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Abstract

This paper describes a boundary estimation scheme
based on a new adaptive approach to B-spline curve fit-
ting. The number of control points of the spline, their lo-
cations, and the observation parameters, are all considered
unknown. The optimal number of control points is estimated
via a new minimum description length (MDL) type criterion.
The result is an adaptive parametrically deformable contour
which also estimates the observation model parameters. Ex-
periments on synthetic and real (medical) images confirm
the adequacy and good performance of the approach.

1. Introduction

1.1. Snakes and deformable templates/models

Snakes and their conceptual descendents have been often
proposed to deal with contour/boundary estimation prob-
lems in several application contexts. A relevant example
is medical imaging, where contour estimation is the funda-
mental first step of many automatic image analysis systems.

As proposed in [15], a snake is a virtual object (in the
image plane) which can deform elastically (thus possess-
ing internal energy) and which is under the influence of a
potential field (thus having external/potential energy) func-
tion of image features of interest. The equilibrium (minimal
energy) configuration is a compromise between smoothness
(enforced by the elastic nature of the model) and proximity
to the desired image features (by action of the external po-
tential). Several drawbacks of conventional snakes, such as
its “myopia” (use of strictly local data), have stimulated a
great amount of research [1], [2], [4], [8], [17], [18], [21],
[26]. One of the main problems is its non-adaptiveness,
with parameters having to be specified by the user.

Deformable templates (DT) and deformable models
(DM) constitute another class of approaches to con-
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tour/object estimation. In DM, parametric shape represen-
tations are used, contrasting with the explicit descriptions
used by snakes. In DT, some basic shape suffers deforma-
tions to fit the desired image features. Fundamental work
on DT and DM is [11], [12]; see also [13], [14], [23], and
[25]. Again, a critical difficulty is the lack of adaptiveness;
parameters have to be previously specified.

1.2. Bayesian point of view

Snakes are interpretable as maximum a posteriori (MAP)
Bayesian estimators, with the internal and external energies
being associated with the prior and the likelihood function,
respectively [8], [24]. The same is true for DT, where a
prior biases the estimate towards the template shape [11],
[13], [23]. In DM, however, it is common not to use a
deformation energy (a prior) if the model itself guarantees
regularity/smoothness of the represented shapes; a maximum
likelihood (ML) interpretation is still valid. These proba-
bilistic views have the advantage of giving precise meaning
(not just physical analogies) to the involved entities; e.g.,
the likelihood function can be rigorously derived from an
observation model rather than just from common sense.

1.3. Proposed approach

We propose an adaptive smooth boundary estimation
scheme, based on B-spline representations, which can be
classified as an adaptive DM. A statistical estimation frame-
work is adopted, with all the parameters governing the in-
volved models being taken as unknown.

When using B-spline-based contour descriptors, a key is-
sue is the choice of the number of control points. We address
it by viewing B-spline fitting as an ML estimation problem
and introducing a suitable MDL-type criterion1. The result-
ing adaptive order B-spline descriptor is then used to build
a DM which also estimates the observation parameters.

1Recently, MDL-type criteria have been proposed for several problems
in computer vision and image processing (see [9] and references therein).



Although conventional potentials based on the image gra-
dient are compatible with the proposed adaptive criterion,
we adopt here a region-based approach [8], [21], [26]. This
means that the likelihood function of the contour position
depends on all the image (split into inner and outer regions),
not just on a narrow stripe along the contour (as in snakes).
This strategy works in situations where gradients fail (e.g.,
regions of equal mean) and is robust against local artifacts.

2. B-splines, curves, and closed curves

2.1. Splines and B-splines

Splines are piecewise polynomials widely used in com-
puter graphics, computer vision, and image processing to
build efficient parametric descriptions/approximations of
functions, curves, and surfaces [3], [5], [7], [10], [22].

Let ft0 � t1 � ::: � tkg � [t0; tk] � IR, the set of
so-called knots, be given. By definition, spline functions
are polynomial inside each interval [ti�1; ti], and exhibit a
certain degree of continuity at the knots [5].

The set fBmk (t); k = 0; ::; k�m� 1g of B-splines of
degree m constitutes a basis (though a non-orthogonal one)
for the (k�m) - dimensional linear space of all piecewise
polynomials (on [tm; tk�m]) which are Cm�1 continuous
at the knots; the elements of this space (the splines) can then
be represented as

f(t) =

k�m�1X
i=0

ciB
m
i (t); t 2 [tm; tk�m]; (1)

each basis function (B-spline) Bmk (t) depends on a set of
knot values ftk; :::; tk+m+1g (for details, see, e.g., [5], [7]).

