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Abstract 

Data from the real world appears combined with undesired information, denominated 
noise. The relevant information can be extracted from these data by applying source 
separation (SS) methods. This work is focused on a recent method of SS, denoising source 
separation (DSS). In order to perform a fast and robust separation, DSS includes a denoising 
step that takes advantage of a small amount of information about the sources that is usually 
available. DSS performs separation of instantaneous and linear mixtures in a fixed point 
algorithm and the aim of the present work is the development of an online version of DSS able 
to separate mixtures that would change in time, and of a version of DSS suitable for nonlinear 
mixtures. 

The online version was successfully implemented to separate mixtures of two stationary 
synthetic signals. The application of the algorithm results in a stationary solution with unit 
variance. Consequently, the proposed extension is not useful for mixtures of non-stationary 
sources. The restriction to stationary sources results from the scaling indetermination inherent 
to linear source separation methods, namely DSS. This can only be overcome with additional 
information on the data or mixture process. 

The extension of DSS to a nonlinear mixture was studied using a specific real-life 
mixture of images. To achieve this separation, a new version of DSS useful to be applied to 
nonlinear mapping was developed. Different denoising functions were implemented to 
perform the separation. The separation was achieved but the generalization of the DSS to 
nonlinear mappings is restricted to particular mixtures, for which it is possible to develop 
useful denoising functions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords: Independent Component Analysis (ICA), Principal component analysis 

(PCA), Denoising Source Separation (DSS), Whitening, Non-linear mixtures, Neural network 
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Resumo 
Os dados provenientes do mundo real encontram-se, frequentemente contaminados com 

informação indesejada, denominada ruído. A informação indesejada pode ser extraída dos 
dados através da utilização de métodos de separação de fontes (Source Separation - SS). Este 
trabalho teve por base um método recente de separação de fontes, denoising source separation 
(DSS). De modo a obter uma convergência rápida e robusta, o método DSS inclui um passo 
que elimina o ruído (“denoising”), usando para tal a alguma informação sobre as fontes, a qual 
é normalmente conhecida. DSS realiza SS de misturas lineares e instantâneas através de um 
algoritmo de ponto fixo, tendo o presente trabalho consistido no desenvolvimento de uma 
versão online do algoritmo capaz de separar misturas não estacionárias, assim como outra 
versão capaz de separar misturas não lineares.  

A versão online do algoritmo DSS foi implementada com sucesso permitindo separar 
misturas sintéticas de dois sinais estacionários. A aplicação do algoritmo tem como solução 
sinais estacionários de variância unitária, sendo somente aplicável a sinais estacionários. A 
restrição da extensão do método a sinais estacionários, resulta da indeterminação de escala 
inerente a vários métodos de separação, nomeadamente DSS. Esta indeterminação só poderá 
ser ultrapassada caso exista informação adicional sobre os sinais ou sobre o processo de 
mistura.  

A extensão do método DSS a misturas não lineares foi desenvolvido, tendo por base um 
problema real de misturas não lineares de duas imagens. Para alcançar a separação das 
imagens, uma nova versão do método foi desenvolvida conjuntamente com funções de 
redução de ruído (“denoising functions”). A separação das imagens foi alcançada com 
sucesso, mas a generalização do método a misturas não lineares encontra-se restringida a 
misturas particulares, para as quais é possível desenvolver funções de redução de ruído úteis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Palavras-chave: Análise em Componentes Independentes (ICA), Análise em 

Componentes Principais (PCA), Denoising Source Separation (DSS), Branqueamento, 
Misturas não lineares, Redes neuronais  
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1. Introduction 

Science deals with analyses of data from the real word, that appear combined with 
undesired information (noise). In order to extract the relevant information, Source Separation 
(SS) of mixtures has been in the focus of the work of several researchers during the last three 
decades. SS consists in recovering the original sources from the mixtures (observations). If we 
have the same number of mixtures and sources and provided the mixing is an invertible 
function, the sources can be recovered under rather general conditions. 

SS can be performed without knowing almost anything about the sources. In this case, 
SS is usually done through Independent Component Analysis (ICA), assuming that the sources 
are statistically independent. This is called Blind Source Separation (BSS), since no more 
information about the sources is used. The central method of this work, Denoising Source 
Separation (DSS), is part of the Exploratory Source Separation (ESS) group of methods that 
perform SS with a scarce knowledge about the sources. DSS performs the separation of 
instantaneous and linear mixtures in a fixed point algorithm using information on the sources. 
This information is used in a denoising step that emphasizes the desired sources versus the 
other sources in the mixture. 

This project was carried out in two phases. The first phase was carried out during the 
summer term of 2003/2004 and the winter term of 2004/2005 as part of the activities of the 
Neural Network and Signal Processing Group of INESC-ID under the supervision of Professor 
Luis Borges de Almeida. The second phase, between February and July of 2005, was 
developed in the context of the ERASMUS/SOCRATES programme, in the Neural Networks 
Research Center of the Helsinki University of Technology (HUT - Finland) under the 
supervision of Dr. Jaakko Särelä. 

During the first part of this work the student was introduced to the independent 
component analysis (ICA) and to the blind source separation (BSS) techniques so that she 
would be prepared for the second part of the project. The Infomax, FastICA and MISEP 
methods were examined and implemented. In the second part of the work, two extensions of 
the DSS algorithm were proposed to the student. The first extension consists in the online 
implementation of the algorithm and the second extension consists in the application of the 
algorithm to solve a real-life nonlinear mixtures of two images resulting from the nonlinear 
mixture of the front- and back-page images of an "onion skin" paper when the front-page is 
acquired using a scanner. All the methods detailed in this work were implemented and 
collected in an interface. 

This report is organized in five chapters. The first chapter is an introduction to the 
subject and is organized as follows: Section 1.1 describes the motivations and applications of 
SS; section 1.2 presents a theoretical description of ICA emphasizing the three methods 
related with the work (infomax, FastICA and MISEP); in section 1.3 the theoretical basis of 
the DSS method are presented and, in section 1.4, the problems to be solved are described. 
The second chapter is dedicated to the online version of DSS developed during this work. The 
third chapter is dedicated to the nonlinear DSS developed in this work in order to separate the 
real-life mixtures of images. Finally, the conclusions and future work are included in the 
fourth chapter. 
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1.1  Motivations and applications of Source Separation  
The problem of Source Separation (SS) has been attracting the attention of several 

researchers during the last three decades, and it can be applied to several real life problems in 
different scientific areas. 

A classical problem of SS is the cocktail-party effect. Let us consider that we are in a 
party where there are several persons talking at the same time. If we have several microphones 
placed in different places of the room, we will be able to record different mixtures of the 
conversations. The problem is to recover from these recordings (mixtures) the speech of each 
individual person talking. In the case of two speakers, the problem can be easily solved by a 
human being. However, if the number of persons talking increases, this detection becomes 
more difficult. The computational problem is not so simple, but is easier to be extended to a 
higher dimension (more speakers). 

Source Separation (SS) can be applied in different areas of science in several real-life 
linear and nonlinear mixture problems. 

An important application consists in biomedical problems. SS, preformed by ICA or 
DSS, proved to be an efficient tool for artifact identification and extraction from 
electroencephalographic (EEG) and magnetoencephalogram (MEG) recordings [1] , [2] and 
[3]. ICA showed also to be useful for analyzing functional Magnetical Resonance Images 
(fMRI) data, used in the study of brain function [4].  

Another relevant application of SS concerns telecommunication problems such as: blind 
echo cancellation [5], receivers for block fading DS-CDMA (direct-sequence code division 
multiple access) [6] and watermarking for digital images music or video [7] and [8]. 

There are several application areas of SS related with image processing, as exemplified 
in the present work. SS can be successfully preformed by ICA in order to separate nonlinear 
mixtures of scanned images [9], in the separation of artifacts of astrophysical images data 
[10]; to perform face recognition [11], and to analyse synthetically aperture radar (SAR) 
images [12].  

SS also proved to be useful in other applications: feature extraction [13]; financial data 
analysis [14], weather data analysis [15] by detecting el Niño phenomenon, and document 
analysis [16].  

1.2  Independent Component Analysis  
Independent component analysis (ICA) is a method that can be used to solve the BSS 

problem. The separation is achieved by assuming that the sources are statistically independent 
and that at most one of the sources has a Gaussian distribution.  

Consider a matrix S  with n lines representing n statistically independent sources iS  and 
a matrix X with m lines given by:  

MSX =                     (1.1) 
where X can be seen as a linear mixing of the sources iS though the mixing matrix M. 

If nm ≥ , it is possible to recover the original n sources. The estimated sources Ŝ  are 
given by:  

FXS =ˆ ,                   (1.2) 
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where F is the matrix that performs the linear separation. By choosing F such that the lines of 
Ŝ  become statistical independent, Ŝ  will be the original sources S , apart from a possible 
permutation and/or scaling [17]. It is common to assume that mn =  and consequently 

1−= MF  is a solution. 
When the mixture is nonlinear, the mixing equation can not be given by (1.2), but it is 

given by: 
)(SMX = ,                    (1.3) 

where (.)M  performs a nonlinear transformation. In these circumstances the separation 
function (.)F  is also nonlinear 

( )XFS =ˆ .                   (1.4) 
The nonlinear ICA is a much more complex problem compared to the linear one. While 

the linear ICA gives a unique solution apart from a permutation and scaling, the nonlinear ICA 
gives a solution not only apart from permutation and scaling but also apart from a nonlinear 
transformation. In the nonlinear case there is an infinite set of independent components but 
only one corresponds to the original sources apart from a permutation and scaling [18] 

Three ICA algorithms related with the present work were implemented and the 
theoretical basis is described in section 1.2.2 (Infomax method), in section 1.2.3 (FastICA) and 
in section 1.2.4 (MISEP). 

1.2.1 Preprocessing 
In order to simplify the linear ICA algorithms, the data are usually preprocessed (by 

centering and whitening).  

Centering 
The simplest preprocessing method is the centering, i.e., subtract the mean mx of the 

signal to make X a zero mean variable: 
}{Xm Ex = .                   (1.5) 

This preprocessing will not change the solution. After linear ICA, the mean can be 
recovered as follows: 

xxE FmmMS == −1}{                  (1.6) 

Whitening  
Whitening or sphering is another useful preprocessing method used especially before 

linear ICA. Through whitening the data Y become uncorrelated and normalized: 
AXY =                     (1.7) 

IYY =}{ TE .                   (1.8) 
To satisfy (1.8), whitening contains centering.  

Uncorrelation is a weaker imposition then independency. However, in linear mixtures, 
the independent components become orthogonal after whitening, a fact used in some ICA 
algorithms that, after spheering, restrict ICA into a rotation [19]  

Whitening can be obtained through a linear transformation of a zero-mean data. This 
implies that the data have already been centered.  
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An easy way of whitening data is performing PCA followed by normalization. Data can 
also be whitened in an isotropic way. There are infinitely many matrices that perform 
whitening, but there is only one which does it isotropically. The isotropic whitening can be 
obtained by rotation of the data to principal components, normalizing and finally by undoing 
the rotation performed by PCA. 

Figure 1.1 - Orthonormalization Methods (comparison). 

1.2.2 Infomax 
Infomax is a method developed by Bell and Sejnowski in 1995 [20], that performs BSS 

of linear mixtures using ICA. The method uses a network as shown, for two sources, in figure 
1.2. The F block represents the separation (F matrix) and the ψ’s are increasing bounded 
nonlinear functions. 

 
Figure 1.2 – Schematic representation of the network used by Infomax in order to separate two 
sources. The F bloc performs ICA and iŜ  are the extracted components. ψ ‘s are the auxiliary 

blocs of training ( adapted from [21] ). 

The name Infomax is due to the way the method performs ICA, maximizing, through a 
stochastic learning rule, the mutual information that the output Z of the network contains 
about the input X. There is a know relation between the mutual information and the entropy: 

)|()(),( XZZXZ HHI −=  ,                  (1.9) 
where I(.,.) is the mutual information and (.)H the Shannon’s differential entropy given by: 

∫−= dxxpxpZH ZZ )(log)()(                    (1.10) 

where )( xp Z
 is the probability density function (pdf) of the random variable Z. 



Mariana Sá Correia Leite de Almeida -                                             Extensions to Denoising Source Separation  
 

5 

Taking (1.9) into consideration, the optimization proposed in infomax can also be seen as 
the maximization of the entropy of the outputs of the network, since 0)|( =XZH  due to the 
fact that Z is completely determined by X. 

