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Abstract. The goal of segmentation is to partition an image into a finite
set of regions, homogeneous in some (e.g., statistical) sense, thus being an
intrinsically discrete problem. Bayesian approaches to segmentation use
priors to impose spatial coherence; the discrete nature of segmentation
demands priors defined on discrete-valued fields, thus leading to difficult
combinatorial problems.

This paper presents a formulation which allows using continuous pri-
ors, namely Gaussian fields, for image segmentation. Our approach com-
pletely avoids the combinatorial nature of standard Bayesian approaches
to segmentation. Moreover, it’s completely general, i.e., it can be used
in supervised, unsupervised, or semi-supervised modes, with any proba-
bilistic observation model (intensity, multispectral, or texture features).

To use continuous priors for image segmentation, we adopt a formula-
tion which is common in Bayesian machine learning: introduction of hid-
den fields to which the region labels are probabilistically related. Since
these hidden fields are real-valued, we can adopt any type of spatial prior
for continuous-valued fields, such as Gaussian priors. We show how, under
this model, Bayesian MAP segmentation is carried out by a (generalized)
EM algorithm. Experiments on synthetic and real data shows that the
proposed approach performs very well at a low computational cost.

1 Introduction

Image segmentation has been one of the most studied problems in computer
vision. Although remarkably successful approaches have been proposed for spe-
cific domains in which the goals are well defined (e.g., segmentation of magnetic
resonance images, segmentation of remote sensing images), a general purpose
segmentation criterion remains an elusive concept. In the past couple of decades,
many different approaches, formulations, and tools have been proposed.

Most segmentation methods work by combining cues from the observed im-
age (via image features) with some form of regularization (or prior, in Bayesian
terms), embodying the concept of “acceptable” (or “a priori probable”) seg-
mentation. Arguably, all the work on image segmentation can be classified as
belonging to on one (or even both) of the following two research fronts:
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(a) Development of image features, and feature models, which are as informa-
tive as possible for the segmentation goal. Some of the most recent propos-
als combine intensity, texture, and contour-based features, with the specific
goal of mimicking human image segmentation [26]. Another recent approach
combining several types of features is reported in [27]. Classical examples for
texture-based segmentation include Gabor features [16], wavelet-based fea-
tures [29], co-occurrence matrices [11], features derived from Markov random
field local texture models [7], [8]. It’s possible to perform segmentation using
nonparametric statistical measures of texture similarity by resorting to pair-
wise clustering techniques [14]. The literature on texture features and models
is vast; [25] provides a reasonably recent survey. There are many other exam-
ples of features developed for specific domains, such as color segmentation,
segmentation of medical images, or segmentation of remote sensing images.

(b) Development of methods that impose some form of spatial regularity to the
segmentation, i.e., that integrate local cues (from features) into a globally co-
herent segmentation. The recent graph-based methods [28], [30], [32], achieve
this by formulating image segmentation as the partitioning of a graph. Spa-
tial coherence may also be achieved by constraining the class of image par-
titions which are considered by the segmentation algorithm (e.g., [13] and
[24] consider hierarchies of polygonal and quad-tree-like partitions, respec-
tively) or by imposing some prior on the length or the smoothness of the
region boundaries [34]; see recent work and many references in [17], which
also advances research front (a). In a probabilistic Bayesian approach, as
adopted in this paper, the preference for some form of spatial regularity is
usually formulated via a Markov random field (MRF) prior (see [20], for a
comprehensive set of references).

This paper belongs to research front (b): it describes a new way of introducing
spatial priors for Bayesian image segmentation. The proposed approach uses
priors on real-valued fields/images, rather than MRF priors for discrete labels,
thus removing any combinatorial nature from the problem. Our formulation,
is very general in that it can be used in supervised, unsupervised, or semi-
supervised manners, as well as with generative or discriminative features.

