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ABSTRACT
In several imaging inverse problems, it may be of interest to en-
courage the solution to have characteristics which are most naturally
expressed by the combination of more than one regularizer. The re-
sulting optimization problems can not be dealt with by the current
state-of-the-art algorithms, which are designed for single regulariz-
ers (such as total variation or sparseness-inducing penalties, but not
both simultaneously). In this paper, we introduce an iterative algo-
rithm to solve the optimization problem resulting from image (or sig-
nal) inverse problems with two (or more) regularizers. We illustrate
the new algorithm in a problem of restoration of “group sparse” im-
ages, i.e., images displaying a special type of sparseness in which the
active pixels tend to cluster together. Experimental results show the
effectiveness of the proposed algorithm in solving the corresponding
optimization problem.

Index Terms— Image restoration; inverse problems; regulariza-
tion; iterative algorithms.

1. INTRODUCTION

1.1. Problem Formulation

Most approaches to linear inverse problems (LIPs) in imaging (such
as image denoising, image restoration, image reconstruction, com-
pressed sensing) define a solution x̂ as a minimizer of an objective
function

f(x) =
1

2
‖y −Kx‖2 + λ Φ(x), (1)

where K : Rn → Rm is the (linear) observation (or direct) operator
(i.e., an m× n matrix), Φ : Rn → R is the so-called regularization
function (or penalty function), and λ ∈ [0, +∞[ is the regularization
parameter [2], [3], [11], [13], [21]. The intuitive meaning of f is
clear: its minimizers reach a compromise between lack of fitness
to the observed data (as measured by ‖y −Kx‖2) and a degree of
“undesirability” (as quantified by Φ(x)); the relative weight of these
two terms is controlled by the regularization parameter λ.

State-of-the-art performance in solving imaging LIPs is obtained
with total-variation (TV) [6], [8], [11], [21] as well as wavelet-based
regularizers [10], [15]. Much research has been carried out recently
on efficient methods for minimizing f with these types of regular-
izers; see [3], [13], [16], [17], [19], for very recent work on this
research front, and comprehensive literature reviews.
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In this paper, we consider regularizers which are linear combi-
nations of “simpler” regularizers, i.e., objective functions with the
form

g(x) =
1

2
‖y −Kx‖2 + λ1 Φ1(x) + λ2 Φ2(x). (2)

The sense in which Φ1 and Φ2 are “simpler” than their linear combi-
nation is the following: problem (1), with Φ = Φ1 or Φ = Φ2, can
be solved efficiently by using, e.g., one of the methods in [3], [13],
[17], or [24]; however, problem (2), with λ1 6= 0 and λ2 6= 0, is, in
general, not directly solvable by these methods.

The interest of this type of compound regularizers stems mainly
from the following observation: In several problems, it may be de-
sired to encourage the solution to exhibit characteristics that are not
easily enforced by a single regularizer. For example, one may be
looking for image estimates which are sparse and, simultaneously,
piece-wise smooth (i.e., have a sparse set of discontinuities). Al-
though sparseness may be encouraged by an `1 (or `p, with p ≤
1) regularizer, and piece-wise smoothness can be favored by a TV
penalty, there is no “simple” regularizer that encourages these two
characteristics simultaneously. As above, “simple” here means that
the resulting objective function can be efficiently minimized.

The objective function (2) can also be seen as the Lagrangian
associated to the following constrained optimization problems:

min
x

φ1(x) + β φ2(x) (3)

subject to ‖y −Kx‖2 ≤ ε,

and

min
x

‖y −Kx‖2 (4)

subject to φ1(x) ≤ c1

φ2(x) ≤ c2.

Consequently, by attacking the unconstrained problem (2) we are
also indirectly attacking these constrained formulations.

1.2. Previous Work

A problem with the form (3) has been suggested in [20] for the re-
construction of magnetic resonance images, where Φ1 is the `1-norm
of a wavelet transform and Φ2 the TV norm. However, no algorithm
is proposed to solve it, and only Φ1 was used in experiments.

An objective of the form (2) has been considered in [22], in the
context of image decomposition problems; again, Φ2 is a TV regu-
larizer, while Φ1 is the `1-norm of the vector of representation coef-
ficients on an over-complete basis. However, the algorithm therein



proposed addresses a modified version of the objective, rather than
its original form.

The desirability of combining TV regularization with the `1-
norm of wavelet coefficients was also pointed out in [7]. However,
the problem is not formulated in any of the above forms, and the user
is required to arbitrarily set the maximum `1-norm of the wavelet co-
efficients.