The mutual information of the components of the estimated sources iŜ  is given by: 

∑
=

−=
n

i
i HSHI

1
)ˆ()ˆ()ˆ( SS ,                  (1.11) 

where 
TT

n
TT SSS ⎥⎦

⎤
⎢⎣
⎡= ˆ...ˆˆˆ

21S  and (.)H is the differential entropy. Since the ψ 

nonlinearities are monotonic functions, the mutual information of the components of the 
output )ˆ( iii SZ φ=  is equal to the mutual information of the components of the estimated 

sources iŜ : 

∑
=

−=

=
n

i
i HZHI

II

1
)()()ˆ(

)()ˆ(

ZS

ZS
.                 (1.12) 

If the ψ’s nonlinearities are the cumulative distribution function (CDF) of the desired 
sources, )( iZH takes the maximum possible value (Zi has uniform distribution) and the 

maximization of the entropy of the output ∑
=

−=
n

i
i IZHH

1
)ˆ()()( SZ  will correspond to the 

minimization of the mutual information between the estimated sources iS . Since the mutual 
information is always non-negative and is zero only for independent variables, the 
minimization of the mutual information will lead to the independence of the estimated sources. 

The application of the ascendant gradient learning rule to the objective function )(ZH , 
results in an adaptation of the separation F matrix given by [22]: 

)ln( TT Z
F

FF
∂
∂

+= −∆ ,                 (1.13) 

where the second term of (1.14) can be calculated for the nonlinearity ψ used. 
In order to get independent estimated sources, the nonlinearities ψ should be the 

cumulative distribution functions (CDF) of the sources. However, due to the small number of 
parameters, most of the time the ψ nonlinearities do not have to be the exact CDF. It is usually 
enough to classify the distribution of the signals into a super- or sub- Gaussian distributions. 
Super-Gaussian distributions have positive value of kurtosis and Sub- Gaussian distributions 
have negative value of kurtosis. Kurtosis is the fourth cumulant (defined ahead) and it is 
given, for a zero mean variable, by [23, 24]: 

( )224
4 }{3}{)( AEAEkAkurt −==                 (1.14) 

Cumulant 
Consider a variable A with E{A}=0. The characteristic function )(ˆ th of A is  
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}{)(ˆ itAeEth = .                   (1.15) 
If the logarithm of the characteristic function is expanded into Taylor series it gives rise 

to: 

( ) ( ) ...
!

...
2

)()(ˆlog
2

21 ++++=
r

itkitkitkth
r

r                (1.16) 

where the coefficients ki are called cumulants. 
Super-Gaussian random variables have typically a probability distribution function (pdf) 

with a central “spike” and heavy tails. Sub-Gaussian random variables, on the other hand, 
have typically a “flat” pdf, which are rather constant near zero, and with small variations for 
large values of the variable. These differences are exemplified in figure 1.3.  

 
Figure 1.3 – Gaussian, Laplacian (Super-Gaussian) and uniform (Sub-Gaussian) distributions 

with unit variance. Their kurtosis are 0, 3 and -2 respectively. (from [25]). 

Natural Gradient  
The natural gradient results form the application of the gradient method in a different 

space, where the maximization of the objective function is more efficient [26]. Infomax, using 
natural gradient, consists, in practice, of multiplying the right side of the gradient in the 

Euclidian space (1.13) by FFT  [26] and the learning rule is: 

FFz
F

FF TTT )ln(
∂
∂

+=∆ .                    (1.17) 

The application of the natural gradient results not only in faster adaptation of the weight 
but also avoids the calculation of the inverse of the F matrix which is necessary in Infomax 
(1.13). 

1.2.3  FastICA  
FastICA performs ICA by maximization of a measure of non-Gaussianity, the 

negentropy. The known central limit theorem (CLT) [27] states that the distribution of the sum 
of independent variables tends to a Gaussian when the number of variables increases. FastICA 
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follows the inverse intuition assuming that the less Gaussian a projection from a sphered data 
Y is, the more independent it is of the other orthogonal projections. 

Negentropy 
Non-Gausianity of a random variable A, can be measured by its negentropy:  

)()()( AHVHAN −= ,                  (1.18) 
where H (.) represents the differential entropy given by (1.10) and V is a Gaussian variable 
with the same variance as A. 

To calculate the negentropy value of a variable it is required to know its distribution 
which is difficult and computationally very demanding. Thus, the negentropy is sometimes 
approximated based in cumulants [24]. 

FastICA Algorithm 
FastICA [19] is a fixed point algorithm derived from a general objective function that 

approximates the negentropy by: 
n

iiG VGESGESN )}({)}ˆ({)ˆ( −= ,                (1.19) 

where G can be any even, non quadratic, sufficiently smooth scalar function; V is a standard 
Gaussian data vector; n is a positive integer, usually 1 or 2. 

Maximizing )ˆ( iG SN is the same as maximizing )}ˆ({ iSGE . The G functions commonly 
used are: 
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with 1,21 21 ≈≥≥ aa . G2 is appropriate for super-Gaussian mixtures, G3 is appropriate for 
sub-Gaussian and G1 is generic. The gi functions are the derivative of Gi. 

Using the fixed point algorithm with the contrast function (1.19) and fixing the norm of 
the weights to one, the algorithm for the already sphered data, Y, is: 

( ){ } ( ){ }
||||/

'.
* ++

+

=

−=

www
YwYwYw TT gEgE

,                (1.21) 

where *w  is a column vector with the estimation of one line of the matrix W .The algorithm 
can be directly applied to the mixed data X (usually not sphered): 

( ){ } ( ){ }
+++

−+

=

−=

Cwwww

wXwXwXCw
T

TT gEgE

/

'
*

1

,               (1.22) 

where C = E{XXT} is the covariance matrix of the mixed data. 
This algorithm gives one weight vector and thus only one independent component. The 

other components can be obtained using deflation (removing the contributions of the already 
estimated sources and then performing FastICA again). 
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1.2.4 MISEP  
The MISEP algorithm [21] performs BSS of linear and nonlinear mixtures using ICA 

and can be seen as an extended version of infomax for non-linear mappings. In order to 
separate nonlinear mixtures, the algorithm substitutes the demixing F block of figure 1.2 by an 
MLP (A-Φ-B in figure 1.4). Like infomax, MISEP maximizes the entropy of the output 
though a gradient learning rule, which corresponds to maximize the following objective 
function [21]: 

x
zJ

J

∂
∂

=

= ∑
=

K

k

k

K
E

1

|det|log1

.                  (1.23) 

where kJ  is the value of J of the k-th training pattern, and K is the number of training patterns. 
Since the network of the demixing system is a more complex network, the gradient 

learning rule is obtained by backpropagating the error derivative, requiring for that the 
computation of the jacobian J, as can be concluded from (1.23). This computation is 
preformed in an auxiliary network (lower of the net represented in figure 1.4). The MISEP 
network, corresponding to the Infomax network shown in figure 1.2, can be seen in figure 1.4 

 
Figure 1.4 – Esquematic representation of the network used by MISEP. The top part 

corresponds to figure 1.2, drawn in a different way. The lower part, which computes the 
Jacobian proper, is essentially a linearization of the upper part, but propagates matrices. It has 

as input the identity matrix, and provides at its output the Jacobian J. (Adapted from [21]). 

In the upper part of the net, the three first blocs (A-Φ-B) correspond to the F block of 
infomax (in the present case nonlinear) and perform the separation. The last three block’s of 
the upper part of the net (C-Φ-D), corresponding to the ψ’s of infomax, and estimate the 
cumulative distribution of the original sources. In Infomax ψ’s are increasing limited nonlinear 
functions, in MISEP is a function with values in [0,1], i.e., )ˆ( iii sz φ=  is restricted in order to 
zi ∈[0,1] . The lower part of the net is the one that computes the Jacobian J that is required to 
the learning rule, as shown in (1.23). The backpropagation is preformed though the net, but the 
input is only applied to the lower part and is given by:  

TE −=
∂
∂ J

J
.                   (1.24) 
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Note that there is no input to the backpropagation in the upper part of the net:  

 0=
∂
∂

z
E .                    (1.25) 

MISEP minimizes the mutual information of the estimated sources, making them more 
independent, as far as the net (C-Φ–D) gets the closer to the respective cumulative function 
[21]. This estimation of the cumulative function is crucial to the success of the separation. 

1.2.5 Other Methods: 
Two other important methods in linear ICA should be referred: JADE and TDSEP. The 

first was developed by Cardoso [28] and uses fourth-order joint cumulants to perform ICA. 
The joint cumulant kkl of two random variables 1Ŝ  and 2Ŝ  are given by the joint cummulant-
generative function, as follows: 

( ) ( )∑
∞

=

=
0,

21
21 !!
),(ˆlog

lk

lk

kl l
jt

k
jtktth .                (1.26) 

JADE takes advantage on the fact that joint cumulants are zero for two or more 
independent random variables. Denote by cumklmn=cum( kŜ , lŜ , mŜ , nŜ ) the joint cumulant 
corresponding to the coefficient of (jtk) (jtl)(jtm)(jtn) in the expression of the joint cumulate-
generative function. JADE finds the linear transformation FXS =ˆ  such that the components 
of Ŝ  are independent by diagonalizing a part of the four-index array cumklmn [28]. 

The TDSEP (Temporal Decorrelation source SEParation) method [29] is essentially 
identical to SOBI (Second order Blind Identification) and exploits the time-domain structure 
to perform ICA. TDSEP assumes that sources S(t) and mixtures X(t) are function of time. If 
the sources S(t) are zero mean stochastic processes independent from one another, then Si(t) 
must be uncorrelated with Sj(t-τ), if ji ≠ , for any delay τ. If the sources have temporal 
correlation it is normal to find sets of delays that force the problem to have the solution that 
corresponds to independent components. TDSEP starts by whitening the data AXY = , and 
afterwards finds the rotation WYS =ˆ  such that the lines of Ŝ  would be simultaneously 
uncorrelated for several delays [29]. 

The Nonlinear ICA problem provides, without any extra constrains, an infinite set of 
solutions. Post-nonlinear mixtures are an important special case with structural constraints and 
consist in a nonlinear transformation of each component come from a linear mixtures. Those 
mixtures exist in real problems and are interesting because this nonlinear ICA problem 
presents almost the same indeterminations as linear ICA. The separation of post-nonlinear 
mixtures is performed by minimizing the mutual information of the estimated sources and uses 
for that the inverse mixtures process [30]. 

Some nonlinear ICA methods are based on variational Bayesian learning methods, which 
are Bayesian methods designed for greater computational efficiency. Variational Bayesian 
learning methods provide in practice the regularization needed for BSS and ICA. The 
application of these methods to BSS consists in estimating the sources Ŝ  and the mixing 
mapping )ˆ(SM , which have most probably generated the observed data X. [31]. 
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A recent nonlinear ICA method is kernel-based nonlinear ICA (kTDSEP) [32]. The 
method uses the temporal structure of data, a fact that gives kTDSEP the particular interesting 
capacity of successfully dealing with indetermination of nonlinear ICA. The method performs 
nonlinear ICA based on the fact that if we make a linear mapping from the space of mixtures 
χ , into another space χ̂  (usually called feature space) and then perform linear separation in 

that space, that will correspond to a nonlinear transformation in the original space. The choice 
of this nonlinear mapping is perform by choosing a kernel [32]. 

1.3 Denoising Source Separation 
Denoising Source Separation (DSS) is a recent algorithm [3, 25, 33] that separates linear 

mixtures. Usually in real-life problems some information about the desired sources is available 
and DSS takes advantage of this knowledge to perform a robust and faster separation. 

The classical version of DSS explains the idea of DSS in three steps (figure 1.5). First 
the data is sphered (figure 1.5 (b)). Afterwards a denoising function is applied to the sphered 
data, in order to make thinner the undesired sources (figure 1.5 (c)). Finally, the desired source 
is given by the principal component of the denoised data (figure 1.5 (c)). 

 
Figure 1.5 – Data evolution during the three steps of the classical version of DSS 

(adaptedted from [33]). 

