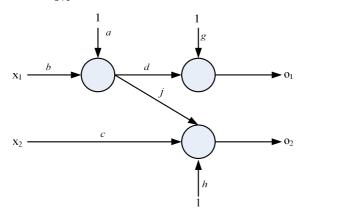
Instituto Superior Técnico Machine Learning (Aprendizagem Automática) Exam of 19/1/2013. Duration: 3 hours

Notes:

- Present all responses in a clear, ordered and detailed manner, with a brief justification of each step.
- Present all calculations.
- Keep at least three decimal places in all calculations.

Problem 1

Consider the following multilayer perceptron shown in the figure below-left, where all the units have as activation function the logistic function $f(s) = \frac{1}{1+e^{-s}}$. Also consider the training set given on the table below-right.



x_1	x_2	d_1	<i>d</i> ₂	
-1	1	0.5	0.5	
1	-2	0	-1	

- a) Compute the values obtained at the multilayer perceptron's outputs for the **second** input pattern. Assume that all weight values are equal to 0.5.
- b) Draw the backpropagation network. Don't forget to include the gains of all branches, as well as the input and output variables. If necessary, first draw the multilayer perceptron as a network with more detail, in order to be able to more easily specify some parameters of the backpropagation network.
- c) Assume that, initially, all the multilayer perceptron's weights were equal to 0.4, and that, after a **first** update using backpropagation in **real-time mode**, all the weights were changed to 0.5. Compute the value of weight *a* after a **second** update, also in **real-time mode**. The cost function is the total squared error and the training is performed using non-adaptive step sizes with step size parameter $\eta = 0.1$, without momentum.
- d) Repeat 3) using the same step size parameter $\eta = 0.1$, with momentum with parameter $\alpha = 0.1$.

Problem 2

Consider a classification problem in two dimensions, with two classes, in which the training set is given by

<i>x</i> ₁	<i>x</i> ₂	class	<i>x</i> ₁	<i>x</i> ₂	class
0	$\sqrt{2}$	А	1	-3	В
1	$\sqrt{2}$	А	$\sqrt{3}$	2	В
$\sqrt{2}$	0	А	$\sqrt{6}$	1	В
0	1	А	$-\sqrt{2}$	-√6	В

- a) Graphically sketch the positions of these patterns. Show that the two classes are not linearly separable. Briefly describe a technique that can be used, in support vector machines, to obtain a linear separation when the input data are not linearly separable.
- b) Consider the following nonlinear mapping from input space to a two-dimensional feature space. Sketch the training patterns in feature space.

$$\varphi(x) = (x_1^2; x_2^2 - 2)$$

- c) Find the kernel function that corresponds to the nonlinear mapping given above.
- d) Find (by inspection) the widest-margin classifier in feature space. Indicate the support vectors and the equations of the classification boundary and of the margin boundaries.
- e) Sketch the classification regions of classes A and B in feature space. You may draw them on the sketch of b) above.
- f) Indicate, in input space, the support vectors and sketch the classification boundary and margins. You may draw them on the sketch of a) above.
- g) Sketch the classification regions of classes A and B in input space.

Problem 3

Consider the training set $T_1 = \{-2, -1, 1, 4, 5\}$.

- a) Perform one iteration of the k-means algorithm using three centers with initial positions -1, 0, and 3.
- b) Determine the value of the cost function for the position of the centers obtained in a). Is this a fixed point of the algorithm?

Now consider a new training set $T_2 = \{-2, -1, 1\}$.

c) Perform one iteration of the EM algorithm to estimate the parameters of a mixture of three Gaussians. Assume the following initial conditions:

$$\begin{array}{ll} \mu_0 = -1 & \sigma_0 = 1 & w_0 = 0.6 \\ \mu_1 = 0 & \sigma_1 = 1 & w_1 = 0.2 \\ \mu_2 = 3 & \sigma_2 = 1 & w_2 = 0.2 \end{array}$$

Problem 4

Consider the training set and the tree given on the following table and figure, respectively. In the table, the a_i represent attributes of the input patterns and d represents the desired output for each pattern.

<i>a</i> ₁	a_2	<i>a</i> ₃	d	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	d
0	0	0	0	0	1	1	1
0	0	1	0	0	1	1	1
0	1	0	0	1	0	0	0
0	1	0	0	1	1	1	1
0	1	1	1	1	1	1	1

- a) Find the number of errors that the tree yields in the training set.
- b) Perform the pruning of the tree using the given training set.

Problem 5

Consider the set of patterns $\{[6,4]^T, [-2,0]^T, [3,0]^T, [1,4]^T\}$. The patterns are considered equiprobable.

- a) Find the first and second principal directions of the distribution of these patterns. Indicate those directions by means of vectors.
- b) Find the first principal component, the reconstruction with that principal component and the reconstruction error of the pattern [3,5]^T, based on the given distribution.
 If you didn't solve item a) above, assume that the first principal direction was given by the vector [-3,1]^T.
- c) Consider two random variables X and Y which are statistically independent from each other. Assume that they have the same principal directions, although possibly not in the same order (for example, the first principal direction of X may be the second principal direction of Y). Show that, for any $a, b \in \mathbb{R}$, the random variable Z = aX + bY also has the same principal directions (possibly in a different order from those of X or Y).

If you're not able to give the proof as requested, you may make any additional assumptions that you find necessary (for example, that the principal directions of X and Y are in the same order, or that a = b). However, the value of this problem will be reduced, depending on the additional assumptions that you make.

