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Introduction: VHR Remote Sensing f

Remote sensing :
Observation of the Earth and the environment using airborne or satellite based sensors

Passive remote sensing : Optical sensors using the natural illumination from the sun
Active remote sensing : Radar systems

Very High Resolution (VHR) :
. Spatial resolution
. Spectral resolution
. Temporal resolution
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Introduction

Hyperspectral imagery

®

¢ Hyperspectral data cubes contain hundreds of images captured at
different wavelengths.

A

¢ Each pixel is a
discrete spectrum
containing the

Py’ “ reflected solar
Radiance radiance of the
' spatial region that it
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Introduction

erspectral Imagery
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Introduction

Hyperspectral Imagery
T IR 473 nm

Anything wrong ?
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- Hyperspectral Imagery
947 nm

Anything wrong ?
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Hyperspectral Imagery

770 nm

Spectral diversity provides a refined physical description of the material

4;%
S



Introduction

Hyperspectral imagery

¢ Different analysis techniques have been proposed in the literature
processing the pixels individually, as an array of spectral data
without any spatial structure
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Spectral vs Spatial Analysis

Spectral classification ——— Same classification || <—— Spectral classification

Need to incorporate information from the spatial domain




Introduction

Spectral vs spatial analysis

True color image Spectral features Spectral + Spatial features

When dealing with images with high geometrical resolution, the use of
spatial features increases the discrimination of the thematic classes leading
to more accurate results. .




Introduction
Hyperspectral imagery

Hyperspectral Imagery

¢ The initial pixel-based representation is a very low level and unstructured
representation

% Instead of working with a purely spectral representation, a more
advanced strategy consists in extracting context based features, such as
with Morphological Filters, before performing the pixelwise classification.
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Morphological & Attribute Profiles
Extract the informative components (e.g., by reducing the image complexity)
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Morphological & Attribute Profiles

Examples of
Structuring Elements (SEs).

D =0lesN] G- fos(]  WTH = f-y(f)
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Morphological & Attribute Profiles

They either completely remove or entirely preserve a structure in the image

N

They do not distort shape of structures nor introduce new edges

SUITABLE FOR THE ANALYSIS OF VERY HIGH RESOLUTION (VHR) IMAGES

Morphological closing  Closing with a connected filter Original VHR image Opening with a connected filter ~ Morphological opening

Examples of conventional Morphological operators and Connected Filters
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Morphological & Attribute Profiles

Original Image

Opening

& (f) =[8(’”(f)] o (f) (5“” ()]

Reconstruction by dilation Reconstruction by erosion

Closing

Two step procedure:
1. Erosion/Dilation
2. Reconstruction by dilation/erosion
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Morphological Opening
72(1) = 8,le,()]

Opening by reconstyuction
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Morphological & Attribute Profiles

When dealing with real images it is difficult to identify a single
filter parameter suitable to handle all the objects in the image

Perform a multilevel analysis by using several values for the
filter parameters. Build a stack of images with different degrees

of filtering

M. Pesaresi and J. A. Benediktsson, “A new approach for the morphological segmentation of high-resolution satellite imagery," IEEE
Transactions on Geoscience and Remote Sensing, vol. 39, no. 2, pp. 309-320, 2001.
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Morphological & Attribute Profiles

Closing Profile
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Morphological & Attribute Profiles f

Morphological Profiles (MPs) composed by a sequence of opening and closing with SE of increasing

size.
Differential Morphological Profiles (DMPs) compute the residuals between adjacent levels of the
MPs.
o, AL ()2 1L, (1) = 7 ()} i=01.k . -18,6): A, () = |1, () ~T0, (i - D]} i=1..k
A¢={A¢(i):A¢(i)=\H¢(i)-n¢(i-1)\} i=1,.k
< Closing Profile Opening Profile >
MP
Square SE

Sizes:7,13,19,25 <«

DMP




MP and AF

Morphological & Attribute Profiles .
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Morphological profiles (granulometries) with connected operators (standard openings and

closings by reconstruction) have been extensively used for the analysis of remote sensing
data.
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Morphological & Attribute Profiles .