The IR2 version of Eq. (1),

v(t) � [x(t) y(t)] =

k�m�1X
i=0

ciB
m
i (t); t 2 [tm; tk�m]

describes an open curve on the plane, where the ci � [cxi c
y
i ]

are now 2D vectors called control points.
Expressing closed curves requires the periodic extension

of the knot sequence, ft̃j ; j 2 Zg with t̃j = tjmodk [10].
These knots can be seen as points along a circumference
of perimeter (tk � t0). Also, a set of k periodic B-splines
fB̃

m
k (t); k=0; ::; k�1g is obtained by the periodic expansion

(of period (tk � t0)) of the aperiodic ones [10]. If the knots
are equispaced (t̃i � t̃i�1 = �), the B-splines are termed
uniform and only differ by shifts, B̃mi+1(t) = B̃

m
i (t � �).

Closed k-knots spline curves are then functions of period
(tk� t0); they can be written as linear combinations of k
periodic basis function (the space is now k-dimensional):

f (t) =

k�1X
i=0

ciB̃
m
i (t); t 2 IR: (2)

Although it is a common practice to use quadratic or
cubic (m = 2; 3) B-splines [7], our technique is valid for
any degree; thus, we will drop the superscript m. Also, we
only address the periodic case (of interest for boundary rep-
resentation), although the concepts also apply to aperiodic
B-splines.

2.2. B-spline curve fitting

Take the problem of finding the degree - m periodic
spline, on a given set of knots ft0; t1; :::; tkg, that best fits
N pairs f(si; f(si)); i = 0; :::; N � 1g, with k � N

(usually k � N ). With f = [f(s0) � � � f(sN�1)]
T ,

c = [c0 � � � ck�1]
T , and B = [Bij ] with Bij = B̃j(si),

the least squares criterion reads

bc = arg min
c
kf�Bck

2
=

�
B
T
B

��1
B
T
f � B

y
f ; (3)

where B
y is the pseudo-inverse of B; its null-space is

N (B) = f0g, so
�
B
T
B

��1
exists. Let g = Bbc = BB

y
f �

B
?
f , where B

? is the orthogonal projector onto the (k-
dimensional) range space of B (denotedR(B)).

Now consider a common situation in many applications
where N points (in the image plane) are given:

v =

264 x0 y0
...

...
xN�1 yN�1

375 =

264 x(s0) y(s0)

...
...

x(sN�1) y(sN�1)

375 :
The periodic spline that best fits them is sought, but two
key elements (essential to obtain B) are missing: the si’s
to which the xi’s and the yi’s correspond, and the knots
ft0; :::tkg. Several strategies have been proposed, each
having specific advantages and drawbacks [3], [5], [7]. The
simplest one, and most convenient for our purposes, is the
uniform assignment: take tj = j, for j = 0; : : : ; k�1 and
si = ik=N , for i = 0; : : : ; N�1. We can see the knots and
the si’s as defining uniform partitions of a circumference of
perimeter k. Given v and k, we buildB (it only depends on
k and N ), compute By, and estimate the control points as

bc =

264 ĉx0 ĉ
y
0

...
...

ĉxk�1 ĉ
y

k�1

375 = B
y
v: (4)

Finally, notice that Eq. (3) (and (4)) can be interpreted as
an ML estimator if the observations f are modelled as white
Gaussian noise (variance �2) contaminated versions of an
“ideal” dicretized spline Bc, i.e. f = Bc+ n. Formally:

p(f jc; �2
) =

�
2��2��N

2 exp

(
�

kf �Bck
2

2�2

)
(5)

bc = arg max
c

�
logp(f jc; �2

)

	
= B

y
f (6)

Notice that bc does not depend on �2.



3. Estimating the number of knots

We now focus on how to choose k, the number of control
points (knots). To simplify the notation, we address the
scalar case; curves on a plane are simply a pair of scalar
splines. Clearly, minimizing the error variance is not a
useful criterion; the (trivial) solution would be the largest
possible k. (Note: in the sequel, writing c(k), B(k), and
�2
(k), is meant to stress their dependency on k.)

