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Abstract

Linear spectral unmixing aims at estimating the number oé gpectral substances, also cakedimembersheir
spectral signatures, and their abundance fractions in tedyneensed hyperspectral images. This paper describes a
method for unsupervised hyperspectral unmixing calledimim volume simplex analysis (MVSA), and introduces
a new computationally efficient implementation. MVSA apgbes hyperspectral unmixing by fitting a minimum
volume simplex to the hyperspectral data, constrainingathndance fractions to belong to the probability simplex.
The resulting optimization problem, whide computationally complex, is solved in this work by implertieg a
sequence of quadratically constrained subproblems us@mterior point methodyhich is particularly effective from
the computational viewpoinfThe proposed implementation (available online: www.Igti#67ejun/DemoMVSA.zip)
is shown to exhibit state-of-the-art performamu only in terms of unmixing accuracy, particularly in nomr@ pixel
scenarios, but also in terms of computational performa®ce.experiments have been conducted using both synthetic
and real data set#\n important assumption of MVSA is that pure pixels may netfdresent in the hyperspectral
data, thus addressing a common situation in real scenafishvare often dominated by highly mixed pixels. In
our experiments, we observe that MVSA yields competitivdguenance when compared with that of other available
algorithms that work under the non-pure pixel regime. Owults also demonstrate that MVSA is well-suited to
problems involving a high number of endmembers (i.e., cempcenes) and also for problems involving a high
number of pixels (i.e., large scenes).

Index Terms

Hyperspectral imaging, spectral unmixing, endmember tifieation, minimum volume simplex analysis (MVSA),
interior point method.

I. INTRODUCTION

Hyperspectral unmixing is a source separation problem kvfacuses on the decomposition of the pixel spectra

into a set of constituent spectra, also terneedmembersand their corresponding fractional abundances present in
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the pixel [1]. Compared with the canonical source sepanatienario, the sources in hyperspectral unmixing are
statistically dependent, and the observed mixtures aherelinear or nonlinear in nature [2]. The linear mixing
model holds when the mixing scale is macroscopic [3]-[6}his case, we assume that the acquired spectral vectors
are a linear combination of the endmember signatures praséine scene, weighted by their respective fractional
abundances. In turn, nonlinear mixing holds when the ligiffess multiple scattering involving different materials
[71-[10]. This model assumes that incident solar radiati®rscattered by the scene through multiple bounces
involving several endmembers [7]. In practice, nonlineaxtates happen very often in real scenarios, although
linear models can approximate these complex mixtures wihcaldegree of confidence [11]. These characteristics,
together with the high dimensionality of hyperspectraltees and the large number of pixels present in real scenes,
place the unmixing of hyperspectral mixtures beyond thehred most source separation algorithms, thus fostering
active research in the field (see [1] for a recent overviewdviaaces in this area).

Linear unmixing techniques can be classified into statisiad geometrical-based. The former category addresses
spectral unmixing as an inference problem, often formdlaieder the Bayesian framework, whereas the latter
category exploits the fact that the spectral vectors (utttedinear mixing model) lie in a simplex whose vertices
correspond to the endmembértere, we focus on the geometrical approach to spectral ung{rdditional details
about the statistical approach can be found in [1] and rater® therein)It should be noted that the overview
does not intend to be exhaustive, but to introduce some ofmibgt relevant methods that will be compared with
our proposed approach. For instance, important recenhigeds such as sparse unmixing [12] or support vector
machine (SVM)-based unmixing [13] are not described initleta

The geometrical approach exploits the fact that, underitfeat mixing model, hyperspectral vectors belong to
a simplex set whose vertices correspond to the endmembleesefdre, finding the endmembers is equivalent to
identifying the vertices of the aforementioned simplexe Thain research lines presented in recent years under this
framework belong to two different groups. Pure pixel basigdrithms assume that the scene contains at least one
pure pixel per endmember [1]. More recently, several atgors dropped this assumption by assuming that no pure

pixels may be present in real hyperspectral scenes [14hdrfdllowing we outline these two approaches.

