�
< ��

and

max

�
k bC(t)

m � bC(t�1)
m k

k bC(t)
m k

; m = 1; 2; :::; k

�
< �C

(15)

Condition 2: min
nb�(t)m ; m = 1; 2; :::; k

o
< �min: (16)

Condition 1 checks if consecutive parameter estimates do not di�er signi�cantly;

in all the examples below, we set �� = �C = 0:001 and use in�nity norms k � k
1
.

Condition 2 looks for a component whose probability is becoming too small; we

typically use �min = 5 d=n. Condition 2 avoids one of the known problems of

EM mentioned earlier (convergence to the boundary of the parameter space).

4.3 Obtaining the (k � 1)-Component Mixture.

The (k � 1)-component mixture is obtained by merging two components of the

k-component one. We start by locating the pair of mixture components, say

m1 and m2, that are closer to each other and, simultaneously, less probable.

Speci�cally, we choose m1 and m2 as

(m1;m2) = argmin
(i;j)

n
(b�i + b�j)Ds hfY(yjb�i); fY(yjb�j)i ; i 6= j

o
; (17)

where Ds[fY(yjb�i); fY(yjb�j)] is the symmetric Kullback-Leibler (KL) divergence

[12], the standard dissimilarity measure between probability densities [12]. The

Jensen-Shannon divergence (see [13]) would be a natural candidate, because

it allows weighting di�erently the two probability functions being compared;

however, it does not have a closed form expression for Gaussian densities and

so we settled for the KL divergence. In the Gaussian case, the symmetric KL

divergence is [12]:

Ds
�N (yj�i;Ci);N (yj�j ;Cj)

�
=

1

2
tr
�
(Ci �Cj)

�
C�1
j �C�1

i

��
+
1

2

�
�i � �j

�T �
C�1
i +C�1

j

�
�1 �

�i � �j
�
:

If EM was stopped by Condition 2 (Eq. (16)), we force m1 to be the component

responsible for making it true. We then choose m2 by Eq. (17), �xing i = m1.



Consider now the sub-mixture �0m1
fY(yj�m1)+�

0

m2
fY(yj�m2), where �

0

m1
=

�m1=(�m1 + �m2) and �0m2
= 1 � �0m1

. Merging the two components of this

submixture is equivalent to �nding the parameters �� and C� of the \closest"

Gaussian density. If \closeness" is taken in the KL sense, then

(��;C�) = argmin
�;C
D ��0m1

N (yj�m1
;Cm1) + �0m2

N (yj�m1
;Cm1);N (yj�;C)� ;

which has a simple solution (see [34], Chapp. 12): �� and C� are the global mean

and covariance of the given two-component mixture, i.e.,

�� = �0m1
�m1

+ �0m2
�m2

(18)

C� = �0m1
(Cm1 + �m1

�Tm1
) + �0m2

(Cm2 + �m2
�Tm2

)� ����T : (19)

This means that when merging components m1 and m2 of the mixture, the

resulting component must retain the combined probability, mean, and covari-

ance. Assume, without loss of generality, that m2 = k, which can always be

achieved by resorting the components. Merging component m1 < k and m2 = k

of the k-component mixture given by f�m;�m;Cm; m = 1; :::; kg then yields a

(k � 1)-component mixture de�ned by f�0m;�0m;C0

m; m = 1; :::; k � 1g, where

�0m =

�
�m; m 6= m1

�m1 + �m2 ; m = m1;

�0m =

(
�m; m 6= m1
�m1�m1

+ �m2�m2

�m1 + �m2

; m = m1;

C0

m =

8<:Cm; m 6= m1

�m1(Cm1+ �m1
�T
m1

) + �m2(Cm2+ �m2
�T
m2

)
�m1 + �m2

� �0m1
�0

T
m1
; m = m1:

5 Experimental Results

This section is divided into two parts: the �rst one basically illustrates the work-

ing of the AEM algorithm showing how it evolves from a redundant mixture to

successively lower order ones, and how this avoids the need for careful initializa-

tion. The second part focuses on MMDL by presenting examples (with synthetic

and real data) where it overcomes the under-�tting tendency of MDL/BIC.

5.1 The AEM Algorithm

The �rst example uses 1000 samples from a mixture of 3 univariate Gaussians

with means �1= �2= 0, and �3= 6, and standard deviations �1= 1, �2=
p
6,

and �3 = 1; mixing probabilities are �1 = 0:3, �2 = 0:4, and �3 = 0:3. Fig. 1

shows AEM evolving from an 8-component mixture (after starting at kmax= 12)

to just two components. Observe the above mentioned multi-scale 
avor of the

method in the evolution from more erratic density estimates to smoother ones.
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Fig. 1. Mixture estimates for k = 8; 5; 3 (the true value), and 2, obtained by AEM.

Thin lines show the component densities multiplied by the corresponding probabilities,

while the thick line plots the resulting mixture. The gray bars represent a (normalized)

histogram of the observations.

The MMDL estimates are bk = 3, b�1 = 0:09, b�2 = 0:11, b�3 = 5:97, b�1 = p0:87,b�2 = p6:12, b�3 = p1:11, b�1 = 0:32, b�2 = 0:38, and b�3 = 0:30.

For the next example, 1500 samples were drawn from a mixture of 3 bivariate

Gaussians with �1=�3=0:3, �2=0:4, �1=�2=[�4; �4]T , �3=[3; 3]T ,

C1 =

�
1 0:5

0:5 1

�
; C2 =

�
6 �2
�2 6

�
; and C3 =

�
2 �1
�1 2

�
:

Fig. 2 shows the algorithm evolving from its initialization (a set of kmax = 9

similar and uniformly spread Gaussians) to the correct 3-component mixture.

