
Linear and Nonlinear ICA Based on Mutual

Information – the MISEP Method

Lúıs B. Almeida 1

INESC-ID, R. Alves Redol, 9, 1000-029 Lisboa, Portugal

Abstract

MISEP is a method for linear and nonlinear ICA, that is able to handle a large
variety of situations. It is an extension of the well known INFOMAX method, in
two directions: (1) handling of nonlinear mixtures, and (2) learning the nonlinearities
to be used at the outputs. The method can therefore separate linear and nonlinear
mixtures of components with a wide range of statistical distributions.

This paper presents the basis of the MISEP method, as well as experimental re-
sults obtained with it. New results show the applicability of the method to mixtures
of up to 10 sources, and suggest that its performance scales relatively well with the
dimensionality of the problem. The results also show that, although the nonlinear
blind source separation problem is ill-posed, the use of regularization allows the
problem to be solved when the mixture is not too strongly nonlinear.

Key words: ICA, Blind Source Separation, Nonlinear ICA, Nonlinear BSS,
Mutual Information

1 Introduction

Linear independent components analysis (ICA) has become an important re-
search area in the last years, with a theoretical basis and a set of methodologies
that are becoming progressively more comprehensive. Rather complete cover-
ages of the subject can be found in [1, 2]. Nonlinear ICA, which is a much
more recent research topic, can be divided into two classes: one in which some
constraints are imposed on the mixture (see [3] for an example), and one in

Email address: luis.almeida@inesc-id.pt (Lúıs B. Almeida).
1 This work was partially supported by Praxis project P/EEI/14091/1998 and by
the European IST project BLISS.

Preprint submitted to Elsevier Science 16 June 2003

which the nonlinear mixture is unconstrained. The latter class, which interests
us most in this paper, has already been the subject of several publications (e.g.
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]).

MISEP, which we present in this paper, is a technique for performing both
linear and nonlinear ICA. It uses as optimization criterion an information-
theoretic measure of dependence, the mutual information of the extracted
components. It is a generalization of the well known INFOMAX method used
in linear ICA [16]. The generalization is made in two directions: (1) the tech-
nique allows the analysis of both linear and nonlinear mixtures, and (2) it
adaptively estimates the nonlinearities that are needed at the outputs of the
network used in INFOMAX. The optimal nonlinearities are related to the
statistical distributions of the extracted components, and their adaptivity, in
MISEP, allows the method to deal with components with a wide range of
distributions.

In this paper, Section 2 gives a brief introduction to the linear and nonlinear
ICA problems and Section 3 discusses mutual information as a statistical
dependence measure. Section 4 develops MISEP, by extending INFOMAX in
the two directions mentioned above. Section 5 discusses how to implement the
method in practice. Section 6 gives experimental results with various kinds of
mixtures and discusses some issues related to learning speed, and Section 7
concludes.

2 The ICA problem

Consider n statistically independent random variables Si (which we usually
call sources) which form a random vector S, and assume that a new random
vector O (also of size n) is formed through

O = MS, (1)

where M is a square matrix. The components of O can be viewed as linear
mixtures of the sources Si, M being called the mixing matrix (which is as-
sumed to be invertible). If we observe the components of O (often called the
observations), but do not know the sources nor the mixing matrix, it is still
often possible to recover the sources. For this it suffices to find a square matrix
F such that the components of

Y = FO (2)

are mutually statistically independent. Then, under very mild assumptions, it
can be guaranteed that the components Yi will be the original sources, apart

2

from a possible permutation and for unknown scaling factors [17]. The prob-
lem of recovery of the sources is called blind source separation (BSS), and the
method that we described to solve it, consisting of finding a linear transfor-
mation which yields a vector Y whose components are mutually independent,
is called linear independent component analysis (linear ICA).

In some situations the observations that we have, O, do not result from a mix-
ture of independent sources, but we are still interested in finding a represen-
tation Y with components that are as independent as possible (for example,
because they may be easier to interpret than the observations themselves).
Therefore ICA is applicable in other situations, besides blind source separa-
tion. There are also other techniques for performing BSS, besides independent
component analysis, for example if the sources present some form of temporal
structure (see [1, 2] for overviews and references).

The ICA and BSS problems were formulated here in their simplest form. Pos-
sible variants include the presence of noise in the observations, the existence
of more or fewer observation components than sources, the nonstationarity of
the mixture matrix M with time, and the possibility that the mixture is non-
instantaneous. We shall not deal with those variants here. Rather comprehen-
sive overviews of such variants, together with good bibliographical references,
can be found in [1, 2]. In this paper we shall focus on another important vari-
ant, namely the situation in which the mixture is nonlinear, the observations
being now given by

O = M(S), (3)

where M can be a rather generic (though invertible) nonlinear mixing func-
tion. Nonlinear ICA will consist of finding a transformation F such that the
components of

Y = F(O) (4)

are mutually independent.

We should note that, contrary to the linear case, there is normally no guar-
anty that the components of Y will be related to the original sources in any
simple way [18, 19, 11]. Therefore, it might seem that the nonlinear blind
separation problem was hopelessly insoluble. This is not so, however. What
this means is that nonlinear BSS is an ill-posed problem. As in many other
ill-posed problems, there often is additional information that allows us to find
good solutions, usually by means of some form of regularization. In our case,
the additional information will normally consist of the knowledge that the
mixture is relatively smooth, not involving too strong nonlinearities (the term
”smooth” will be used, in this paper, with the meaning of ”not too strongly
nonlinear”). We shall see, in Section 6, examples of situations in which sources
are recovered from such nonlinear mixtures. A somewhat more extensive dis-
cussion of nonlinear source separability is made in [20].