In [1], an algorithm to solve a particular sub-class of problems
of the form (2) has been proposed. That algorithm only applies if
the compound regularizer (i.e., λ1 Φ1(x) + λ2 Φ2(x)) can be writ-
ten as the `1-norm of a linear transform of the argument, that is, if
λ1 Φ1(x) + λ2 Φ2(x) = ‖Qx‖1.

Finally, an algorithm was very recently proposed in [23] for
image restoration, combining TV and wavelet-based regularization,
with very promising results. That algorithm is related to the one
proposed in this paper (though not identical), but is not rooted in an
optimization framework; that is, it’s not clear which (if any) objec-
tive function is being minimized.

1.3. Contributions

In this paper, we propose an algorithm for solving (2) for a wide class
of pairs of regularizers. The only constraint is that the denoising
problem associated with each individual regularizer, that is,

min
x

1

2
‖c− x‖2 + λ Φ(x), (5)

for Φ = Φ1 or Φ = Φ2, can be efficiently solved. This is the case
of TV regularization, for which fast methods have been proposed
[8, 9, 14, 18]. For Φ(x) = ‖x‖p

p, closed form solutions exist for
p ∈ {0, 1/2, 1, 4/3, 3/2, 2, 3, 4} [12]. For example, with p = 1
or p = 0, solving (5) amounts to applying, respectively, the well-
known soft or hard thresholding functions. There are many other
regularizers of interest for which close form solution of (5) exist
[12].

Our approach is based on writing a constrained formulation which
is equivalent to the unconstrained problem of minimizing (2). We
then write the associated Lagrangian and minimize it using a block-
coordinate descent algorithm. Although in this paper we consider
only a combination of two regularizers, extension to any number is
formally (though maybe not computationally) straightforward.

2. PROPOSED METHOD

The following constrained optimization problem is equivalent to the
unconstrained problem of minimizing the objective (2):

min
x,z

1

2
‖y −Kx‖2 + λ1 Φ1(z1) + λ2 Φ2(z2)

subject to ‖x− z2‖2 = 0 (6)
‖x− z1‖2 = 0.

Writing z = (z1, z2), and α = (α1, α2), the Lagrangian for this
problem is

L(x, z, α) =
1

2
‖y −Kx‖2 + λ1 Φ1(z1) + λ2 Φ2(z2)

+
α1

2
‖x− z1‖2 +

α2

2
‖x− z2‖2, (7)

where α1 and α2 are Lagrange multipliers. Let

(x(α), z(α)) = arg min
x,z

L(x, z, α);

then, it can be shown that as α1 and α2 go to infinity, (x(α), z(α))
approaches the solution of the constrained problem (6), which in
turn is equivalent to (2). This suggests that we can approximate the
solution of the original problem (2), by minimizing (7) with a pair
of “large” Lagrange multipliers α1 and α2. In practice, we will give
experimental evidence that the estimates obtained with moderately
large values of the Lagrange multipliers are in general good.

To minimize L(x, z1, z2, α), with respect to x, z1, and z2, we
propose to use a block-coordinate descent method, which proceeds
by alternatingly minimizing with respect to these variables. For-
mally, the iterative procedure is as follows:

x(t+1) = arg min
x
‖y−Kx‖2 +

2∑
i=1

αi ‖x−z
(t)
i ‖2, (8)

z
(t+1)
1 = arg min

z1

α1

2
‖z1−x(t+1)‖2 + λ1Φ1(z1), (9)

z
(t+1)
2 = arg min

z2

α2

2
‖z2−x(t+1)‖2 + λ2Φ2(z2). (10)

The minimization in (8), since the objective is quadratic, yields
a linear system of equations with solution

x(t+1) =
[
KT K + (α1 + α2)I

]−1 [
KT y + α1z

(t)
1 + α2z

(t)
2

]
.

(11)
Introducing the so-called denoising function (also known as the

Moreau proximal mapping [13]), ΨλΦ : Rn → Rn, defined as

ΨλΦ(c) = arg min
x

1

2
‖c− x‖2 + λ Φ(x), (12)

the minimizations in (9) and (10) can be written as

z
(t+1)
1 = Ψ(λ1/α1)Φ1(x

(t+1)), (13)

z
(t+1)
2 = Ψ(λ2/α2)Φ2(x

(t+1)). (14)

As mentioned above, these denoising functions are well-defined and
have closed forms for several regularizers of interest [12].