To open the door to the use of priors on real-valued fields/images for image
segmentation, we adopt an approach which is used in Bayesian machine learning:
introduction of a (collection of) real-valued hidden field(s), to which the region
labels are probabilistically related; these hidden field(s), being real-valued, can
then be given any type of spatial prior, e.g., it can be modelled as a (collection
of) Gaussian field(s). This approach is used in the very successful approach
to Bayesian learning of classifiers known as “Gaussian processes” [31]. In this
paper, Gaussian field priors are adopted as a means of encoding a preference
for spatially coherent segmentations. We show how the proposed approach can
be used in supervised, unsupervised, and semi-supervised modes, by deriving
(generalized) expectation-maximization (EM) algorithms for the three cases. In
the supervised case, the resulting segmentation criterion consists in minimizing a
convex cost function, thus initialization problems do not arise. If the underlying
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Gaussian process prior is stationary, the M-step can be implemented in a very
fast way using FFT-based processing in the Fourier domain. This is, arguably,
one of the key advantages of the proposed approach.

Finally, we should mention that our formulation is close, in spirit, to the
“hidden Markov measure fields” proposed in [22]; however, our hidden fields are
real valued, and totally unconstrained, thus much easier to model and manipulate
than measure fields. Recently, we have used a similar formulation to allow the
use of wavelet-based spatial priors for image segmentation [9].

In the next section, we introduce notation and the proposed formulation. In
Section 3, we present our segmentation criterion and derive the EM algorithm
for implementing it. Section 4 describes the extensions to unsupervised, semi-
supervised and discriminative segmentation. Finally, experiments are presented
in Section 5, and Section 6 concludes the paper.

2 Formulation

2.1 Images and Segmentations

Let L = {(n, m), n = 1, ..., N, m = 1, ..., M} be a 2D lattice of |L| = MN
sites/pixels on which observed images, and their segmentations, are defined. An
observed image x is a set of (maybe vector valued) observations, indexed by the
lattice L, that is, x = {xi ∈ IRd, i ∈ L}. A segmentation R = {Rk ⊆ L, k =
0, ..., K − 1} is a partition of L into K regions, in an exhaustive and mutually
exclusive way:

K−1⋃

k=0

Rk = L and
(
Rj

⋂
Rk = ∅

)
⇐ (j �= k).

In the sequel, it will be convenient to represent partitions by a set of binary
indicator images y(k) = {y

(k)
i , i ∈ L}, for k = 0, ..., K − 1, where y

(k)
i ∈ {0, 1},

such that (y(k)
i = 1) ⇔ (i ∈ Rk). We denote as y the set of all these binary

images, y = {y(0), ...,y(K−1)}, and as yi the set of all y
(k)
i for a given site

i, that is, yi = {y
(0)
i , ..., y

(K−1)
i }. Of course, y and R carry exactly the same

information.

2.2 Observation Model

Given a segmentation y, we follow the standard assumption that the observed
“pixels” are (conditionally) independently distributed,

p(x|y) =
K−1∏

k=0

∏

i∈Rk

p(xi|φ(k)) =
∏

i∈L

K−1∏

k=0

[
p(xi|φ(k))

]y
(k)
i

, (1)

where the p(·|φ(k)) are region-specific distributions. This type of model may be
used for intensity-based segmentation, for texture-based segmentation (each xi



Bayesian Image Segmentation Using Gaussian Field Priors 77

is then a d-dimensional vector containing the values of d local texture features),
or for segmentation of multi-spectral images (such as color images, or remote
sensing images, with each xi being in this case a d-dimensional vector, where
d is the number of spectral bands). The region-specific densities p(·|φ(k)) can
be simple Gaussians, or any other arbitrarily complex models, such as finite
mixtures, kernel-based density representations, or even histograms. When the
p(·|φ(k)) are fully known a priori, we are in the context of supervised segmenta-
tion with generative models. This is the case we will focus on first; later, it will be
shown how the approach can be extended to unsupervised and semi-supervised
scenarios, and to “discriminative features”.