3

3 Mutual information as an ICA criterion

ICA essentially consists of finding a transformation of the observation vector
O into a vector Y whose components are mutually independent. This can be
achieved in several different ways, but a natural one is to choose a measure
of the mutual dependence of the components Yi, and then to optimize the
analysis system F so that it minimizes this dependence measure. There are
several sensible measures of mutual dependence, but one that is generally
considered as being among the best is Shannon’s mutual information (MI),
defined as 2 .

I(Y) =
∑

i

H(Yi)−H(Y) (5)

where H denotes Shannon’s entropy, for discrete variables, or Shannon’s dif-
ferential entropy

H(X) = −
∫

p(x) log p(x) dx (6)

for continuous variables, p(x) being the probability density of the random
variable X (see footnote 3). The differential entropy of a multidimensional
random variable, such as H(Y), is defined in a similar way, with the single
integral replaced with a multiple integral extending over the whole domain of
Y.

The mutual information I(Y) measures the amount of information that is
shared by the components of Y. It is always non-negative, and is zero only if
the components of Y are mutually independent, i.e., if

p(Y) =
∏

i

p(Yi). (7)

I(Y) is equal to the Kullback-Leibler divergence between
∏

i p(Yi) (the joint
density that the components Yi would have if they were independent but had
the same marginal distributions) and the actual joint density p(Y). For this
reason, and also because it is based on Shannon’s concepts of entropy and
mutual information, which probably are the best concepts of such quantities
in most situations, I(Y) is generally considered one of the best measures of
dependence of the components of Y. It has been used by several authors as

2 Shannon’s mutual information was originally defined for two random variables
only. The definition that we present here is a natural extension of the concept,
when there are more than two variables. There are other possible extensions [21],
but we won’t consider them here because they are not relevant to our discussion.
3 We shall denote all probability density functions by p(·). The function’s argument
will clarify which random variable is being considered. Although this is a slight
abuse of notation, it will help to keep expressions simpler, and will not originate
any confusion.

4

their choice of dependence measure within the nonlinear ICA context (see
[6, 22, 8, 23, 13] for example).

The mutual information has another important property, that will be useful
in our context. Assume that we apply transformations Zi = ψi(Yi), resulting
in new random variables Zi, and that these transformations are all continuous
and monotonic (and thus also invertible). Then, it can be easily shown that
I(Z) = I(Y). This property has quite a pleasant intuitive meaning: Since we
have not mixed the components Yi and have made only invertible transforma-
tions on them, the information that they share didn’t change.

4 Theoretical basis of the MISEP method

Since MISEP is a generalization of the well known INFOMAX method of
linear ICA, we shall start by summarizing INFOMAX, from the viewpoint
that interests us here, and shall then show how it can be extended, leading to
MISEP.

4.1 INFOMAX

The INFOMAX method has been proposed in [16], for performing linear ICA
based on a principle of maximum information preservation (hence its name).
However, it can also be seen as a maximum likelihood method [24], or as a
method based on the minimization of mutual information (as we shall see
ahead). INFOMAX uses a network whose structure is depicted in Fig. 1 (the
figure shows the case of two components; extension to a larger number of
components is straightforward). F is a linear block, yielding

Y = FO (8)

This block thus performs just a product by a square matrix (we shall desig-
nate both the block and the matrix by the same letter since this will cause
no confusion). After optimization, the components of Y are expected to be
as independent from one another as possible. Blocks ψi are auxiliary, being
used only during the optimization phase. Each of them implements a non-
linear function (that we shall also designate by ψi). These functions must be
increasing, with values in [0, 1]. The optimization of F is made by maximizing
the output entropy, H(Z).

To see the connection of this method to the minimization of the mutual infor-
mation I(Y), assume that we have chosen each function ψi as the cumulative

5

F

o 1

ψ 2 o 2

ψ 1
y 1

y 2

z 1

z 2

Fig. 1. Structure of the ICA systems studied in this paper. The F block performs
the ICA operation proper, and yi are the extracted independent components. The
ψi blocks are auxiliary, being used only for the optimization. In the INFOMAX
method the nonlinearities ψi are fixed a-priori. In the MISEP method they are
adaptive, being implemented by multilayer perceptrons. Ideally, each ψi should be
the cumulative probability function of the corresponding Yi random variable.

probability function (CPF) of the corresponding component Yi. Then, a sim-
ple calculation will show that Zi will be uniformly distributed in [0, 1], and
consequently H(Zi)=0. Therefore,

I(Y) = I(Z) (9)

=
∑

i

H(Zi)−H(Z) (10)

= −H(Z), (11)

and maximizing the output entropy is equivalent to minimizing the mutual
information of the extracted components Yi. In INFOMAX, the nonlinear
functions ψi are chosen a priori. Within our context, this choice can be seen
as an a priori choice of the estimates of the cumulative probability functions
of the components to be extracted.

As one would expect, if there is a strong mismatch between the ψi and the
true CPFs of the sources, the method will fail. But linear ICA is a rather
constrained problem, and the method still works well with relatively poor
approximations of the CPFs (for a discussion of this and for an extension of
INFOMAX in which there is an automatic choice between two pre-selected
forms of the ψi functions, see [25]). Nonlinear ICA, on the other hand, is
a much less constrained problem, requiring relatively good estimates of the
CPFs. We shall now see how INFOMAX can be extended to nonlinear ICA,
simultaneously obtaining good estimates of the CPFs.