Considering that DSS uses some information about the sources, the method is not 
completely blind. However, DSS does not require too much information about the sources; it 
only needs to differentiate the sources. Differently from ICA, DSS can be seen as a semi-blind 
algorithm and is able to separate mixtures of Gaussian and non-Gaussian distributions. The 
iterative version of DSS is given by [25, 33]:  

)(
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+

=

=

=
=

ww

Yxw

sfx
Yws

new
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norm

T

T
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)30.1(
)29.1(
)28.1(
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neww  is a column vector with the estimation of one line of the matrix W ; )(sfden  is the 
denoising function. The resulting +w , in each iteration, is the one that transforms s  in denx  in 
the least-mean-squares (LMS) sense. The iterative application of (1.27) to (1.30) consists in a 
modified power method [34] with the addition of a denoising step (1.28). If the denoising 
function is instantaneous, DSS results in a nonlinear principal component analysis (NPCA). 

If the denoising function applied to all data (classical version of DSS) is linear: 
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*YDXden = ,                   (1.31) 

the denoising step (1.28) is also linear and is given by: 
sDsfden =)( ,                   (1.32) 

T**DDD = .                   (1.33) 
In DSS with linear denoising (when the denoising function is linear), the corresponding 

objective function is [25]: 
TTT

ling sDswZZws ==)( .                 (1.34) 

If the denoising function is nonlinear, we have DDS with nonlinear denoising and the 
approximation suggested to the objective function [25] is: 

)()(ˆ ssfs den
Tg =                   (1.35) 

The use of the denoising function )(sfden  in the iterative version of the algorithm does 
not give the same solution as applying )(Yfden  to all data and then performing PCA. If the 
denoising function in the iterative version )(sfden  is linear, there is simple correspondence to 

)(Yfden , as given in (1.32) and (1.33). To a nonlinear denoising function )(sfden  there is no 
simple correspondence. 

There is a version of the algorithm that can determine more than one source at the same 
time. In this case, the iterative algorithm can be compared to the symmetric power method and 
is given by: 
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In the simultaneous version, given by (1.36) to (1.39), the normalization step is replaced 
by the orthomornalization step in order to keep the estimated sources separated. This 
modification is essential to ensure that the algorithm does not converge to identical solutions. 
The orthonormalization used in step (1.39) is symmetric and it is given by: 

( ) WWWW 2
1

)( −
= Torth                    (1.40) 

An example of a denoising function that can be usefully used in the simultaneous version 
is 3)( ssfden =  (resulted from masking the signal s by s2). This will correspond to FastICA with 
G3 apart from an additional term s3  in the denoising function that does not change the fixed 
point, as will be seen. 

Speed up 
One way to accelerate DSS is by applying spectral shifting, a method usually used to 

speed up the convergence of the power method [34]. The spectral shifting is achieved in DSS 
by applying the denoising function 

[ ]sssfss den )()()( βα +=+ ,                 (1.41) 
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instead of )(sfden . The fixed point is the same but the convergence can be achieved in a faster 
way if the scalar functions )(sα  and )(sβ are correctly chosen. A reasonable spectral shifting 
is, for instance, the one that cancels the Gaussian noise and can be approximately implemented 
by [25]: 

TVVTVgβ T /)(/)(ˆ denf=−=  ,                 (1.42) 

where V is the standardized Gaussian variable and T the size of V. 
The function that results from the application of spectral shifting proposed (1.42) to the 

deniosing function 3)(' ssfden =  is: 

sssfden 33)('' 3 −= ,                  (1.43) 

and the DSS algorithm would be the same as FastICA with G3. 
Other way of achieving a faster convergence is to use an adaptive rule for γ step: 

∆www adapt γ+=                   (1.44) 
2||||/ oldold ∆w∆w∆w T

oldnew γγ += ,                (1.45) 

where w+ will be substituted by wadapt, the new estimated vector before the normalization step; 
∆w is defined as w+-w; the step of the next iteration will be γnew and γold is the step of the 
present iteration. The technique of using an adaptive step is also useful to improve stability. In 
contrast with other adaptive step methods [35] DSS does not have any control that uses the 
objective/cost function. The corresponding control is done by the denoising step jointly with 
the orthonormalization of the weights. 

1.4 Problems to be solved 
The aim of this work was to develop two extensions to DSS. The first one consisted in 

an online extension to DSS and was not applied to a real-life problem. The problems to be 
solved with the developed online version of DSS were synthesized: the sources used were two 
dimensional super-Gaussian synthesized signals and the mixtures were also synthesized. Three 
synthetic non-stationary mixtures with different characteristics were studied. 

The extensions of DSS to nonlinear mixtures were performed focusing on a specific real-
life nonlinear problem. The problem under study results from the nonlinear mixture of the 
front- and back- page images of an "onion skin" paper when the front page is acquired with a 
scanner. The resulting mixture is strongly nonlinear and linear separation does not perform 
acceptable results. The images used in this study were carefully acquired with a Cannon LIDE 
50 desktop scanner and processed in order to align as much as possible the mixed images with 
each other and the source images with the mixture mixtures. The characteristics of the images 
used in this work are described on more detail in section 3.1.  

This problem had already been studied by L. B. Almeida in [9]. In this work the images 
were reasonably separated by the application of the MISEP method. Since the original images 
are not fully independent, a nonlinear version of DSS, which is not based on independency 
criteria, would be able to have a better performance.  
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2   DSS extension to an online version 
This chapter is dedicated to the extension of DSS, developed in order to be applied in a 

stochastic way (online). The theoretical extensions proposed are described in section 2.1. The 
results are presented in Section 2.2 followed by the conclusions, in Section 2.3. 

2.1 Online DSS 
Algorithms can be implemented either in batch mode, by processing the whole signal in 

each iteration, or in a stochastic or online way, by processing one sample at a time. One 
advantage of implementing an online version of DSS is the simplification of the computation 
complexity, when the data and the mixing matrix are large. Another advantage is the 
possibility of handling mixtures that change in the sample dimension (usually time). 

To implement DSS online all DSS phases need to implement in a stochastic version. 
These phases are pre-whitening and the application of the algorithm itself: 

)()()( ttt AWF =   ,                   (2.1) 
where t is the indexes the sample dimension, A(t) performs whitening and W(t) is the W 
rotation matrix already defined for the DSS method. 

To perform an online DSS that follows non-stationary mixtures, the two previous phases 
of DSS have to be implemented online and should be able to follow changes in the sample 
dimension. Since algorithms that perform whitening online already exist, this step will be 
discussed afterwards the online determination of W (last step of DSS). 

Online DSS 
The determination of matrix W(t) to be applied to previously sphered data, Y, will 

involve steps similar to those involved in the iterative DSS. However, they are applied to only 
one sample at a time. In the original version of DSS (batch), the direction of the new 
separation vector w is estimated taking in to account the contribution of each sample (1.29), 
consequently each sample has part of the information about the global w. Based on the fact 
that each sample gives a contribution to the estimated vector, the proposed online version of 
DSS is given by:  
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where t indexes the sample dimension and the parameter γ is the step size, which can be used 
to accelerate (if increased) or to stabilize (if decreased) the convergence of the method. 
Compared with the batch version, the basic difference relies on the fact that w+ in the online 
version is, for each sample, the increment of w related to the sample, instead of the new 
estimated w. 

If the vector w is pointing in the right direction, the increments +w  will, on average, 
point to the same direction and the vector w will be stable, due to the normalization step (2.5). 
Equation (2.5) gives a wnew vector that is closer to w+ than w was. The proposed adaptation 
will only work if the γ step is small enough such that the norm of the increment is much 
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smaller than one. Otherwise, the new w can suffer a deviation instead of stochastic oscillation 
and get closer to other demixing vector. The fact that the increment has to be small restricts 
the dynamics of the mixture that the algorithm is able to follow.  

The proposed online algorithm can be modified to act in a simultaneous way. In this 
version, (2.6) to (2.9), the normalization step is substituted by an orthonormalization step. 
Using the simultaneous version we can not only extract more components, but also stabilize 
the algorithm. If all the components are extracted at the same time, all the space generated by 
the mixtures will be covered and the possibility of a switch of components will be reduced by 
the use of the orthonormalization step. In the simultaneous version that extracts all the 
components the γ parameter and the increment matrix γW+ can be much larger, thus allowing 
the following of mixtures with faster dynamics.  
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In DSS (batch) the γ step could be adapted in order to achieve stability and speedup at 
the same time, but it was performed after the analysis of all data. In this online version of DSS 
the γ parameter is chosen in order to achieve a compromise between stability (smaller values 
of γ) and adaptation speed (larger values of γ). An suitable adaptation rule for the γ parameter 
will be different from the one proposed for the original version of DSS (batch) and will 
probably require more memory than only one sample. No automatic choice of γ was 
implemented, and the choice was performed manually according to the problem. 

Since the adaptation of γ is not done, the speedup is only implemented with the spectral 
shifting, that would be included in the denoising function. This choice has also to be done by 
the user, but a reasonable choice would be the one proposed for the batch version (1.41). 

Sphering online 
There are several algorithms to whiten or sphere data and usually, they are already 

implemented in a stochastic version. 
An easy way of whiten data is performing PCA followed by normalization (Figure 1.9(b) 

and Figure 1.9(c)). However, the online algorithms that whiten data based on online PCA are 
not prepared to follow changes of the whitening matrix, once they do not have the 
normalization step online, but only the ortogonalization step. 

The algorithm developed by Silva F. M. and Almeida L. B. [36] performs whitening 
online and in a isotropic way. This algorithm has a hebbian and an anti-hebbian term and is 
able to follow the dynamics of the data. In the online version of this algorithm the whitening 
matrix A is adapted in each sample as follows: 
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where y is the estimated whitened signal and β is a parameter that must be small enough in 
order to ensure that the algorithm converges. The larger this β parameter is, the higher the 
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importance of the present sample is and more easily the algorithm will adapt to different data, 
but less stable it will become. 

Mean extraction 
The method used to whiten data should be applied to zero mean data. Consequently, if 

data do not have zero mean, the mean should be also extracted online. The mean can be 
estimated using the mean of all of the already analyzed samples: 
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Assuming that the mean also changes in time, a time window should be considered. In 
this case the estimation of the mean can be given, for instance, by  

[ ] [ ]

r
r

kkErkE j 1)1(1
)()1().1()( +−−

+−−
=

xXX , 10 << r               (2.15) 

Smoothing the results 
The capability of the proposed online DSS to follow mixtures will depend on the 

dynamics of the mixture, as well as on the parameters β and  γ that will control the dynamics 
(stability and velocity) of the evolution of the two adaptive matrix, W and A, respectively. 

The evolution of these matrices shows a “turbulence” typical of stochastic algorithms. 
This undesired oscillation can be overcome by filtering the evolution of the matrix.  

The smoothing used consists in an approximation of a Gaussian filter and it can be more 
or less strong according to the variance of the Gaussian, which is another parameter to be 
chosen according to the problem. 

The smoothing technique used was implemented to be applied to the A matrix after 
obtaining its evolution in the sample dimension. This technique was applied in batch mode 
because it was easier and the main objective was to detect changes in the sample dimension. 
However, the implementation can be done online; it only requires a delay due to the filtering 
process. 

Initialization 
In order to follow a variable mixture, it is much easier to track than to converge and 

track. In the online DSS case the difficulty level is even more representative, since two 
matrices must be estimated. 

A procedure is implemented to estimate the initial values of A and W. This procedure 
receives a window of samples and calculates the matrices A and W for this group of samples 
in batch mode. The initial matrix A is obtained by isotropic whitening and the matrix W is 
obtained by applying DSS using a fixed number of iterations. 

Restricted application to stationary signals 
As mentioned before in this report (section 1.2), linear SS is usually achieved apart from 

a permutation and scaling. If the mixtures changes in the sample dimension, the separation 
matrix F has to be determined for each sample, thus the indetermination of scaling and 
permutation will be present in each sample. As explained in this section the permutation 
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problem can be controlled considering the estimated matrix F during the previous 
iteration/sample and assuming that the demixture matrix is smooth enough in the sample 
dimension. On the other hand, the scaling can not be predicted without any extra information 
on the data or mixture process. 

The present algorithm gives the correct separation angle. The separation norm is such 
that the estimated sources are stationary with unit variance. This occurs due to the separation 
process that is given, in each sample, by to the orthonormalization followed by the matrix W 
that is orthonormalized. In the original DSS (in batch) the estimated sources have unit 
variance; in the proposed online version of the algorithm, the estimated sources are stationary 
with unit variance. The proposed online version is able to separate the stationary part of the 
sources. 