The goal of segmentation is, of course, to estimate y, having observed x.
The maximum likelihood (ML) estimate, ŷML = argmaxy p(x|y), can clearly
be obtained pixel-by-pixel, due to the independence assumption. However, it’s
well known that pixel-wise segmentations may lack spatial coherence [20], [33].
To overcome this, one of the standard approaches consists in adopting an MRF
prior p(y), expressing the a priori preference for segmentations in which neigh-
boring sites belong to the same region (see [20] for details and references). Given
this prior, it is then most common to adopt the maximum a posteriori (MAP)
criterion, ŷMAP = argmaxy[log p(y) + log p(x|y)] (although there are other cri-
teria). Due to the discrete nature of y, finding ŷMAP involves a combinatorial
optimization problem, to which much research has been devoted [20]. A recent
breakthrough in MRF-type approaches (to segmentation [33] and other vision
problems [5]) is the adoption of fast algorithms based on graph cuts1.

2.3 Logistic Model

To keep the notation initially simple, consider the binary case (K = 2, thus each
yi = [y(0)

i , y
(1)
i ]). Instead of designing a prior for y (the field of discrete labels),

we consider a “hidden” (or latent) image z = {zi ∈ IR, i ∈ L}, such that

p(y|z) =
∏

i

p(yi|zi) with p(y(1)
i = 1|zi) =

ezi

1 + ezi
≡ σ(zi), (2)

where σ(·) is called the logistic function and, obviously, p(y(0)
i = 1|zi) = 1−σ(zi).

In general, for K regions, we need K hidden images z = {z(0), ..., z(K−1)},
where z(k) = {z

(k)
i ∈ IR, i ∈ L}. The region label probabilities are obtained via

a multinomial logistic model (also known as a “soft-max”),

p(y(k)
i = 1|zi) = ez

(k)
i

( K−1∑

j=0

ez
(j)
i

)−1

, k = 0, ..., K − 1, (3)

where zi = {z
(0)
i , ..., z

(K−1)
i }. Since these probabilities verify the normalization

condition
∑K−1

k=0 p(y(k)
i = 1|zi) = 1, one of the hidden images can be set to

1 See http://www.cs.cornell.edu/∼rdz/graphcuts.html for details and references.
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zero; without loss of generality, we set z(0) = 0 (see, e.g., [3]). Notice that
z = {z(1), ..., z(K−1)} is not under any type of constraint; any assignment of real
values to its elements leads to valid probabilities for each site of y.

2.4 Gaussian Random Field Prior

It is now formally simple to write priors for z, due to its unconstrained real-valued
nature. Among the several possibilities, we will focus here on what is arguably
the simplest choice: a Gauss-Markov random field (GMRF) prior defined on the
lattice L.

The goal of the prior on z is to express preference for segmentations such
that neighboring sites have high probability of belonging to the same region.
This is achieved by encouraging neighboring values of each z(k) to be close to
each other. A GMRF prior that embodies this preference is

p(z) ∝ exp
{

− 1
4

∑

i∼j

K−1∑

k=1

wi,j

(
z
(k)
i − z

(k)
j

)2
}

, (4)

where i ∼ j denotes that sites i and j are neighbors (in some neighborhood
system defined in L), and the wi,j are (non-negative) weights. It is clear that (4)
models the set of hidden fields z = {z(1), ..., z(K−1)} as a priori independent, i.e.,

p(z) =
K−1∏

k=1

p(z(k)) (5)

with

p(z(k)) ∝ exp
{

− 1
4

∑

i,j

wi,j

(
z
(k)
i − z

(k)
j

)2
}

, (6)

where the sum is now over all i, j because we encode the neighborhood structure
in the wi,j by letting wi,j = 0 when i and j are not neighbors. Let now z(k) =
[z(k)

1 , ..., z
(k)
|L| ]

T ∈ IR|L| denote an |L|-vector obtained by stacking all the z
(k)
i

variables (for a given k) in standard lexicographical order. Also, let W be the
|L| × |L| matrix with the wi,j weights. With this notation, we can write

p(z(k)) ∝ exp
{

− 1
2

(z(k))T ∆ (z(k))
}

. (7)

where

∆ = diag

{ |L|∑

j=1

w1,j , ...,

|L|∑

j=1

w|L|,j

}
− W (8)

is called the graph-Laplacian matrix [6]; in our case, the graph nodes are the sites
of the lattice L and the edge weights are given by wi,j (with wi,j = 0 denoting
absence of edge between nodes i and j). Notice that ∆ has (at least) one zero
eigenvalue since ∆[1, 1, ..., 1]T = 0; thus, p(z(k)) is an improper prior (it can’t
be normalized [2]), but this is will not be a problem for MAP estimation. In the
GMRF literature, ∆ is also called the potential matrix [1].
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3 Estimation Criterion and Algorithm

