Summary

• We present a blind deblurring method which only requires weak assumptions on the blurring filter.
• The method reaches satisfactory reconstruction of various images degraded by various blurs and noise levels.
• Filter estimates are close to true blurs.
• Improvements are achieved in real blurred photos and in synthetic blurs.

Blind image deconvolution

Degradation model: \(y = Hx + n \)
- original image, \(H \) - linear blurring operator
- noise, \(y \) - degraded image (blurred and noisy).

(y, x, n) are vectorized in lexicographic order.

Aim: recovering \(x \) from \(y \).

Ill-posed problem: infinite number of solutions, blur operator typically ill-conditioned.

Applications: Photography, medical imaging, astronomy.

Assumptions (weak)

• Original image edges: sparse, sharp
• Blur operator: limited support, low pass nature.

Cost function

Cost function: \(C(x, H) = \|y - Hx\|^2 + \lambda R(F(x)) \)

\(R(\cdot) \): Favors sparse distributions.

Guided optimization

\(\lambda \) is initially set to a large value and is slowly decreased over iterations:
- Initially, the main features/details are estimated. Smaller details are progressively considered as \(\lambda \) decreases.
- The filter estimate improves over iterations.

\(\gamma \) can be initialized with a large value, being progressively decreased over iterations.

Algorithm

 Initialization:
1. Set \(H \) to the identity operator.
2. Set \(x \) equal to \(y \).
3. Set \(\lambda \) and the prior’s sparsity to the initial values of the corresponding sequences.

Optimization loop:
4. Find new \(x \) estimate: \(x = \arg\min_x C(x, H) (H \) fixed).
5. Find new \(H \) estimate: \(H = \arg\min_H C(x, H) (x \) fixed).
6. Set \(\lambda \) and the prior’s sparsity to the next values in sequence.
7. If \(\lambda \geq \lambda_{\text{min}} \), go back to 4, otherwise stop.

Conclusions

• We present a blind deblurring method which only requires weak assumptions.
• Results: Satisfactory reconstruction of various images degraded by various blurs and noise levels. Filter estimates close to true blurs. Improvements achieved in real photos.
• The method is also able to estimate parameterized blurs.