2.2 Results 
The data used were stationary. As referred in section 2.1, the data should be stationary 

such that a non-stationary mixture could be detected.  
To test the performance of the proposed online implementation, a number of experiments 

were carried out. First, the performance of W(t) was tested with a pre-whiten data. 
Subsequently experiments with both W(t) and A(t) were carried out. For all the experiments 
the mean was previously extracted. Synthetic mixtures of super-Gaussian signals were used in 
the experiments. The two dimensional super-Gaussian signals used were generated in Matlab 
as follows: 

2),2()),2((_ TrandnTrandnsignorigX ⋅= ,               (2.16) 
where T is the number of samples of the signal. 

The denoising function used gives DSS equal to FastICA,  
sssf 3)( 3

2 −= ,                   (2.17) 
consequently, all the conclusions taken from the experiences of this chapter are also valid for 
FastICA. 

Practical considerations 
The implementation of the online DSS version is collected, with other methods, in an 

interface. More information about the interface and the functions used is given in Appendix B. 

2.2.1 Synthetic non-stationary mixtures applied to pre-whiten data: 
Two synthetic source signals given by (2.16) were generated. The data were pre-

whitened and a variable orthonormal mixture was applied, so that the mixture will change but 
the observed data were still white, i.e., the first synthetic mixture consisted in a rotation. W(t) 
was calculated online with the instructions given by (2.6) to (2.9). The evolution of W(t) was 
finally filtered in order to eliminate the stochastic oscillations. In order to filter W(t), an 
approximation of a Gaussian filter was used, by applying a FIR filter (function filter.m in 
Matlab). The filter used was a Gaussian filter with standard deviation correspondent to 200 
samples and with the size restricted to 1001 samples. The size of the filter used results in a 500 
samples delay. The results obtained for W(t), after undoing the delay, are exposed in figure 
2.1 . 
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Figure 2.1 - Weight evolution of matrix W obtained for the first synthetic mixture. The 

demixing matrix (inverse of M) is represented by the light green line. The evolution of W11 (in 
dark blue) is overlapped by the evolution of W22 (in light blue). 

The capability of tracking the mixture depends on the value of the γ step size parameter, 
which should be large enough. By comparing the evolution of W before and after filtering, the 



Mariana Sá Correia Leite de Almeida -                                             Extensions to Denoising Source Separation  
 

18 

stochastic noise is eliminated by the filter used. However, this post-filtering reduces the high 
frequencies and sudden changes can not be followed so well, as can be seen in the last 2000 
iterations of figure 2.1 (f). There is a compromise between stability and speed. 

The same experiment was done in order to track only one source. The applied algorithm 
only normalizes the separation vector (2.2) to (2.5).The mixture represented in figure 2.1 was 
applied and the γ parameter could not be larger then 0.005 in order to follow the mixture 
without switching the sources. The value of the step size parameter and the dynamics of the 
mixture are considerably less restricted in the case of the application of the algorithm used to 
extract all the components simultaneously (2.6) to (2.9) (γ not larger then 0.04). 

2.2.2 Synthetic non-stationary mixture: 
The performance of the proposed online version of DSS was evaluated by applying a 

synthetic mixture that contains a non-stationary rotation and scaling (second synthetic 
mixture) to a two dimensional source generated by (2.16) followed by variance normalization. 
The results obtained in this experiment are shown in figure 2.2. 

 
Figure 2.2 - Results obtained for the second synthetic mixture. The value of γ was 0.002 and 
βwas 0.002. The demixing matrix (inverse of M) is represented by the light green line. 
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As can be seen in figure 2.2, the non-stationary mixture was followed. Both A(t) and 
W(t) matrix changed in time in order to adapt to the dynamics of the mixture and the 
stationary of the sources was essential for that. 

The filter used in this experiment is the same already used in the experiment described in 
section 2.3.1 and the correspondent delay was compensated in order to analyze the results. 
Once the filter was applied twice in this experiment (to A and to W), the delay of the final 
separation matrix F is the double of the experiment described in section 2.2.1 (1000 samples). 

2.2.3 Synthetic non-stationary mixtures with a singular stage: 
Considering non-stationary mixtures, the mixture may change such that will pass 

through a singular stage. This corresponds to a dimension reduction due to the fact that two 
mixtures collapse in one. The reduction of dimension affects the performance of the developed 
solution, especially due to the determination of the matrix A(t) that performs the whitening 
and diverges in this situation. If the singular stage is fast, the matrix A will not have time to 
diverge and will continue adapting with the correct values after the singularity has passed. In 
order to analyse non-stationary mixtures that passes through a singular stage, two inverse 
mixtures were synthesized (the third and the fourth synthetic mixtures). The third synthetic 
mixture is shown in figure 2.3 (a) and the corresponding demixture is in figure 2.3 (b). The 
fourth mixture generated is the inverse of the third one, so the fourth mixture still possible to 
observe in figure 2.3. 

Figure 2.3 – Description of the third synthetic mixture. The evolution of W11 (in dark blue) is 
covered by the evolution of W22 (in light blue). The evolution of W12 (in green) is covered by 

the evolution of W21 (in red). 

The evolution of the third synthetic mixture and of the fourth synthetic demixture (figure 
2.3 (b)) is zoomed due to the existence of a discontinuity near the iteration 5000. The weights 
go to infinite and “come back” switched. 

For both experiments the initial values of A and W were estimated using the first 150 
samples of the mixture. The values of the dynamic parameters β and γ were manually adapted 
to the problem. The results obtained by applying the third mixture to the same sources used in 
the experiment described in section 2.2.2, are shown in figure 2.4. 
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Figure 2.4 - Results obtained for the third synthetic mixture. The value of γwas 0.005 and 
βwas 0.005. The demixing matrix (inverse of M) is represented by the light green line. 

The separation of the third synthetic mixture was correctly followed in most of the 
samples (green line in figure 2.4 (d)). However, the estimated sources were exchanged close to 
the iteration 5000 due to a discontinuity of the separation matrix resulting from the singularity 
of the mixture, as shown in figure 2.3. The algorithm presumes that the separation matrix is 
relatively smooth (never discontinuous) and the absence of this requirement compromises the 
matrix estimation. In this case the angle of mixture may not be correctly followed, resulting in 
a switch of sources and/or in a switch of the sources sign. 

The fourth mixture was applied to the same sources. The results related to the fourth 
synthetic mixtures are shown in figure 2.5.  
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Figure 2.5 - Results obtained for the fourth synthetic mixture. The value of γwas 0.005 and 
βwas 0.005. The demixing matrix (inverse of M) is represented by the light green line and the 

symmetric matrix of M (-M) is represented in black. 

The separation of the fourth synthetic mixtures was also followed most of the time. As 
occurred for the second synthetic mixtures, the estimated matrix is not correctly followed 
close to the 5000 iteration, which is due to the singularity of the demixture. In the present 
experiment the sources switched and the sign of the first estimated source (represented by 
lines blue and red of figure 2.5) also switched.  

The filter used in both experiments with a nonsingular stage (second and fourth synthetic 
mixtures) was the same used in section 2.2.1 and 2.2.2, consequently the corresponding delay 
of matrix F is 1000 samples. 

2.3 Conclusions 
The possibility of implementing DSS online that would be able to follow mixtures in 

time was examined. A stochastic version to performs isotropic the whitening [36] was used 
and the iterative DSS was also modified in order to implement a successful online version. 
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This online implementation of the DSS was tested with two stationary sources and was able to 
follow the changes.  

The implemented online DSS was able to follow mixtures of two stationary super-
Gaussians sources that changes in time. However, in the presence of a singularity in the 
mixture or demixture process, the condition required to follow the sources (continuity of 
separation and sphered data followed by orthonormalization) are not satisfied and the 
estimated sources may switch. 

The choice of the parameters β and γ depends on the specific problem under study and 
will affect the stability and adaptability of the separation dynamics.  

The proposed online version for DSS gives a solution with unit and stationary variance. 
Even if not all the components are necessary, the use of the simultaneous version (2.6) to (2.9) 
with a square matrix W is preferable, since it allows the use of a larger γ step value without 
switching the sources. 
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3   DSS extensions to separate nonlinear mixtures of two 
images 

This chapter is dedicated to the extension of DSS, developed in order to be successfully 
applied to separate the real-life problem of nonlinear mixtures of two images. The real life-
problem to be solved is exposed in section 3.1 and the theoretical extensions proposed are 
described in section 3.2. The results are presented in Section 3.3 followed by the conclusions 
in Section 3.4. 

3.1 The real-life problem to be solved  
The extensions of DSS to nonlinear mixtures were performed focusing on a specific real-

life nonlinear problem. The problem under study results from the nonlinear mixture of the 
front- and back- page images of an "onion skin" paper when the front page is acquired with a 
scanner. 

Experiences with the five different pairs of mixtures shown from figure 3.1 to figure 3.4 
were carried out. The first four pairs of images are the same used by L. B. Almeida in [9].The 
fifth pair of images used in [9] corresponds to the half upper part of the fifth pair of images 
used in the present work (figure 3.2 and figure 3.4). The images were carefully acquired with a 
Cannon LIDE 50 desktop scanner and processed in order to align as much as possible the 
mixed images with each other and the sources images with the mixtures ones. 

Natural images usually have the majority of the information in the high frequency, the edges. 
The majority of the energy of the high frequency is concentrated in a few points of the images, 
spread all over the image. Consequently, the high frequency is a sparse space and it will be used to 
perform separation of the images. The five pairs of images under study (figure 3.1 to figure 3.4) 
have the high frequency as a sparse space, but they have different characteristics. 

1. The first pair consists in a synthetic image generated by 25 uniform bars randomly 
ordered with intensities uniformly distributed between white and black. One of the original 
images has vertical bars and the second consists in the rotation of the first by 90º. This 
construction leads to an independency between the intensities of the two images and an 
intensity distribution close to the uniform distribution. The images are not a natural scene but 
the high frequency contains the main part of the information mostly concentrated in a few 
points that are spread among the image. 

2. The second pair of images consists in two natural scenes with small details. The high 
frequency is scattered all over the image. 

3. The third pair also consists in a natural scene but with less details and more uniform 
areas. Consequently, the intensity of the two original images is less close to independency, but 
the high frequency of the images is still sparse. 

4. The fourth pair is a natural scene mixed with a text image. 
5. The fifth pair consists of two text images. Since they are black and white images, the 

high frequency contains all the information. Since the sources have much more area of white 
than of black, only a small percentage of pixels are simultaneously black in both sides of the 
paper. 

 The original images (sources) can be observed in figure 3.1 and figure 3.2. 
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Figure 3.1 - The first three pairs of source images used in this study. 
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Figure 3.2 - The last two pairs of source images used in this study. 

The mixed images can be observed in figure 3.3 and figure 3.4. Besides the mixtures 
having a considerable linear component, the mixtures under study are strongly nonlinear and a 
linear separation does not provide reasonable results. 
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Figure 3.3 - The first three pairs of mixtures. 
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Figure 3.4 - The last two pairs of mixtures. 

3.2 Theoretical description 
If we want to implement DSS in order to separate nonlinear mixtures, the mapping has to 

be nonlinear and the separation matrix W has to be substituted by a nonlinear function.  
The idea is to substitute the step of DSS that can be seen as minimum square error 

(MSE) problem (1.29) with a nonlinear function. This step can be performed, for instance, by 
using a multilayer preceptron (MLP). The scheme in figure 3.5 summarizes this procedure. 
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Figure 3.5- Scheme of the proposed nonlinear DSS to separate two nonlinearly mixed images. 

The mixed images, X, are the input of each MLP, which should learn, in the end of the 
algorithm, the nonlinear transformation to separate each source. In each denoinsing iteration, 
the denoinsing is applied to the estimated sources Ŝ  (resulting from the previous MLP 
learning) originating two denoised images (Xden1 and Xden2) that will be the MLP’s target to 
the next denoising iteration. The denoising function used performs competition in high 
frequency as follows: the function decomposes the received estimated sources iŜ  in high and 
low frequency, performs competition in the high frequency and, finally, reconstructs the 
images with the original low frequency, and with the high frequency resulting from the 
competition. 

If we have a nonlinear mapping, some of the DSS assumptions valid for linear mapping 
are not valid anymore. In the linear mapping the pre-whitening of data is essential so that the 
sources can be kept separated through an orthonormalized (rotation) matrix. If the mapping is 
nonlinear, the separation can not be given by the principal components after denoising the 
already sphered data. In this case, the function that we want to find is nonlinear and the 
sources have to be kept separated only by denoising. Therefore the denoising function should 
not only differentiate the sources but should also separate them as much as possible. To 
achieve this, a competition among the sources is suggested. 