3.1 Marginal MAP Criterion

Let us summarize our model: we have the observed field x, and unobserved fields
y and z. These fields are probabilistically related by p(x|y), given by (1), p(y|z),
given by (2) - (3), and a prior p(z) = p(z(1)) · · · p(z(K−1)) with each p(z(k)) given
by (7). Given x, the posterior probability of y and z is thus

p(z,y|x) ∝ p(x|y) p(y|z) p(z). (9)

Among the several possible Bayesian decision theoretic criteria, we consider
the marginal maximum a posteriori (MMAP), given by

ẑ = argmax
z

{p(z)p(x|z)} = arg max
z

{
p(z)

∑

y

p(x|y) p(y|z)
}

(10)

where p(x|z) =
∑

y p(x|y) p(y|z) is the marginal likelihood obtained by summing
over (the huge set of) all possible segmentations.

The estimate ẑ is a probabilistic segmentation in the sense that it provides
the probability that each pixel belongs to each region, via the logistic model
(3). To obtain a hard segmentation, one can simply choose the a posteriori most
probable class k̂i at each site i which is

k̂i = arg max
k

{p(y(k)
i = 1|zi)}. (11)

Clearly, the maximization in (10) can not be done directly, due to the combi-
natorial nature of p(x|z). In the next subsections, we will derive an EM algorithm
for this purpose.

3.2 Why the EM Algorithm?

The following observations clearly suggest using the EM algorithm [23], treating
y as missing data, to solve (10):

– If y was observed, estimating z would reduce to standard logistic regression
under prior p(z), that is, one could solve ẑ = arg maxz[log p(y|z) + log p(z)].

– The so-called complete log-likelihood log p(y|z) (based on which we could
estimate z if y was observed) is linear with respect to the hidden y

(k)
i vari-

ables. In fact, log p(y|z) is the standard logistic regression log-likelihood with
an identity design matrix (see, e.g., [3], [12], [18]):

log p(y|z)=
∑

i

K∑

k=0

y
(k)
i log

ez
(k)
i

∑K−1
j=0 ez

(k)
i

=
∑

i

( K∑

k=0

y
(k)
i z

(k)
i − log

K∑

k=0

ez
(k)
i

)
. (12)

The EM algorithm proceeds by iteratively applying the following two steps [23]:

E-step: Compute the expected value of the complete log-likelihood, given the
current estimate ẑ and the observations x: Q(z|ẑ) = Ey[log p(y|z)|ẑ,x].

M-step: Update the estimate: ẑ ← ẑnew = arg maxz {Q(z|ẑ) + log p(z)}.
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3.3 The E-Step

The fact that the complete log-likelihood is linear w.r.t. the missing variables is
very important for EM: the E-step reduces to computing the expectation of the
missing variables, with these expectations then plugged into the complete log-
likelihood [23]. Moreover, as in finite mixtures [10], the missing y

(k)
i are binary,

thus their expected values are equal to their probabilities of being equal to one,
which can be obtained via Bayes law:

ŷ
(k)
i ≡ E[y(k)

i |ẑi,x] = p(y(k)
i = 1|ẑi,xi) =

p(xi|φ(k)) p(y(k)
i = 1|ẑi)

K−1∑

j=0

p(xi|φ(j)) p(y(j)
i = 1|ẑi)

. (13)

Notice that this is essentially the same as the E-step for finite mixtures [10],
with site-specific mixing probabilities given by p(y(k)

i = 1|ẑi) and with fixed
component densities p(x|φ(k)) (recall that we’re temporarily assuming that all
the φ(k) are known). Finally, Q(z|ẑ) is obtained by plugging the ŷ

(k)
i (which

depend on ẑ via (13)) into the logistic log-likelihood (12):

Q(z|ẑ) =
∑

i

( K∑

k=0

ŷ
(k)
i z

(k)
i − log

K∑

k=0

ez
(k)
i

)
. (14)

Notice that Q(z|ẑ) is formally a standard logistic regression log-likelihood, but
with the usual hard (binary) training labels y

(k)
i ∈ {0, 1} replaced by “soft”

labels ŷ
(k)
i ∈ [0, 1].