4.2 The MISEP method

We shall start by seeing how the ψi functions can be learned during the opti-
mization, and shall then proceed to discuss how the nonlinear network, with
the structure shown in Fig. 1, should be optimized.

6

4.2.1 Learning the output nonlinearities

We wish the nonlinearities ψi to approximate the CPFs of the corresponding
components during the optimization. For this, first assume that the F block
was kept fixed, so that the distributions of the Yi were kept constant. Assume
also that each ψi block of Fig. 1 implements a flexible nonlinear transforma-
tion, constrained only to be continuous, increasing, with values in [0, 1]. We
have

H(Z) =
∑

i

H(Zi)− I(Z) (12)

=
∑

i

H(Zi)− I(Y). (13)

Since I(Y) is constant in this case, maximizing the output entropy corresponds
to maximizing the sum of the marginal entropies,

∑
i H(Zi). But each of these

entropies depends on a different function, ψi. Therefore, maximizing their sum
corresponds to individually maximizing each of them. Given the constraints
placed on the ψi functions, Zi is bounded to [0, 1], and its maximal entropy
will correspond to a uniform distribution in that interval. Given that ψi is
also constrained to be an increasing function, it must be the CPF of Yi, to
yield a Zi uniformly distributed in [0, 1]. Therefore, maximizing the output
entropy will lead the ψi functions to become estimates of the CPFs of the
corresponding Yi components.

During an actual iterative optimization procedure that maximizes H(Z), the F
block won’t stay constant, and the distributions of the Yi will keep changing.
Therefore, each ψi may not exactly correspond to the CPF of the current
Yi. However, at the maximum of H(Z), they will correspond to those CPFs.
Otherwise H(Z) could still be increased by replacing each ψi with the correct
CPF. Therefore, at the maximum of H(Z) we will have I(Y) = −H(Z), and
the mutual information will be minimized, as desired.

For the output nonlinearities to be properly learned by the method that we’ve
described, they have to be constrained to be increasing functions, with results
in [0,1]. In Section 5 we shall describe how this is achieved in our implemen-
tation of the MISEP method.

4.2.2 Extending to nonlinear ICA

To extend INFOMAX to nonlinear ICA we have to use, in the F block, a
nonlinear system that depends on parameters, which we shall then optimize
by maximizing the output entropy. We have used, for this purpose, both a
multilayer perceptron (MLP) and a radial basis function (RBF) network, and
later sections provide results using networks of both kinds. In the present
section, however, we shall base our discussion on the MLP implementation

7

only, because once the basic principles are grasped, it is then easy to extend
these ideas to any other kind of nonlinear network.

The basic problem that we have to solve is to optimize a nonlinear network
(formed by the F and ψi blocks) by maximizing its output entropy. The first
steps proceed as in INFOMAX. We have

H(Z) = H(O) + 〈log |detJ|〉 , (14)

where the angle brackets denote statistical expectation, and J = ∂Z/∂O is
the Jacobian of the transformation performed by the network. Since H(O) is
constant (it doesn’t depend on the network’s parameters), we only need to
maximize 〈log |detJ|〉. We approximate it with the empirical mean. Assuming
that we have K training patterns ok (see footnote 4), we have

〈log |det J |〉 ≈ 1

K

K∑

k=1

log
∣∣∣detJk

∣∣∣ , (15)

where Jk is the Jacobian corresponding to the input pattern ok. We therefore
wish to optimize the network by maximizing the objective function

E =
1

K

K∑

k=1

log
∣∣∣detJk

∣∣∣ . (16)

This will be done by a gradient ascent method, as in INFOMAX. Here, how-
ever, we have to depart from the path taken in INFOMAX, because the net-
work that we wish to optimize is more complex than the one used there.

The direct computation of the partial derivatives of E is rather cumbersome
and inefficient. However, we know from the theory of neural networks [26]
that backpropagation is a simple and efficient way to compute the gradient of
a function of a network’s outputs. We shall therefore use backpropagation to
obtain the gradient of the objective function. However, since E doesn’t depend
on z, but rather on the Jacobians Jk, we need to first find a network that
computes these Jacobians, and then backpropagate through it. The network
that computes the Jacobians is essentially a linearized version of the network
of Fig. 1. However, there are several details, regarding this network, that are
worth emphasizing, and that are best explained through an example.

To be able to give a specific example, we shall assume that block F is formed
by an MLP with a single hidden layer of sigmoidal units, with linear output
units, and with no direct connections from inputs to outputs. We shall also

4 We use superscripts to number patterns, and not as exponents. Subscripts are
reserved to denote the elements of vectors or matrices. For exponents we’ll use a
notation like (oi)2, which represents the square of oi.

