Instituto Superior Técnico Digital Signal Processing (Processamento Digital de Sinais) Exam of 27/6/2016. Duration: 3 hours

Important notes:

- Solve the problems in separate sheets. You may solve several items of each problem in the same sheet.
- Identify all sheets with your student number and your first and last names.
- Present all answers in a clear, ordered and detailed manner.
- In calculations, keep at least three significant digits, and present all steps, with a brief explanation of each one. Simplify the final results of each item, whenever possible.
- Justify all answers and all calculation steps.
- The simplicity of the methods that you use to solve the various problems will be taken into account in the grading.

Problem 1

A continuous-time signal x_c is sampled with a sampling period of 0.01π , resulting in the discrete-time signal x_d .

- a) Find expressions of x_d for the following cases. The expressions should be as simple as possible.
 - i) (1.2 marks) $x_c(t) = \cos(10 t)$.
 - ii) (0.6 marks) $x_c(t) = u(t + 0.02) u(t 0.02)$.
- b) (1.5 marks) The signal x_d is passed through a *real* discrete-time LTI filter whose frequency response is $j\omega + 3$ for $0 \le \omega < \pi$. The output of the filter goes through an ideal reconstructor for the above-mentioned sampling period, resulting in the signal y_c . For a certain class of signals x_c , the system with input x_c and output y_c is equivalent to a continuous-time LTI filter. Indicate what is that class of signals, and find the frequency response of the mentioned equivalent continuous-time LTI filter.

Problem 2

Consider the signals x(n) = u(n) - u(n-20) and $y(n) = 2^{n-3}[u(n-3) - u(n-5)]$.

- a) (1.6 marks) Find their linear (i.e., non-circular) convolution.
- b) (0.5 marks) Find their length-20 circular convolution.
- c) (1.6 marks) Find the length-5 DFT of y. Give the numerical values of the DFT samples, in your response.

Problem 3 (2 marks)

A stationary, discrete-time random process with autocorrelation function $2^{-|n|}$ is placed at the input of an LTI system with impulse response $3^{-n}u(n)$. Find the power spectrum of the system's output.

Problem 4

Consider a random variable x with probability density

$$p(x; a) = \begin{cases} ax^{a-1} & \text{if } 0 < x < 1\\ 0 & \text{otherwise,} \end{cases} \quad \text{where } a > 0.$$

Assume that we have N independent observations of x.

- a) (1.9 marks) Find the maximum-likelihood estimator of a.
- b) (1.4 marks) Find the Cramér-Rao bound (CRB) for the estimation of a. You may assume that the bound exists.

Problem 5 (1.9 marks)

A certain system has two internal variables, x_1 and x_2 . We observe three external variables, y_1 , y_2 and y_3 , that depend on the internal ones, and we have a model of the relationship between internal and external variables:

$$\begin{cases} y_1 = x_1 \\ y_2 = x_1 + x_2 \\ y_3 = x_1 - x_2 \end{cases}$$

In a certain situation, we observe the values $y_1 = 1$, $y_2 = 4$, and $y_3 = 0$. Find the least-squares estimates of x_1 and x_2 for this situation.

Problem 6 (1.9 marks)

Consider a continuous random variable x with uniform distribution in the interval $[0, \theta]$. The parameter θ has the prior probability density

$$p(\theta) = \begin{cases} \frac{a}{\theta^2} & \text{if } \theta \ge a \\ 0 & \text{otherwise,} \end{cases}$$

where *a* is a positive constant.

Assume that we have available a single observation of x. Find the maximum-a-posteriori estimator of θ .

Problem 7 (1.9 marks)

Explain what is a maximum-a-posteriori estimator. Also explain why this is a reasonable estimator; the latter explanation should be based on the consideration of the Bayes risk. Be precise in your response, using mathematical expressions where appropriate.

Problem 8 (2 marks)

This problem is intended to distinguish the students that deal best with the topics studied in our course. In this problem, you must provide a very detailed and very carefully justified response.

Consider two jointly distributed random variables, x and y, whose distribution depends on a scalar parameter θ . Intuitively, on average, the information on θ contained in the pair (x, y) should not be lower than the information contained in x alone. In this problem, you are requested to prove that that is indeed true. More specifically: show that the Fisher information on θ based on the distribution of the pair (x, y) is greater than or equal to the Fisher information on θ based on the distribution of x. You may make any assumptions that are needed for the proof.

Suggestion: Express the joint probability density of x and y in terms of the conditional probability density of one of the variables, given the other.