3.4 Solving the M-Step

Our M-step, ẑnew = arg maxz {Q(z|ẑ) + log p(z)}, consists in solving a logistic
regression problem with identity design matrix, given soft labels ŷ

(k)
i , and under

a prior p(z). It is well known that this problem does not have a closed form
solution and has to be solved by an iterative algorithm [3]. The standard choice
for maximum likelihood logistic regression (i.e., for maximizing only Q(z|ẑ) w.r.t.
z) is Newton’s algorithm [12]. However, as shown below, we will obtain a much
simpler method by adopting the bound optimization approach [19], introduced
for logistic regression in [3] and [4] (see also [18]).

Let us temporarily ignore the log-prior log p(z) and consider only Q(z|ẑ), sim-
ply denoted as q(z) for notational economy. In the bound optimization approach,
the maximization of q(z) is achieved by iterating the two following steps

ẑnew = argmax
z

l(z|ẑ), ẑ ← ẑnew, (15)

where l(z|ẑ) is a so-called “surrogate” function verifying the following condition:
q(z)− l(z|ẑ) attains its minimum for z = ẑ (see [19]). This condition is sufficient
to guarantee that this iteration monotonically increases q(z), i.e., q(ẑnew) ≥ q(ẑ).
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Thus, by running iteration (15) one or more times, after each application of the
E-step (equations (13)-(14)), the resulting procedure is a generalized EM (GEM)
algorithm [23].

It is important to notice that, in the supervised mode, the objective function
being maximized in concave (since the logistic log-likelihood and the logarithm
of the GMRF prior are both concave) and so there are no initialization problems.

From this point on, we assume that z is organized into a ((K − 1)|L|)-vector
by stacking the several z(k) vectors, i.e., z = [(z(1))T , ..., (z(K−1))T ]T . In [3], the
following surrogate for logistic regression was introduced:

l(z|ẑ) = q(ẑ) + (z − ẑ)Tg(ẑ) − (z − ẑ)T B(z − ẑ)
2

, (16)

where g(ẑ) is the gradient of q(z) computed at ẑ and B is a positive definite
matrix which provides a lower bounds for the (negative definite) Hessian H(z)
of q(z), i.e., H(z) � −B (in the matrix sense, i.e., H(z) + B is positive semi-
definite). Since q(z) − l(z|ẑ) ≥ 0, with equality if and only if z = ẑ, l(z|ẑ) is
a valid surrogate function; any other function differing from it by an additive
constant (irrelevant for (15)) is also a valid surrogate. Matrix B is given by

B =
1
2

(
IK−1 −

1K−1 1T
K−1

K

)
⊗ I|L|, (17)

where Ia denotes an a × a identity matrix, 1a = [1, ..., 1]T is an a-dimensional
vector of ones, and ⊗ is the Kroenecker product.

The following simple Lemma (proved in the Appendix) will allow further
simplification of the algorithm, by using a less tight, but simpler bound matrix.

Lemma 1. Let us define ξK as

ξK =
{

1/2 if K > 2
1/4 if K = 2.

(18)

Then, B � ξK I(K−1)|L|, with equality if K = 2.

This lemma allows us to replace B by ξK I(K−1)|L| in (16) and still have
a valid surrogate; the advantage is that in this new surrogate the several z(k)

become decoupled. Performing some simple manipulation, using the fact that
one is free to add to the surrogate any terms independent of z (thus irrelevant
for the maximization), leads to

l(z|ẑ) = −ξK

2

K−1∑

k=1

‖z(k) − v(k)‖2
2, with v(k) = ẑ(k) +

d(k)

ξK
, (19)

where ‖ · ‖2
2 denotes squared Euclidean norm,

d(k) =

⎡

⎢⎢⎣

ŷ
(k)
1 − p(y(1)

1 = 1|ẑ1)
...

