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Abstract—Image deblurring (ID) is an ill-posed problem typ-
ically addressed by using regularization, or prior knowledge,
on the unknown image (and also on the blur operator, in the
blind case). ID is often formulated as an optimization problem,
where the objective function includes a data term encouraging
the estimated image (and blur, in blind ID) to explain well
the observed data (typically, the squared norm of a residual)
plus a regularizer that penalizes solutions deemed undesirable.
The performance of this approach dependes critically (among
other things) on the relative weight of the regularizer (the
regularization parameter) and on the number of iterations of
the algorithm used to address the optimization problem. In this
paper, we propose new criteria for adjusting the regularization
parameter and/or the number of iterations of ID algorithms. The
rationale is that if the recovered image (and blur, in blind ID) are
well estimated, the residual image is spectrally white; contrarily,
a poorly deblurred image typically exhibits structured artifacts
(e.g., ringing, oversmoothness), yielding residuals that are not
spectrally white. The proposed criterion is particularly well suited
to a recent blind ID algorithm that uses continuation, i.e., slowly
decreases the regularization parameter along the iterations; in
this case, choosing this parameter and deciding when to stop
are one and the same thing. Our experiments show that the
proposed whiteness-based criteria yield improvements in SNR,
on average, only 0.15dB below those obtained by (clairvoyantly)
stopping the algorithm at the best SNR. We also illustrate the
proposed criteria on non-blind ID, reporting results that are
competitive with state-of-the-art criteria (such as Monte-Carlo-
based GSURE and projected SURE), which, however, are not
applicable for blind ID.

Index Terms—Image deconvolution/deblurring, blind deblur-
ring, whiteness, stopping criteria, regularization parameter.

I. INTRODUCTION

Image deblurring (ID) is an inverse problem where the
observed image is modeled as the convolution of a sharp
image with a blur filter, possibly plus some noise (often
assumed spectrally white and Gaussian). With applications in
many areas (e.g., astronomy, photography, surveillance, remote
sensing, medical imaging), research on ID can be divided
into non-blind ID (NBID), in which the blur filter is assumed
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known, and (more realistic) blind ID (BID), in which both the
image and the blur filter are (totally or partially) unknown.

Despite its narrower applicability, NBID is already a chal-
lenging problem to which a large amount of research has been
(and still is) devoted, mainly due to the ill-conditioned nature
of the blur operator: the observed image does not uniquely
and stably determine the underlying original image [38]. If
this problem is serious with a known blur, it is much worse
if there is even a slight mismatch between the assumed blur
and the true one. Most of the NBID methods overcome this
difficulty through the use of an image regularizer, or prior, the
weight of which has to be tuned or adapted [8], [13], [14], [15],
[25], [28], [42], [51], [53]. Most state-of-the-art regularizers
exploit the sparsity1 of the high frequency/edge components
of images; this is the rationale underlying wavelet/frame-based
methods (see, e.g., [21], [48] and the many references therein)
and total variation (TV) regularization [42], [44].

With application not only in ID, but also in other in-
verse problems, several optimization techniques have been
proposed to handle sparsity-inducing regularizers. A popular
class of such techniques belongs to the class of iterative
shrinkage/thresholding (IST) algorithms [22], [25], and their
recent accelerated versions [7], [8], [56]. The iterative nature
of these methods requires, in addition to the regularization
parameter, the choice of an adequate stopping criterion; often,
there is a delicate interplay between these two choices.

In BID, even if the blur operator was not ill-conditioned,
the problem would still be inherently ill-posed, since there
is an infinite number of solutions (pairs of image and blur
estimates) compatible with the blurred image. In order to
obtain reasonable results, most BID methods restrict the class
of blur filters, either in a hard way, through the use of
parametric models [11], [12], [33], [43], [58], or in a soft way,
through the use of priors/regularizers [5], [6], [24], [32], [34],
[35], [40], [41], [47], [55]. In contrast, a recent BID method [3]
does not use prior knowledge about the blur, yet achieves state-
of-the-art performance on a wide range of synthetic and real
problems. That method is iterative and starts by estimating the
main features of the image, using a large regularization weight,
and gradually learns the image and filter details, by slowly
decreasing the regularization parameter. From an optimization
point of view, this can be seen as a continuation method
designed to obtain a good local minimum of the underlying
non-convex objective function. The drawback of the method
is that it requires manual stopping, which corresponds to

1The term “sparse” is used here in a broad sense, meaning both actual
sparseness (many zeros) or following a probability distribution concentrated
near the origin and with heavy tails.
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choosing the final value of the regularization parameter. In fact,
adjusting the regularization parameter and/or finding robust
stopping criteria for iterative (blind or not) ID algorithms is a
long standing, but still open, research area [15], [28], [42].

A crucial issue in the regularization of ill-posed inverse
problems is the choice of the regularization parameter, a
subject to which much work has been devoted [53]. The
discrepancy principle (DP) [52] chooses the regularization pa-
rameter so that the variance of the residual (i.e., the difference
between the observed image and the blurred estimate) equals
that of the noise; the DP thus requires an accurate estimate
of the noise variance and is known to yield over-regularized
estimates [28]. A recent extension of the DP uses not only the
variance, but also other residual moments [17]. Local residual
statistics have also been used to obtain locally adaptive TV
regularizers for NBID [19], [31]. Two other popular criteria
are generalized cross validation (GCV) and the L-curve [29],
[30], [52], which, although developed and mainly applied to
linear methods, can also be used with non-linear methods,
but are outperformed by more recent criteria based on Stein’s
unbiased risk estimate (SURE) [23], [28], [36], [37], [45],
[46], [54]. SURE provides an estimate of the mean squared
error (MSE), assuming knowledge of the noise distribution
and requiring an accurate estimate of its variance [59].