8

�

�
�� � �� �

� � �� � �

�

� 	

 ��

 �� �

Fig. 2. Network for computing the Jacobian. The upper part corresponds to the
network of Fig. 1, drawn in a different way. The lower part, which computes the
Jacobian proper, is essentially a linearized version of the upper part, but propagates
matrices. It has at its input the identity matrix I, and provides at its output the
Jacobian J .

assume that each of the ψi blocks has the same structure (but with just one
input and one output per block). Fig. 2 shows the network that computes the
Jacobian. The upper part of the figure corresponds to the network shown in
Fig. 1, drawn in another form. Block A performs the product of the input
vector by the weight matrix of F’s hidden units (we shall also designate this
matrix by A) 5 . The leftmost Φ block applies, on a per-component basis, the
sigmoids of those hidden units, yielding those units’ outputs. Block B performs
the product of these outputs by the weight matrix of the (linear) output units
of F, yielding the vector of estimated components y. The ψi blocks of Fig.
1, taken together, form an MLP with a single hidden layer, albeit not fully
connected (or equivalently, with several connection weights set to zero). Blocks
C, rightmost Φ and D, in the upper part of Fig. 2, implement this MLP, in a
form similar to the one that we described for block F. The output of block D
yields the auxiliary outputs z.

The lower part of the system of Fig. 2 is the one that computes the Jacobian
proper. It is essentially a linearized version of the network of the upper part,
but it propagates matrices, instead of vectors (this is depicted in the figure
by the 3-D arrows). Its input is the n× n identity matrix I, n being the size
of the observation vector o (we can also think of this network as n copies of
the linearized network, each of them processing one of the columns of matrix
I, the vectors obtained at their outputs being then assembled into an n × n
matrix which is J). Being a linearized version of the network of the upper
part, this network is linear. Blocks A, B, C and D perform products by the
corresponding matrices, as in the upper part of the figure, but with A and

5 To implement the bias terms of the hidden units we assume, as is often done, that
vector o is augmented with an element equal to 1, and that matrix A is augmented
with a column containing the bias terms. The same assumption is made regarding
vector y and matrix C, ahead.

9

C stripped of the columns that correspond to bias terms. The two Φ′ blocks
perform products by diagonal matrices: they multiply their inputs, on a per-
component basis, by the derivatives of the corresponding sigmoids of the Φ
blocks from the upper part. To compute these derivatives they need to know
the inputs to those sigmoids. This information is transmitted, from the upper
to the lower part, through the gray arrows. The output of the network in the
lower part of Fig. 2 is the Jacobian of the transformation applied by the upper
part to the vector o that is placed at its input. This Jacobian is given by

J = DΦ′
rCBΦ′

lA, (17)

where Φ′
r and Φ′

l denote, respectively, the rightmost and leftmost diagonal
matrices of derivatives of sigmoids.

To compute the gradient of E we have to perform backpropagation through
the network of Fig. 2, placing at the inputs of the backpropagation the corre-
sponding partial derivatives of E. For the backpropagation, we have to input
into the lower part of the figure

∂E

∂J
=

(
J−1

)T
, (18)

where the T superscript denotes matrix transposition. Into the upper part we
input zero, since ∂E/∂z = 0. Note, however, that backpropagation must be
done through all information transfer paths, and thus also through the gray
arrows, into the upper network. Therefore there will be backpropagation of
nonzero values through the upper network, too.

Backpropagation through most of the blocks of Fig. 2 is straightforward, since
they are standard blocks normally encountered in ordinary MLPs. The only
nonstandard blocks are the Φ′ ones. We shall examine in a little more detail
how to backpropagate through these. The forward operation performed by
each of these blocks can be described by

hij = φ′(si)gij, (19)

where gij denotes a generic input into the block from the left, si is the corre-
sponding input from the gray arrow, and hij is the corresponding right-arrow
output. The backward propagation is then given by

∂hij

∂gij

= φ′(si) (20)

∂hij

∂si

= φ′′(si)gij. (21)

This is depicted in Fig. 3-b), where each box denotes a product by the indicated
value. The forward unit has two inputs, and therefore the backward unit has

10

J � � K � �

V �

I
�V � �

D�

I
�V � �
I

�V � �� J � �

E�

Fig. 3. a) A unit of a Φ′ block. b) The corresponding backpropagation unit.

two outputs, one leading left, and the other leading upward along the gray
arrow.

Some remarks should be made here. One is that the components of the ma-
trices A, B, C and D are shared between the upper and lower parts of the
network. Therefore, the appropriate handling of shared weights should be used
in the backpropagation [26]. Another remark is that the magnitudes of the
components of the gradient of E normally vary widely during the optimiza-
tion. Gradient procedures with a fixed step size will, therefore, be extremely
inefficient. We have used the adaptive step sizes technique with error control
described in [26], with rather good results. Other fast optimization techniques,
such as those based on conjugate gradients, may also be appropriate. Finally,
we should note that we have discussed above an example for an MLP-based
network with a specific structure, but that the method that we have presented
is rather general, being applicable to networks with virtually any structure.
In the examples given in Section 6 we have used MLP-based networks with a
structure that is slightly more complex than the one discussed above, and we
have also used networks based on radial basis functions.

Matlab-compatible code implementing the MISEP method with a structure
based on MLPs is available at
http://neural.inesc-id.pt/∼lba/ICA/MIToolbox.html.

5 Implementation

For nonlinear ICA, F (Fig. 1) needs to be a nonlinear, parameterized block,
whose parameters can be optimized through a gradient procedure. The block
should be rather ”universal”, being able to implement a wide class of func-
tions. We have used two main kinds of F blocks, one based on an MLP and
the other based on a radial basis function (RBF) network. Both networks had
a single hidden layer of nonlinear units and linear units in the output layer.
Both networks also had direct connections between the input and output lay-
ers. These connections allowed the networks to exactly perform linear ICA, if

11

the output weights of the hidden units were set to zero. Therefore, the net-
works’ operation can also be viewed as linear ICA which is then modified, in
a nonlinear manner, by the hidden units’ action. In the cases where we just
wanted to perform linear ICA, the F network had only connections between
input and output units, with no hidden layer.