v" Drawbacks of MP:
v' Computational complexity - the standard implementation is O(N2?) with N the
number of pixels in the image.
v' Processing limited to the analysis of the scale.
v Limitation in the characterization of the features to be modeled due to the
usage of structuring elements.

v" Morphological Attribute Filters have the following advantages:
v' Perform the processing with a reduced computational load, especially for
multilevel analysis.
v" Model different types of features not necessarily related to the scale of the
regions (i.e., texture, contrast, etc.).
v' Great freedom in the definition of the attributes employed in the filtering.

M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Morphological attribute profiles for the analysis of very high resolution
images," IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3747 — 3762, Oct. 2010.
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Morphological & Attribute Profiles

Attribute filters are similar to operators by reconstruction since they are connected
component transformations.

They either completely remove or entirely preserve a structure in the image.

N4

They do not distort structures’ shape nor introduce new edges.

Attribute filters are more general than operators by reconstruction because they can
transform the image according to other attributes rather than shape and size of the
structuring element used.

E. J. Breen and R. Jones, “Attribute openings, thinnings and granulometries,” Comput. Vis. Image Understand., vol.
64, no. 3, pp. 377-389, 1996.
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Morphological & Attribute Profiles

Attribute filters operate only on the connected components (regions of connected
iso-level pixels) according to a criterion T which evaluates an attribute A against a
threshold A.

Attribute filters are based on the following operations:

v' Compute attribute for each connected component in the image;
v Keep the components that satisfy the criterion (e.g., A > A).

Example

To = Ay > 307 =

Image F72(F)

Image F
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Morphological & Attribute Profiles

Increasing property. A criterion is satisfied for a connected region R it will also be
satisfied for all those regions that include R.

vIf the criterion is increasing we have an attribute opening/thickening.

vIf the criterion is non-increasing we have an attribute closing/thinning.
Ci

@ @

Increasing criteria. Non-increasing criteria.



Max-Tree

The Max-tree is an efficient image representation that associates all the
regions in the image to nodes of a tree.

The depth of the tree refers to the gray-scale value.
The filtering stage is done by pruning the tree.

Grayscale Image Conn. Comp. Max-tree
0 0 0 0 0 O Cg Cg
a0 0 0 O
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P. Salembier, A. Oliveras, and L. Garrido, “Anti-extensive connected operators for image and sequence processing,” IEEE Trans.
Image Process., vol. 7, no. 4, pp. 555-570, Apr. 1998.



Attribute Filters — Max-Tree

Grayscale Image Conn. Comp. Max-tree

A: Inertia
T =A<0.17
Sub. rule

Filtering procedure:

1. Create the max-tree of the image
2. Compute the attribute A on each connected component (node in the tree) of the
image

Evaluate the criterion T on all the nodes of the tree

Prune the tree by removing the nodes that do not fulfill the criterion
5. Transform the filtered tree back to an image

B w
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Morphological & Attribute Profiles

v In the filtering process, the Max-Tree creation takes ~99% of the total
processing time.

v" The time needed for filtering (i.e., pruning) and restituting the filtered

image are negligible. ‘

v" Once the Max-Tree of an image is created and the attributes are
computed for each node, it can be filtered multiple times according to
different thresholds of the criterion without a significant increase in the

| |
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| |
! processing time !
| . |
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| |
: Efficient computation of granulometries (e.g., MPs). :
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v" When using operators based on structuring elements, each threshold
used by the criterion (e.g., size of the SE) needs to entirely process the
image.
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Morphological & Attribute Profiles

Thickening Profile Thinning Profile

Square SE (MP)
Sizes: 7,13, 19

Area Attribute
A: 45, 169, 361
Criterion: Area > A

Moment of Inertia
Attribute
A:0.2,0.1,0.3
Criterion: Inertia > A

STD Attribute
A: 10, 20, 30
Criterion: STD > A
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Morphological & Attribute Profiles f