In summary, the algorithm consists in cyclically applying the up-
date equations (11), (13), and (14). We can achieve a more compact
notation by defining the function Ψ : Rn → R2n, as

Ψ(x) =

[
Ψ(λ1/α1)Φ1(x)
Ψ(λ2/α2)Φ2(x)

]

then, we can write

x(t+1) =
[
KT K + (α1 + α2)I

]−1 [
KT y + JΨ(x(t))

]
, (15)

where J = [α1I, α2I] is an n× 2n matrix.

3. APPLICATION: GROUP SPARSE IMAGES

In several applications, it is known that the original image is sparse
(the majority of its elements are zero), but exhibits a group structure,
that is, the active elements are know to form groups. This is the case,
for example, in brain imaging, where the voxels associated with dif-
ferent functional regions (e.g., motor or visual cortices) are grouped
together in order to identify a sparse set of regional events. In [4, 5],
an expectation-maximization algorithm was proposed to solve prob-
lems of this type. The algorithm proposed in [24] was also shown to
be applicable to this class of inverse problem. However, those meth-
ods require prior specification of the group structure, which may in
general be unknown.



We propose to deal with this class of problems by using a com-
bination of a standard sparseness-inducing regularizer (the `1-norm)
with a TV regularizer which encourages neighboring pixels to have
similar values. Thus, our optimization problem is (7), where K is
the observation operator,

Φ1(x) = TV (x) =
∑
i,j

√
(xi,j − xi−1,j)2 + (xi,j − xi,j−1)2

is the isotropic discrete total variation [8], and φ2(x) = ‖x‖1.
The TV denoising step in (13) is implemented by the algorithm

introduced in [8]. The denoising step in (14) is, in this case, simply
a soft thresholding function [15]. We will consider a deconvolution
problem, where K represents the convolution with a blurring point
spread function. The update step (11) is implemented efficiently
in the Fourier domain using the FFT. As explained in the previous
section, the desired solution is obtained when α1 and α2 become
very large; we have found experimentally that faster convergence is
achieved when these quantities are initialized to small values (same
order of magnitude as the noise variance) and then increased expo-
nentially along the iterations. In the experiments presented below,
the final value is around 50.

The original image used in our experiment is composed of sev-
eral randomly placed white (gray level 1) squares over a black (gray
level 0) background, as shown in Fig. 1 (top). Fig. 1 also shows
(in the bottom half) the blurred (by a 7 × 7 uniform point spread
function) and noisy (σ = 0.1) image. The estimate obtained by the
proposed method is shown in Fig. 2 (top), while the one resulting
from using a TV regularizer alone (solved by the algorithm proposed
in [3]) is displayed in Fig. 2 (bottom). Both estimates are obtained
with values of λ1 and λ2 hand tuned for the best MSE.

To demonstrate quantitatively the advantage of using the combi-
nation of regularizers, over using only TV, we plot in Fig. 3 the MSE
vs. the value of parameter λ1 for both options. It’s clear from the
plot, that the compound regularizer (TV+`1) is uniformly better than
TV alone. It’s worth mentioning that, in this example, the CPU time
required by the new algorithm to solve the TV+`1 regularized prob-
lem is around twice that required by the state-of-the-art algorithm in
[3] with the TV regularizer alone.

4. CONCLUDING REMARKS

We have introduced a new algorithm for solving optimization prob-
lems resulting from regularizing image inverse problems with two
(or more) regularization functions. The new algorithm was illus-
trated on a problem of restoring group sparse images, with encourag-
ing results. Current and future work includes the theoretical analysis
of the convergence properties and thorough experimental evaluation.
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[1] J. Bect, L. Blanc-Féraud, G. Aubert, and A. Chambolle, “A
`1-unified variational framework for image restoration”, Eu-
ropean Conference on Computer Vision – ECCV’2004, LNCS
vol. 3021, pp. 1–13, Springer, 2004.

[2] M. Bertero and P. Boccacci, Introduction to Inverse Problems
in Imaging, IOP Publishing, Bristol, UK, 1998.

Original

Blurred and noisy

Fig. 1. Top: original image. Bottom: blurred noisy image.

[3] J. Bioucas-Dias, M. Figueiredo, “A new TwIST: two-step itera-
tive shrinkage/thresholding algorithms for image restoration”,
IEEE Transactions on Image Processing, vol. 16, pp. 2992–
3004, 2007.

[4] A. Bolstad, B. Van Veen, R. Nowak, “Space-time sparsity reg-
ularization for the magnetoencephalography inverse problem”,
Proc. of the IEEE Itern. Conference on Biomedical Imaging,
Arlington, VA, 2007.

[5] A. Bolstad, B. Van Veen, R. Nowak, R. Wakai, “An
expectation-maximization algorithm for space-time sparsity
regularization of the MEG inverse problem”, Proc. of the Itern.
Conference on Biomagnetism, Vancouver, BC, Canada, 2006.