Like linear DSS, nonlinear DSS appears to be useful especially when the sources (in the 
present case images) are not close to independency, since ICA methods are not appropriate to 
such situations. 

During this work, several denoising functions were implemented to solve the specific 
real-life problem described in section 3.1. 

3.2.1 Initializations 
In DSS and in other iterative methods some initialization procedures are useful and 

sometimes essential. In nonlinear DSS the whitening is not needed as an essential step of the 
algorithm. However, if the whitening is done in a isotropic way (isotropic whitening), it 
performs linear transformations that make the mixtures more separated. After whitening the 
source components become orthogonal (not correlated) and consequently it is expected that 
they will become more different. The separation preformed by applying isotropic whitening to 
the mixed images: 
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XAX ⋅=whiten ,                      (3.1) 
can be observed in figure 3.6. 

 
Figure 3.6 – Results of the application of isotropic whitening to the natural scenes mixtures. 

Another information used in the initialization process relies on the fact that the mixing 
process is approximately symmetric, i.e., the mixture that generates the first mixed image is 
the same that generates the second mixed image, but with the inputs switched. To take 
advantage on this information we should find a linear transformation matrix Rsymmetric such 
that: 
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If we square both sides of equations (3.4) and add them, the restriction (3.5) to the matrix 
A results. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )⎪⎩

⎪
⎨
⎧

+−=++

++=+−

θsinθsinθcosθcos θcosθcosθsinθsin 

θcosθcosθsinθsinθsinθsinθcosθcos 
2222

2,1
22

1,2
22

22
2,2

222222
1,1

2,22,21,22,11,11,1

2,21,21,22,12,11,1

22

22

AAAAAAAA

AAAAAAAA

        2
2,2

2
1,2

2
2,1

2
1,1 AAAA +=+ .                 (3.5) 

Since most of the times matrix A does not satisfy (3.5), it is not possible to perform 
whitening that corresponds to a symmetric operation on the two mixture components (not to 
be confused with the isotropic whitening mentioned in section 1.2.1). However, it is possible 
to take advantage on both informations at the same time. The matrices A obtained for all the 
pairs of images mixtures are close to symmetric operation. We can make them a symmetric 
process by applying:  

XRX ⋅= symmetricinit                   (3.6) 
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R symmetric ,                (3.7) 

using the matrix A, that performs isotropic whitening. The initial processing that was used 
(3.6) still close to the isotropic whitening, but it is a symmetric operation. 

The results using this initialization are considerably better than the ones obtained using 
isotropic whitening and they are presented, for the natural scenes (pairs especially focused by 
the present work), in figure 3.7. The application of the initialization given by (3.6) and (3.7) to 
the other pairs of mixtures also provides an improvement to the result obtained with the 
isotropic whitening. These results can be observed in Appendix A. 
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Figure 3.7 – Natural scenes mixtures initialized with Rsymmetric. 

3.2.2 Denoising functions 
Another important step in DSS is the denoising step. The choice of the correct denoising 

function is essential. In the nonlinear case, this step is even more important requiring more 
restricted characteristics. As referred before, the denoising function should be strong enough 
to keep the sources separated. For that, the characteristics of the signal under analysis have to 
be considered in order to perform a useful denoising. In the set of images under study (from 
figure 3.1 to figure 3.4) the denoising results from a competition in the high frequency, which 
was considered a sparse space. In the nonlinear mapping case, the denoising function has not 
only to be able to separate, but should also to not let the MLP go to a stage where the 
denoising function is not useful to separate the images. 

Looking at the mixed images, a human being can easily predict how the two original 
images were by looking at the edges of the image (the high frequency). Instead of guiding the 
learning assuming that the images are independent, the guiding in this work is ruled by trying 
to give a solution as close as possible to single images. 

In this work, two similar denoising functions with competition in the high frequency 
were studied. Both denoising functions use results from the competition of the mixtures in the 
high frequency sparse space in order to obtain a separation as good as possible. 
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Other two specific denoising functions were implemented for the first and fifth pairs of 
mixtures. Due to the mixing process itself, one of the original sources is more intense in each 
mixture. This fact was explored in order to get denoising functions in which the competition 
may separate the sources. 

Competition in high frequency 
The competition function used in this work was created to be applied to the high 

frequencies of the estimated sources and the competition is given by: 
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These equations must be applied following the normalization of the energy of the signals, as 
follows.  
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The corresponding value of the energy is re-inserted after the competition process, as 
shown in (3.11).  

The larger the positive parameter a is in (3.9), the stronger the competition becomes. If 
the value of a is large enough, the competition can be seen as a “winner take all”. 

The competition function is such that: 
• if x1 >> x2, the pixel of x1 will be masked by 1 and x2 by 0. 
• if x1=x2 the mask for both signals is 0.5. 
• if x1 << x2, the pixel of x1 will be masked by 0 and x2 by 1. 
• if x1 and x2 are exchanged the masks also are exchanged (symmetric property) 
• the mask of x1 plus the mask of x2 is always equal to 1. 
This symmetric and local competition (each pixel competes separately) is applied to the 

high-frequencies components of the images, after the normalization of their energies. This 
normalization makes the global process of competition not local. For the function with wavelet 
competition (to be presented ahead) this normalization is essential. Otherwise, both outputs 
may converge to the same solution. 

The performance of the competition can be seen in figure 3.8 In figure 3.8 (a) the high 
frequencies of the two images of the third pair of mixtures is shown. As can be seen in figure 
3.1 the house is slightly more intense in the first mixture while the bridge is more intense in 
the second mixture. The different intensity of the both sources can also be seen in the high 
frequency (figure 3.8 (a)). The competition performs correctly this separation in the high 
frequency, as shown in figure 3.8 (b). 



Mariana Sá Correia Leite de Almeida -                                             Extensions to Denoising Source Separation  
 

33 

 
Figure 3.8 - High frequencies of the third pair of images, before and after competition. 

Denoising function using a filter (first denoising function) 
Since the high frequency is a sparse space, this denoising function uses a filter to obtain 

the low and high frequency components of the images, and performs the competition in the 
high frequencies components. The denoised images, which will be used as MLPs’ target, 
result from the composition of the unchanged low frequency of each image with the 
corresponding high frequency images after competition.  

The experiments presented, were not obtained using this denoising function, but using 
instead another function that has the same basis but uses wavelet decomposition. The same 
generic conclusion that will be taken for the denoising function with wavelet decomposition 
can be taken for this denoising function. However, the one with wavelet decomposition proved 
to be more powerful. 

Denoising function using wavelets (second denoising function) 
In this denoising function the images are decomposed into wavelet components. The four 

components resulting from the wavelet decomposition have ¼ of the pixels of the images 
before the decomposition. One of the components (A in figure 3.9) is an image similar to the 
image before decomposition but four times smaller. The other three images contain vertical, 
horizontal, and diagonal edges. The competition is applied in the three vertical (V in figure 
3.9), horizontal (H in figure 3.9) and diagonal (D in figure 3.9) components of the mixed 
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images. After competition, these three components are used for the reconstruction of the 
denoised images. The level of wavelet decomposition should be higher than one (n in figure 
3.9) and the denoised images result from the wavelet reconstruction after all Hi, Vi and Di 
components have competed. The number of times that the wavelet decomposition is 
performed (recalls of the denoising function) is controlled using the size of the low frequency 
components. This control requires that both dimensions of these components be larger than a 
fixed number of pixels (N in figure 3.9).  

 
Figure 3.9 - Schematic representation of the second denoising function. On left it is shown the 
scheme of one image wavelet decomposition in n levels (the components represented by bold 
boxes are the ones that will be submitted to the competition). On right it is shown the scheme 

of the denoising decomposition and the reconstruction of the denoised images. 

A “stronger” separation can be performed by using a deeper wavelet decomposition, as 
well as a larger value of parameter a. In general, it is better to have a stronger separation when 
the images are more mixed. A deeper level of wavelet decomposition is better to forget the 
background of the undesired source, as can be seen by comparing figure 3.10 (a) with figure 
3.11 (a). On the other hand, a lower level of wavelet decomposition helps to maintain the 
image definition (figure 3.10 (b) with figure 3.11 (b)). 
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Figure 3.10 – Results of the application of the wavelet based denoising function to the second 
(331x438 pixels) and third (330x443 pixels) pairs of mixtures and sources, using a deep level 
of decomposition (application of wavelet decomposition until the size of one dimensions is 

lower than 20). 
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Figure3.11 – Result of the application of the wavelet-based denoising function to the second 
(331x438 pixels) and third (330x443 pixels) pairs of mixtures and sources, using a shallow 

level of decomposition (application of wavelet decomposition until the size of one dimensions 
is lower than 160). 

In general, it is suitable to a stronger competition (deeper level and higher value of a) for 
the initial part of the algorithm and to use a softer one in a further stage of the separation. 

The wavelet decomposition level that was applied to all remaining tests is given by the 
requirement that both dimensions of the decomposed images should be larger than 80. The 
application of this denoising function to the second and third pairs of mixed images after being 
initialized (figure 3.7) can be seen in figure 3.12. Several 2-D wavelet decompositions are 
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available in Matlab. After a practical inspection the images were denoised with the wavelet 
‘rbio1.5’. Due to the use of a sparse space the images in figure 3.12 are quite separated 
already.  

 
Figure 3.12 - Images resulted from the application of the denoising function to the natural 
scenes mixtures already initialized. Wavelet decomposition applied until the size of one 

dimensions be lower than 80. 

Denoising function for bar images (third denoising function) 
When we look at the first pair of pictures we may guess that the original sources are 

probably composed by a mixture of vertical and horizontal bars. Based on this visual 
information we can design a specific denoising function where one of the outputs only has 
vertical edges and the other only has horizontal edges. This function can be obtained by 
making wavelet decomposition and, subsequently, by reconstructing the respective images 
with the horizontal or the vertical high frequencies set to zero (specific competition). The level 
of the wavelet decomposition can also be changed. As can be seen in figure 2.13, this 
denoising function is very efficient, due to the characteristics of the sources that were easy to 
observe and detect. 
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Figure 3.13 - Result of the application of the specific denoising function created for bar 

images to the first pair of mixtures, already initialized. Wavelet decomposition was applied 
until the size of one dimension becomes lower than 20. 

Denoising function for text images (fourth denoising function) 
Looking at the fifth pair of mixtures we may understand that this is a mixture of two 

black and white images from text. The fact that the sources are black and white simplifies the 
separation. A simple and efficient denoising function for this kind of mixtures should attribute 
fixed levels for intensity values higher or lower than a determinate intensity value. For the 
images initialized with (3.6) and (3.7), an appropriated bounding value is the middle intensity 
value, as the quite separated denoised images confirm (figure 3.14). 

 
Figure 3.14 – Result of the application of the specific denoising function created for text 

images to the half upper part of the fifth pair of mixture already initialize. 

The result shown in figure 3.14 has the pages practically separated. After training the 
MLP, the middle intensity value may not be the best to perform separation. This happens 
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because a few points may appear very far away form the correct black and white intensity. The 
value of the threshold after the first denoising should be the middle of the two maxima of the 
histogram. This approach was not implemented in this work, because the separation target was 
already good enough.  

3.1.3 MLP training 
The MLP used in this work has a linear and a nonlinear part with N hidden units (figure 

3.15). The hidden units used had the following nonlinearity:  
)( inout xatanx =                    (3.12) 

 
Figure 3.15 – Schematic representation of the MLP used. 

The weights of the matrix W1 are adapted according to the gradient method, but the 
adaptation of the last weight matrix Wend is done in one step by using the known solution 

( ) 1
)(|

−
⋅⋅⋅= T

endend
T

endend mizemini XXXREFeW ,             (3.13) 

for the minimization of the square error: 

endend XWREFe −= .                    (3.14) 

Wend is adapted using the MSE in order to ensure a faster learning.  
The gradient of W1 is performed using the gradient rule. The gradient rule does not take 

into account the fact that Wend will also depend on W1. However, this fact does not invalidates 
the correct adaptation of the weights since the adaptation of W1 and Wend are performed in 
separate stages and each adaptation results in a decrease of the cost function. 

The learning rule applied to W1 uses momentum, adaptive step sizes and control of the 
cost function [35]. The learning process stopped in a fix number of iterations or when 10 false 
epochs occur (when the cost function increases) consecutively. 