While methods for automatically adjusting the regulariza-
tion parameter are relatively developed for denoising and
NBID (as reviewed in the previous paragraph), the same is
not true for BID, with most existing methods requiring the
regularization parameters to be somehow tuned or empirically
selected. For example, SURE-based approaches assume full
knowledge of the degradation model, thus are not suitable for
BID. There are a few methods that address the adjustment
of the regularization parameter [5], [6], [24]; however, some
of those approaches [6], [24] were developed for Bayesian
formulations [5], [15], [27], [42], [52], and do not fit iterative
BID algorithms such as that of [3]. Finally, we should mention
no-reference image quality measures; although proposed for
adjusting the regularization parameter in denoising [59], they
can in principle be used in NBID or BID methods.

A. Contributions
We propose a criterion that can be used to adjust the

regularization parameter and stopping criterion of iterative
ID methods; although motivated by BID problems, it is of
general applicability to both NBID and BID problems. The
cornerstone of the proposed approach is the assumption that
the noise in the observed image is spectrally white. The
implementation of this rationale is based on measures of
spectral whiteness to assess the fitness of the current estimates
to the degradation model. Residual whiteness has been used
for a long time to assess model accuracy, namely in modeling
time series and dynamical systems [9], [39]; more recent
applications can be found in spectroscopy [18] and signal
detection [50]. However, to the best of our knowledge, criteria
based on residual whiteness have not been used before in
image deconvolution/deblurring.

Our criteria are particularly suited to the BID method of
[3], where stopping and choosing the regularization parameter

are one and the same thing. The results reported in this paper,
show that, on a large set of synthetic experiments, the proposed
criteria lead to an average decrease of 0.15 dB in ISNR2,
compared to what is obtained by stopping the algorithm at the
maximum ISNR (which, of course, cannot be done in practice,
as it requires the original image), outperforming in this sense
both the DP and the measure of [59]. We also show tests
on color images and on various real blurred images; although
with these images, no quantitative results can be reported, we
believe the results can be (subjectively) considered good.

We show that the proposed criteria are also suitable for
adjusting the regularization parameter and stopping criterion of
NBID methods. In particular, we report experiments with two
recent algorithms, using different blurs and noise variances. In
this scenario, our approach is shown to be adequate, but does
not outperform SURE-based methods.

B. Outline

The remaining sections of this paper are organized as
follows. The formulation of blind and non-blind ID is briefly
reviewed in Section II and the proposed criteria are described
in Section III. Section IV reports experiments on both non-
blind and blind settings, and Section V concludes the paper.

II. IMAGE DECONVOLUTION/DEBLURRING

In ID problems, the degraded image is usually modeled as

y = h ∗ x+ n, (1)

where y is the degraded image, x is the (unknown) original
image, n is noise, and h is the point spread function (PSF) of
the blur operator (assumed to be known in NBID and unknown
in BID) and ∗ denotes convolution.

Both BID (finding x and h, from y) and NBID (finding
x, from y and h) are normally addressed by adopting a
regularizer expressing prior information about the image x
and considering an objective function of the form

Cλ(x, h) =
1

2
∥y − h ∗ x∥22 + λ Φ(x); (2)

the first term in (2) is the classical data fidelity term that results
from assuming that the noise n is white and Gaussian, Φ(x)
is a regularization function embodying the prior information
about x, and λ is the regularization parameter. Typically, too
large values of λ lead to over-regularized images (e.g., over-
smoothed or cartoon-like), while too small values of λ lead
to under-regularized images dominated by the influence of the
noise. An adequate choice of the regularization parameter λ
is thus clearly crucial to obtain a good image estimate.

A. Non-blind Deblurring

In NBID, h is assumed to be known and the cost function
(2) is minimized with respect to x, given some choice of the
regularization parameter λ. Many optimization methods for ID
minimize the cost function (2) iteratively [7], [8], [22], [25],
[56], computing the image estimate at iteration t + 1 as a

2ISNR denotes improvement in signal-to-noise ratio.



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013 (TO APPEAR) 3

function of the previous estimate xt, the available data (y and
h), and the regularization parameter λ:

xk+1 = f(xk, y, h, λ). (3)

Besides requiring a good estimate for the regularization param-
eter λ, these iterative approaches also need stopping criteria,
which considerably influence the final results.

For fairness, it should be mentioned that some state-of-the-
art methods don’t fall in the category of methods mentioned in
the previous paragraph. For example, the method proposed in
[16] (arguably the method yielding the current best results) is
iterative, but rather than look for a minimizer of an objective
function, it looks for a Nash equilibrium between two objective
functions. Other NBID methods are not based on iterative
minimization of objective functions [51], [57]

B. Blind Deblurring

In BID, both the image x and the filter h are unknown.
A BID problem suffers from an obvious lack of data, since
there are many pairs (x, h) that explain equally well the
observed data y. Most BID methods circumvent this difficulty
by adding to (2) a regularizer on the blur filter and, usually,
by alternatingly estimating the image and the blur filter.
A regularizer on the blur naturally involves an additional
regularization parameter, also requiring adjustment, while the
alternating estimation of the image and the filter requires good
initialization (since the underlying objective (2) is non-convex)
and a good criterion to stop the iterative process.

