
MISEP – An ICA Method for Linear and
Nonlinear Mixtures, Based on Mutual Information

Lúıs B. Almeida1

IST and INESC-ID, Lisbon, Portugal – luis.almeida@inesc-id.pt

Abstract - This paper presents MISEP, an Inde-
pendent Components Analysis method for linear and
nonlinear mixtures. The method is based on the min-
imization of the mutual information of the estimated
components, and can be seen as an extension of the
well known INFOMAX method in two aspects: (1)
allowing the analysis of nonlinear mixtures, and (2)
automatically estimating the optimal nonlinearities to
be used at the outputs during learning. The resulting
ICA method consists of the training of a single spe-
cialized multilayer perceptron, optimized according to
a single objective function: the output entropy. Some
examples of the application of the method are given.

I. Introduction

Independent Components Analysis (ICA), as consid-
ered in this paper, corresponds to the problem of trans-
forming a set of observation patterns o (vectors whose
components are not statistically independent from one
another) into a set of patterns y = F(o) whose compo-
nents are as statistically independent from one another as
possible. While linear ICA restricts F to be linear (see
[1] for an overview), in nonlinear ICA the transformation
F can be nonlinear. Nonlinear ICA is still less studied
than linear ICA, although several works already exist, e.g.
[2, 3, 4, 5, 6, 7].

Most ICA methods minimize, in an explicit or implicit
way, a measure of statistical dependence of the compo-
nents of y (also called contrast function [8]). A measure
of dependence is a non-negative function which has an
absolute minimum of zero, which is reached only when y
has statistically independent components.

Linear ICA methods often use objective functions that
are not, strictly speaking, dependence measures. For ex-
ample, some of these objective functions are based only
on cumulants up to the fourth order [9, 10]. The use of
these less strict measures is possible because linear ICA is
a rather constrained problem. On the other hand, nonlin-
ear ICA is very unconstrained, and demands rather strict
measures of dependence. Some dependence measures for
nonlinear ICA have been proposed, which are based on
a quadratic “error” between probability densities [2], on
moments of all orders [4], on Renyi’s entropy [5] or on
mutual information [11, 7] .

1This work was partially supported by Praxis project
P/EEI/14091/1998 and by the European IST project BLISS.

The mutual information (MI) of the components of y
has very desirable properties as a measure of dependence,
as discussed ahead. It is given by

I(y) =
∑

i

H(yi)−H(y) (1)

where H denotes Shannon’s entropy, for discrete vari-
ables, or Shannon’s differential entropy, i.e. H(y) =
− ∫

p(y) log p(y)dy, for continuous variables (in this pa-
per we shall olnly consider continuous variables). In the
latter expression p(y) represents the probability density
of the multidimensional random variable y; pi(yi) will de-
note the marginal density of the i-th component of y.

Mutual information has an intuitively pleasing prop-
erty: if we perform invertible, possibly nonlinear, trans-
formations on the individual components of y, zi =
ψi(yi), then I(z) = I(y): The mutual information is
not affected by invertible transformations made on a per-
component basis. This property will be useful ahead, for
the derivation of the ICA method described in this paper.

Mutual information has been used as an objective func-
tion both for linear ICA [12, 13, 11] and for nonlinear ICA
[3, 7]. Expression (1) shows, however, that to estimate the
mutual information I(y) we need to estimate the marginal
densities pi(yi). In principle we would also need to esti-
mate the joint density p(y), but we shall see that this
can be avoided. In practical situations we normally have
access only to a finite set of observations o. From these
we can compute a finite set of vectors y = F(o), given
a transformation F, but we don’t have access to the ac-
tual densities pi(yi). These densities have to be estimated
from those data. Several authors have used various meth-
ods to deal with this difficulty. For example, [3, 12, 13]
use truncated series expansions of the densities. INFO-
MAX, although originally based on a different reasoning
[14], can be seen as using ”a priori” densities, chosen by
the user (see Section 2 below). In [15], mixtures of Gaus-
sians are used to model the components’ densities.