3.1.4 Speed up analysis 
The speedup of the nonlinear DSS can be attempted in different ways. However, most of 

them require a commitment with risky situations and/or depend on the specific problem. 

Improvement of the denoising function: If the denoising function is better, the 
separation is better. For example, the specific denoising function for the bars leads to a faster 
separation when compared with the performance of the second denoising function applied to 
the mixtures of natural scenes (second and third pairs of mixtures). 
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It can be difficult to improve the denoising function and this will depend on the problem 
under analysis and on the information available to perform the separation. 

Reduction of the number of points for the MLP learning: The MLP learning is a time 
consuming task. One way of reducing the duration of the MLP learning is by decreasing the 
number of points of the image used in the learning. The reduction of points used in learning 
without an extra control is also dangerous, since, if the selected points are not significantly 
representative of the image, a deviation may occur and the algorithm my not be able to 
recover. 

Reduction of the number of iterations of the MLP: Reducing the number of the MLP 
iterations will produce a faster MLP response. Most of the learning occurs during the first 
steps of the MLP learning. The learning is stopped after a small number of iterations and it 
will continue in the next iteration of the algorithm having the next denoised images as MLP 
target. 

Using fewer hidden units: By reducing the complexity of the MLP, the learning 
complexity is reduced. However, the reduction of hidden units is restricted by the complexity 
of the separation problem.  

3.1.5 Quality measures  
The images resulting from the application of nonlinear DSS can be visually analysed. 

However, this visual inspection is observer dependent. 
A good quality measure for the level of separation would be one that compares the 

solutions with the original sources. The mutual information can be used to measure how close 
the solutions are from the original sources. Mutual information is given by (1.9) where 
Shannon’s deferential entropy is, for continuous variables, given by (1.6). For discreet 
variables the Shannon’s entropy is given by (3.16). 

)()()( YY HYHI
i

i −= ∑                   (3.15) 

))(log()()( k
k

k ypypYH ∑−= ,                 (3.16) 

where k indexes the discreet variable Y and p(yk) is the probability of yk. 
In order to calculate the mutual information the expressions (1.9) and (3.16) were 

initially used. The solutions were shifted and scaled between 0 and 255 (as well as the 
sources). 

In order to compare the results obtained with the ones obtained by Almeida L. B. in [9] 
the same mutual information (MI) estimator was used. This estimator is the one described in 
[37] with k=3 and the code was directly downloaded from [38]. Two measures based on 
mutual information were computed:  

withSSIQ
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Two other measures used in [9] were also calculated. One of the measures is the signal to 
noise ratio (SNR) between the original sources and the estimated images:  
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= ,                  (3.19) 

where a is chosen such that Q1 would be minimized. The other measure is given by: 

)(
)(

2 N
S

Variance
VarianceQ =                   (3.20) 

SSN −= )ˆ(l ,                   (3.21) 
where the l(.) is the monotonic function that maximizes the measure Q2. The code to compute 
the function l(.) was also downloaded from [38] This measure Q2 was used in [9] in order to 
compensate some nonlinear invertible distortion that can exists is the nonlinear SS. 

The four quality measure values obtained the first pairs of sources and mixtures are 
shown in the table 3.1. 

Table 3.1 - Quality measures calculated for the five pairs of sources and mixtures. 
Images Q.M. X1 X2 S1 S2 

Q1 (dB) 1.9 1.9 - - 
Q2 (dB) 6.2 6.2 - - 
Q3 (bit) 1.21 1.25 5.2 5.2 

 
1 
 

Q4 (bit) 0.50 0.48 0.03 0.26 
Q1 (dB) -1.7 6.0 - - 
Q2 (dB) 3.7 8.8 - - 
Q3 (bit) 1.11 1.35 7.7 7.3 

 
2 
 

Q4 (bit) 0.57 0.59 0.27 0.26 
Q1 (dB) 9.6 -6.4 - - 
Q2 (dB) 11.7 2.7 - - 
Q3 (bit) 1.9 1.08 7.0 7.2 

 
3 

Q4 (bit) 0.83 1.19 0.72 0.73 
Q1 (dB) -4.9 7.1 - - 
Q2 (dB) 3.8 8.1 - - 
Q3 (bit) 0.44 1.75 2.9 7.5 

 
4 

Q4 (bit) 1.44 0.19 0.01 0.01 
Q1 (dB) 0.6 -2.1 - - 
Q2 (dB) 5.6 5.3 - - 
Q3 (bit) 0.63 0.44 3.0 2.1 

 
5 

Q4 (bit) 0.32 0.49 0.00 0.00 

3.3 Results 
To test the solution proposed in section 3.2 for the separation of the nonlinear mixtures 

under study, several experiments were performed. The first set of experiments was carried out 
using linear mixtures. These experiments were followed by other experiments where the 
proposed DSS was applied to perform linear and nonlinear separation of nonlinear real-life 
mixtures. The four quality measures referred in section 3.2.5 were computed and the values 
were compared with those obtained in [9] using MISEP.  
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Practical considerations 
The implementation of the nonlinear DSS is collected, with other methods, in an 

interface. More information about the interface and the functions used is given in Appendix B. 

3.3.1 Linear separation of linear synthetic mixtures: 
The mixtures used in this section were synthetically prepared by linearly mixing the two 

original sources. The mixture applied to the five pairs of sources corresponds to a 45º rotation: 

⎥
⎦

⎤
⎢
⎣

⎡

−
=

22
22.

2
1M .                  (3.22) 

Since the data can be sphered and the sources are approximately not correlated, the linear 
separation can be reduced to the iterative DSS with nonlinear denoising function described in 
section 1.3. However, once we want to extend the method to nonlinear mixtures, we should be 
able to achieve the solution without pre-whitening the data and without the orthonormalization 
step. 

The DSS extension developed in this work (section 3.2) was applied to the first synthetic 
linear mixture (3.22) of the source images under study (figure 3.1 and figure 3.2). The weights 
were only normalized, but not orthogonalized. The solutions were kept separated by the 
denoising function. Experiments with and without speedup were carried out. The speedup rule 
used follows (1.44) and (1.45) with the additional saturation of the γ parameter between 0.005 
and 10. The number of iterations required to achieve convergence was computed for both 
experiments. To compute this number, the method was first applied using the necessary 
number of iterations to achieve, for sure, convergence: 400 for experiments without speedup 
and 100 for experiments with speedup. The separation angles were saved during the algorithm 
procedure and the convergence was considered achieved at the iteration after which the angle 
was closer than 1º to the angle of the last iteration (400 or 100). The denoising function with 
wavelet decomposition was used to separate all the pairs of mixtures with the exception of the 
first pair of mixtures (bar mixtures), which was separated using the specific denoising function 
developed to be applied to mixtures of horizontal and vertical bars (third denoising 
function).The results of the application of the proposed DSS with and without speedup are 
shown in table 3.2.  

Table 3.2 - Separation results obtained for the first linear mixture with DSS without sphering 
and without orthonormalization. The angle of the separation vectors and the number of 

iterations are shown. 
 

1Ŝ  2Ŝ  
images w1 (º) iterations iterations 

(speedup) 
w2 (º) iterations 

 
iterations 
(speedup) 

1 44,99 3 2 -45.01 2 2 
2 -44.97 76 15 45.52 217 28 
3 46.30 26 9 -43.97 36 10 
4 -44.95 15 7 45.02 28 6 
5 -45.01 7 7 46.13 7 13 
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Since the results obtained correspond to rotations near +/- 45º, the separation was 
correctly performed for experiments with and with out speedup. The fact that the correct result 
was achieved means that, if the denoising function is competitive enough, as it is in the present 
case, it is possible to perform linear separation without pre-whitening the data and without the 
orthonormalization step. Actually, experiments using the proposed DSS and the denoising 
function sssfden 3)( 3 −=  showed that this denoising function is also competitive enough to 
be used without the orthonormalization step and without sphered data (only normalized data). 
The speedup used reduced successfully the number of iterations needed to converge. 

The original DSS was applied to the second linear synthetic mixture of images, which 
consists in a rotation of 45º from the isotropically pre-whitened sources. If the sources were 
orthogonal the solution would be the rotation of 45º. However, the sources are not exactly 
orthogonal and the correct demixture will not correspond to a rotation. The denoising 
functions and the speedup technique used in the present experiment were the same used before 
in the experiment with the proposed DSS. The iterative DSS was applied using a large enough 
number of iterations to guaranty convergence: 200 for experiments without speedup and 100 
for experiments with speedup. The iteration where the convergence was considered achieved 
was computed using the same criterion used in the previous experiment (iteration after which 
the angle will be closer than 1º to the last angle).The results obtained by the application of the 
original DSS with and without the speedup are shown in table 3.3. 

Table 3.3 - Separation results obtained with the original DSS applied to the second linear 
mixture. The angle of the separation vectors obtained with DSS (w), the correct angle of 

separation (wref) and the number of iterations are shown. 
images w1 (º) w1ref(º) W2 (º) w2ref(º) iterations 

 
iterations
speedup 

1 44.99 45.00 -45.01 -45.00 2 2 
2 -44.93 -44.96 45.08 44.95 32 10 
3 46.26 46.36 -43.74 -47.80 20 6 
4 45.59 43.94 -44.41 -44.05 13 15 
5 -44.43 -44.35 45.57 44.46 7 10 

The results obtained using DSS also converged to a solution very close to the correct 
sources, indicating that the denoising functions were appropriate. This outcome was expected 
since the algorithm already converged without the orthonormalization step. The fact that the 
denoising function proposed does not require the orthonormalization step makes the algorithm 
suitable to obtain solutions that correspond to correlated sources, while the original DSS is 
restricted to uncorrelated solutions.  

The solutions obtained with the original DSS without any speedup technique required 
less iterations to converge than the results obtained with the proposed DSS (without the 
orthonormalization step). In general, the application of the speed up technique reduces the 
number of iterations required to achieve convergence. However, the application of the original 
DSS to the fourth and fifth pair of mixtures required a slightly higher number of iteration to 
converge (2 and 3 iterations respectively). This fact indicates a failure of the speed up 
technique used. The number of iterations required to achieve convergence using the proposed 
DSS and the speedup technique is similar to the number of iterations required when the 
original DSS when the speedup technique was used.  
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3.3.2 Linear separation of nonlinear real-life mixtures: 
The nonlinear DSS proposed in this work was applied to perform linear separation of the 

five pairs of nonlinear mixtures (figure 3.3 and figure 3.4), aiming at obtaining linear 
separations that approximate the sources (figure 3.1 and figure 3.2). 

The specific denoising function for the images with vertical or horizontal lines was used 
to separate the first mixture of images (synthetic bars images). The denoising function with 
wavelet decomposition was used to separate the second, third and fourth pairs of images. In 
order to separate the last mixture of images the specific denoising function for mixtures of text 
images was used. 

The solutions obtained for the linear separation of the first, third and fifth pairs of images 
were visually and numerically acceptable. These results are shown in figure 3.16 and in table 
3.4. Since the fifth pair of mixtures occupies a large space, figure 3.16 only shows the 
representative half upper part of the images obtained from the application of the algorithm to 
this pair of mixtures. 

For the second and fourth pairs of mixtures, the algorithm did not give separated 
solutions (figure 3.17). This may be due to the fact that, for these images, the linear 
separations were not able to get close enough to the initial denoised images, converging to 
stable points far from an acceptable linear separation. The linear application of the proposed 
DSS to the second pair of mixtures gave rise to a solution where the different sources are more 
visible in different areas of the same image (figure 3.17).  

Table 3.4 shows the rotation in degrees suffered by the normalized mixed images with 
the application of the algorithm proposed (DSS’), as well as the best rotation obtained by 
using the minimum square error (MSE) relative to the sources. 

Table 3.4 - Separation vector angles obtained by applying nonlinear DSS (DSS’) and MSE to 
real mixtures. 

 DSS’ MSE 
Rotation 

for 
1Ŝ  2Ŝ  1Ŝ  2Ŝ  

Pair 1 (º) 33.21 56.83 33.75 56.28 
Pair 2 (º) 54.48 84.72 37.35 62.96 
Pair 3 (º) 21.71 50.00 23.92 48.24 
Pair 4 (º) 64.62 55.99 41.17 58.46 
Pair 5 (º) 37.97 50.38 36.68 51.18 

Consistent with visual observations, the algorithm gives for the first, third, and fifth pairs 
of mixtures, solutions close to those obtained by minimization of the square error using the 
original images as targets. Also in agreement with visual observations, the solutions obtained 
for the second and fourth pairs of mixtures are far from the ones obtained with MSE. 