The recent method in [2], [3] yields good results without
regularization on the blur filter, i.e., using a cost function with
the form of (2). That method uses an iterative algorithm to
minimize (2), by starting with a strong regularization (large
λ), and gradually decreasing it (see Algorithm 1). The initial
estimates are cartoon-like; the sharp edges of these images,
when compared with the blurred image y, allow to learn
and improve the estimate of the filter h, which, in turn,
allows reducing the weight of the regularization, thus learning
finer image details. This slow decrease of the regularization
parameter was shown to yield good estimates without the need
for a regularizer on the blur filter [3]. A drawback of that
method is the need to manually stop the iterations, which
corresponds to setting the final value of the regularization
parameter. In [3], this was done either based on the ISNR
value, in synthetic experiments, or by visual assessment of
the restored image, for real blurred images. The whiteness-
based criteria proposed in this paper will be illustrated in
automatically stopping the BID algorithm of [3].

III. THE WHITENESS CRITERIA

A. Rationale

The proposed criteria for selecting the regularization param-
eter and the stopping iteration are based on measures of the
fitness of the image estimate x̂ and the blur estimate ĥ (in
NBID, h is known, thus ĥ = h) to the degradation model (1),
by analyzing the estimated residual image:

r = y − ĥ ∗ x̂. (4)

Algorithm 1: Blind method of [2], [3]

1 Set λ to the initial value; choose α < 1.
2 Set x̂ = y
3 repeat
4 ĥ← argminh Cλ(x̂, h)

5 x̂← argminx Cλ(x, ĥ)
6 λ← α λ
7 until stopping criterion is satisfied

The characteristics of the residual r are then compared with
those assumed for the noise n in the degradation model (1).
In particular, the noise n is assumed to be spectrally white
(uncorrelated), thus a measure of the whiteness of the residual
r is used to assess the adequacy of the estimates (x̂,ĥ) to the
model. This is a quite generic assumption, valid for most real
situation. Our approach differs from other methods based on
residual statistics, such as those in [17], [52], in that those
methods do not use spectral properties of the residual, but
other statistics, such as variance and other moments.

The proposed criterion consists in selecting the regular-
ization parameter and/or final iteration of the algorithm that
maximize one of the whiteness measures introduced below.
If this measure exhibits a clear peak as a function of the
regularization parameter and/or the iteration number, we adopt
an oriented search scheme and stop the method as soon as the
measure of whiteness starts to decrease. This is the case in
the BID algorithm mentioned in the previous section. Also in
NBID, if optimizing only with respect to λ, an efficient strat-
egy is to sweep a range of values, using the estimate at each
value to initialize the algorithm at the next value; this process
is known warm-starting, and may yield large computational
savings [56]. In our NBID experiments, when optimizing with
respect to λ and/or the number of iterations, and since the goal
is to assess the ability of the proposed criteria to select these
quantities, with no concern for computational efficiency, we
simply consider a grid of values and return the image estimate
yielding the maximum residual whiteness.

B. Measures of Whiteness

The first step of our method is to normalize the residual
image3 to zero mean and unit variance; for simplicity of
notation, let this normalized residual still be denoted as r,

r ← r − r√
var(r)

,

where r and var(r) are, respectively, the sample mean
and sample variance of r. The auto-correlation (and auto-
covariance, since the mean is zero) of the normalized residual
r, at the two-dimensional (2D) lag (m,n), is estimated by

Rrr(m,n) = K
∑
i,j

r(i, j) r(i−m, j − n), (5)

3In our experiments, the convolution needed to obtain the residual (4) is
computed using the FFT; a band of pixels at the residual image boundary is
then discarded from the computation of the whiteness measures, to avoid the
boundary artifacts caused by the FFT.
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where the sum is over the residual image, and K is an
irrelevant constant.

The auto-covariance of a spectrally white image is a delta
function at the origin (δ(m,n) = 1, if m = n = 0,
δ(m,n) = 0, otherwise). A measure of whiteness is thus
the distance between Rrr and a delta function. Considering
a (2L + 1) × (2L + 1) window, the first proposed whiteness
measure is simply the energy of Rrr outside the origin,

MR(r) = −
L,L∑

(m,n)=(−L,−L)
(m,n)̸=(0,0)

(
Rrr(m,n)

)2

, (6)

where the minus sign is used to make MR larger for whiter
residuals. In our experiments, we have used L = 4.

For a typical process that exhibits mainly short-range cor-
relations, the auto-covariance for large lags (for long-range
dependencies) is usually smaller than for small lags. This
observation suggests that it makes sense to give more weight to
the auto-covariance for small lags. Based on that, a weighted
version of the measure in (6) is also considered,

MRW (r) = −
L,L∑

(m,n)=(−L,−L)
(m,n)̸=(0,0)

W (m,n)
(
Rrr(m,n)

)2

, (7)

where W (m,n) is a matrix of weights. In all our experiments,
we have used L = 4 and the gausswin function in MATLAB:

W (m,n) = exp
(
−1.25(m2 + n2)

)
. (8)

Let Srr(ω, ν) denote the power spectral density of r, at 2D
spatial frequency (ω, ν),

Srr = F(Rrr), (9)

where F denotes the magnitude of the 2D discrete Fourier
transform (2D-DFT). Since the auto-correlation of a white pro-
cess is a delta function, a white signal has a flat power spectral
density. To assess the flatness of Srr, we measure its Shannon
entropy, after normalization; recall that the maximum entropy
is achieved by a flat distribution. The resulting measure is

MH(r) = −
∑
ω,ν

S̃rr(ω, ν) log S̃rr(ω, ν), (10)

where S̃rr(ω, ν) = Srr(ω, ν)/
∑

ω′,ν′ Srr(ω
′, ν′).