ŷ
(k)
|L| − p(y(k)

|L| = 1|ẑ|L|)

⎤

⎥⎥⎦ , (20)
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and the p(y(k)
1 = 1|ẑ1) are given by the logistic model (3).

Since a surrogate for Q(z|ẑ) is also valid for Q(z|ẑ)+log p(z), and (see (5)-(7))

log p(z) =
K−1∑

k=1

log p(z(k)) = A − 1
2

K−1∑

k=1

(z(k))T ∆ (z(k)), (21)

(A is an irrelevant constant) the following decoupled update equation results:

ẑ(k)
new = argmin

z

{
‖z − v(k)‖2

2 +
zT ∆ z

ξK

}
= ξK

(
ξKI|L| + ∆

)−1
v(k), (22)

for k = 1, ..., K − 1.

3.5 FFT-Based Implementation of the M-Step

For a general matrix ∆ (i.e., an arbitrary choice of W), (22) is computation-
ally very expensive, requiring O(|L|3) operations. However, for certain choices
of W (correspondingly of ∆), we can resort to fast frequency-domain methods.
Suppose that wi,j only depends on the relative position of i and j (the Gaussian
field prior is stationary) and that the neighborhood system has periodic bound-
ary condition; in this case, both W and ∆ are block-circulant matrices, with
circulant2 blocks [1]. It is well known that block-circulant matrices with circu-
lant blocks can be diagonalized by a two-dimensional discrete Fourier transform
(2D-DFT): ∆ = UHDU, where D is a diagonal matrix, U is the matrix repre-
sentation of the 2D-DFT, and the superscript (·)H denotes conjugate transpose.
Since U is an orthogonal matrix (UHU = UUH = I), the inversion in (22) can
be written as

ẑ(k)
new = ξKUH

(
ξKI|L| + D

)−1
Uv(k), (23)

where (ξKI|L|+D)−1 is a trivial diagonal inversion, and the matrix-vector prod-
ucts by U and UH (the 2D-DFT and its inverse) are not carried out explicitly
but via the efficient (O(|L| log |L|)) fast Fourier transform (FFT). Notice that
this can be seen as a smoothing operation, applied to each v(k) in the dis-
crete Fourier domain. Since the computational cost of the E-step is essentially
O(|L|), as is obvious from (13), the leading cost of the proposed algorithm is
O(|L| log |L|).

Finally, we should mention that the condition of periodic boundary condi-
tions can be relaxed; in that case, the resulting matrix ∆ is block-Toeplitz with
Toeplitz blocks, but not block-circulant. Nevertheless, it is still possible to em-
bed a block-Toeplitz matrix into a larger block-circulant one, and still work in
the DFT domain [15].

2 Recall that a circulant matrix is characterized by the fact that each row is a circularly
shifted version of the first (or any other) row.
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3.6 Summary of the Algorithm

We now summarize the algorithm, showing that it is in fact very simple.

Inputs: Observed image x, number of regions K, observation models p(·|φ(k)),
matrix W or ∆, stopping threshold ε, number of inner iterations r.

Output: Estimates ẑ(k), for k = 1, ..., K − 1.
Initialization: For k = 1, ..., K − 1, set ẑ(k) = 0.
Step 1: Run the E-step (13), producing K images {ŷ(0), ..., ŷ(K−1)}.
Step 2: Store the current estimate: ẑold ← ẑ.
Step 3: Repeat r times (for k = 1, ..., K − 1):

Step 3.a: Compute the images d(k) (according to (20)).
Step 3.b: Compute the images v(k) = ẑ(k) + d(k)/ξK (see (19)).
Step 3.c: Compute ẑ(k)

new according to (23). Update ẑ(k) ← ẑ(k)
new.

Step 3.d: Go back to Step 3.a.
Step 4: If maxk ‖ẑ(k)

old − ẑ(k)‖∞ < ε, then stop; otherwise, return to Step 1.