Notice how di�erent the initial mixture is from the true one and how AEM

was able to overcome this poor initialization. The �nal parameter estimates areb�1 = [�4:03; �4:12]T , b�2 = [�4:01; �3:90]T , b�3 = [3:08; 2:91]T ,

bC1 =

�
1:07 0:56

0:56 0:88

�
; bC2 =

�
5:4 �1:89
�1:89 6:12

�
; and bC3 =

�
2:10 �1:14
�1:14 2:17

�
:

Finally, we study the well known IRIS data set2 that consists of 50 (4-

dimensional) samples of each of the three classes present: Versicolor, Virginica,

and Setosa. Starting with kmax = 8, both MMDL and MDL/BIC correctly se-

lected bk = 3. Using the corresponding parameter estimates to build a maximum

2 Available, e.g., at http://www.ics.uci.edu/pub/machine-learning-databases/
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Fig. 2. Initialization and sequence of mixture estimates for k = 9; 7; 6; 4, and 3 (the

ellipses are isodensity curves of each component).

a posteriori classi�er according to

bm(y(i)) = argmax
m

nb�m fY(y
(i)jb�m)o ;

we �nd that only two samples get misclassi�ed (one Versicolor is classi�ed as

Virginica and one Virginica as Versicolor). This is even a little better than the

three errors reported in [25]; more importantly, it is obtained without multiple

random starts of EM.

5.2 Comparing MMDL versus MDL/BIC

Univariate Data. We start by considering two real univariate data sets for

which MMDL and MDL/BIC yield di�erent estimates of the number of Gaus-

sian components: the Old Faithful geyser eruption durations (well known in the

density estimation literature [28]), and the enzyme activity data from [21]. Ta-

ble 1 reports the values of CMMDL (�) and CMDL/BIC (�) for several values of k for

these two data sets. Fig. 3 shows the resulting mixture density estimates. For

the Old Faithful data, MMDL allows an extra component (bkMMDL = 4) with

which the resulting mixture adjusts better to the skewness of the right portion

of the histogram. For the enzyme data, the additional component in the mix-

ture selected by MMDL yields a clearly better �t to the observed histogram. Of

course, in this real data cases, there is no underlying true mixture, and so there

is no way to tell what is the correct number of components and we must rely

on visual evaluation. An alternative would be to perform a (leave-one-out type)

cross validation study comparing the MDL/BIC and MMDL criteria.



k 1 2 3 4 5

Old Faithful MMDL 429.8 288.8 283.6 282.2 286.7

MDL/BIC 429.8 293.2 289.4 291.1 287.8

k 1 2 3 4 5

Enzyme MMDL 236.3 66.9 65.8 67.4 73.9

MDL/BIC 236.3 71.2 72.5 77.4 87.5

Table 1. MMDL and MDL/BIC cost function values for several values of k for the

Old Faithful and enzyme data sets.
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Fig. 3. Mixture estimates produced by the MMDL and MDL/BIC criteria for the Old

Faithful (top row) and the enzyme data (bottom row).

Multivariate Data. To test the MMDL criterion on multivariate data, we have

considered a mixture with 8 components on a 3D sample space. The component

means are located at the vertices of a cube of side �,

�1 =

2400
0

35 ; �2 =
24�0
0

35 ; �3 =
24 0

�

0

35 ; : : : ;�7 =
24 0

�

�

35 ; �8 =
24��
�

35
and all have unit covariance matrix Ci = diagf1; 1; 1g, for i = 1; 2; :::; 8. We

obtained 50 sets of 1200 samples each, for three di�erent separations among

the mixture components: � = 3, 3:5, and 4. Figure 4 shows, for these three

values of �, the number of times that each value of k was chosen by MMDL and

MDL/BIC. Notice how the performance of MDL/BIC degrades faster than that

of MMDL. For this test, since the goal is to study the behavior of the MMDL



and MDL/BIC criteria, not of the AEM algorithm, we have used kmax = 8 and

the true parameters as initialization.
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Fig. 4. Top row: histograms of the estimates of k (true value is 8) for � = 4, 3.5, 3.

Bottom row: examples of the �rst two components of the sample sets.

The MMDL criterion was also used in [33], for a Bayesian image classi�cation

problem. The class-conditional densities are represented by Gaussian mixtures,

learned via a vector-quantization (VQ) approach, with the MMDL criterion con-

trolling the size of each VQ. Given the very high dimensionality of the feature

space (> 100), N(1) is very high and MDL/BIC always yielded uselessly small

estimates of k. With the estimates provided by MMDL, the resulting Bayesian

classi�er exhibited very good performance.

6 Conclusions and Further Work

We have proposed a new criterion to select the number of components in Gaus-

sian mixtures and a new algorithm specially suited for mixture model estimation

with an unknown number of components. The new criterion, calledmixture MDL

(MMDL), is a simple modi�cation of the standard MDL/BIC, resulting from the

identi�cation of what can be called the equivalent sample size for each compo-

nent. The proposed algorithm is based on EM together with an agglomerative

step, thus it is called agglomerative EM (AEM). We have presented examples

illustrating the behavior of AEM and its robustness with respect to initialization

(although a more complete set of tests is still required). To compare MMDL ver-

sus MDL/BIC, we have performed experiments on real and synthetic data. All

the experiments con�rm that MMDL allows a better �t to the observed data.



Finally, we mention the parameterization of the covariance matrices (based

on eigen-decomposition), introduced in [1] (see also [4]). That parameterization

allows taking selected characteristics of the components to be common (for ex-

ample, same shape, arbitrary orientation). MMDL can also be used to perform

model selection among the options provided by that approach. The goal is to si-

multaneously choose the number of components and decide which characteristics

(if any) should be assumed common.
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