A. Spectral unmixing with the pure pixel assumption

If there exists at least one pure pixel per endmember (i.pixel containing just one material), then unmixing
amounts to finding the spectral vectors in the data set quorelng to the vertices of the data simplex. Some popular
algorithms implemented using this assumption are the x@tenponent analysis (VCA) [15] and N-FINDR [16],
among many others (see [1], [11] and [17] for more extensivendews). Among representative algorithms in
this category, maximum volume simplex based techniquesVICA or N-FINDR are based on the fact that, in
p spectral dimensions, the-dimensional volume defined by a simplex formed by the pupestls is larger than
any other volume defined by any other combination of pixetee VCA algorithm iteratively projects data onto a
direction orthogonal to the subspace spanned by the endersrabeady determined. The new endmember signature
corresponds to the extreme of the projection. The algoritenates until all endmembers are exhausted [15]. The

N-FINDR algorithm finds the set of pixels defining the largestume by inflating a simplex inside the data. This



strategy is opposite to that explored by minimum volume @llgms (addressed in the next subsection), which

instead minimize the volume of the simplex that enclosepial observations [18], [19].

B. Spectral unmixing without the pure pixel assumption

If the pure pixel assumption is not fulfilled (this is a moralistic scenario since hyperspectral data are often
dominated by highly mixed pixels [1], [2]) the unmixing pess is a rather challenging task. This is because the
endmembers, or at least some of them, are not included inateeseétin his seminal work, Craig [18] presented
this idea which has also been explored by other authors dirayidifferent algorithms for minimizing the same
objective function, such as the minimum-volume enclosimgptex (MVES) [19]. The robust MVES (RMVES)
[20] and the simplex identification via split augmented LagrandiSISAL) algorithm [21] are variants of these.
Other techniques minimize a regularized least squares fiiteoflata, including the iterative constrained endmembers
(ICE) [22], the sparsity-promoting ICE (SPICE) [23nd the minimum volume constrained nonnegative matrix
factorization (MVC-NMF) [24]. MVC-NMF uses constrained NMto decompose mixed pixels in multispectral
and hyperspectral remote sensing images. Specifically, MNAE adopts a volume-based constraint together with
NMF for the decomposition of mixed pixels. In this regarde tlmain difference between ICE and MVC-NM§&
the measure of the simplex that they use as a regularizer (258]g [18] and MVES find a simplex by minimizing
the simplex volume subject to the constraint that all theetigionally-reduced pixels are enclosed by the simplex.
The MVES algorithm is based on a cyclic minimization proaeglin which a sequence of linear programs (LPs)
are solved. SISAL implements a robust version of the minimualume concept which allows violations of the
abundance non-negativity constraint.

At this point, it is important to emphasize that the maineliéince between the seminal algorithm introduced by
Craig [18] and other strategies like MVES or SISAL lies in tmution of the optimization problem. It has been
found that the solutions provided by greedy solvers arengtyodependent on the initialization [1]. This handicap
was circumvented by MVES and SISAL by reformulating the myiation problem with respect to the inverse of
the matrix of estimated endmembers [25]. In this work, wesené a new computationally efficient implementation
of the minimum volume simplex analysis (MVSA) algorithmrimduced in [26] that uses sequential quadratic
programming to solve the optimization problem. The optatizn process adopted by the algorithm will be shown
to be faster than (i) the original solver introduced in [2@); MVES which solves exactly the same optimization;
(i) MVC-NMF.

C. Proposed approach

In this work, we specifically focus on the minimum volume lthapproach for hyperspectral unmixing, and further
develop a computationally efficient version of the MVSA natj26]. The MVSA algorithm fits a minimum volume
simplex to the hyperspectral data by constraining the atnicg fractions to belong to the probability simplex. The
resulting optimization problem, whicis computationally very complex, is solved in this work by iraplenting a
sequence of quadratically constrained subproblems us@aaterior point method [27], thus providing a completely

new perspective on the MVSA method based on an efficient im@teation that allows, for the first time in the



literature, a detailed comparison of its performance whtit bf other standard methods based on minimum volume
concepts and the non-pure pixel assumption. The main botiths and differences of the proposed work with
regards to [26] can be summarized as follows:

« An interior point algorithm is used to solve the optimizatiproblem, whereas in [26] a sequential quadratic
programming (SQP) approach was used. The proposed optiomnzgreatly reduces the computational com-
plexity of the algorithm and allows for its practical utgitton with moderately large and complex hyperspectral
data sets.

« An implementation of the new algorithia available in the form of an online demonstratiofihis optimized
demonstration includes the Matlab source code of the dhgoritogether with different analysis examples
including difficult cases with a large number of sampleggéanumber of endmembers, etc. The availability of
the source code will allow interested readers to reproduceaasults and to conduct their own experiments.

The remainder of the paper is organized as follows. Sectidadcribes the fundamentals of the MVSA algorithm.