The main purpose of this paper is to describe MISEP,
a method for performing linear or nonlinear ICA based
on mutual information, incorporating a new way to es-
timate the components’ distributions. We shall estimate
the components’ cumulative probability functions (CPFs)
jointly with the optimization of the transformation F.
The resulting ICA method has the advantage of using

a single, specialized multilayer perceptron (MLP), opti-
mized according to a single objective function, the output
entropy. The method, which can be seen as an extension
of INFOMAX, was first presented in [11], and first applied
to nonlinear mixtures in [7].

Before proceeding to the presentation of the MISEP
method, we wish to emphasize an important difference be-
tween linear and nonlinear ICA. Under very general con-
ditions, if the observations result from a linear mixture of
independent components (often called the sources), linear
ICA can recover the original sources, apart from an ar-
bitrary permutation and from arbitrary scalings of those
sources [8]). This recovery is what is normally designated
blind source separation (BSS). On the contrary, nonlinear
ICA, performed on any observations (even if they result
from mixtures of independent sources) always has an in-
finite number of solutions, which are not related to one
another in a simple way, and generally do not correspond
to a separation of the original sources [16, 17, 5].

This means that the nonlinear BSS problem is an ill-
posed one. But as such, it can be solved by the use of regu-
larization techniques, if we have some further information
about the sources and/or the mixture. We may know,
for example, that the nonlinear mixture of the sources is
smooth and can be undone by a smooth transformation.
We can then apply smoothness constraints to the ICA
solution, and approximately recover the original sources.
We shall see, in Section 3, some examples of nonlinear
mixtures whose sources are recovered in this way. We
should note, however, that the focus of this paper is on
ICA itself and not on BSS. We shall not, therefore, make
any extensive discussion of regularization techniques.

This paper is organized as follows. Section 2 gives
a brief discussion of INFOMAX and then presents the
MISEP method, showing how INFOMAX can be ex-
tended by: (1) incorporating the simultaneous estimation
of the component distributions in the method, and (2) us-
ing a nonlinear system to perform the separation. Section
3 presents experimental results, and Section 4 concludes.

II. The MISEP method

A. INFOMAX

As we said above, the proposed ICA method is an exten-
sion of INFOMAX. As originally proposed, INFOMAX
was derived from a criterion of maximum information
preservation (hence its name) [14]. It is now known, how-
ever, that it can also be seen as a maximum likelihood
method or as a method based on the minimization of mu-
tual information. It is this MI-based interpretation that
interests us here.

Figure 1 shows the network that is used by INFOMAX.
The separating block F is linear, performing a product by
a matrix. The blocks designated by ψi in the figure are
auxiliary, being used only during training. Each of them
applies a nonlinear function (that we shall also designate

F

o 1

ψ 2 o 2

ψ 1
y 1

y 2

z 1

z 2

Fig. 1. Structure of the ICA systems studied in this paper.
In the INFOMAX method the nonlinearities ψi are fixed
a-priori. In the MISEP method they are adaptive, being
implemented by MLPs.

by ψi) to its input, yielding the output zi = ψi(yi). The
functions ψi are monotonically increasing, with [0, 1] as
counterdomain. The training criterion consists of maxi-
mizing the output entropy H(z).

Since the nonlinearities ψi are invertible, the mutual
informations of y and z are equal, I(y) = I(z). If ψi

is chosen as the cumulative probability function (CPF) of
the corresponding component yi, then zi will be uniformly
distributed in [0, 1] and H(zi) = 0. Therefore,

I(y) = I(z) (2)

=
∑

i

H(zi)−H(z) (3)

= −H(z), (4)

and maximization of H(z) leads to the minimization of
the mutual information of the estimated components.