Derivative of Thickening Profile Derivative of Thinning Profile

Square SE (DMP)
Sizes: 7,13, 19

Area Attribute
A: 45, 169, 361
Criterion: Area > A

Moment of Inertia
Attribute
A:0.2,0.1,0.3
Criterion: Inertia > A

STD Attribute
A: 10, 20, 30
Criterion: STD > A
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Morphological & Attribute Profiles
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Morphological & Attribute Profiles

Attribute profile /
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Morphological & Attribute Profiles

Problem: Mathematical morphology operators defined for the analysis of single band
images have no direct extension to multivariate data’ (e.g., hyperspectral images).

Trivial solution: Compute the operators on each single band of the data.
Computationally unfeasible for hyperspectral data.

A possible solution: Reduce the dimensionality of the data to few significant bands
and apply the operators on each of them.

¥
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Morphological & Attribute Profiles .

On each of the first n principal component (PC) extracted from
the hyperspectral image, a MP is computed.

The MPs are then concatenated for obtaining the EMP.

J. A. Benediktsson, M. Pesaresi, and K. Amason, “Classification and feature extraction for remote sensing images from urban areas based
on morphological transformations,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 9, pp. 1940-1949, 2003.

J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification of hyperspectral data from urban areas based on extended
morphological profiles," IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, pp. 480-491, 2005.
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Morphological & Attribute Profiles

Analogous definition to EMP: APs computed on n first PCs are concatenated together
for obtaining the EAP.

M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles with morphological attribute filters for the analysis of
hyperspectral data," International Journal of Remote Sensing, vol. 31, no. 22, pp. 5975-5991, Nov. 2010.
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Morphological & Attribute Profiles

Hyperspectral image (610x340 pixels) of the city of Pavia acquired by ROSIS-03
103 spectral bands, geometrical resolution of 1.3 [m]

Number of samples per class

Trees 524 3064
Meadow 540 18649
Metal 265 1324
Gravel 392 2099
Bricks 514 3682
Bare Soil 532 5029
Asphalt 548 6631
Bitumen 375 1330
Shadow 231 947
Total 3921 42776

True color Image Test set

Thematic classes: Trees, Meadow, Metal, , Bricks, Bare Soil, , Bitumen,
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Morphological & Attribute Profiles

v Attribute Profiles built by four attributes on the first 4 PCs.
e Area (A =100, 500, 1000, 5000)
* Length diagonal of the bounding box (A = 10, 25, 50, 100)
* Moment of inertia (A =0.2, 0.3, 0.4, 0.5)
« Standard deviation (A = 20, 30, 40, 50)

v' Comparison with EMP (disk shaped structuring element (SE) of sizes
increased with a step 2)

v’ Classifier: Random Forest (100 trees)

v Protocol for accuracy assessment:
* Overall Accuracy (computed on the test set)
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Morphological & Attribute Profiles

Features 4 36 36 36 36 36 144

OA (%) 70.42 | 80.71| 92.32 | 86.84 | 76.26 | 7/8.68 | 89.89

AA (%) 79.25|86.64 | 92.00 | 88.00 | 84.68 | 86.27 | 90.25

Kappa 0.63 | 0.75 0.90 0.82 0.70 0.73 0.87
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Morphological & Attribute Profiles

Maximum Likelihood Random Forest
OA: 70.47% OA: 71.66% OA: 81.01%

Thematic classes: Trees, Meadow, Metal, , Bricks, Bare Soil, , Bitumen,




MP and AF

P i*

Morphological & Attribute Profiles

L) 4
84, ¢ e g A

Spectral only (4 PCs) EMP EAPall
OA: 70.42% OA: 80.71% OA: 89.89%

Thematic classes: Trees, Meadow, Metal, , Bricks, Bare Soil, , Bitumen,
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Morphological & Attribute Profiles
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M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Extended profiles withmdorphological a
hyperspectral data," International Journal of Remote Sensing, vol. 31, no. 22, pp. 5975-5991, Nov. 2010.
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Morphological & Attribute Profiles

The reduction of the dimensionality of the data can be performed by a Feature
Extraction (FE) technique.