3.1. MDL criterion

To estimate k, we adopt an MDL-type criterion (see [19]
and references therein) to the current problem.

The first key fact behind MDL is: the ML estimate
corresponds to the Shannon code for which the observa-
tions have the shortest code-length [19]; in fact, Shannon’s
optimal code-length for f , given c(k) and �2, is simply
L(f jc(k); �

2
) = � log p(f jc(k); �2

) [19]. It can be argued
that only discrete data have finite code-lengths. However, as
recently noted in [20], these may be obtained by discretiz-
ing a density to an arbitrary precision; abuse of the term
“code-length” is convenient and harmless.

The second fundamental fact is that the parameters them-
selves are also part of the code. A code word alone can not
be decoded by itself; only a full knowledge of p(f jc(k); �2

)

(i.e., of its parameters) allows reconstructing the code and
respective decoder. Accordingly, the MDL estimate (which
unlike in Eqs. (5)-(6), depends on the unknown �2) is�dc(k);c�2

�
=arg min

c(k);�
2

�
L(f jc(k); �

2
)+L(c(k); �

2
)

	
; (7)

where L(c(k); �
2
) is the parameter description length. We

assume that each parameter has a constant description
length, i.e. L(c(k); �

2
) = �k. The minimization in Eq.

(7) can be split into three nested ones as

min
k

�
�k + min

�2

�
min
c(k)

�
� logp(f jc(k); �

2
)

	��
:

The inner minimization corresponds to the ML estimate in
Eq. (6). The one w.r.t. �2, yields its ML estimate, given the
obtained estimate bc(k); it is thus a function of k and we will

denote it as c�2
(k). After some manipulation,

min
�2

�
min
c(k)

�
� logp(f jc(k); �

2
)

	�
=

N

2
log
�

2�ec�2
(k)

�
where c�2

(k) = kf �B
?
(k)fk

2=N (8)

(recall that B?(k) = B(k)B
y

(k)). Finally, dropping all addi-
tive constants,

bk = arg min
k

�
N

2
logc�2(k) + �k

�
: (9)

From bk, we also immediately have dc(k) = (B
(bk))yf .

3.2. The parameter description length

Specifying � is one of the critical features of MDL-type
criteria. Originally, MDL used the (asymptotical) code-
length � =

1
2 logN for real parameters [19]; it makes sense

when all parameters are estimated from all the data, i.e., their
precision should/can increase with the data set size. Control
points are local parameters, i.e., they only depend on a few
data points; then, it is senseless for � to grow with the
number of data points. Alternatively, let " be the numerical
accuracy with which the elements of c(k) are written (the
minimal possible difference between values), and let w be
the range they span; then, clearly,

�k = k log
w

"
= k

�
log(w) � log(")

�
: (10)

We neglect the necessary rounding up to the closest integer.
Eq. (10) is still not useful unless we knoww and the optimal
". However, for curves on digital planes (digital images),
a natural choice arises: since all coordinates are integers,
" = 1, and since a curve is expressed by two scalar splines,
� = logwx + logwy = log(wxwy), where wx and wy are
the width and height (in pixels) of the image. Finally, with
�2
x;(k) and �2

y;(k) denoting the variances for the x and y

coordinates, �2
(k) � (�2

x;(k) + �2
y;(k))=2, and w � wxwy,

we have bk = arg min
k

n
N logc�2

(k) + k logw
o
; (11)

which has the following reasonable properties: (a) for given
N and w, increasing k decreases N logc�2

(k) but increases
k logw, thus forcing a compromise between the two terms;
(b) a largerN (more data points) gives more relative weight
to the error variance, i.e., more control points are allowed to
try to decrease it; (c) when the coordinates range (wx,wy, or
both) increases, the variance term has less relative weight,
i.e., a smaller fitting precision is imposed.

Finally, we point out that although MDL is not (concep-
tually) a Bayesian criterion [19], Eq. (7) is interpretable as a
MAP estimator with the priorp(c(k); �2

) / expf�k logwg.
In [3], p(k) / exp

�
k(1�m2

+m) log( N2� )
	

was pro-
posed; there, the penalty on k grows with N , which (see
above) is not reasonable. Moreover, it makes no sense for
(perfectly valid) degree-1 splines (i.e., polygons) because
for m = 1, p(k) becomes an increasing function of k.