Each ψi block was implemented as an MLP with one input and one output. The
output unit was linear. The constraints on the ψi functions (being increasing
functions, with values in a finite interval) were implemented in a ”soft” way,
as follows 6 :

• The interval to which the functions’ output values was limited was chosen
as [−1, 1] instead of [0, 1]. This has the effect that the ψi functions become
estimates of the CPFs scaled from [0, 1] to [−1, 1]. However, it still main-
tains the fact that the maximum of the output entropy corresponds to the
minimum of I(y), as can easily be checked. On the other hand, it allows
the use of bipolar sigmoids in hidden units, normally leading to a faster
training.

• The sigmoids of the hidden units were chosen as increasing functions, also
with a range of output values in [−1, 1].

• At the end of each epoch, the vector of weights leading from the hidden
units to the output unit was normalized, so that its Euclidean norm stayed
equal to 1/

√
h, where h is the number of units in the hidden layer. This has

the result of constraining the output of the ψi block to [−1, 1].
• All weights (except biases) in each ψi block were initialized to positive val-

ues, resulting in an increasing ψi function. The maximization of the output
entropy then almost always led these weights to stay positive, because a
negative weight would decrease the output entropy. Even in the very rare
cases in which we have observed the appearance of a negative weight, it
normally evolved back into a positive one in a few iterations.

6 Experimental results

Several examples of two-component linear and nonlinear ICA and source sepa-
ration performed by means of MISEP have been published in previous papers
[23, 13, 27, 28, 29, 20]. In this section we show only a few such results (Sec-
tions 6.1 and 6.2), to give the reader a feeling of the method’s performance. We
then proceed, in Sections 6.3 and 6.4, to new results concerning the method’s
training speed and its performance with a larger number of components.

6 For a more detailed discussion on possible ways to implement these constraints
and on why this specific way was used, see [27].

12

Fig. 4. Separation of a linear mixture of a supergaussian signal (speech) and a sub-
gaussian signal (bimodal noise). Top: sources. Middle: mixture components. Bot-
tom: independent components. The signals are shown as unconnected dots for the
bimodal character of the noise to be more clearly visible.

6.1 Linear ICA

For brevity, we give only one example of linear ICA performed with MISEP,
illustrating the method’s capacity to deal with different source distributions.
The network that was used had the following structure: The F block was
linear, having only direct connections between inputs and outputs, with no
hidden layer. Each ψi block had four hidden units, a linear output unit, and
no direct connection between input and output.

Figure 4 shows an example of the separation of a linear mixture of a super-
gaussian signal (speech) and a subgaussian one (bimodal random noise). The
mixture matrix was close to singular, resulting in two observation components
that were almost identical to each other. The method was able to separate the
sources quite well. We show in Fig. 5 the ψi functions learned by the network
in this case, to illustrate that the cumulative functions of the supergaussian
and subgaussian distributions were well learned. The speech signal had some-
what a skewed distribution, which is well reflected in the estimated cumulative
distribution. It is worth noting that the training set used for this test had only
100 observation vectors, randomly chosen from the mixed signals.

13

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-0.5

0

0.5

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.5

0

0.5

Fig. 5. Cumulative probability functions learned for the subgaussian, bimodal noise
(top) and for the supergaussian speech (bottom). Recall that these functions are
scaled to the output interval [−1, 1], instead of [0, 1].

6.2 Nonlinear ICA with two sources

In this section we give two examples of the separation of nonlinear mixtures
of two sources. The network that was used for the separation was the same in
both cases: The F block had a hidden layer of sigmoidal units, with a separate
set of hidden units connecting to each of its two outputs (each set had 10
hidden units). The F block also had direct connections between inputs and
outputs, as described in the beginning of Section 5. Each ψi block had two
hidden units, and no direct connection between input and output.

Figure 6 shows the scatter plot of a mixture of two supergaussian, randomly
generated sources. The mixture was created according to

Ô1 = S1 + a(S2)
2 (22)

Ô2 = S2 + a(S1)
2, (23)

the vector Ô being then subject to a further linear mixture (a rotation of 45
degrees) to yield the final observation vector O. Figure 7 shows the separation
achieved from this mixture. The separation quality was rather good.

Figure 8 shows a mixture of a supergaussian and a bimodal source, obtained
according to the same nonlinear mixture equations (without the rotation).
Figure 9 shows the corresponding separation. The separation that was achieved
was again rather good.

Both of these tests used training sets with 1000 patterns, with batch-mode
training, and typically converged in less than 400 epochs. These 400 epochs
took about four minutes on a 400 MHz Pentium processor programmed in
Matlab.

14

−0.05 0 0.05 0.1 0.15

−0.1

−0.05

0

0.05

0.1

0.15

Fig. 6. Nonlinear mixture of two supergaussian sources.

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

Fig. 7. Separation of the nonlinearly mixed supergaussian sources.

6.3 Training speed

In [29] we have shown experimental data suggesting that basing the F block on
local units (radial basis function ones) would lead to an appreciable increase
in learning speed. Further experimental tests, that we present in this section,
suggest that the speed advantage was not due so much to the use of local
units, but rather to the initialization of the network’s units. In [29], the RBF
units’ centers were computed from the observation vectors through a k-means
procedure, which ensured that they were spread according to the distribution
of the observations. On the other hand, the MLP’s weights were initialized at
random, having no relationship with the distribution of the observations.

