Sinais e Sistemas - Teste de 28/5/2015

Duração: 1,5 horas

Atenção:

- Para os problemas 1 a 5 indique as suas respostas, com cruzes, na tabela seguinte. Os problemas 6 a 8 devem ser resolvidos em folhas separadas (pode resolver várias alíneas do mesmo problema na mesma folha). Identifique claramente todas as folhas com o seu número e os seus primeiro e último nomes.
- Nos problemas 6 e 7 deverá indicar detalhadamente, e justificar sucintamente, todos os passos. Para o problema 8, veja as indicações no próprio problema.
- Nas questões de escolha múltipla, as respostas erradas têm cotação negativa. Numa questão com a cotação de C e com n alternativas de resposta, uma resposta errada tem a cotação de -C/(n-1).
- Sugere-se que não resolva as questões do teste por ordem numérica. Sugere-se que comece pelas questões que sejam mais fáceis para si, continuando, progressivamente, para as que sejam menos fáceis para si.

Respostas aos problemas 1 a 5

Problema 1	a	b	c	d	e	f	g		
Problema 2	a	b	c	d	e	f	g		
Problema 3	a	b	c	d	e	f	g	h	i
Problema 4	a	b	c	d	e	f	g		
Problema 5.1	a	b	c						
Problema 5.2	a	b	c						

Problema 1 (1,6 valores)

Um SLIT de tempo contínuo com resposta em frequência $2j\omega/\pi$ tem à entrada um sinal periódico cujo período é 1/5 e cujos coeficientes da expansão em série de Fourier são a_k . Indique a expressão dos coeficientes da expansão em série de Fourier do sinal de saída.

- a) $20jka_k$

- b) $10\pi jka_k$. c) $10jka_k$. d) $5\pi jka_k$. e) $5jka_k$. f) $2\pi jka_k$. g) Nenhuma das anteriores.

Problema 2 (1,6 valores)

Um SLIT de tempo discreto com resposta em frequência $1 + \frac{|\omega|}{\pi}$ para $|\omega| < \pi$ tem à entrada o sinal $\sin\left(\frac{2\pi}{3}n\right)$. Indique a expressão do sinal de saída. a) $-\frac{5}{3}\cos\left(\frac{2\pi}{3}n\right)$. b) $\frac{5}{3}\sin\left(\frac{2\pi}{3}n\right)$. c) $\frac{2}{3}\cos\left(\frac{\pi}{3}n\right)$. d) $-\frac{2}{3}\sin\left(\frac{\pi}{3}n\right)$.

a)
$$-\frac{5}{3}\cos\left(\frac{2\pi}{3}n\right)$$
.

b)
$$\frac{5}{3}\sin\left(\frac{2\pi}{3}n\right)$$
.

c)
$$\frac{2}{3}\cos\left(\frac{\pi}{3}n\right)$$

d)
$$-\frac{2}{3}\sin\left(\frac{\pi}{3}n\right)$$

e)
$$\frac{1}{3}\cos\left(\frac{\pi}{3}n\right)$$
.

f)
$$-\frac{1}{3}\sin\left(\frac{\pi}{3}n\right)$$
.

g) Nenhuma das anteriores.

Problema 3 (1.6 valores)

O sinal $x(t) = \cos(3t) + \sin(5t)$ é amostrado com frequência de amostragem ω_s . O sinal amostrado entra num reconstrutor ideal para a mesma frequência de amostragem. Qual a condição menos restritiva para a qual a saída do reconstrutor é necessariamente igual a x(t)?

a)
$$\omega_s > 30$$
.

b)
$$\omega_s > 15$$

c)
$$\omega_s > 10$$

d)
$$\omega_s > 6$$

e)
$$\omega_s > 5$$
.

f)
$$\omega_s > 3$$
.

g)
$$\omega_s > 2$$
.

h)
$$\omega_a > 1$$

b)
$$\omega_s>15.$$
 c) $\omega_s>10.$ d) $\omega_s>6.$ g) $\omega_s>2.$ h) $\omega_s>1.$ i) Nenhuma das anteriores.

Problema 4 (1,6 valores)

O sinal real x(t), com frequência máxima de 0,5 rad/s, é amostrado à frequência de 0,2 amostras por segundo (note que esta frequência não é angular). O sinal amostrado é passado por um filtro com resposta em frequência $2i\Omega$ para $|\Omega| < \pi$. A saída do filtro entra num reconstrutor ideal para a mesma frequência de amostragem. Qual o sinal de saída do reconstrutor?

a)
$$10 x'(t)$$
.

b)
$$5x'(t)$$
.

c)
$$2x'(t)$$
.

d)
$$2x(t-5)$$
.

e)
$$2x(t-3)$$
.

f)
$$2x(t-2)$$
.

Problema 5

Dois SLITS causais e estáveis têm, respectivamente, funções de transferência com as expressões

$$\frac{K}{(s-s_1)(s-s_1^*)} \quad \text{e} \quad \frac{K}{(s-s_2)(s-s_2^*)}, \quad \text{com} \quad s_1 = a+jb, \quad s_2 = a+2jb, \quad a,b \in \mathbb{R}, \quad b \neq 0.$$

Sejam $r_1(t)$ e $r_2(t)$, respectivamente, as respostas desses dois sistemas ao escalão unitário. Indique, para cada um dos seguintes grupos de afirmações, qual a afirmação verdadeira:

5.1) (0,8 valores) Relativamente às frequências de oscilação:

- a) As de r_1 e de r_2 são iguais.
- b) A de r_1 é maior que a de r_2 . c) A de r_1 é menor que a de r_2 .
- **5.2)** (0,8 valores) Relativamente às sobreelevações:

 - a) As de r_1 e de r_2 são iguais. b) A de r_1 é maior que a de r_2 .
- c) A de r_1 é menor que a de r_2 .

Problema 6 (2,3 valores)

Considere o SLIT de tempo discreto cuja resposta em frequência é

$$\frac{6 + e^{-2j\omega}}{3 + e^{-j\omega}}.$$

Determine a sua resposta ao impulso unitário.

Problema 7

Considere o SLIT de tempo contínuo com função de transferência

$$\frac{2(s-2)(s+100)}{s+2} \quad \text{para } \mathrm{Re}(s) > -2.$$

7.1) (2,8 valores) Esboce os diagramas de Bode assimptóticos de amplitude e de fase do sistema. Coloque nos gráficos indicações suficientes para que eles fiquem univocamente definidos.

7.2) (2,2 valores) Determine a resposta do sistema ao impulso unitário.

7.3) (2.7 valores) Determine um sinal de entrada que produza a resposta $\delta(t-3)$. Se não souber resolver esta alínea, determine um sinal de entrada que produza a resposta $\delta(t)$ (2 valores).

Problema 8

Neste problema pretende-se uma derivação muito rigorosa dos resultados. Deverá indicar detalhadamente e justificar cuidadosamente todos os passos, como numa demonstração de matemática.

Considere um SLIT de tempo contínuo, causal e estável, com função de transferência H(s) racional.

8.1 (1 valor) Admita que a resposta do sistema ao impulso, h(t), não apresenta impulsos nem derivadas de impulsos na origem. Prove que $\lim_{t \to +\infty} h(t) = 0$.

8.2 (1 valor) Prove que, mesmo sem se admitir que a resposta do sistema ao impulso não apresenta impulsos nem derivadas de impulsos na origem, se tem $\lim_{t \to +\infty} h(t) = 0$.