C. Local Measures of Whiteness

The approach described in the previous subsection implicitly
assumes that the residual image r is a sample of a stationary
and ergodic process, since we estimate the auto-covariance (5)
by averaging over the whole image. In practice, the residual
may not be stationary, which lead us to consider also local
versions of the previous measures of whiteness, based on local
auto-covariance estimates,

Rb
rr(m,n) =

∑
i,j∈Bb

r(i, j) r(i−m, j − n), (11)

where b indexes an image block, and Bb is the set of pixels in
that block. In the experiments reported below, we have used

partially overlapping 9× 9 blocks, separated horizontally and
vertically by 5 pixels, and only those that are fully contained
in the image domain. Of course, in this case, the residual is
normalized to zero mean and unit variance on a block-by-
block fashion, rather than globally. Given this block partition,
the three local measures of whiteness, M l

R, M l
RW and M l

H

are obtained by computing the corresponding local measures
MR, MRW , and MH , respectively, at each block, and then
averaging over all the blocks of the image.

D. Color Images

The measures of whiteness presented in the previous sub-
section were defined for gray-scale images. In order to use
them with color images, several approaches can be followed.
Assuming that the three color channels were degraded by
the same blur filter, we adopt a simple procedure in all the
examples reported below. At each iteration of Algorithm 1,
the image estimate is converted to gray-scale and the residual
is computed using a (previously computed) gray-scale version
of the blurred image and the current blur filter estimate. In
the NBID case (although we don’t report any experiments),
the degraded and the estimated images are converted to gray
scale, where the proposed whiteness measures are computed.

IV. EXPERIMENTS

In this section, we experimentally compare the proposed
criteria with several state-of-the-art techniques. Since our
proposal was motivated by BID problems, we report more
experiments in that scenario, for which fewer methods are
available. Finally, we also report some NBID experiments,
showing that proposed criteria also work for NBID.

A. Blind deblurring

This subsection demonstrates the effectiveness of the pro-
posed criteria in stopping (which in this case coincides with
selecting the regularization parameter) a state-of-the-art BID
method [3]. Note that most existing methods for regularization
parameter selection (namely SURE) are not adequate for the
blind case.

1) Synthetic experiments: We consider most of the exper-
iments described in [3]: (i) four benchmark images (Lena,
Barbara, Cameraman, and Satellite); (ii) seven different blurs
(see Fig. 1); (iii) addition or not of Gaussian white noise,
with BSNR (blurred-signal-to-noise-ratio) of 30dB; (iv) ex-
periments with and without constraints4 on the blur filter.

We ran BID experiments using (almost5) all possible combi-
nations (totalling 96) of images, blurs, and presence/absence of
constraints and noise (as described in the previous paragraph),
and all the whiteness measures described in Section III. Before
reporting detailed experiments, Fig. 2 illustrates the behavior
of one of the proposed criteria (M l

R, in this example), by
showing how its evolution correlates well with that of the

4Blur constraints (see Fig. 1): (a) is parameterized as a circle with the
radius as the estimated parameter; (b) is constrained to be symmetric around
the origin; (c)–(e) are constrained to having reflection symmetry around the
horizontal and vertical axes and 45o rotations thereof.

5No simple symmetry constraints are available for blurs (f) and (g).
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(a) (b) (c) (d) (e) (f) (g)
Fig. 1. Blur kernels for the synthetic experiments: (a) out-of-focus, (b)
linear motion, (c) uniform square, (d) Gaussian, (e)–(f) nonlinear motions,
(g) random.

ISNR, along the iterations (thus also as a function of the regu-
larization parameter). Clearly, for too high (early iterations) or
too low (later iterations) values of the regularization parameter,
the residual images exhibit structures which are far from being
spectrally white. At the best ISNR, the residual image has little
structure, thus being approximately spectrally white, thus the
auto-covariance estimate Rrr is essentially a delta function.

Table I summarizes the average results6 (over the 96 experi-
ments) obtained using the proposed stopping criteria. It is clear
that all the criteria are able to stop the algorithm at estimates
which are, on average, only slightly worse than the best ISNR
achieved along the iterations of the algorithm. However, it
is clear that the local whiteness measures (M l

H , M l
R, and

M l
RW ) achieve better results than their global versions. The

results are also reasonably stable, as shown by the standard
deviation of the ISNR decrease, which are clearly below 1dB.
This can be considered as a successful result, considering the
wide set of degradations that were considered and the well-
known difficulty of BID problems.

TABLE I
AVERAGE PERFORMANCE OF THE SIX CRITERIA (IN dB), IN TERMS OF

THE DIFFERENCES (DENOTED ∆ISNR) BETWEEN THE ISNR OBTAINED
BY STOPPING WITH EACH OF THE AUTOMATIC CRITERIA AND THE BEST

ISNR ACHIEVED ALONG THE ALGORITHM.