15

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 8. Nonlinear mixture of a supergaussian and a subgaussian (bimodal) source.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−1.5

−1

−0.5

0

0.5

1

Fig. 9. Separation of the nonlinearly mixed supergaussian and subgaussian sources.

Further tests were made, in which the structure of the MLP implementing the
F block was slightly changed. Instead of computing the input activation of the
i-th hidden unit as

n∑

j=0

wijoj, (24)

where o0 = 1 and wi0 is the unit’s bias term, we computed it as

n∑

j=0

wij(oj − ci
j), (25)

where the ci are a set of ”center vectors”, one for each hidden unit. These
center vectors were pre-computed from the observations through a k-means
procedure (the components ci

0 were set to zero; the hidden units’ biases were

16

also initialized to zero). This initialization ensured that there were hidden
units whose ”transition region” passed through points representative of the
distribution of all the observations, instead of being independent from them.
In a sense, the hidden units “crisscross” the whole observation space, after
initialization.

Two supergaussians Supergaussian and subgaussian

RBF MLP-old MLP-new RBF MLP-old MLP-new

Mean 294 818 369 382 496 202

St. deviation 239 450 68 116 104 41

Table 1 – Comparison of training speeds between RBF-based networks and MLP-
based ones, with the old and new initialization methods. The table shows the means
and standard deviations of the numbers of epochs needed to reach the stopping
criterion.

This new initialization method led to training speeds that were comparable
to those obtained with RBF-based networks, being somewhat better in some
cases and somewhat worse in other ones, and presenting a much lower variance.
This is shown in Table 1, which refers to the same training sets that were used
in [29].

The numbers of training epochs are not directly comparable to those pre-
sented in [29] because here we decided to be somewhat more demanding in
the value of the objective function used as stopping criterion, to obtain a more
perfect separation. Also, the experience that we have been gaining with the
method allowed us to choose better parameters for the training of both the
MLP-based and the RBF-based networks (e.g. better ranges for the randomly
initialized weights). Anyway, the table shows that the RBF-based networks
didn’t present a clear speed advantage relative to MLPs with the new ini-
tialization method. On the other hand, the use of RBF-based networks may
have disadvantages (such as the need to use explicit regularization, see [29],
or the probable exponential increase in the number of RBF units when the
number of sources increases). Therefore, we don’t see a clear advantage in
using RBF-based networks over MLP-based ones at this point.

6.4 More than two sources

MISEP has been tested with nonlinear mixtures of up to ten sources. Results
of a four-source experiment are reported in [20]. Here we show results on a
ten-source mixture, with an attempt at a speed comparison with a similar
two-source case.

17

With different numbers of sources, it is not obvious what should be considered
mixtures of similar complexity. It is also not obvious what should be considered
ICA or BSS results of similar quality. Therefore, direct speed comparisons are
difficult. For our attempt at a speed comparison we made the following choices,
which seemed reasonable in this context: We chose all sources with the same
distribution (supergaussian, in this case), because that seems to make sense
in such a speed comparison. The mixtures were of the form

Oi = Si +
a√

n− 1

∑

j 6=i

(Sj)
2, (26)

where n was the number of sources. The multiplying factor was chosen as
a/
√

n− 1, so that the total variance contributed to Oi by the nonlinear terms
was the same for any number of sources. This was the choice made to imple-
ment mixtures of similar complexities for different numbers of sources. Figure
10 shows scatter plots of pairs of mixture components. Note that while the
scatter plot for the two-component mixture gives an accurate idea of the mix-
ture distribution, the scatter plot for the ten-component mixture actually is
a projection from a 10-dimensional space into a 2-dimensional one, and can’t
give a precise idea of the distribution. Although some curvature, due to the
mixture’s nonlinearity, can be discerned in the scatter plot, most of the effect
of the mixture appears as ”fuzziness” in the components’ distributions.

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Fig. 10. Scatter plots of pairs of mixture components in the mixture of two sources
(left) and of ten sources (right).

The choice of the stopping criteria for the training was based on a visual
inspection of scatter plots of pairs of components. We first made some trial
runs, which we used to choose stopping-values of the objective function for
the two cases such that, visually, they had approximately the same separation
quality. Figure 11 shows examples of scatter plots that were obtained with the
chosen stopping criteria.

18

−0.1 −0.05 0 0.05 0.1

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.015

−0.01

−0.005

0

0.005

0.01

Fig. 11. Scatter plots of pairs of separated sources in the two-source case (left) and
in the ten-source case (right).

As in the previous experiments, the separating network had an F block based
on an MLP, with a set of 10 hidden units connected to each output, and with
direct connections between inputs and outputs; each ψi block had two hidden
units, and no direct connection between input and output. The new form of
network initialization described in the previous section was used. Training
sets with 1000 patterns were used in both cases. Table 2 shows the numbers
of training epochs obtained in eleven runs of each of the cases, with different
random initializations of the networks for each run.

Run # 2 components 10 components

1 248 628

2 345 681

3 435 693

4 461 702

5 489 724

6 514 805

7 565 841

8 872 845

9 1001 879

10 1399 925

11 1806 951

Median 514 805

Mean 740 789

St. dev. 487 108

Table 2 – Comparison of numbers of epochs between two-component and ten-
component tests. The table shows the numbers of epochs taken for reaching the
stopping criterion in each of the 11 test runs of each case (sorted in ascending
order), as well as their median, mean and standard deviation.