[6] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: exact signal reconstruction from highly incomplete fre-
quency information,” IEEE Transactions on Information The-
ory, vol. 52, pp. 489–509, 2004.

[7] E. Candès and J. Romberg, “Practical signal recovery from ran-
dom projections,” SPIE Proc. 5914: Wavelet Applications in
Signal and Image Processing XI, 2004.

[8] A. Chambolle, “An algorithm for total variation minimization
and applications,” Journal of Mathematical Imaging and Vi-
sion, vol. 20, pp. 89-97, 2004.



TV + l1, mse = 0.00317786

TV, mse = 0.00522865

Fig. 2. Top: image estimate using the combined TV and `1 regular-
izers. Bottom: image estimate using only TV.

[9] A. Chambolle, “Total variation minimization and a class of bi-
nary MRF models”, Intern. Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition – EMM-
CVPR’2005, LNCS vol. 3757, pp. 136-152, Springer, 2005.

[10] A. Chambolle, R. De Vore, N. Lee, and B. Lucier, “Nonlinear
wavelet image processing: variational problems, compression,
and noise removal through wavelet shrinkage,” IEEE Transac-
tions on Image Processing, vol. 7, pp. 319–335, 1998.

[11] T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent develop-
ments in total variation image restoration,” in Mathematical
Models of Computer Vision, Springer Verlag, 2005.

[12] P. Combettes and J.-C. Pesquet, “Proximal thresholding algo-
rithm for minimization over orthonormal bases,” SIAM Journal
on Optimization, vol. 18, pp. 1351–1376, 2007.

[13] P. Combettes and V. Wajs, “Signal recovery by proximal
forward-backward splitting,” SIAM Journal on Multiscale
Modeling & Simulation, vol. 4, pp. 1168–1200, 2005.

[14] J. Darbon and M. Sigelle, “A fast and exact algorithm for
total variation minimization”, Iberian Conference on Pat-
tern Recognition and Image Analysis – IbPRIA’2005, LNCS
vol. 3522, pp. 351-359, Springer, 2005.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
2

3

4

5

6

7

8

9

10
x 10

−3

λ
1

M
S

E

 

 

TV+ l1

TV

Fig. 3. MSE values of the image estimates using TV+`1 regulariza-
tion and TV regularization alone, as a function of λ1.

[15] D. Donoho, “De-noising by soft thresholding”, IEEE Trans-
actions on Information Theory, vol. 41, pp. 613–627, 1995.

[16] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky, “A wide-
angle view at iterated shrinkage algorithms”, Proc. SPIE
Wavelets XII, San-Diego, CA, 2007.

[17] M. Figueiredo, J. Bioucas-Dias, and R. Nowak, “Majorization-
minimization algorithms for wavelet-based image restoration”
IEEE Transactions on Image Processing, vol. 16, pp. 2980–
3004, 2007.

[18] M. Figueiredo, J. Bioucas-Dias, J. Oliveira, and R. Nowak,
“On total-variation denoising: A new majorization-
minimization algorithm and an experimental comparison
with wavalet denoising,” IEEE Intern. Conf. on Image
Processing – ICIP’06, Atlanta, GA, 2006.

[19] M. Figueiredo, R. Nowak, S. Wright, “Gradient projection for
sparse reconstruction: application to compressed sensing and
other inverse problems,” IEEE Journal of Selected Topics in
Signal Processing, vol. 1, pp. 586–597, 2007.

[20] M. Lustig, D. Donoho, and J. Pauly, “Sparse MRI: the applica-
tion of compressed sensing for rapid MR imaging,” Magnetic
Resonance in Medicine vol. 58, pp. 1182–1195, 2007.

[21] S. Osher, L. Rudin, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Physica D, vol. 60, pp. 259–
268, 1992.

[22] J. Starck, M. Elad, and D. Donoho, “Image decomposition
via the combination of sparse representations and a variational
approach,” IEEE Transactions on Image Processing, vol. 14,
pp. 1570–1582, 2005.

[23] Y. Wen, M. Ng and W. Ching, “Iterative algorithms based on
the decouple of deblurring and denoising for image restora-
tion”, SIAM Journal on Scientific Computing, 2008 (to appear).

[24] S. Wright, R. Nowak, and M. Figueiredo. “Sparse recon-
struction by separable approximation,” IEEE Intern. Conf. on
Acoustics, Speech, and Signal Processing – ICASSP’2008, Las
Vegas, 2008.