4 Extensions

4.1 Unsupervised and Semi-supervised Segmentation

The model and algorithm above described can be extended to the unsupervised
case, where the parameters φ(k) of the observation models p(·|φ(k)) are consid-
ered unknown. In this case, the full posterior in (9) has to be modified to

p(z, φ,y|x) ∝ p(x|y, φ) p(y|z) p(z). (24)

where φ = {φ(0), ..., φ(K−1)}, assuming the absence of any prior on φ (although
one could easily be considered with little additional cost). Let us adopt again
the MMAP criterion, now jointly w.r.t. z and φ. The following observations can
now be added to those made in Section 3.2:

– If y was observed, estimating φ would be a simple ML parameter estimation
problem, based on the complete log-likelihood log p(x|y, φ).

– The complete log-likelihood (see (1)) is linear w.r.t. the missing variables y:

log p(x|y, φ) =
∑

i∈L

K−1∑

k=0

y
(k)
i log p(xi|φ(k)).

The algorithm presented in Section 3.6 can thus be modified by inserting an
extra step, say between steps 2 and 3:

Step 2.5: Update the observation model parameters according to the following
weighted ML criterion:

φ̂
(k)

= arg max
φ

∑

i∈L
ŷ
(k)
i log p(xi|φ).
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If, for example, the feature densities are Gaussians, p(·|φ(k)) = N (·|µ(k),C(k)),
these update equations coincide with those of the EM algorithm for Gaussian
mixture estimation:

µ̂(k) =
∑

i∈L ŷ
(k)
i xi

∑
i∈L ŷ

(k)
i

, Ĉ(k) =
∑

i∈L ŷ
(k)
i (xi − µ̂(k))(xi − µ̂(k))T

∑
i∈L ŷ

(k)
i

. (25)

In the semi-supervised case, instead of previous knowledge of {φ(0),...,φ(K−1)},
one is given a subset of pixels for which the exact true label/region is known.
In this case, the EM algorithm derived for the unsupervised case is applied, but
holding the labels of the pre-classified pixels at their known values.

Of course, in the unsupervised or semi-supervised cases, the log-posterior is
no longer concave, and the results will depend critically on the initialization.

4.2 Discriminative Features

The formulation presented above (and most of the work on probabilistic segmen-
tation) uses what can be classified as “generative feature models”: each p(·|φ)
is a probabilistic model that is assumed to describe how features/pixel values
are generated in each region. However, discriminative models, such as logistic
regression, Gaussian processes [31], support vector machines, or boosting (see
references in [12]) are currently considered the state-of-the-art in classification.

Observe that all the EM segmentation algorithm requires, in the E-step de-
fined in (13), is the posterior class probabilities, given the pixel values and the
current estimates ẑ(k). These estimates provide some prior class probabilities in
(13). Consider a probabilistic discriminative classifier, that is, a classifier that,
for each pixel xi, provides estimates of the posterior class probabilities p(y(k)

i =
1|xi), for k = 0, ..., K − 1 (this can be obtained, e.g., by logistic regression, or a
tree classifier). Let us assume that this classifier was trained on balanced data,
i.e., using the same amount of data from each class. It can thus be assumed that
these posterior class probabilities verify p(y(k)

i = 1|xi) ∝ p(xi|y(k)
i = 1), as can

be easily verified by plugging uniform class priors p(y(k)
i = 1) = 1/K in Bayes

rule. It is then possible to “bias” these classes, with given prior probabilities
p(y(k)

i = 1), for k = 0, ..., K − 1, by computing

p biased(y
(k)
i = 1|xi) =

p(y(k)
i = 1|xi) p(y(k)

i = 1)
∑K−1

k=0 p(y(j)
i = 1|xi) p(y(j)

i = 1)
.

This procedure allows using a pre-trained probabilistic discriminative classifier,
which yields p(y(k)

i = 1|xi), in our EM algorithm, by using the “biased” proba-
bilities in the E-step. We have not yet performed experiments with this discrim-
inative approach.