In INFOMAX the ψ nonlinearities are fixed, chosen
a-priori. If we want the method to correspond to the
minimization of mutual information, we have to choose
these nonlinearities as the CPFs of the original sources.
Therefore we need to know, beforehand, the statistical
distributions of those sources. But linear ICA is a highly
constrained problem, and as a consequence INFOMAX
gives good results even with rough approximations of the
CPFs of the sources. For example, logistic sigmoids can
be used for the ψ functions as long as the sources have
approximately unskewed supergaussian distributions.

B. The MISEP method

MISEP also uses a network with the structure shown in
Fig. 1. There are two important differences relative to IN-
FOMAX, however. On the one hand, when the method
is applied to nonlinear ICA, the F block must be able
to implement a rather generic class of nonlinear trans-
formations, being controlled by parameters that can be
optimized. We shall use an MLP to implement F. Other
nonlinear blocks could be used, e.g. based on radial basis
functions (naturally, if we want to perform linear ICA, we
should keep a linear block in F). On the other hand, we
want to dispense with the need to know, even approxi-
mately, the CPFs of the components to be extracted, but
we want the ψ functions to become relatively good esti-
mates of those CPFs. Therefore, the ψ blocks have to be

adaptive, learning those CPFs during the training pro-
cess. We shall implement those blocks by means of MLPs
with special restrictions. Again, however, other kinds of
parameterized nonlinear blocks could be used.

The F and ψ blocks, taken together, form a parame-
terized nonlinear system (an MLP, in our case) with a
specialized architecture. The purpose of the optimization
of the F block is the minimization of the mutual infor-
mation of its outputs. On the other hand, the purpose
of the optimization of each of the ψ blocks is the estima-
tion of the CPF of its input. Although the two purposes
are apparently very different, we shall see that we can
achieve both by optimizing the whole system with a sin-
gle criterion, namely the maximization of its output en-
tropy H(z) (which, incidentally, is also the optimization
criterion used by INFOMAX).

If the ψ blocks implement estimates of the CPFs of
their inputs, then from (2-4) we know that maximization
of H(z) will lead to the minimization of I(y). Therefore,
what we need to show is that maximization of H(z) will
also lead the ψ blocks to yield estimates of the CPFs of
their respective inputs.

As we said above, these blocks need to obey certain
restrictions. We shall now specify them more precisely:
the ψ blocks are restricted to implementing ”legal” CPFs,
i.e., the range of their outputs is restricted to the inter-
val [0, 1], and the blocks are restricted to implementing
nondecreasing functions. Let us assume that these re-
strictions are enforced. Let us also assume, for the mo-
ment, that the F block is fixed, so that we can speak
of the (time-independent) statistical distributions of the
components yi. Then from (3),

∑

i

H(zi) = H(z)− I(y) (5)

Since I(y) is now constant, maximization of H(z) is equiv-
alent to the maximization of

∑
i H(zi). But each H(zi)

depends only on the parameters of the corresponding ψi

block. These parameters are independent from those of
all other blocks. Therefore maximization of H(z) leads to
the simultaneous maximization of all the H(zi).

Since each zi is constrained to the interval [0, 1], maxi-
mization of H(zi) will be achieved when zi becomes uni-
formly distributed in that interval. Given the mono-
tonicity constraint that we imposed on ψi, when this is
achieved ψi will be the CPF of yi, as we wanted to show.

During an actual training procedure, which is an it-
erative optimization, F will not be fixed, and thus the
distributions of the yi will change in time. In this situ-
ation we can expect each ψi to follow, with more or less
accuracy, the time-varying CPF of the corresponding yi

(the actual accuracy will depend on the variation of the
statistics of yi, on the specific structure of the ψ blocks
and on the details of the optimization procedure). This
might leave doubts as to whether the approximations to

the CPFs yielded by the ψ blocks are of any use actually
in achieving the desired goal, which is the minimization of
I(y). Note, however, that although our purposes in the
optimization of F and of the ψi are different, the opti-
mization is performed according to a single criterion, the
maximization of H(z). Mathematically, therefore, there
is only a single optimization going on. Any proper opti-
mization procedure, which only allows H(z) to increase,
cannot lead the system into oscillation, and must produce
a sequence of values of H(z) that converges (although it
may converge to a local optimum, as usual in nonlinear
optimization). The guarantee of convergence is one of the
advantages of the proposed method over those that use
separate criteria for the estimation of the distributions
and for the minimization of I(y) itself. Another advan-
tage is simplicity.