ISNR ∆ISNR

Best MH MR MRW M l
H M l

R M l
RW

Mean 5,88 -0.38 -0.40 -0.37 -0.16 -0.15 -0.16

St. dev. 2,63 0.62 0.62 0.70 0.29 0.27 0.30

Table II shows more details about the results obtained with
the local measure M l

R (the best performing one, according
to Table I). The results in the rightmost column of Table
II show that the maxima of M l

R tend to occur somewhat
earlier than those of the ISNR. The results also suggest that
these iteration differences are larger in the absence of added
noise; however, in this case, the ISNR reaches a plateau, thus
this premature stopping does not imply a large degradation
in ISNR. One may raise the question of why the residual
whiteness criterion still works in the absence of added noise.
In fact, even if no noise is added, there are always residuals,
because deconvolution is an ill-posed problem that is being
addressed under regularization; if this residual has some spatial
structure (is non-white), that means that it contains some
information about the underlying image and filter that could
be used to improve the restoration accuracy. Finally, the two

6These values are slightly different from those in [4]; there, the residual
at each iteration is computed using the blur estimated from the image at that
iteration (used to obtain the next image estimate), whereas here we use the
previous blur estimate (used to estimate the image at the present iteration).

bottom rows indicate that the criterion is more suitable when
there is no access to extra information on the blur filter.

TABLE II
BREAK UP OF THE RESULTS OF M l

R IN DIFFERENT CLASSES OF
EXPERIMENTS (∆ISNR IS AS DEFINED IN TABLE I). THE LAST COLUMN

REPORTS DIFFERENCE IN ITERATION COUNT BETWEEN THE OCCURRENCE
OF THE MAXIMUM OF M l

R AND THAT OF ISNR.

best ∆ISNR ∆ISNR ∆Iter.
ISNR mean st. dev. mean

All 5.88 dB -0.15 dB 0.27 dB -6.3
noiseless 6.90 dB -0.20 dB 0.34 dB -11.9

noisy 4.85 dB -0.09 dB 0.11 dB -0.7
constrained 6.60 dB -0.21 dB 0.16 dB -8.0

unconstrained 5.36 dB -0.10 dB 0.33 dB -5.1

2) Comparison with Other Criteria: In this section we
compare our best criterion, M l

R, against the discrepancy
principle (DP) and the no-reference measure from [59]. Since
the DP requires knowledge of the noise variance, we consider
two variants: one that uses the true value of the added noise,
referred to as DPσ , and another one that uses an estimate of
the noise obtained by the well-known MAD (mean absolute
derivative) rule [20]. The results in Table III show that, with
the single exception of the noiseless case, where DPσ obtains
the best result, M l

R yields less loss of ISNR than the other
methods. Notice that DPσ cannot be used in practice, as it
requires the true value of the noise variance.

TABLE III
COMPARISON (IN TERMS OF ∆ISNR, IN dB) OF M l

R WITH TWO VERSIONS
OF THE DISCREPANCY PRINCIPLE (DPσ AND DPMAD , SEE TEXT) AND THE

NO-REFERENCE MEASURE (NR) OF [59].

ISNR ∆ISNR

best M l
R DPσ DPMAD NR

All 5.88 -0.15 -0.22 -1.95 -2.80
noiseless 6.90 -0.20 -0.09 -2.59 -2.92

noisy 4.85 -0.09 -0.35 -1,31 -2.68
constrained 6.60 -0.21 -0.29 -2.36 -3.09

unconstrained 5.36 -0.10 -0.17 - 1.65 -2.60

3) Application to Real Blurred Photos: We now test
the proposed stopping criteria on several real-life (both
color and monochrome) blurred photos (with out-of-focus
or motion blurs, as shown in Fig. 3). Three of these
images were used in [3] ((c), (d), and (e)), two ((f)
and (g)) were downloaded form the URL of the paper
[32] (http://cs.nyu.edu/∼dilip/research/blind-deconvolution/),
and two are new ((a) and (b)). Table IV shows, for each
degraded photo, the iteration numbers that were automatically
selected with the proposed criteria and the “optimal” iteration
that was selected based on the authors’ visual assessment.
The iterations manually and automatically selected are close,
showing that the proposed criteria are suitable for real-life
scenarios. In all these experiments, our criteria always select
image estimates that are quite similar to those corresponding
to the “best” results. For a visual evaluation of these results,
Figs. 4–6 show some image and filter estimates at the iterations
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Fig. 2. Illustration of the proposed approach; results obtained with the Lena image, blurred with an out-of-focus blur and contaminated with noise at 30dB
BSNR. Evolution along the iterations (from top to bottom) of: Rrr , residual image r, whiteness measure MR, and ISNR.

corresponding to the maximum value of M l
R and to the “best”

visual quality.

B. Non-blind Deblurring

The goal of this subsection is to test the proposed criteria
for NBID. For that purpose, we used two recent algorithms:
SpaRSA7 (sparse reconstruction by separable approximation)
[56], which is a recent fast algorithm of the IST family, and
(following a suggestion by one of the reviewers) SALSA8

(split augmented Lagrangian shrinkage algorithm) [1], which
is an instance of the alternating direction method of multipliers
(ADMM) [10], [26]. Notice that the choice of these algorithms
is somewhat arbitrary, since the proposed criteria can be
applied to any iterative deconvolution algorithm that has a
regularization parameter and/or a stopping criterion; for this
reason, we decided not to include any details about those
algorithms and refer the reader to [1], [56], for more details.
Whereas in BID, the local measures were shown to perform
somewhat better the global ones, preliminary experiments
showed that in NBID the differences are very small, so we
considered only the global measures, since they are compu-
tationally less demanding. All our NBID experiments were
run on the standard Cameraman image (with pixel values in
[0, 255]), with the blurs and noise levels shown in Table V).