19

It is interesting, and somewhat surprising, to note that the ten-component
mixture didn’t require a much larger number of training epochs than the
two-component one. Of course, each training epoch took longer in the ten-
component case than in the two-component one (3.8 seconds versus .8 seconds,
on a 400 MHz Pentium processor programmed in Matlab). It is also somewhat
surprising to note that the two-component case showed a much longer-tailed
distribution of numbers of training epochs, with a much larger variance, than
the ten-component one. This is why we also show the medians of the numbers
of epochs (with long-tailed distributions we believe that the medians may
sometimes be more meaningful than the means).

Although more experience with large numbers of sources is needed, these re-
sults suggest that MISEP may be able to handle such situations well, and that
its performance may not scale too badly with the increase of dimensionality.

6.5 Final notes on the nonlinear ICA results

In all the cases of nonlinear ICA presented above (as well as in several other
cases presented in previous papers) we were able to approximately recover the
original sources, even though nonlinear blind source separation is an ill-posed
problem. As in many other ill-posed problems, this was possible due to the use
of regularization. The nonlinear mixtures that we used were relatively smooth,
and the regularization inherently performed by the MLP that implemented the
F block sufficed for the source recovery. No explicit regularization terms were
used in any of our MLP-based examples, although they could have been easily
included in the optimization procedure if necessary 7 . For a somewhat more
extensive discussion on nonlinear source separability, as well as for an example
of a situation in which MISEP is’t able to perform a good source separation
(although it does perform ICA) see [20].

It may also be worth noting that the kinds of nonlinear mixtures that we
used were not matched, in any way, to the kinds of separating blocks F that
were employed. More specifically, none of the nonlinear mixtures could be
exactly inverted by the MLP- or RBF-based blocks that were used to separate
them. Therefore these blocks had to estimate approximations to the actual
inversions.

7 Explicit regularization was needed, and used, in the RBF-based examples men-
tioned in Section 6.3. This regularization was performed through the so-called weight
decay technique. See [29] for more details.

20

7 Conclusion

We have presented MISEP, a method for linear and nonlinear ICA, based on
the minimization of the mutual information of the extracted components. The
method is an extension of INFOMAX in two directions: (1) allowing the ICA
analysis block to be nonlinear, and (2) learning the cumulative distributions
of the estimated components, instead of choosing them a priori, thus allow-
ing the method to deal with a wide variety of distributions. The resulting
method works by optimizing a network with a specialized architecture, using
as objective function the output entropy.

We showed experimental results that confirm the method’s ability to per-
form both linear and nonlinear ICA with various source distributions. We also
showed that, in the case of smooth nonlinear mixtures, nonlinear blind source
separation can be performed, through the use of regularization. In our case no
explicit regularization was needed, the inherent regularization performed by
MLPs having been sufficient.

Several alternative methods for performing nonlinear ICA and/or BSS exist
(see [8, 11, 12, 14, 15] for examples of such methods). A detailed comparison
with those methods would be too long to include here, but in our view the
MISEP method has one or more of the following qualities, when compared
with alternative methods:

• Being based on a well-defined, good measure of dependency.
• Relative simplicity of concept and implementation.
• Computational efficiency, at least for problems with up to about 10 compo-

nents.
• Being able to deal with a large variety of source distributions.
• Not needing to rely on temporal characteristics of the data.
• Flexibility, both in the kinds of separating networks that it can use and in

the kinds of regularization that it can incorporate.

In our opinion, MISEP’s main limitation is its difficulty to deal with strongly
nonlinear mixtures. We have ideas on how to extend it to such situations,
through a more elaborate initialization of the F network. However, other meth-
ods, especially the one of [14], may at present be better able to handle them,
possibly at the cost of having some other limitations. If one is dealing with data
that have temporal structure, methods that make use of it, such as [14, 15]
will probably exhibit better results. Also, if one has access to good priors, a
Bayesian method such as the one of [12], which explicitly incorporates the pri-
ors, may perform better. Of course, in such a wide field as nonlinear ICA/BSS,
probably no single method can claim to be the best in all (and perhaps not
even in most) situations.

21

The field of nonlinear ICA/BSS is still relatively new, and there is room for
improvement in most of the existing methods. Future work on MISEP and
related topics will address the following issues, among others:

• Dealing with stronger nonlinearities in the mixture.
• Further assessing the method’s performance in ICA and in BSS situations,

with various kinds of mixtures and with different numbers and kinds of
sources.

• Clarifying the kinds of situations in which nonlinear mixtures can be sepa-
rated, and the role of prior knowledge and of regularization in such situa-
tions.

• Developing good measures of quality for nonlinear ICA and for nonlinear
BSS, which are easy to use in practical situations.

• Applying nonlinear ICA/BSS to actual problems. In this respect, it’s worth
mentioning that an application to a real-life nonlinear image separation
problem has already started to yield promising results, although this appli-
cation is still in too early a stage to be reported here.

References

[1] A. Hyvarinen, J. Karhunen, E. Oja, Independent component analysis, J. Wiley,
2001.

[2] A. Cichocki, S. Amari, Adaptive signal and image processing: Learning
algorithms and applications, J. Wiley, 2002.