Having analyzed the theoretical basis of the MISEP
method, we shall now discuss two issues of a more prac-
tical nature. The first is how to constrain the ψ MLPs
so that they are restricted to implement ”legal” cumula-
tive probability functions. The second is how to train the
whole system through maximum output entropy.

C. Constraints on the ψ MLPs

The ψ MLPs need, in principle, to be constrained to yield
only nondecreasing functions, with outputs in [0, 1]. This
can be achieved in several ways. Monotonicity can be en-
forced by using increasing nonlinearities in all the MLPs’
units, and by simultaneously restricting all weights (ex-
cept biases) to be non-negative. The constraint on the
range of the outputs can be implemented simply by using,
in the output unit of each ψ MLP, a sigmoid with values
in [0, 1]. However, this has the consequence of favoring the
implementation of functions whose general form is simi-
lar to that of the nonlinearity used in the output units.
For example, logistic sigmoids will favor the learning of
unimodal, supergaussian distributions. This can be an
advantage or a disadvantage, depending on the problem
at hand. In situations in which the source distributions
are largely unknown it seems preferable to adopt a more
neutral solution. An alternative method, less biased to-
wards a certain kind of distribution, would be (1) to use
a linear output unit, (2) to use sigmoids with the [0, 1]
range of values in all the hidden units that connect to the
output unit, and (3) to constrain the sum of the weights
leading into the output unit to be 1.

Although these constraining methods could be applied
in principle, we have found that they raise a practical dif-
ficulty. Together, the constraint to positive weights and
the constraint on the sum of the output weights originate
”corners” in weight space. Local maxima of the output
entropy can appear at these ”corners”, and learning often
tends to get stuck in these maxima, yielding poor solu-
tions.

We have found a set of less strict constraints that works

well in practice. For ensuring the monotonicity of the
functions implemented by the ψ networks, we simply ini-
tialize all weights (except biases) to positive values, while
using monotonically increasing sigmoids in hidden units.
The weights are not forced to remain positive, but will
tend to do so because changes from positive to negative
weights usually correspond to decreases of the output en-
tropy, which is the function that we are maximizing . In
practice we have seldom found situations in which weights
become negative, and even those weights usually become
positive again later in the optimization process. More
importantly, in all our experiments we never had any sit-
uation of a ψ function that became non-monotonic.

Regarding the limitation of the output range of the ψ
networks, we used a constraint similar to the second one
described above, but which does not create ”corners”. We
used linear output units, and sigmoids with a range of
[−1, 1] in hidden units. Furthermore, we constrained the
sum of the squares of the weights leading into each output
unit to a value of 1/h, h being the number of hidden units.
Together, these constraints have the effect of limiting each
network’s output to the range [−1, 1]. Use of this range
is equivalent to the use of [0, 1], except that the CPFs are
now scaled from [0, 1] to [−1, 1]. Additionally, it has the
advantage of using bipolar sigmoids, which are known to
lead to more efficient training of the MLPs.