In order to determine the regularization parameter and the
stopping iteration for SpaRSA, the algorithm is run for up to
151 iterations, using a geometric sequence of 21 values of

7Available online at http://www.lx.it.pt/∼mtf/SpaRSA/
8Available online at http://cascais.lx.it.pt/∼mafonso/salsa.html

TABLE V
DIFFERENT EXPERIMENTAL SETTINGS FOR THE NBID EXPERIMENTS.
THE COLUMN “CONDITION” SHOWS THE CONDITION NUMBER OF THE

BLUR FILTER IN THE FREQUENCY DOMAIN (BLURS NORMALIZED TO UNIT
DC GAIN). THE COLUMN σ2

MAD SHOWS NOISE VARIANCE ESTIMATE
GIVEN BY THE MAD RULE.

Exp. blur kernel h(m,n) σ2 condition σ2
MAD

1 Gaussian (stdv = 0.5) 5 3.033 6.221
2 h = [1 4 8 4 1] 5 9 5.332

(horizontal blur)
3 Gaussian (stdv = 0.7) 5 31.5 5.224

4 (1 +m2 + n2)−1 2 67.1 2.082
−4 < m,n < 4

5 (1 +m2 + n2)−1 8 67.1 6.377
−4 < m,n < 4

6 9× 9 uniform 0.3136 2.2×105 0.535

7 Gaussian (stdv = 2) 2 2.3×107 4.131

8 [1 4 6 4 1]T [1 4 6 4 1] 2 ∞ 2.278
(separable blur)

the regularization parameter: from λ1 = 0.035 × (1.5)−10 ≈
6 × 10−4, up to λ21 = 0.035 × (1.5)10 ≈ 2. For each of
the 151 × 21 image estimates, the several measures being
compared are computed and the final image estimates (and
the corresponding parameters) are those yielding their maxima.
Table VI reports the ISNR values thus obtained by our three
global criteria, the three criteria considered for the blind case
(DPσ , DPMAD, NR), as well as the P-GSURE and PD-GSURE:
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a) “Studio-motion”, 256×256. b) “Studio-blur”, 256×256. c) “Building”, 256×256.

d) “House-blur”, 256×256. e) “House-motion”, 256×256. f) “Mukta”, 610×406, (from [32]).

g) “Pietro”, 636×848, (from [32]).
Fig. 3. Real-life photos used in the experiments. (b), (c), and (d) are out of focus; (a), (e), (f), and (g) suffered motion blur.

two recent state-of-the-art criteria (reviewed in the Appendix)
[23]. Both P-GSURE and PD-GSURE were implemented
using the Monte-Carlo divergence estimate proposed in [45]
(also briefly reviewed in the Appendix). One disadvantage of
SURE-based measures is that they require knowing the noise
variance σ2; similarly to what was done for the DP, we consid-
ered two options: using the true noise variance ( P-GSUREσ

and PD-GSUREσ) and its MAD estimated (P-GSUREMAD and
PD-GSUREMAD).

The results presented in Table VI the whiteness-based
criteria perform adequately; although our measures are only
the best for one experimental setting, they are not very far.
A conclusion that can also be drawn is that the no-reference
method of [59], although it was proposed and tested only for
denoising by its authors, does provide a good criterion also for
NBID (in contrast with its comparatively poor performance in
the BID scenario).

Concerning SALSA, and since the stopping criteria for
ADMM-based algorithms is more involved than for algorithms
of the IST family, we have used the built-in stopping criterion
with its default setting, and have used the proposed whiteness

measure only for adjusting the regularization parameter. The
results shown in Table VII lead to the same general conclu-
sions as for SpaRSA.

For relatively well-posed problems (condition numbers up
to around 30), the ISNR results obtained with the four SURE-
based criteria typically outperform those obtained with MRW .
This is not surprising, since SURE directly approximates the
MSE. SURE-based measures, however, have the disadvantage
of assuming an exact form for the distribution of the noise,
leading to biased results when incorrect information is used
[59]. On the other hand, the accuracy of the Monte-Carlo
SURE-based measures deteriorates as the conditioned number
gets worse. This is probably due to the computation of the
divergence term (19), which becomes extremely sensitive to
the sufficient statistic u (see (13)). The negative effect of the
condition number in this GSURE estimate is visible in Fig. 7,
which compares the some of the computed measures and the
true MSE, along the 21 values of regularization parameter and
the 151 iterations of SpaRSA. In contrast with Monte-Carlo
SURE-based measures, the whiteness measure MRW always
lead to good results, although slightly over-regularized with
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“Studio-motion”, visual criterion, 23rd iteration. “Studio-motion”, criterion based on M l
R, 21st iteration.

“Studio-blur”, visual criterion, 22nd iteration. “Studio-blur”, criterion based on M l
R, 23rd iteration.

“Building”, visual criterion, 23rd iteration. “Building”, criterion based on M l
R, 23rd iteration.