3.3. Two examples

Figs. 1 – 4 report two examples of adaptive cubic (i.e.,
m = 3) B-spline fitting which, although not the final goal of
this paper, is a useful tool in itself. Notice how the second



(more complex) shape requires more control points (bk= 20)
than the first one (bk = 13).
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Figure 1. Data points (�), estimated spline
(solid line), and control points (o).
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Figure 2. Description length (minimum at 13)
and error variance plots (relative to Fig. 1).
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Figure 3. Data points (�), estimated spline
(solid line), and control points (o).
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Figure 4. Description length (minimum at 20)
and error variance plots (relative to Fig. 3).

4. B-splines for contour estimation

4.1. Observation model

Consider the observed image I (a wx �wy array of gray
levels) as a random function of an object whose (closed)
boundary v is smooth in the sense that it is described by
a discretized uniform periodic spline with some (unknown)
control point vector c(k), i.e., v = B(k)c(k). Since the goal
is to estimate k and c(k) from I, full specification of the im-
age model is needed. Althoughother choices are compatible
with our approach, let us assume: (a) conditional indepen-
dence, i.e., given the contour, all the pixels are independent;
and (b) homogeneity, i.e., all the pixels in the inner (outer)
region have identical distributionscharacterized by the same
parameter vector �in (�out). Then, with � � [�in;�out],

p(Ijc(k);�) = p(Ijv;�) =Y
(i;j)2I(v)

p (I(i;j)j�in) �

Y
(i;j)2O(v)

p (I(i;j)j�out)

with v=B(k)c(k), where I(i;j) stands for the value of pixel
(i; j), while I(v) andO(v) are, respectively, the inside and
outside regions of contourv;p(I(i;j)j�in) and p(I(i;j)j�out)
are the pixel-wise conditional probabilities, of the inner and
outer regions, respectively.

4.2. Estimation criterion

Any adaptive scheme must estimate, not only c(k), but
also�, based on the likelihood function. An obvious choice
would be the ML criterion; however, as in Section 2.2, it can
not be used to estimate k. Then, we use the MDL criterion
proposed above (recall that w = wxwy):�dc(k); b��=arg min

c(k);�

�
� logp(Ijc(k);�) + k logw

	
:



This minimization can, as above, be rearranged into

bk = arg min
k

(
k logw� max

�;c(k)

�
logp(Ijc(k);�)

	)
; (12)

however, unlike in the fitting problem above, the inner max-
imization can not be split into nested maximizations with
respect to c(k) and �. By now, let us simply denote the
result, which is a function of k and I, as G(I; k); thenbk = arg min

k
fk logw � G(I; k)g : (13)

5. Algorithms

5.1. Solving for c(k), with fixed k and �

Our first building block is the implementation of the in-
ner maximization in Eq. (12) for fixed k and �. The
maximization w.r.t. c(k) can be rewritten as a constrained
maximization with respect to v,

max
c(k)

�
logp(Ijc(k);�)

	
= max
v2R

�
B(k)

�flogp(Ijv;�)g ;

where R
�
B(k)

�
is the range space of B(k), which means

that the search is constrained to contours that can be written
as v = B(k)c(k), for some c(k). To solve it, we use the
gradient projection method [16]. Of course, being an ascent
algorithm, it may be stuck in local maxima; however, the
experimental results show that this is seldom a problem with
the adopted region-based model. Formally:

Algorithm 1
Inputs: k, �, and an initial valid contour bv(0)2R(B(k)).
Output: a contour estimate bv2R(B(k)).
Initialization: Build B(k), compute B?(k), let n = 0.

Step 1: Compute a small step in the direction of the gradient
with respect to the contour

�v = " sgn
�
r

�
logp(Ijv;�)

� ���
v=bv(n)

�
; (14)

sgn is a coordinate-wise vector sign function.

Step 2: Project �v onto R
�
B(k)

�
, and update the contour

estimate as bv(n+1)
= bv(n) +B

?
(k)�v: (15)

Step 3: If kbv(n+1)
�bv(n)k<�, stop, output bv = bv(n+1); if

not, increment n, go back to Step 1.

Since the coordinates are (integer) pixel locations, the
gradient in Step 1 is approximated by discrete differences.
It is possible to show that this gradient is always normal to
the contour [26]. Parameter " should be kept small to avoid
instabilities near the minima (in the examples ahead, " = 1,
although variable step methods can be devised).