D. Training with maximum entropy

The second issue that we have to address, is how to train
the complete, composite MLP according to a maximum
output entropy criterion. We shall use a gradient-based
optimization procedure. The method to compute the gra-
dient coincides in part with the one used in INFOMAX.
We start by expressing the output entropy as

H(z) = H(o) + 〈log |detJ|〉 (6)

where J = ∂z/∂o is the Jacobian of the transformation
performed by the network, and the angle brackets denote
expectation. H(o) doesn’t depend on the MLP’s parame-
ters, and thus maximization of H(z) is equivalent to max-
imization of 〈log |detJ|〉. This expected value will be ap-
proximated by the empirical mean (the mean taken in the
training set). Therefore, our objective function is

E =
1
K

K∑

k=1

log
∣∣detJk

∣∣ ≈ 〈log |detJ|〉 , (7)

Jk denoting the value of J for the k-th training pattern
and K denoting the number of training patterns.

At this point we have to depart from the INFOMAX
training method, because the network that we need to
train is more general than the one used there. We wish
to perform a gradient-based optimization of a function of
the Jacobians Jk. If we can design a network which com-
putes these Jacobians and which has the MLP’s weights

�

�
�� � �� �

� � �� � �

�

� 	

 ��

 �� �

Fig. 2. Network for computing the Jacobian.

as parameters, then the computation of the gradient of E
relative to those weights will essentially amount to per-
forming a backpropagation through that network.

For simplicity in depicting such a network, we are going
to assume a specific structure for the F and ψ MLPs, but
the method can be extended to MLPs with any feedfor-
ward structure. We shall assume here that each of these
MLPs has linear output units, a single layer of hidden
sigmoidal units and no direct connections between input
and output units. A network for computing the Jacobian
J for each input pattern, assuming this structure for the
MLPs, is shown in Fig. 2. The upper part of the figure
depicts the network of Fig. 1 with a different notation.
Block A receives the input pattern (a column vector) and
multiplies it, on the left, by the weight matrix of the hid-
den layer of the F MLP (we shall designate this matrix
by A, the same designation used for the corresponding
block, because this causes no confusion). A’s output is a
vector with the input activations of the hidden units of
F.2 The leftmost Φ block applies the hidden units’ non-
linearities, φ, on a per-component basis, to these input
activations, yielding the hidden layer’s output activations.
Block B then multiplies these activations by the output
weight matrix of F, yielding this MLP’s output y. Block
C multiplies y (augmented as described in the footnote)
by the weight matrix of the hidden layer of the ψ net-
works (taken together), yielding the input activations of
this hidden layer. The rightmost Φ block again applies
the hidden units’ nonlinearities, on a per-component ba-
sis, to these activations, yielding the hidden units’ output
activations. Finally, block D multiplies these activations
by the output weight matrix, yielding the output z.

The lower part of the network of Fig. 2 is the part that
computes the Jacobian proper. It propagates matrices
instead of vectors (this is depicted in the figure by the
“3D” arrows between blocks). The input of this part is
the n × n identity matrix. Block A multiplies this ma-
trix, on the left, by the weight matrix A, yielding A itself
(this may seem trivial but is useful later, for backpropa-
gation). The leftmost Φ′ block multiplies this matrix, on
the left, by a diagonal matrix formed by the derivatives
of the nonlinearities of the units of the corresponding Φ

2We consider the input vector o to be augmented with a compo-
nent o0 = 1, to implement the bias terms of the hidden units, as is
commonly done in the implementation of MLPs. The same is done
with vector y when it is input to block C, ahead.

block from the upper part. Block C multiplies its in-
put, on the left, by matrix C. The rightmost Φ′ block
is similar to the leftmost one: it multiplies its input, on
the left, by a diagonal matrix formed by the derivatives
of the nonlinearities from the corresponding upper block.
Finally, block D multiplies its input, on the left, by weight
matrix D, yielding the Jacobian Jk corresponding to the
pattern ok that is present at the input of the upper part.
Note that both Φ′ blocks need information about the in-
put activations of the corresponding hidden layer units,
to compute the derivatives of their nonlinearities. This
information is supplied through the shaded arrows, and
this is the reason why the upper part of the network is
needed for the computation of the Jacobian.3

Our objective function is a function of the outputs Jk.
To compute its gradient relative to the MLP’s weights we
have to backpropagate through the lower part of Fig. 2,
using as inputs to the backpropagation the derivatives

∂E

∂J
=

(
J−1

)T
. (8)

Two notes should be made here. The first is that the
backpropagation has to be made through all paths, in-
cluding the shaded ones, and thus also through part of
the upper network (note, however, that nothing is input
at z during backpropagation). The second concerns the
backpropagation through the various blocks.