Fig. 4. Results obtained with real blurred photos. From left to right, at each row: restored image at the “optimal” (visually selected) iteration, estimated blur
filter at the “optimal” iteration, restored image at the iteration chosen using M l

R, blur filter estimate at the iteration chosen using M l
R.

respect to those at the highest ISNR value. Although yielding,
in some experiments, ISNR values that may seem relatively
low, the visual results reached with MRW were actually good,
and not as poor as the quantitative measure may sometimes
suggest; some of these results are shown in Fig. 8.

V. CONCLUSIONS

We have proposed new criteria that can be used to select
the regularization parameter and to stop iterative blind and
non-blind image deconvolution algorithms. Our proposal is
based on measures of the whiteness of the residual image. The
approach is quite general and does not require any knowledge
about the type of convolution operator.

The proposed criteria were motivated by blind deconvolu-
tion problems, and it is particularly well suited to a recent
state-of-the-art method that uses a continuation scheme based

on the regularization parameter. For that method, choosing the
regularization parameter and deciding when to stop are one
and the same thing. On a wide range of synthetic experiments,
we showed that the best of the proposed criteria yields ISNR
losses with the respect to the best ISNR of only 0.15dB,
on average. The method was also compared with two other
criteria, of the few that can be used in blind deconvolution
problems, showing to perform better in terms of SNR. Finally,
tests on several real photos, degraded with various out-of-focus
and motion blurs, showed that the proposed method yields
visually good results.

The proposed approach was shown to be also adequate
(although not achieving state-of-the-art results in terms of
SNR) for estimating both the regularization parameter and the
number of iteration of non-blind deblurring algorithm.



IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013 (TO APPEAR) 9

“House-blur”, visual criterion, 22nd iteration. “House-blur”, criterion based on M l
R, 24th iteration.

“House-motion”, visual criterion, 23rd iteration. “House-motion”, criterion based on M l
R, 22nd iteration.

“Mukta”, visual criterion, 24th iteration. “Mukta”, criterion based on M l
R, 24th iteration.

Fig. 5. Results obtained with real blurred photos. From left to right, at each row: restored image at the “optimal” (visually selected) iteration, estimated blur
filter at the “optimal” iteration, restored image at the iteration chosen using M l

R, blur filter estimate at the iteration chosen using M l
R.

APPENDIX

A. GSURE
The well known SURE (Stein’s unbiased risk estimate) is

an unbiased estimator of the MSE achieved by an (almost
arbitrary) estimator of an unknown vector observed under
additive white Gaussian noise [49]. SURE have been directly
applied to tune the regularizing parameter of linear and
nonlinear denoising methods [45], [37]. Recently, SURE was
extended to observation models in the class of exponential
family distributions [23]; this generalized SURE (GSURE) can
be used for tuning the regularizing parameter in non-blind ID
[23]. Consider the vectorial representation of (1)

y = Hx + n (12)

in which x ∈ Rm, y ∈ Rm and n ∈ Rm are vectors with the
elements of x, y and n, respectively, in lexicographical order,
and H ∈ Rm×m is the matrix representing the linear operation
of the convolution with the filter h. Defining hλ(·) as the
functional that, from the sufficient statistic of the model (12)
(u = (1/σ2)HT y), returns the output of a deblurring method
with a regularization parameter λ, the GSURE estimate of the
MSE is given, up to a constant, by [28]

η(hλ(u), y) = ∥hλ(u)∥2 − 2 xTMLhλ(u) + 2∇u · hλ(u), (13)

where xML is the maximum likelihood (ML) estimator, and

∇u · hλ(u) =
∑
i

∂hλ,i(u)
∂ui

(14)
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“Pietro”, visual criterion, 21th iteration. “Pietro”, criterion based on M l
R, 22th iteration.

Fig. 6. Results obtained with a real blurred photo. From left to right: restored image at the “optimal” (visually selected) iteration, estimated blur filter at the
“optimal” iteration, restored image at the iteration chosen using M l

R, blur filter estimate at the iteration chosen using M l
R.

TABLE IV
COMPARISON OF THE PROPOSED STOPPING CRITERIA VERSUS THE VISUAL CRITERION (DENOTED AS “BEST”); THE NUMBERS ARE THE ITERATIONS AT

WHICH THE ALGORITHM WAS STOPPED BASED ON EACH OF THE CRITERIA.

MH MR MRW M l
H M l

R M l
RW “Best”

“Studio-motion” 19 19 22 22 21 23 23
“Studio-blur” 22 22 22 22 23 22 22

“Building” (gray-scale) 25 26 25 25 25 25 25
“House-motion” (gray-scale) 26 26 26 26 27 26 25

“House-blur” (gray-scale) 26 26 25 24 24 24 24
“Mukta” (gray-scale) 24 24 24 24 24 24 24
“Pietro” (gray-scale) 24 24 24 24 24 24 23
“Building” (color) 24 24 24 23 23 23 24

“House-motion” (color) 23 23 23 22 22 23 23
“House-blur” (color) 26 26 25 24 24 24 24

“Mukta” (color) 23 24 24 24 24 24 24
“Pietro” (color) 22 22 24 23 22 23 21

TABLE VI
COMPARISON OF THE PROPOSED GLOBAL CRITERIA VERSUS SEVERAL OTHER METHODS (RESULTS ARE ISNR VALUES, IN dB) USING SPARSA WITH THE
REGULARIZATION PARAMETER AND STOPPING ITERATION SELECTED BY EACH CRITERION. SEE TEXT FOR DETAILS ABOUT THE COMPARED METHODS.