The measures Q1, Q2, Q3 and Q4 defined in section 3.2.5 are given in table 3.5. For better 
results Q1, Q2 and Q3 values should be higher, while Q4 should be smaller. These measures 
were calculated using the results obtained in the experiments described in this section (DSS’). 
The quality measures calculated for the minimization of the square error (MSE) as well as for 
the results obtained in [9] using MISEP with linear separation, are also shown in table 3.5. For 
the last pair of images, the quality measures of DSS’ and linear MISEP can not be compared 
(MISEP only used the half upper part of the fifth pair of mixtures). 
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Figure 3.16 – “Good” results obtained with the proposed algorithm using linear separation. 
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Figure 3.17 - “Bad” results obtained with the proposed algorithm using linear separation. 

The quality measures shown in table 3.5 indicate that the proposed algorithm preformed 
well for the separation of the first, third, and fifth pairs of mixtures but was not suitable to 
separate the other pairs of mixtures. The values of the four quality measures are, for the first 
and third pairs of mixtures, similar to those obtained with linear MISEP. The Q4 values 
obtained using MSE indicate that the solutions are not independent. 

Since the mixture is nonlinear, the best linear demixing does not have to be orthogonal in 
order to separate the whitened data. However, the “best” images resulting from the linear 
approximation are probably not correlated and thus, the application of the original DSS (with 
orthonormalization) would have been correct. The results obtained using MISEP reinforce the 
idea that it is correct to assume the independency of the sources. Nevertheless, the quality 
measures computed for the images resulted from the application of the proposed DSS to the 
first and third pair of mixtures (the only pairs of mixtures that gave rise to comparable 
satisfactory results) are slightly better than those obtained with MISEP. 
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Table 3.5 – The four quality measures for the separation results of the real mixture obtained 
with DSS’, with MSE and with MISEP. 

Img. QM S1 
DSS’ 

S2 
DSS’ 

S1 
MSE 

S2 
MSE 

S1 
MISEP 

S2 
MISEP 

Q1(dB) 9.7 9.5 9.7 9.5 9.0 8.7 
Q2(dB) 11.9 11.7 11.8 11.6 11.9 11.6 
Q3 (bit) 2.1 2.1 2.2 2.1 2.03 1.96 

 
1 
 

Q4 (bit) 0.51 0.60 0.58 0.55 0.48 0.46 
Q1(dB) -8.7 6.7 7.4 11.0 5.2 10.5 
Q2(dB) 2.1 9.7 10.0 13.2 8.1 12.9 
Q3 (bit) 0.72 1.49 1.6 1.6 1.56 1.78 

 
2 

Q4 (bit) 1.38 0.56 0.28 0.55 0.37 0.53 
Q1(dB) 13.4 7.13 13.6 7.8 13.4 6.6 
Q2(dB) 15.3 8.3 15.2 8.8 14.7 7.9 
Q3 (bit) 2.2 1.4 2.2 1.4 2.13 1.34 

 
3 

Q4 (bit) 0.72 0.46 0.76 0.47 0.71 0.46 
Q1(dB) -7.93 12.2 4.1 12.9 4.5 11.2 
Q2(dB) 1.42 13.3 7.4 13.8 7.8 12.4 
Q3 (bit) 0.36 2.0 0.85 2.2 0.80 1.99 

 
4 

Q4 (bit) 1.6 0.22 0.41 0.18 0.36 0.18 
Q1(dB) 5.0 3.5 5.1 3.6 - - 
Q2(dB) 7.8 6.7 8.2 6.9 - - 
Q3 (bit) 0.84 0.65 0.85 0.66 - - 

 
5 

Q4 (bit) 0.15 0.18 0.19 0.19 - - 

3.3.3 Nonlinear separation of nonlinear real-life mixtures: 
The DSS with nonlinear mapping was applied to the second and third pairs of mixtures 

(natural scenes mixtures) as well as to the synthetic mixtures of bars (first pair of mixtures). 
For the two mixtures with natural scenes the denoising function with wavelet decomposition 
was used. This denoising function was developed according to the characteristics of the 
natural scenes considering that it explores the sparsity of the high frequency, as detailed in 
section 3.2.2. The a parameter used in the competition was set to 40 and the competition was 
essentially a “winner take all” function. For the bar images, the specific denoising function 
was used. 

Figure 3.18 shows the images resulting from 10 denoising iterations using one MLP with 
5 hidden units to learn each denoised image. Each MLP uses, to learn, 50 iterations at the 
most. The simple criterion used to stop the proposed DSS extension and the separation 
consisted in using a fixed number of denoising iterations. The values of the measures Q1, Q2, 
Q3 and Q4 for the results obtained in these experiments are shown in table 3.6. This table also 
shows the measures obtained using MISEP with the nonlinear separation [9] and the measures 
obtained by minimizing the square error (MSE) using an MLP with 5 hidden units. 

As expected, for all the images under study, the value of Q3 (mutual information) is 
higher for the original sources (table 3.1) than for the approximation of the sources by using 
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two MLPs with 5 hidden units (table 3.6 - MSE). All the measures indicate that the results 
obtained with the application of the proposed nonlinear DSS in this section (DSS’ in table 3.6) 
are better than those obtained with the linear application of the same method (DSS’ in table 
3.5). In summary, the nonlinear version of the proposed algorithm gives advantages to the 
linear one. 

Although the proposed DSS with linear mapping did not succeed when applied to the 
second and fourth pairs of mixtures, the same algorithm with nonlinear mapping (using an 
MLP) can be used with reasonable results, as indicated by the results obtained in this section 
for the second pair of mixtures. 

The measures concerning the images obtained by training an MLP with the correct 
sources as target (table 3.6 - MSE) are better than the measures concerning the images 
obtained with the application of nonlinear DSS’ (table 3.6). However, they still are very far 
from the values obtained with the correct source (table 3.1). This difference may be due to the 
loss of information during the mixing process (non invertible function) or by the fact that the 
topology of the MLP is not the best one. It is possible that the demixing is a discontinuous 
function or that it consists in a more complex transformation. 

The separation level of the results obtained in this section is similar to the separation 
level of the results obtained using MISEP with nonlinear separation in [9]. The measures 
corresponding to the first pair of images indicate that the proposed algorithm shows the best 
performance, most probably due to the good and specific denoising function used. MISEP is 
better for separation of the second pair of images, while the proposed nonlinear DSS is better 
to separate the third pair of images. This improvement is probably due to the fact that the 
original sources of this pair are the most dependent sources. The images of the third pair of 
images have fewer interceptions in the high frequency compared with the second pair of 
images. Consequently the denoising function is more suitable. The nonlinear DSS proposed is 
especially interesting when the sources are considerably dependent. 

Table 3.6 – The four quality measures for the nonlinear separation results of the real mixtures 
obtained applying DSS’, MSE and with MISEP. 

Pairs QM S1 
DSS’ 

S2 
DSS’ 

S1 
MSE 

S2 
MSE 

S1 
MISEP 

S2 
MISEP 

Q1 (dB) 14.6 14.1 15.1 14.6 13.8 13.1 
Q2 (dB) 15.3 14.7 15.5 15.0 14.7 14.2 
Q3 (bit) 2.57 2.5 2.6 2.5 2.45 2.39 

 
1 
 Q4 (bit) 0.29 0.27 0.21 0.22 0.23 0.26 

Q1 (dB) 6.44 13.6 11.2 15.6 9.3 13.9 
Q2 (dB) 9.45 15.1 11.6 15.9 11.0 15.0 
Q3 (bit) 1.62 1.93 1.9 2.1 1.83 1.95 

 
2 
 Q4 (bit) 0.44 0.39 0.32 0.32 0.24 0.40 

Q1 (dB) 13.5 9.2 15.2 9.7 14.2 6.4 
Q2 (dB) 15.5 9.9 15.8 10.4 15.3 7.8 
Q3 (bit) 2.23 1.62 2.2 1.7 2.19 1.29 

 
3 

Q4 (bit) 0.74 0.56 0.54 0.64 0.56 0.49 
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Figure 3.18 – Results obtained by applying the proposed nonlinear DSS to the first, second 

and third pairs of real-life mixtures. 

Since the value of Q4 (cross mutual information) is not exactly zero for the sources 
(Table 3.1), the information between the estimation of one source and the opposite source may 
not be considered a good enough measure/indicator. In general, the Q4 measure values should 
decrease when we get closer to the sources, having as limit the mutual information of the 
sources. However, this is not true because the cross mutual information of the original pairs of 
sources are not exactly zero. Moreover, in some cases, the estimated source is closer to the 
correct source and Q4 is higher. In other cases, Q4 value concerning the estimated image is 
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bellow the Q4 value obtained for the original source. The relation between the estimated 
source and the opposite original source may indicate good or bad separation depending on 
what makes them more or less similar. The original images are not fully independent. This fact 
is more remarkable for the third pair of sources and quite irrelevant for first, fourth and fifth 
pairs of sources (see scatter plots of the sources in figure 3.19). 

 
Figure 3.19 – Scatter plot of the five pair of sources. 

3.3.4 Experiments with more denoising iterations 
The experiments described in section 3.3.3 were carried out using a fixed number of 

denoising iterations (10 iterations). If we let the proposed DSS continue during more 
denoising iterations, the estimated sources start to degenerate. This may occur due to the fact 
that the high frequencies of the pair of images share a few common pixels. As stated in section 
3.2.2, a deeper separation should be carried out at the beginning of the algorithm and a lower 
separation at the end. 

The proposed DSS was applied to the three fist pairs of mixtures under the same 
condition of experiment described in section 3.3.3 but using 50 denoising iterations. The 
images resulting from the application of this procedure to the second and third pair of mixtures 
are shown in figure 3.20. They differ significantly from the desired solutions. The edges of the 
palace present in the third pair of images seem to disappear and the building becomes darker. 
The edges of the house present in the second pair of mixtures were cut by edges of the sea and 
of the houses present in the other image of the pair. The inspection of the second pair of 
images indicates that the areas of the first solution (the degenerated) where it is still possible to 
unveil the original image are the areas where the second solution (not degenerated) does not 
have strong edges. This is the case of areas such as the sky and the floor. 

The application of the proposed nonlinear DSS using more than a few number of 
iterations is not sustainable, except when it is applied to the first pair of mixtures (bars). A 
very good and specific denoising function was used to separate this pair of mixtures. However, 
the problem of the bar images is simpler. The ambiguity of nonlinear ICA was overcome with 
the proposed nonlinear DSS, but other undesired solutions appeared when the method was 
applied using a larger number of iterations. In section 3.3.3 the number of iterations was fixed 
to stop the separation. Although other more developed criterion could have been also used, the 
results obtained using this one (section 3.3.3) were considered satisfactory. 
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Figure 3.20 - Result of DSS’ applied to the second and third pairs of mixtures after 50 

denoising iterations. 

3.4 Conclusions  
In order to separate non linear mixtures a new approach to DSS was examined. The 

modified DSS does not require pre-whiten neither orthonormalization of the data, but requires 
a competitive denoising function. 

A generic denoising function was developed in order to separate images of natural 
scenes. This denoising function performs competition in the high frequency space and uses 
wavelet decomposition. Two specific denoising functions were also developed and applied to 
the case of bar and text images. The denoising functions developed were satisfactorily tested 
in the linear DSS with and without the orthonormalization step and with and without speed-up. 
The linear separation of the linear mixtures of the five pairs of images proposed was 
successfully achieved. 

In the case of nonlinear mapping, the denoising function should not only differentiate the 
sources, but should separate them. In spite of the limitations of the nonlinear DSS it was 
possible to achieve a fairly good separation for the nonlinear mixtures of images under study. 
If the denoising function is essential in original DSS, in nonlinear DSS, this is even more 
important. The denoising function should: 



Mariana Sá Correia Leite de Almeida -                                             Extensions to Denoising Source Separation  
 

52 

- make the sources more separated (using some competition) 
- not return a target that makes the MLP going to a state where the denoising function 

will not be able to continue the separation. 
To solve the problem of image mixtures, denoising functions that have the above 

referred characteristics must be used. However, it is apparently very difficult to obtain a 
denoising function that can be successfully applied to a different problem, especially to high 
dimensional problems. 