Section Il describes our proposed implementation, wittipalar emphasis on the optimizations conductelction
IV presents a detailed experimental evaluation of the @lgorusing synthetic data sets. Section V we use a subset
of the popular AVIRIS Cuprite data for evaluatioBection VI summarizes the paper and hints at plausible dutur

research lines.

Il. MINIMUM VOLUME COMPONENTANALYSIS (MVSA)

LetY = [yy,...,yn] € REXY denote a matrix collectingé measured spectral vectors of size We assume

that these vectors are well approximated by the linear mgixiodel [1]; that is, fori € {1,2,..., N}, we have

yi = Mo;+n B
s.t.: a; > 0, ]_Zaz = ].,
whereM = [m,...,m,] € RL*? is the mixing matrix fn; denotes thej-th endmember signature andis
the number of endmembersy; = [a;q, g, .. .,aip]T is the abundance vectat,, = [1,1,...,1]7 is a column

vector of sizep of (the notation]]” stands for vector or matrix transpose), andaccounts for additive noise. The
constraintsa; > 0 (the notationA > 0 is to be understood componentwise) a‘rﬁjaz =1 stem from a physical
interpretation of the abundance vector according to whitthdomponents of; represent fractions occupied by
the corresponding endmembers and, therefore, they aresgative and their sum is equal to one.

By collecting the abundance vectors in the matdix= [ay,...,...,ay]| € RP*Y and the noise vectors in
the matrixN = [ny,...,ny] € REXY, we may write the observation equations (1), faz {1,2,..., N}, in the

compact matrix form
Y = MA+N

()
s.t. A>0, 1A =17

The selC = {x = Ma € R" : a > 0,17« = 1}, assuming thaM is full rank, is a(p — 1)—simplex, meaning

that C hasp vertices corresponding to the columnsIf. MVSA aims at finding the vertices of the simpléx

Lavailable from http:/Aww.Ix.it.pt/%7ejun/DemoMVSAgi



ms3 C' = conv{M}

Fig. 1. lllustration of the simplex se&t for p = 3. C is the convex hull of the columns d@¥1. Green circles represent spectral vectors. Red
circles represent vertices of the simplex and corresportiegeendmembers.

and therefore the matriM, by fitting a simplex of minimum volume to the observed data This concept is
schematized in Fig. 1 fgv = 3, whereC denotes the convex hull of the columnsdf, the green circles represent
spectral vectors, and the red circles represent verticseadimplex, which correspond to the endmembers. If there
exist enough samples in the facets of the simplex, then thémim volume simplex containing the spectral vectors
corresponds to the true one, as illustrated in Fig. 1. Hetheeidentification of the minimum volume simplex is, in
the absence of noise, equivalent to the identificatiodvb{see [1] for further details about the minimum volume
approach to hyperspectral unmixing). In addition to the ingxmatrix M, MVSA also estimates the abundance

matrix A.

A. MVSA preprocessing

As discussed before, the vectdvba,; belongs to the simplex sét However, this is not the case of the measured
vectorsy; = Me; + n;, owing to the presence of the observation naise Another degradation mechanism
that displaces the measured vectors further away from tiggnal simplex set is the spectral variability due to,
namely, variations in the illumination and surface top@iwa Spectral variability is often characterized by pixel
dependent scaling factors affecting the abundance vectbet is, instead o&;, we havey;a,, with +; > 0, for
1€{1,2,...,N} and, therefore, the sum-to-one constraint does not hotd tru

The observation noise and the spectral variability are tegradation mechanisms which have a negative impact
on the inference of the simplex of minimum volume. In ordentitigate these negative effects, we introduce two
processing steps. In the first step, the signal subspacensifidd using the hyperspectral subspace identification
by minimum error (HySime) [28] algorithm. In the second stépe scale factors; > 0 are removed by means of
a projection on a suitable affine set. Below, we summarizsettgteps (for more details, see [1]).

1) Signal subspace identificatiofThe objective of signal subspace identification is the esiion of the subspace
sparfM), i.e., the subspace spanned by the column®hfUnder the observation model (2), the identification of

sparfM) may be obtained via the eigendecomposition of the samplelation matrixYY? /N. However, if the



noise is band dependent, the inference of §danis more complex. We use HySime [28], which assumes band
dependent noise, to estimate the noise covariance matdixtensignal subspace. HySime outputs the estimated
subspace in the form of an orthonormal maftix= [u;, .. .,u,] € REX? whose columns span the same subspace
as M. Notice that, in this paper, the term orthogonal matrix isb® understood in the sense of matrices with

orthonormal columns. Based di, we compute the coordinates 9f, fori € {1,2,..., N}, as
Y « UTY=U"MA +U"N. 3)

For simplicity, here we us& to denote both the observation and its projection onto tleatifled subspace.
Consequentiallyy; is used to denote the observed and projected vectors.