DN AN

AN

Parametric technique.

Extract the features that maximize a criterion based on the within and between scatter
matrices that estimates the separability of the classes distributions.

Classes assumed to be Gaussian.

Non parametric technique.

Features computed as direction orthogonal to the decision boundary.

Requires a significant number of training samples for a proper estimation of the decision
boundary.

Combination of DAFE and DBFE.

The separability criterion is computed on non-parametric within and between scatter
matrices.

Based on the concept of weighted means (samples weighted according to their distance
to the decision boundary).



MP and AF

Morphological & Attribute Profiles
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M. Dalla Mura, J. A. Benediktsson and L. Bruzzone, “Classification of Hyperspectral Images with Extended Attribute Profiles and Feature
Extraction Techniques,” Proc. IEEE IGARSS 2010, 2010, pp. 76 —=79.
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Morphological & Attribute Profiles

, Hyperspectral image (610x340 pixels) of the city of Pavia
f/ , acquired by ROSIS-03
PR / 103 spectral bands, geometrical resolution of 1.3 [m].

LAY Thematic classes: Trees, Meadow, Metal, , Bricks, Bare Soil,
: , Bitumen,

True color Image Test set

v Attribute Profiles built by four attributes on the first 4 PCs.
* Area (A =100, 500, 1000, 5000)
* Length Diagonal of the bounding box (A = 10, 25, 50, 100)
* Moment of inertia (A= 0.2, 0.3, 0.4, 0.5)
» Standard deviation (A = 20, 30, 40, 50)

v' Feature Extraction Techniques: DAFE, DBFE, NWFE.

v' Classifier: Random Forest (100 trees), Maximum Likelihood.

v" Protocol for accuracy assessment: Overall Accuracy (computed on the test set).
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Morphological & Attribute Profiles

ML 72.21 65.05 73.08 54.34 64.19
EAP with NO FE

RF 90.99 86.66 82.94 81.64 89.71

ML 89.97(7) | 84.68(8) | 84.56(10) | 85.41(8) 91.48 (11)
EAP with DAFE

RF 92.68 (20) | 90.13 (25) | 90.84 (35) | 86.52(14) | 96.01 (121)

ML 88.69(6) | 82.33(8) | 81.47(7) | 85.18(5) 83.80 (11)
EAP with DBFE

RF 88.69 (30) | 85.07(36) | 82.20(36) | 87.55(20) | 94.50 (81)

ML 89.93 (14) | 83.03(4) | 87.54(10) | 88.55(12) | 91.18(11)
EAP with NWFE

RF 92.99 (24) | 87.25(30) | 93.47(27) | 79.83(5) 91.89 (41)

The number of features giving the highest accuracies is reported in brackets.
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Morphological & Attribute Profiles

Spectral channels EAPall with DAFE EAPall with DBFE EAPall with NWFE
OA: 71.66% OA: 96.01% OA: 94.50% OA: 91.89%

Thematic classes: Trees, Meadow, Metal, , Bricks, Bare Soil, , Bitumen,
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Problem Statement

How could we compute automatically the values of these

Lambd Lambd
ﬁ thresholds in order to construct the attribute profiles? s?“[‘,vf
Lambda Lambda
Area 2 ? ST DV 2
9 / l
0,(f) = (x€ £ (T (1) 2 A}/
N The aim is to answer this question
i Approach based on the selection of
attributes
ﬁ Approach based on the rank of the features (HML) §‘<‘;
{3
)) >

O
o/S 2 Bﬂ\
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Optimal Selection of Features —

HML Method

First step: build an EEMAP (Entire EMAP)
Standard deviation from 2.5% to 27.5% with 2.5% step.
Area from 50 to 2100 square meters with step of 150.

 Second Step: feature selection

* New approach based on Genetic Algorithms (GAs) and the
importance of the features.