5.2. Solving for � and c(k), with fixed k

Here, we use an iterative estimation/maximization
scheme having Algorithm 1 as one of its steps. Although
conceptually related to the expectation-maximization (EM)
algorithm [6], it is not an EM algorithm.

Algorithm 2

Inputs: k, and an initial valid contour bv(0)2R(B(k)).

Outputs: estimates b� and bv
Initialization: Let q = 0.

Step 1: Given bv(q), compute the ML estimate b�(q) �

[b�(q)in
b�(q)out] according to

b�(q)in = arg max
�in

8><>:
Y

(i;j)2I
�bv(q)

�p (I(i;j)j�in)

9>=>; ; (16)

an equivalent expression yields b�(q)out.

Step 2: Run Algorithm 1, providing k, b�(q), and bv(q) as
inputs. The output is an updated contour estimatebv(q+1) (which is still inR(B(k))).

Step 3: If kbv(q+1)
�bv(q)k < �, stop and output b� = b�(q+1)

and bv = bv(q+1); else, increment q, return to Step 1.

The exact form of Eq. (16) depends on the image model.
In the experiments reported below, we use Gaussian distri-
butions which, together with the independence assumption,
lead to simple and computationally attractive estimates.

Finally, from Eqs. (12) and (13),G(I; k)= logp(Ijbv; b�),
with the b� and bv provided by Algorithm 2. Its particular
form depends on the image model; in the Gaussian case,

�G(I; k) =
Nin

2
logc�2in(k; I) +

Nout
2

logc�2out(k; I)

where Nin and Nout are, respectively, the number of image
pixels inside and outside the estimated contour.

5.3. Solving with respect to k

The complete scheme simply proceeds as follows. For
each k in a given set fkmin; :::kmaxg, run Algorithm 2 us-
ing each obtained contour estimate to initialize the next
run (of course, an initial estimate is needed for the first
run) and storing the output estimates. From these, compute
(k logw�G(I; k)) for each k, find the minimum, and select
the corresponding contour and parameter estimates.



6. Experiments

The first two examples (Figs. 5–8) use synthetic images.
In Fig. 5 the regions have equal variance (�in = �out = 60),
but different mean (�in = 80, �out = 180), while in Fig.
7 they have equal mean (�in = �out = 120) and different
variance (�in = 40, �out = 120). The description lengths
(minima for k = 12 and k = 10, respectively) are plotted in
Fig. 8. The parameter estimates are: for Fig. 5, b�in=80:89,b�out = 179:49, b�in = 61:05, b�out = 60:44; for Fig. 7,b�in=120:35, b�out=119:72, b�in=41:23, b�out=119:21.
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Figure 5. Synthetic image and estimated con-
tour (initialization is shown by broken curve).
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Figure 6. Evolution of the estimated shape
(Fig. 5), for k = 4, k = 7, k = 9, and k = bk = 12.

The final examples consider three medical images: two
MRI’s (Figs. 9 an 10) and an intracoronary echographic
image (Fig. 11). Note how the estimates are unaffected by
the fact that the initial contours are near high-gradient areas.

We stress that the only user intervention is contour ini-
tialization which, as the examples show, is not critical;
of course, for particular applications, ad hoc initialization
methods have to be devised. Finally, we mention that the
results were obtained with a MATLAB implementation;run-
ning times are from 1 to 5 min. (on a Sun SPARC 20).
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Figure 7. Synthetic image and estimated con-
tour (initialization is shown by broken curve).
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Figure 8. Evolutions of the description
lengths for the examples of Figs. 5 and 7.

7. Concluding remarks

We have introduced a new approach to unsupervised
smooth contour estimation based on a new adaptive B-spline
representation. All the parameters governing the involved
models (contour and image) are considered unknown and
estimated from the data. Examples were presented, us-
ing synthetic and medical ultrasound images, showing the
ability of the proposed method to estimate contours in an
unsupervised manner, i.e. adapting to unknown shapes and
observation parameters. In the case of the synthetic images,
the good match between the estimated and the known true
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Figure 9. Heart MR image (bk = 10).
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Figure 10. Brain MR image (bk = 9).
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Figure 11. Intracoronary echo image (bk = 13).

parameters testifies to the good performance of the approach.
Future work will consider more elaborate region models

(e.g., different textures); the proposed formulation supports
any image model with, of course, the corresponding im-
pact on Eqs. (14) and (16). Adaptive non-uniform knot
placement is also a goal which we are currently pursuing.
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