According to (3), the projected vectors still follow a limemixing model with mixing matrixU”M & RP*?,
and noise vectortJ”N. The new model has, however, two significant advantagesneghect to the original one:
a) computational, becauge< L in most applications, and b) improved SNR, becal€€ N||r < |N| r, where
| X]|2. = tracé XX”) denotes the Frobenius norm of the matkx

Given that spaflU) = span(M), apart from estimation errors which are very smalNifis large, then we have
M = UUTM. The implication of this property is that we may estimate thatrix U7 M e RP*?, sayﬁU, and
then obtain the estimate of the original mixing matrixlds= UﬁU.

2) Affine projection: The objective of this step is to remove the effect of pixel efggent scale factors and,
thus, to recover the sum-to-one constraint. This goal magdtgeved by projecting each spectral vector onto the
hyperplane that best represents the measured data setlgattesquares sense. Here, we follow closely [19].

Let

N
__ 1 > —
y N Zyi, and 'Y = yl?\}.
=1
The hyperplane that best represents the measured datatbet lgast squares sense is givenfy = {y € R? :
y=y-+ Eg_lﬁ, B € RP~1}, whereE,_; holds in its columns the — 1 eigenvalues of the sample covariance
matrix (Y —Y)(Y —Y)” /N corresponding to the— 1 largest eigenvalues of the same matrix [19]. The orthogonal

projection of the measured vectors or is given by
vi+Y+EL (yi—y), ie{l,2,...,N}.

Given that, after the projection the vectarsc R? belong to a(p — 1) affine set, then the sum-to-one constraint
is recovered, that is, any € H,, may be written as an affine combinationwfinearly independent vectors lying
in H,y.

At this point, we would like to call attention to the fact thiae affine projection may introduce angle displacements
between the original measured vectors and the corresppmilojected ones. These displacements increase with
the spread of the scaling factors [22]. This shortcoming mm@yvoided by using the projective projection instead

of the affine projection (see [1] for a detailed discussiorthia issue).

B. MVSA inference criterion



Our goal is to perform hyperspectral linear unmixing under tinear mixing model assumption. Following the
rationale introduced in [26], [21], we formulate the prabley seeking the smallegb— 1)—simplexC that contains
the data sample¥. Assuming that the noise terfd” N shown in (3) —obtained after the data projection step— is

negligible, the hyperspectral unmixing problem may be faated as

M = arg min | det (M), @
st.: QY >0, 17QY =17,

whereQ = M~!(see equation (2)); sincilet(M)| is the volume defined by the origin and the columns\df

the interpretation of optimization (4) is clear: we seek aing matrixM = Q' defining the smaller simplex that

contains the observed data in the simplexwhich is a facet of the simplex defined by the columndvbfand the

origin.

Sincedet(Q) = 1/ det(M), we can replace the problem (4) with the following:

Q = argmax log|det(Q)].

st.: QY >0, 1JQY =1J.

(®)

As already mentioned, in this work we are assuming that thisenafter the projection step is negligible.
We call attention, however, to a robust to noise and outhension of MVSA introduced in [26] and further
developed in [21]. This robustness is the result idplacing the hard constrai®Y > 0 with a soft constraint
—17hingg —QY)1, where hinge{) is an element-wise operator that, for each componentlyitde negative part
of x. However, in this work we only address the unmixing problemder the hard constraif®Y > 0 because
our objective is mainly focused on solving) in a computationally very efficient wayn the following section,
we describe our proposed implementation of MVSA which aimskaaining “good” (but sub-optimal) solutions

to the optimization problem (5).