Backpropagation through the A, B, C, D and Φ blocks
is relatively straightforward. The Φ′ blocks are less com-
mon, and thus deserve a closer look. These blocks have
two input ”channels” (the unshaded and shaded arrows).
Therefore backpropagation through them will yield two
output ”channels”. Figure 3-a) depicts a unit of a Φ′

block, where gij denotes an input from the left-hand white
arrow, si denotes an input from the upper shaded arrow,
and hij denotes an output to the right-hand arrow. The
equation governing this unit is

hij = φ′(si)gij . (9)

The partial derivatives involved in backpropagation are

∂hij

∂gij
= φ′(si) (10)

∂hij

∂si
= φ′′(si)gij . (11)

Therefore the corresponding backpropagation block is as
depicted in Fig. 3-b), where each box denotes a product
by the value indicated inside the box.

In the network of Fig. 2 there are weights that are
shared among several connections, both between the lower
and upper parts of the network, and within the lower part

3Strictly speaking, the upper D block and the rightmost Φ one
are not necessary for the computation of the Jacobian. They are
shown in the figure for clarity.

J � � K � �

V �

I
�V � �

D�

I
�V � �
I

�V � �� J � �

E�
Fig. 3. a) A unit of a Φ′ block. b) The corresponding back-

propagation unit.

itself. Optimization should therefore use the appropriate
techniques for handling shared weights. It is important to
use a fast training algorithm in order to reduce training
times, especially when dealing with nonlinear ICA. In the
experiments reported below we have used the adaptive
step sizes method with momentum [18], which is quite
effective in this as well as in many other cases.

III. Experimental results

Several experiments were made to confirm the validity
of the MISEP method. Although the tests were mainly
aimed at assessing the method’s ability to perform ICA
(i.e. the extraction of independent components), and not
BSS (i.e. the recovery of the original sources), they actu-
ally showed, as we shall see, that the method is able to
recover the sources from nonlinear mixtures when the non-
linearities that are involved are relatively smooth. The
following paragraphs summarize results obtained with
nonlinear mixtures (see [11] for tests on linear mixtures).

Figure 4 illustrates the separation of a nonlinear mix-
ture of two (supergaussian) speech signals. The mixture
was of the form

o1 = s1 + a(s2)2

o2 = s2 + a(s1)2

With the value of a that was used, the SNR of o1 relative
to s1 was 7.8 dB, and the SNR of o2 relative to s2 was
10.4 dB. After separation, the SNR of y1 relative to s1

became 16.4 dB and the SNR of y2 relative to s2 was 17.4
dB. Therefore we had an average improvement of 7.8 dB
through nonlinear blind source separation. Linear ICA,
performed on the same data, did not yield any improve-
ment at all. In fact, as can be seen both from the mixture
equations and from the scatter plot of Fig. 4-a), there is
no “linear component” in the mixture. This kind of mix-
ture was chosen on purpose, because we wanted to specifi-
cally assess the nonlinear capabilities of the method. The
linear part of the separation is known to be easy to handle.