CLASSIFICATION

M. Pedergnana, P.R. Marpu, M. Dalla Mura, J.A. Benediktsson and L. Bruzzone, “A Novel technique for Optimal Feature Selection in Attribute Profiles Based
on Genetic Algorithms,”IEEE Trans. on Geoscience and Remote Sensing, vol. 51, pp. 3514- 3528.



Importance of the Features

ANERN

Is given by the random forest (RF) model.

RF applies a permutation of the features in order to set a
rank.

RF checks if the there are differences between the
classification accuracies if a feature is used or not.

v’ Variable importance

The rank of the features is related to the difference
between the classification accuracies if the feature is used
or not

GREAT difference = HIGH importance.
LOW difference = LOW importance.




Optimal Selection of Features —

HML Method

Mediurm-1 Low1| » The features are classified as high,
medium and low priority features at
; every stage and genetic algorithms
are employed to select the best
= features among the medium priority

Generation » The final set of selected features is
the combination of all the high

priority features.

_ - features.
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Optimal Selection: Experimental

Results

Hyperspectral image (610x340 pixels) of the University of Pavia acquired by ROSIS-03 .
103 spectral bands, geometrical resolution of 1.3 [m]

Test-SET Training-SET

metal sheets




Optimal Selection: Experimental
Results

Pavia Dataset — HML Approach — Decision Boundary Feature
Extraction (DBFE) + Random Forest (RF) classifier.

C 1 : 9 \: ' _ User Accuracy (%) | Producer Accuracy (%)
Eer 249 4
Dh : 9 B . 3:"’: 99.4850 99.0199

100.0000 100.0000
98.6742 99.2854

100.0000

99.8015
| Average Accuracy | Overall Accuracy | Kappa Accuracy |

Overall

Accuracy:

98.3%

Average
Accuracy:

98.6%




Experimental Results

EAP (Area
Spectral 500, 1000, 2000) HML approach

OA: 71.39% OA: 93.90% OA: 98.3%

BEEEES Asphalt Bitumen' Gravel metal sheets




Feature Selection

APs and Spectral Information: Automatic vs. Manual

Input Data r— "= |

|
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L 4
EMAP

Y 4
Supervised FE Supervised FE
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Feature Selection

APs and Spectral Information: Automatic vs. Manual

v" Results for both schemes (Manual by using 4 attributes and Automatic by
using only 2 attributes) were very close in terms of classification accuracies

(97.0% and 96.3% with DAFE)
v" The CPU processing time for the both schemes was almost the same

v" For the automatic scheme there is no need to adjust the initial parameters
for the attribute profiles
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¢ Importance of incorporating spatial and spectral information

¢ Mathematical morphology used to handle the complexity of the data

% High spectral + high spatial resolutions =2 need for advanced algorithms
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v Attribute filters are flexible tools: The attributes can be defined in any way.
For instance, they can be purely geometrical (e.g., area, moment of inertia) or related to
the gray-scale distributions of the pixels in the regions (e.g., std., entropy, uniformity,
contrast)

v" The union of attribute filters and Max-Tree image representation leads to an efficient
and fast filtering procedure particularly effective for the computation of the profiles

v The results obtained by the profiles built with attribute filters outperformed in terms of
overall accuracy those generated by considering conventional morphological operators

v' The use of a FE technique led to a further increase in terms of accuracies when
compared to the use of the data with full dimensionality
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v" The originally proposed morphological attibute profiles work only in a manual
way by setting the thresholds experimentally

v Architectures capable to automatically find the best attributes and thresholds
were defined
v Using Genetic Algorithms
v Using “stacked” MAP and spectral information with feature extraction

v Higher overall accuracies of classification obtained by using the proposed
automatic methods when compared to the manual counterparts
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v Definition of an architecture capable of automatically finding the best
attributes and thresholds (e.g., with GAs) for different attributes.

v" Application to specific tasks such as object detection (e.g., building detection,
road networks extraction) and multitemporal image analysis (e.g., including
the modeling of the spatial information provided by APs in the change
detection analysis).

v’ Parallel implementation of the max-tree representation to be able to work on
large images.
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