Apart for the specific case of the images with bars, the application of the proposed 
algorithm using a larger number of iterations is not sustainable. The case of the bar images is 
simpler and the specific denoising function does not lead to degenerated solutions. When 
applied to the pairs of mixtures of natural scenes, the method has to be stopped after a few 
iterations or another control of the applied denoising has to be used. 

The proposed DSS is particularly interesting and useful when applied to sources that are 
partially dependent and the other source separation methods do not work. Nevertheless a 
denoising function capable of being successfully used for other problems may be difficult or 
sometimes impossible to find out. 
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4 Conclusions 

4.1 Conclusions related with online DSS: 
An online version of DSS was successfully implemented. The online implementation of 

DSS requires online data pre-whitening, which was performed using a stochastic isotropic 
algorithm. The new version of DSS yields a separation method able to follow non-stationary 
mixtures. The correct application of the developed online DSS is restricted to stationary 
signals and to continuous, non-singular (de)mixtures. The algorithm has some parameters that 
must be adjusted to the problem under study. 

4.2 Future work related with online DSS: 
In order to evaluate the performance of the proposed online version of DSS, experiments 

using high dimensional mixtures should be carried out. 
The online version proposed for DSS has several parameters that have to be manually 

adapted to the characteristics of the problem under study. One way of improving the algorithm 
would consist of the development of an automatic strategy to determine the dynamic 
parameters β and γ as well as the parameters of the filter used to smooth the evolution of the 
weights (size and standard deviation of the filter). 

Due to the scaling indetermination inherent to ICA and DSS, the implemented online 
version of DSS is restricted to problems with stationary sources. New strategies can be 
developed in order to overcome this limitation, for example, by exploring prior knowledge 
about the mixture or the data characteristics (using different and specific denoising functions). 
Independently of the strategy used, this will require extra information. Additional information 
can also overcome the permutation ambiguity that appears in problems where the (de)mixture 
becomes singular.  

4.3 Conclusions related with nonlinear DSS: 
In order to extend DSS to nonlinear mixtures, two original steps were removed: the pre-

whitening and the orthonormalization of the data. These steps being removed, the separation is 
essentially performed by the denoising function, which should not only differentiate the 
sources but also separate them as much as possible.  

In order to solve the real-life problem of nonlinear mixtures of images, specific 
denoising functions were developed. These denoising functions proved to be useful to separate 
a synthetic linear mixture of images. In the present work, the data were not pre-whitened but a 
useful initialization process was developed taking into account some information about the 
mixture process. The application of this initialization process together with the denoising 
functions provided a reasonable separation of the nonlinear real-life mixtures.  

The objective of this work was achieved, but the application of the method to natural 
images proved to be unsustainable without an early stop criterion.  

The application of the method to other problems may be difficult, especially in the case 
of high dimensional problems.  
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4.4 Future work related with nonlinear DSS: 
In order to get a better separation of mixed images and to avoid undesired solutions, a 

network with the demixture may be developed. To achieve this it is crucial to understand the 
mixture process. 

It would be interesting to develop another quality measure that would take into 
consideration the assumptions done for the proposed algorithm, for example, focusing on the 
high frequencies of the images. This measure would be more appropriate to the proposed 
algorithm and would assess the proposed assumptions. 

In order to confirm the advantages of the method proposed in this work compared with 
the currently available methods, new pairs of figures should be tested. It is recommended that 
the images to be tested are more dependent and with fewer interceptions in high frequency  

The proposed solution only takes into consideration the data characteristics. We could 
try to conjugate the information given by the data structure with the independence criterion. 
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Appendix A 

Initialized images  
The application of isotropic whitening to the mixed images (figure 1.3 and figure 1.4) 

results in two images more separated than the mixed ones. The result of the isotropic 
whitening to the first, fourth, and fifth pairs of mixtures can be seen in figure A.1. However, 
the initialization used (3.6) and (3.7) was not the isotropic whitening, but another linear 
transformation that conciliates the fact that the isotropic whitening separates the images and 
that the mixtures are close to a symmetric operation. The results of initialization of the pairs of 
mixtures number one, four, and five are in figure A.2. 

The observation of figures A.1 and A.2 indicates that the application of the initialization 
given by (3.6) and (3.7), leads to a slightly better separation of the mixed images compared 
with the application of the isotropic whitening. 
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Figure 1 – First, fourth, and fifth pair of mixtures after the application of isotropic whitening. 
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Figure 2 – First, fourth, and fifth pair of mixtures initialized with Rsymmetric. 
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Appendix B 

Interface 
During this work four source separation (SS) methods were implemented: Infomax, 

FastICA, MISEP and DSS. Besides the implementation of these methods, two extensions were 
developed for the last method (DSS). In order to collect all the methods, a simplified interface 
was implemented in MatLab. The main interface can be opened by the command Guia_TFC.m 
, a function present in the folder “Guia”. This interface consists in a main menu where the 
different methods can be chosen (figure B.1). 

 
Figure B.1 – Main interface 

All the interfaces have parameters to fill as well as choices to make. The understanding 
of the parameters and choices is easy after reading the theoretical basis of each method 
(section 1.3, section 1.4, section 2.1 and section 3.1).  

Figures B.2, B.3, B.4, B.5, B.6 and B.7 show the interfaces of methods Infomax, 
FastICA, MISEP, DSS, online DSS, and nonlinear DSS, respectively. Most of the parameters 
presented in these figures are the ones set by default. 

Most of the methods were implemented and tested in two dimensional signals. Although 
the implementation has been performed in order to be applied to high dimensional signals, this 
was not fully tested for all the methods. 
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Imfomax: 
 

 
Figure B.2 – Infomax interface 

The functions related with the methods Infomax, FastICA, MISEP, DSS, Online DSS 
and nonlinear DSS are in folders Infomax, FastICA, MISEP, DSS, online, and NLdss 
respectively. In the folder corresponding to a method, the main script has to be run in order to 
perform the algorithm. Two essential control variables are used for all methods. One variable 
is called guia and is set to one if the methods are running through the interface and should be 
set to zero if not. The other variable is called cont and should be set to zero if the algorithm is 
running for the first time or set to one to continue the method using a previous stage. 
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FastICA: 

 

 
Figure B.3 – FastICA interface 
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MISEP: 

 

 
Figure B.4 – MISEP interface 
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DSS: 

 

 
Figure B.5 – DSS interface 
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Online DSS 
 

 
Figure B.6 – Online DSS interface 
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Nonlinear DSS: 

 

 
Figure B.2 – Nonlinear DSS interface 

 

Finally a brief description, for each method, of all the functions/scripts implemented is 

presented below: 

 
Infomax : 
det_nlin - Script that determines, for the nonlinearity function chosen, the terms 

that are required for the learning rule. 
Infomax - Script that performs Infomax algorithm (main). 
init - Script that performs initializations required  when the graphical 

interface is not in use (used by initial.m). 
initial - Script that performs all initializations. 
nlin_new - Function that should be edited to implement different nonlinearities. 
save_inf - Script that saves to the workspace variables that may be required to 

continue the algorithm or to show the results. 
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FastICA : 
 
esf.m  - Function that performs isotropic whitening 
FastICA.m - Script that performs FastICA algorithm (main). 
initial.m - Script that performs all initializations. 
Initializations.m - Script that performs initializations required  when the graphical 

interface is not in use (used by initial.m). 
normliza.m  - Function that normalizes the data. 
pca.m - Function that performs PCA. 
save_fast.m - Script that saves to the workspace variables that may be required to 

continue the algorithm or to show the results. 
 
 
MISEP : 
 
const.m - Function that sets some constants required for the beginning 

of each batch iteration. 
constantes  - Function that sets MISEP constants. 
gera_d_sigm.m  - Function that determines sigmoid derivatives for the sigmoid 

chosen. 
gera_mistura.m - Function that mixes the sources. 
gera_sinais.m - Function that generates the sources. 
inic_red.m - Function that initializes the network. 
initial.m - Script that performs all initializations. 
Misep.m - Script that performs the algorithm MISEP (main). 
mostra.m - Function that displaces the scatter plots of the estimated 

sources and of the variable Z. The function also shows the 
estimated cumulative functions. 

passos_com_momento.m- Function that adapts the network weights, using an adaptive 
learning rule. 

propaga_baixo - Function that propagates in the lower part of the net. 
propaga_cima - Function that propagates in the upper part of the net. 
rectropropaga_baixo - Function that backpropagates in the lower part of the net. 
rectropropaga_cima - Function that backpropagates in the upper part of the net. 
save_misep.m - Script that saves to the workspace variables that may be 

required to continue the algorithm or to show the results. 
 
 
DSS : 
 
comptn.m - Function that performs the competition. 
comptt_.m - Auxiliary function to perform the competition (used by comtn.m). 
den_new.m - Function that should be edited to implement a different denoising 

function. 
dss.m - Script that performs dss (main). 
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esf.m  - Function that performs isotropic whitening. 
Initialization.m - Script that performs initializations. 
load_dss.m - Script that reads from the workspace to the function some variables 

required to continue the algorithm. 
norml.m  - Function that normalizes the data. 
pca.m - Function that performs PCA. 
save_dss - Script that saves to the workspace variables that may be required to 

continue the algorithm or to show the results. 
signal_gen - Script that generates the signals. 
 
 
Online: 
 
den_new.m - Function that should be edited to implement a different denoising 

function. 
dss_online-m - Script that performs online dss (main). 
gauss1.m - Function that returns vector that approximates a Gaussian with a 

desired standard deviation and size. 
initialization.m  - Script that performs initializations. 
Loop_dss.m - Script that contains the loop that performs online dss and that filters 

the evolution of the matrices W and F. 
Loop_wh.m - Script that contains the loop that performs symmetric whitening online 

and filters the evolution of matrix A. 
mixk.m - Script that generates the mixture and mixes the data for each sample k. 
pca.m - Function that performs PCA. 
save_online.m - Script that saves to the workspace variables that may be required to 

continue the algorithm or to show the results. 
sgn_new.m - Function that should be edited to generate a different signal (sources). 
Signal_gen.m  - Script that generates the signals. 
Wdss_ini.m - Function that estimates the initial value of matrix W (separation 

matrix for sphered data). 
Whit_sym_online.m - Function that performs symmetric whitening online. 
White_ini.m  - Function that estimates the initial value of matrix A (matrix that 

performs isotropic whitening). 
 
 
NLdss: 
 
actual.m  - Function that receives X, Xref and W1 and returns Xact, Wend and 

the sigmoid derivatives. 
actual_1.m - Function that receives X, W1 and Wend and returns X_act. 
comptn.m - Function that performs the competition. 
comptt_.m - Auxiliary function to perform the competition (used by comptn.m). 
cont_it - Function that receives a vector with the angles and returns the angle of 

convergence and the iteration required to achieve convergence. 
den.m - Script that performs denoising. 
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den_new.m  - Function that should be edited to implement a different denoising 
function. 

den_txt.m - Function used by den.m that performs the fourth denoising function 
(for text images). 

den_V.m - Function used by den_HV.m that sets the horizontal wavelet 
components to zero. 

den_HV.m - Function used by den.m that performs the third denoising function (bar 
images). 

den_waven.m - Function used by den.m that performs the second denoising function 
(natural scenes). 

esf.m  - Function that performs isotropic whitening. 
esf_sym.m  - Function that computes the initialization matrix Rsymmetric and 

initializes a pair of images.  
inic_net.m - Script that initializes the MLPs. 
initial.m - Script that performs all initializations. 
initializations.m - Script that performs initializations required when the graphical 

interface is not in use (used by initial.m). 
load_nl_dss.m - Function that reads from the workspace to the function variable 

required to continue the algorithm. 
mlp_adapt  - Script that performs the adaptation/learning of the weight W1. 
mlp_const - Script with the constants used by the MLP. 
mlp_dss - Script that performs nonlinear DSS (main). 
mlp_funct_mom  - Function that performs the MLP learning. 
norml.m  - Function that normalizes the data. 
pca.m - Function that performs PCA. 
plfig.m  - Function that prints/shows pairs of images. 
plfig7.m  - Function that prints/shows one image. 
plwave.m - Function that prints/shows wavelet components during the denoising 
Qs - Script that calculates the quality measures. 
save_nl_dss - Function that saves to the workspace variables that may be required to 

continue the algorithm or to show the results. 
speed_up - Script that performs speedup (only possible to use when the mixture is 

linear). 
zero_um - Function that shifts and scales a received variable in order to return a 

variable with values between zero and one. 
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