Experimental setting (see Table V)
1 2 3 4 5 6 7 8

Best 4.91 23.95 4.59 5.77 3.87 6.77 2.35 3.59

MH 3.59 21.14 3.10 4.53 3.01 6.38 1.29 1.72
MR 3.59 21.14 2.94 4.53 3.01 6.38 1.31 1.98
MRW 3.35 21.14 3.08 5.11 3.01 6.38 1.48 2.60
DPσ 3.33 22.28 2.47 5.13 2.60 5.16 1.35 2.16

DPMAD 3.35 21.89 2.45 4.38 3.77 4.10 1.19 2.22
NR 3.72 21.87 3.59 5.38 3.28 5.96 2.10 2.79

P-GSURE 4.91 23.87 4.59 1.87 -9.25 5.34 1.17 3.26
P-GSUREMAD 4.67 23.87 4.49 1.87 -9.25 5.53 1.17 2.96
PD-GSURE 4.91 23.77 4.49 1.87 -7.35 5.53 1.76 3.22

PD-GSUREMAD 4.67 23.77 4.49 1.87 -7.35 5.53 1.76 3.22

denotes the divergence of hλ. For the case of non-invertible
blurs, [23], [28] suggest estimating the MSE that lies on the
range of HT , denoted as R(HT ). Considering PR(HT ) =

HT (HHT )†H (where † denotes Moore-Penrose pseudo in-
verse), the orthogonal projection onto the range of HT , the
GSURE estimate of the projected MSE, referred to as pro-
jected SURE (P-GSURE) is given, up to a constant, by

ηPR(HT )
(hλ(u), y) =

∥∥PR(HT )hλ(u)
∥∥2− 2 xML · hλ(u)

+2∇u · hλ(PR(HT )u), (15)

where xML = HT (HHT )†y. An equivalent result was derived
in [54] for non-blind ID, although limited to the case of
invertible blurs. In the experiments reported in Tables VI and
VII, the projected version is used with experimental settings
6, 7, and 8, which are the most ill-conditioned.

B. Predicted SURE

The predicted SURE (PD-SURE) is a SURE-based unbiased
estimator of the predicted-MSE (mean square error on the data
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TABLE VII
COMPARISON OF THE PROPOSED GLOBAL CRITERIA VERSUS SEVERAL OTHER METHODS (RESULTS ARE ISNR VALUES, IN dB) USING SALSA WITH THE

REGULARIZATION PARAMETER SELECTED BY EACH CRITERION. SEE TEXT FOR DETAILS ABOUT THE COMPARED METHODS.

Experimental setting (see Table V)
1 2 3 4 5 6 7 8

Best 5.64 6.34 5.78 7.09 5.11 8.61 3.11 4.75

MH 3.66 3.39 4.20 6.10 4.33 7.60 2.70 3.79
MR 3.66 4.44 4.20 6.10 4.33 8.09 2.86 3.79
MRW 3.66 3.39 4.40 6.10 3.74 7.60 2.70 3.31
DPσ 3.66 4.44 4.20 6.10 4.33 8.09 2.70 3.79

DPMAD 3.66 4.44 4.20 6.10 5.11 5.89 0.88 3.31
NR 4.96 5.32 4.99 6.10 3.19 8.09 -16.14 4.23

P-GSURE 5.64 6.34 5.78 7.09 5.11 8.09 2.29 4.56
P-GSUREMAD 5.64 6.34 5.58 7.09 0.69 7.03 2.51 4.23
PD-GSURE 5.64 6.01 5.58 7.09 5.11 8.61 3.07 4.73

PD-GSUREMAD 5.64 6.01 5.58 7.09 4.61 8.09 3.11 4.56

Fig. 7. Maps of different criteria (for experiment 5), along the 21 values regularization parameters (vertical axis) and the 151 iterations (horizontal axis).
From left to right: MSE, GSUREMAD, NR, DPMAD, and log10(−MRW ).

domain):

Predicted-MSE(λ) =
1

m
||H(x− uλ(y))||22, (16)

in which uλ() is the functional that computes the image
estimate from the degraded image y. PD-SURE is given, apart
from a constant, by [45]:

PD-SURE(λ) =
1

m
||y −Huλ(y))||22+

+
2σ2

m
tr {HJ(uλ,y)} (17)

where J(uλ,y) represents the Jacobian matrix of uλ evaluated
at y, and the last term relates to the divergence of uλ()

tr {HJ(uλ,y)} = ∇y ·Huλ(y), (18)

in which the divergence ∇y ·Huλ(y) can be easily computed
according to the next section.

C. Monte-Carlo estimation of the divergence

The difficulty in using SURE-based measures (SURE,
GSURE or PD-SURE) resides in computation/approximating
the divergence term, as it involves derivatives of a function
defined via an optimization problem. To overcome this hurdle,
[45] proposed a Monte-Carlo method to estimate the diver-
gence of a function g by treating it as a black-box:

∇z · g(z) ≃
1

ϵ
bT (g(z + ϵ b)− g(z)), (19)

where b is a zero-mean random vector of unit variance and
ϵ is a small positive parameter. Implementing this divergence
estimator only requires applying the estimator g twice, to the
input z and to a perturbed version thereof. Parameter ϵ should

be small for an accurate estimate of the divergence, but large
enough to avoid numerical errors. For all the experiments,
the Monte-Carlo divergence estimate of (14) and (18) were
computed as in (19), with ϵ = 0.01.
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