5 Experiments

In the first experiment, we consider a simple synthetic segmentation problem,
with known class models. Each of the four regions follows a Gaussian distribution
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Fig. 1. Top row: true regions and observed image. Bottom row: maximum likelihood
segmentation and the one obtained by our algorithm.

with standard deviation 0.6 and means 1, 2, 3, and 4. We have used (in this and
all the following examples) r = 4, and ε = 0.001. We choose the simplest possible
GMRF prior: wi,j = γ, if j is one of the four nearest neighbors of i, and is zero
otherwise. The true regions, observed image, the maximum likelihood segmen-
tation (obtained by maximizing (1) with respect to y), and the (hard, obtained
via (11)) segmentation produced by our algorithm are shown in Fig. 1. This is
comparable to what would be obtained by an MRF-based method; however, it
must be stressed that the algorithm herein proposed is optimal (in the sense
that we are minimizing a convex objective function), fully deterministic, and
fast (due to the use of the FFT-based M-step). This result illustrates the ability
of the proposed method to use Gaussian priors to regularize image segmentation
via the logistic modelling approach, producing well defined boundaries.

In Fig. 2 we show the final estimates ẑ(1), ẑ(2), and ẑ(3) as well as the corre-
sponding ŷ(1), ŷ(2), ŷ(3), and ŷ(4), obtained from the ẑ(k) via the logistic model
(3). Notice the higher uncertainty near the region boundaries. The hard segmen-
tation shown in Fig. 1 was obtained by choosing, for each site, the maximum of
the four ŷ(k) images.

The previous experiment was repeated using the unsupervised version of
the algorithm; a threshold-based segmentation was used for initialization. The
segmentation obtained is visually very similar to the one in Fig. 1, and it’s not
shown here, for the sake of space. The parameter estimates are within 1% of the
true values.
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Fig. 2. Top row: final estimates ẑ(1), ẑ(2), and ẑ(3). Bottom row: corresponding ŷ(1),
ŷ(2), ŷ(3), and ŷ(4), obtained by the logistic model (3).

Fig. 3. Observed image, maximum likelihood segmentation, and segmentation obtained
by our algorithm

Fig. 4. Observed image, maximum likelihood segmentation, and segmentation obtained
by our algorithm
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For segmentation of real images, the results depend critically on the features
and feature models used, and that is not the focus of this paper. We will only
show two examples of color image segmentation (d = 3), using Gaussian den-
sities for each region. In Fig. 3, the goal is to segment the image into three
regions: clothe, skin, and background. Fig. 4 shows a figure-ground segmenta-
tion problem. The results shown were produced by the unsupervised version of
our algorithm, initialized with the ML segmentations which result from fitting
mixtures of Gaussians to the observed (RGB) pixels.

6 Summary and Conclusions

A new formulation for Bayesian image segmentation was introduced. This ap-
proach allows using priors for continuous-valued fields as regularizers for im-
age segmentation; in particular, it was used with Gaussian field priors, which
(if stationary) can be easily and efficiently manipulated in the frequency do-
main using the FFT algorithm. An EM algorithm was derived for supervised
segmentation; it was shown how this algorithm is extended to handle unsu-
pervised and semi-supervised problems, as well as discriminative features.
Preliminary experiments show that the proposed approach has promising
performance.

Future research will include a thorough experimental evaluation of the
method, namely in comparison with graph-based and MRF-based methods. We
are currently developing criteria for selecting the number of classes/regions, fol-
lowing the approach in [10].

Appendix: Proof of Lemma 1

Recall (see (17)) that

B =
1
2

(
IK−1 −

1K−1 1T
K−1

K

)
⊗ I. (26)

For K = 2, it is obvious that B = I/4.
For K > 2, the matrix inequality I/2 � B is equivalent to λmin(I/2 − B) ≥

0. Now, since λi(I/2 − B) = (1/2) − λi(B), we need to show that λmax(B)
≤ (1/2).

To study the eigenvalues of B, the following fact (see, e.g., [21]) is used: let M
and P be m×m and p×p matrices, with eigenvalues {λ1, ..., λm} and {γ1, ..., γp},
respectively; then, M ⊗ P has eigenvalues {λi γj , i = 1, ..., m, j = 1, ..., p}.
Since 1 is a vector with K − 1 ones, 11T is a rank-1 matrix with eigenvalues
{0, ..., 0, K − 1}; thus, the eigenvalues of (I − (1/K)11T ) are {1, ..., 1, 1/K}.
Because the eigenvalues of I are of course all ones, the maximum eigenvalue of
B is λmax(B) = 1/2.
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