Instituto Superior Técnico

Digital Signal Processing (Processamento Digital de Sinais)

Test of 18/4/2016. Duration: 1.5 hours

Important notes:

- Solve the problems in separate sheets. You may solve several items of each problem in the same sheet.
- Identify all sheets with your student number and your first and last names.
- Present all answers in a clear, ordered and detailed manner.
- In calculations, keep at least three significant digits, and present all steps, with a brief explanation of each one.
- Justify all answers and all calculation steps.

Problem 1

Consider the discrete-time system defined by the equation $y(n)=x(n)-2 x(n-1)+2 x(n-3)$.
a) (1.4 marks) Is the system causal? And is it stable?
b) (1.4 marks) Find the system's impulse response.

Problem 2

Consider the causal discrete-time system that obeys the equation $y(n)-0.3 y(n-1)-0.1 y(n-2)=2 x(n)$.
a) (1.8 marks) Is the system stable?
b) (1.8 marks) Find the expression of the system's frequency response.
c) (1.8 marks) Find the system's response to the signal $x(n)=\sin (3 n)$. Express that response as a real signal.

Problem 3

A continuous-time signal $x_{c}(t)$ with maximum frequency $\omega_{M}=2000 \pi$ is sampled with a sampling period of 0.2 ms , resulting in the discrete-time signal $x_{d}(n)$.
a) (1.3 marks) Can the signal x_{c} be exactly reconstructed from the signal x_{d} ?
b) (1.5 marks) What continuous-time frequency (i.e., what frequency of the signal x_{c}) will the discrete-time frequency $\omega=\pi / 5$, in $X_{d}\left(e^{j \omega}\right)$, correspond to?
c) We create a finite-duration signal

$$
x(n)= \begin{cases}x_{d}(n) & 0 \leq n \leq 99 \\ 0 & \text { other cases },\end{cases}
$$

and we compute its 100-point DFT, $X(k)$. What continuous-time frequencies will the following DFT samples correspond to?
i) $(1.5 \mathrm{marks}) X(20)$.
ii) (1.5 marks) $X(90)$.

Alternative: Indicate what discrete-time (instead of continuous-time) frequencies those samples correspond to. Marks for this alternative: i) 1.0 marks; ii) 0.5 marks.

Problem 4

a) (2 marks) Compute the 4-point circular convolution of the signals $x(n)=2 \delta(n)-3 \delta(n-2)$ and $y(n)=3 \delta(n-2)-2 \delta(n-3)$.
b) (2 marks) Compute the 4-point DFT of the signal $x(n)$ of item a).

Problem 5 (2 marks)

This problem is intended to distinguish the students that deal best with the topics studied in our course. In this problem, you must provide a very detailed and very carefully justified response.

A discrete-time random process x is created in the following idealized manner: We start with $x(n)=0, \forall n$. Then, for each value of n, we flip a well-balanced coin. If we get heads, we increase by 1 the values of $x(n-1), x(n)$ and $x(n+1)$. If we get tails, we decrease those values by 1 . Find the power spectrum of the process that results after doing this for all values of n.

Note: There is a rather simple way to solve this problem. A significant mark is given to the use of a simple solution, because it shows that the student manipulates the topic's concepts well enough to find that solution.

