Instituto Superior Técnico

Digital Signal Processing (Processamento Digital de Sinais)

Exam of 27/6/2016. Duration: 3 hours

Important notes:

- Solve the problems in separate sheets. You may solve several items of each problem in the same sheet.
- Identify all sheets with your student number and your first and last names.
- Present all answers in a clear, ordered and detailed manner.
- In calculations, keep at least three significant digits, and present all steps, with a brief explanation of each one. Simplify the final results of each item, whenever possible.
- Justify all answers and all calculation steps.
- The simplicity of the methods that you use to solve the various problems will be taken into account in the grading.

Problem 1

A continuous-time signal x_{c} is sampled with a sampling period of 0.01π, resulting in the discrete-time signal x_{d}.
a) Find expressions of x_{d} for the following cases. The expressions should be as simple as possible.
i) $(1.2$ marks $) x_{c}(t)=\cos (10 t)$.
ii) $\left(0.6\right.$ marks) $x_{c}(t)=u(t+0.02)-u(t-0.02)$.
b) (1.5 marks) The signal x_{d} is passed through a real discrete-time LTI filter whose frequency response is $j \omega+3$ for $0 \leq \omega<\pi$. The output of the filter goes through an ideal reconstructor for the above-mentioned sampling period, resulting in the signal y_{c}. For a certain class of signals x_{c}, the system with input x_{c} and output y_{c} is equivalent to a continuous-time LTI filter. Indicate what is that class of signals, and find the frequency response of the mentioned equivalent continuous-time LTI filter.

Problem 2

Consider the signals $x(n)=u(n)-u(n-20)$ and $y(n)=2^{n-3}[u(n-3)-u(n-5)]$.
a) (1.6 marks) Find their linear (i.e., non-circular) convolution.
b) (0.5 marks) Find their length- 20 circular convolution.
c) (1.6 marks) Find the length-5 DFT of y. Give the numerical values of the DFT samples, in your response.

Problem 3 (2 marks)

A stationary, discrete-time random process with autocorrelation function $2^{-|n|}$ is placed at the input of an LTI system with impulse response $3^{-n} u(n)$. Find the power spectrum of the system's output.

Problem 4

Consider a random variable x with probability density

$$
p(x ; a)=\left\{\begin{array}{ll}
a x^{a-1} & \text { if } 0<x<1 \\
0 & \text { otherwise }
\end{array} \quad \text { where } a>0\right.
$$

Assume that we have N independent observations of x.
a) (1.9 marks) Find the maximum-likelihood estimator of a.
b) (1.4 marks) Find the Cramér-Rao bound (CRB) for the estimation of a. You may assume that the bound exists.

Problem 5 (1.9 marks)

A certain system has two internal variables, x_{1} and x_{2}. We observe three external variables, y_{1}, y_{2} and y_{3}, that depend on the internal ones, and we have a model of the relationship between internal and external variables:

$$
\left\{\begin{array}{l}
y_{1}=x_{1} \\
y_{2}=x_{1}+x_{2} \\
y_{3}=x_{1}-x_{2} .
\end{array}\right.
$$

In a certain situation, we observe the values $y_{1}=1, y_{2}=4$, and $y_{3}=0$. Find the least-squares estimates of x_{1} and x_{2} for this situation.

Problem 6 (1.9 marks)

Consider a continuous random variable x with uniform distribution in the interval $[0, \theta]$. The parameter θ has the prior probability density

$$
p(\theta)=\left\{\begin{array}{ll}
\frac{a}{\theta^{2}} & \text { if } \theta \geq a \\
0 & \text { otherwise, }
\end{array} \quad \text { where } a\right. \text { is a positive constant. }
$$

Assume that we have available a single observation of x. Find the maximum-a-posteriori estimator of θ.

Problem 7 (1.9 marks)

Explain what is a maximum-a-posteriori estimator. Also explain why this is a reasonable estimator; the latter explanation should be based on the consideration of the Bayes risk. Be precise in your response, using mathematical expressions where appropriate.

Problem 8 (2 marks)

This problem is intended to distinguish the students that deal best with the topics studied in our course. In this problem, you must provide a very detailed and very carefully justified response.
Consider two jointly distributed random variables, x and y, whose distribution depends on a scalar parameter θ. Intuitively, on average, the information on θ contained in the pair (x, y) should not be lower than the information contained in x alone. In this problem, you are requested to prove that that is indeed true. More specifically: show that the Fisher information on θ based on the distribution of the pair (x, y) is greater than or equal to the Fisher information on θ based on the distribution of x. You may make any assumptions that are needed for the proof.
Suggestion: Express the joint probability density of x and y in terms of the conditional probability density of one of the variables, given the other.