Figure 5 illustrates the separation of a nonlinear mix-
ture of a supergaussian and a subgaussian, and Fig. 6
illustrates the separation of a mixture of subgaussians.
If more than one source has a multimodal distribution,
the mutual information has local minima where the opti-

�

-4-4-4 -2-2-2 000 222 444 666 888

-0.4-0.4-0.4

-0.2-0.2-0.2

000

0.20.20.2

0.40.40.4

-4-4-4 -2-2-2 000 222 444 666 888

-0.5-0.5-0.5

000

0.50.50.5

-0.4-0.4-0.4 -0.2-0.2-0.2 000 0.20.20.2 0.40.40.4

-0.5-0.5-0.5

000

0.50.50.5

-0.5-0.5-0.5 000 0.50.50.5

-0.8-0.8-0.8

-0.6-0.6-0.6

-0.4-0.4-0.4

-0.2-0.2-0.2

000

0.20.20.2

0.40.40.4

0.60.60.6

Fig. 4. Separation of a nonlinear mixture of two speech sig-
nals. a) Scatter plot of the mixed signals. b) Scatter plot
of the separated signals. c) CPFs learned by the system.

-0.02-0.02-0.02 -0.01-0.01-0.01 000 0.010.010.01 0.020.020.02 0.030.030.03

-0.08-0.08-0.08

-0.06-0.06-0.06

-0.04-0.04-0.04

-0.02-0.02-0.02

000

0.020.020.02

0.040.040.04

0.060.060.06

0.080.080.08

-0.2-0.2-0.2 -0.1-0.1-0.1 000 0.10.10.1 0.20.20.2

-1-1-1

-0.5-0.5-0.5

000

0.50.50.5

111

-0.2-0.2-0.2 -0.1-0.1-0.1 000 0.10.10.1 0.20.20.2

-0.5-0.5-0.5

000

0.50.50.5

-1-1-1 -0.5-0.5-0.5 000 0.50.50.5 111

-0.5-0.5-0.5

000

0.50.50.5

�

Fig. 5. Separation of a nonlinear mixture of a supergaussian
and a subgaussian signal. a) Scatter plot of the mixed
signals. b) Scatter plot of the separated signals. c) CPFs
learned by the system.

mization may get trapped. These minima were sometimes
found by the method in the case of the two subgaussians.

In all these examples, involving smooth nonlinearities,
we were able to perform nonlinear BSS, even though this
is an ill-posed problem. No explicit regularization was
used. The regularization inherently performed by MLPs
initialized with small weights was sufficient to yield a good
separation. All tests used training sets with 1000 pat-
terns. Training in batch mode, they normally converged
in less than 400 epochs. Using Matlab on a 400 MHz
Pentium processor, 400 epochs took less than 4 minutes.

IV. Conclusions

We have presented MISEP, a method for performing
linear and nonlinear ICA based on the minimization of
the mutual information of the extracted components. The
method has some advantages over other methods that are
based on the mutual information of the outputs, namely
(1) it uses a single network both to perform the ICA oper-
ation itself and to estimate the statistical distributions of
the sources, and (2) it performs both of these operations
by maximizing a single objective function, the output en-
tropy. Experimental results have shown the capability of
MISEP to perform both linear and nonlinear ICA, and
illustrated that nonlinear blind source separation is pos-
sible, at least when the mixture nonlinearities are smooth.

References

[1] T.-W. Lee, M. Girolami, A. Bell, and T. Sejnowski, “An uni-
fying information-theoretic framework for independent compo-
nent analysis”, International Journal on Mathematical and
Computer Modeling, 1998.

[2] G. Burel, “Blind separation of sources: A nonlinear neural
algorithm”, Neural Networks, vol. 5, no. 6, pp. 937–947, 1992.