[3] A. Taleb, C. Jutten, Batch algorithm for source separation on postnonlinar
mixtures, in: J. F. Cardoso, C. Jutten, P. Loubaton (Eds.), Proc. First Int.
Worksh. Independent Component Analysis and Signal Separation, Aussois,
France, 1999, pp. 155–160.

[4] J. Schmidhuber, Learning factorial codes by predictability minimization, Neural
Computation 4 (6) (1992) 863–879.

[5] G. Burel, Blind separation of sources: A nonlinear neural algorithm, Neural
Networks 5 (6) (1992) 937–947.

[6] G. Deco, W. Brauer, Nonlinear higher-order statistical decorrelation by volume-
conserving neural architectures, Neural Networks 8 (1995) 525–535.

[7] G. C. Marques, L. B. Almeida, An objective function for independence, in:
Proc. International Conference on Neural Networks, Washington DC, 1996, pp.
453–457.

[8] H. Yang, S. Amari, A. Cichocki, Information-theoretic approach to blind
separation of sources in nonlinear mixture, Signal Processing 64 (3) (1998)
291–300.
URL citeseer.nj.nec.com/article/yang98informationtheoretic.html

22

[9] T.-W. Lee, Nonlinear approaches to independent component analysis,
Proceedings of the American Institute of Physics October 1999.

[10] F. Palmieri, D. Mattera, A. Budillon, Multi-layer independent component
analysis (MLICA), in: J. F. Cardoso, C. Jutten, P. Loubaton (Eds.), Proc.
First Int. Worksh. Independent Component Analysis and Signal Separation,
Aussois, France, 1999, pp. 93–97.

[11] G. C. Marques, L. B. Almeida, Separation of nonlinear mixtures using pattern
repulsion, in: J. F. Cardoso, C. Jutten, P. Loubaton (Eds.), Proc. First Int.
Worksh. Independent Component Analysis and Signal Separation, Aussois,
France, 1999, pp. 277–282.

[12] H. Valpola, Nonlinear independent component analysis using ensemble learning:
Theory, in: Proc. Second Int. Worksh. Independent Component Analysis and
Blind Signal Separation, Helsinki, Finland, 2000, pp. 251–256.

[13] L. B. Almeida, Linear and nonlinear ICA based on mutual information, in:
Proc. Symp. 2000 on Adapt. Sys. for Sig. Proc., Commun. and Control, Lake
Louise, Alberta, Canada, 2000.

[14] S. Harmeling, A. Ziehe, M. Kawanabe, B. Blankertz, K. Mueller, Nonlinear
blind source separation using kernel feature spaces, in: T.-W. Lee (Ed.), Proc.
Int. Worksh. Independent Component Analysis and Blind Signal Separation,
2001.

[15] D. Martinez, A. Bray, Nonlinear blind source separation using kernels, IEEE
Trans. on Neural Networks 14 (1).

[16] A. Bell, T. Sejnowski, An information-maximization approach to blind
separation and blind deconvolution, Neural Computation 7 (1995) 1129–1159.

[17] P. Comon, Independent component analysis – a new concept?, Signal Processing
36 (1994) 287–314.

[18] G. Darmois, Analyse générale des liaisons stochastiques, Rev. Inst. Internat.
Stat. 21 (1953) 2–8.

[19] A. Hyvarinen, P. Pajunen, Nonlinear independent component analysis:
Existence and uniqueness results, Neural Networks 12 (3) (1999) 429–439.

[20] L. B. Almeida, MISEP–linear and nonlinear ICA based on mutual information,
Journal of Machine Learning Research . To appear.
URL http://neural.inesc-id.pt/∼lba/papers/AlmeidaJMLR03.pdf

[21] A. J. Bell, The co-information lattice, in: Proc. Int. Worksh. Independent
Component Analysis and Blind Signal Separation, Nara, Japan, 2003, pp. 921–
926.

[22] A. Taleb, C. Jutten, Entropy optimization - application to blind separation of
sources, in: Proc. ICANN’97, Lausanne, Switzerland, 1997.

23

[23] L. B. Almeida, Simultaneous MI-based estimation of independent components
and of their distributions, in: Proc. Second Int. Worksh. Independent
Component Analysis and Blind Signal Separation, Helsinki, Finland, 2000, pp.
169–174.

[24] J.-F. Cardoso, Infomax and maximum likelihood for source separation, IEEE
Letters on Signal Processing 4 (1997) 112–114.

[25] T.-W. Lee, M. Girolami, T. Sejnowski, Independent component analysis using
an extended infomax algorithm for mixed sub-gaussian and super-gaussian
sources, Neural Computation 11 (1999) 417–441.

[26] L. B. Almeida, Multilayer perceptrons, in: E. Fiesler, R. Beale (Eds.), Handbook
of Neural Computation, Institute of Physics, Oxford University Press, 1997.
URL http://www.iop.org/Books/CIL/HNC/pdf/NCC1 2.PDF

[27] L. B. Almeida, ICA of linear and nonlinear mixtures based on mutual
information, in: Proc. 2001 Int. Joint Conf. on Neural Networks, Washington,
D.C., 2001.

[28] L. B. Almeida, MISEP – an ICA method for linear and nonlinear mixtures,
based on mutual information, in: Proc. 2002 Int. Joint Conf. on Neural
Networks, Honolulu, Hawaii, 2002.

[29] L. B. Almeida, Faster training in nonlinear ICA using MISEP, in: Proc. Int.
Worksh. Independent Component Analysis and Blind Signal Separation, Nara,
Japan, 2003, pp. 113–118.

24