-0.05-0.05-0.05 000 0.050.050.05 0.10.10.1

-0.08-0.08-0.08

-0.06-0.06-0.06

-0.04-0.04-0.04

-0.02-0.02-0.02

000

0.020.020.02

0.040.040.04

0.060.060.06

0.080.080.08

-5-5-5 -4-4-4 -3-3-3 -2-2-2 -1-1-1 000

-0.35-0.35-0.35

-0.3-0.3-0.3

-0.25-0.25-0.25

-0.2-0.2-0.2

-0.15-0.15-0.15

-0.1-0.1-0.1

-0.05-0.05-0.05

000

0.050.050.05

-5-5-5 -4-4-4 -3-3-3 -2-2-2 -1-1-1 000

-0.5-0.5-0.5

000

0.50.50.5

-0.3-0.3-0.3 -0.2-0.2-0.2 -0.1-0.1-0.1 000

-0.5-0.5-0.5

000

0.50.50.5

�

Fig. 6. Separation of a nonlinear mixture of two subgaussian
signals. a) Scatter plot of the mixed signals. b) Scatter
plot of the separated signals. c) CPFs learned by the
system.

[3] G. Deco and W. Brauer, “Nonlinear higher-order statistical
decorrelation by volume-conserving neural architectures”, Neu-
ral Networks, vol. 8, pp. 525–535, 1995.

[4] G. C. Marques and L. B. Almeida, “An objective function for
independence”, in Proc. International Conference on Neural
Networks, Washington DC, 1996, pp. 453–457.

[5] G. C. Marques and L. B. Almeida, “Separation of nonlinear
mixtures using pattern repulsion”, in Proc. First Int. Worksh.
Independent Component Analysis and Signal Separation, J. F.
Cardoso, C. Jutten, and P. Loubaton, Eds., Aussois, France,
1999, pp. 277–282.

[6] H. Valpola, “Nonlinear independent component analysis using
ensemble learning: Theory”, in Proc. Second Int. Worksh.
Independent Component Analysis and Blind Signal Separation,
Helsinki, Finland, 2000, pp. 251–256.

[7] L. B. Almeida, “Linear and nonlinear ICA based on mutual
information”, in Proc. Symp. 2000 on Adapt. Sys. for Sig.
Proc., Commun. and Control, Lake Louise, Alberta, Canada,
2000.

[8] P. Comon, “Independent component analysis – a new con-
cept?”, Signal Processing, vol. 36, pp. 287–314, 1994.

[9] J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simulta-
neous diagonalization”, SIAM Journal of Matrix Analysis and
Applications, vol. 17, no. 1, 1996.

[10] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for
independent component analysis”, Neural Computation, vol.
9, no. 7, pp. 1483–1492, 1997.

[11] L. B. Almeida, “Simultaneous MI-based estimation of indepen-
dent components and of their distributions”, in Proc. Second
Int. Worksh. Independent Component Analysis and Blind Sig-
nal Separation, Helsinki, Finland, 2000, pp. 169–174.

[12] S. Amari, A. Cichocki, and H. H. Yang, “A new learning al-
gorithm for blind signal separation”, in NIPS 95. 1996, pp.
882–893, MIT Press.

[13] S. Haykin and P. Gupta, “A new activation function for blind
signal separation”, ASL Technical Report 1, McMaster Uni-
versity, Hamilton, Ontario, Canada, 1999.

[14] A. Bell and T. Sejnowski, “An information-maximization ap-
proach to blind separation and blind deconvolution”, Neural
Computation, vol. 7, pp. 1129–1159, 1995.

[15] A. Taleb and C. Jutten, “Entropy optimization - application
to blind separation of sources”, in Proc. ICANN’97, Lausanne,
Switzerland, 1997.

[16] G. Darmois, “Analyse générale des liaisons stochastiques”,
Rev. Inst. Internat. Stat., vol. 21, pp. 2–8, 1953.

[17] A. Hyvarinen and P. Pajunen, “Nonlinear independent com-
ponent analysis: Existence and uniqueness results”, Neural
Networks, vol. 12, no. 3, pp. 429–439, 1999.

[18] L. B. Almeida, “Multilayer perceptrons”, in Handbook of
Neural Computation, E. Fiesler and R. Beale, Eds. Insti-
tute of Physics, 1997, Oxford University Press, available at
http://www.oup-usa.org/acadref/ncc1 2.pdf.