IIl. PROPOSED IMPLEMENTATION
A. Constraint Reduction

Hyperspectral datasets are often very large (in the sensigeeafiumber of pixels that they comprise) and, thus,
the optimization problem described in the previous sedsaromplex from a computational point of view. In order
to lighten the computational load of the MVSA algorithm, waopt the strategy followed in [26], [21] to reduce

the number of constraints, which exploits the followingtfac

{Qerrrafqy —1f} = {qermr 1fQyy” = 15Y"}. 6)

A B
To prove thatd = B, we show that4d C B and that5 C 4. The former relation is trivial. We prove the latter

by reduction to absurdity. Suppose that we are given a m@i>e A and a matrixQ;, € 5 — A. It follows that
17(Qa — Q)Y # 0, or equivalentlyY”¢ # 0, where¢” = 17(Q, — Qu), and, becaus€, € B, YY" ¢ = 0.
That is, Y& belongsto the null space ol. This is however impossible because thiersectionbetween the null

space ofY and the range o¥” is just the zero vector.



Now, assuming thal is full rank, thenYY” is invertible and we may then write
17QY =1} « 17Q =q,, (7

whereq,, = 1%YT(YYT)_1 can be obtained beforehand. Then, the problem in (5) is #iewbto the following

form:
Q = arg max log | det(Q)|

st.: QY >0, 17Q=q,.

8

Notice that, by applying the constraint reduction, we caeatly reduce the number of active constraints in the
equality constraint (frompN to p).

MVSA is initialized with the set of endmembelel = [my,...,m,] generated by the VCA [15] algorithm.
We selected VCA because it is one of the fastest among the-agtdhe-art pure pixel-based methods. In order to
ensure that most vectors belong to the convex set genergtdtelcolumns ofM, we expand the initial simplex
to increase the number of pixels that are inside the convéhohthe identified endmembers, which leads to very
few active nonnegativity constraintise., Qy, > 0 for most pixels. For instance, if there amesamples outside of
the current simplex, witm < N, we reduce the number of active constraints in the inequedihstraint frompN
to pn. This reduces computational complexity because, duriagctimputation, inactive constraints are temporarily

ignored, although we continue to track them.

B. Minorize-maximization optimization. Sequence of cerstbdproblems.

The optimization problem (8) becomes convex only wt@nis restricted to the cone of symmetric positive
definite matrices. This is not the case in our applicationrelig is neither symmetric nor positive definite yielding
a non-convex and thus quite challenging optimization prwblHerein, we adopt the “minorize-maximization”
(MM) framework [29] to find local optima for (8). The MM scheniean iterative procedure that, at each iteration,
builds a minorizer of the objective function and maximize&\hen the minorizer function is optimized, the original
objective function is driven downhill as needed. For the MMgedure to make sense, the sequence of minorizers
should be much easier to optimize than the original problem.

Let x = veq Q) denote the operator that stacks the column€adh the column vectok, f(x) = log|det(Q)],
and ¢(x; x()) denote a minorizer fof atx(®); that is, f(x®*)) = ¢(x®;x®), and f(x) > #(x;x*) for all x.
Given that ve¢AB) = (BT @ I)vec(A) = (I ® A)vedB), where® denotes the kronecker operator ahthe

identity matrix with suitable dimension, then our MM iteva&t procedure is given by

x(H) = argmax é(x; x()
ax o ) ©)
s.t. . A]XZb], AEX:bE,
where
Ar= (YT ®I) e RpN*P’
Ap= (Ie17) eRrrx?’
p= (el (10)

b; = 0 € RPN
br = q, € R,



Letg(x) =vedQ~7) andH(x) = —-K,,[Q~T®Q™!], whereK,, is the commutation matrix.e., K,veqA) =

veq AT)) denote, respectively, the gradient and the Hessigh 8& a minorizer forf, we use the quadratic function
ol x®) = F(x®) + g0 (x — x) + %(x = xM)TGH (x — xM) (11)
= f(xW) + x4 %XTG(t)X, (12)

where G = min{\min(H), —v)}1, with A\yin(H) standing for the minimum eigenvalue & andv > 0 a small
positive number, and®) = g(t) — G®x(®),
We conclude therefore that the core step in the MVSA algorith the computation, in each iteration, of the

solution of a quadratic problem with linear inequality argliality constraints with the following structure:

maxclx + %XTGX (13)
st.: A;x>b;, Agx=Dbg,
where A;x > by and Agx = by are defined in equation (10)Since G is negativedefinite, the quadratic
problem (13) is strictly convex and itfifficulty is equal to finding a solution to a linear optimization prablg27].
Thus we have transformed the non-convex optimization akihto the solution of a sequence of convex quadratic

problems.

Algorithm 1 MVSA pseudocode
1: INPUT: A;, Ag, by, bg, x¢ (initialization)

2: Convergence— false

3: repeat

4: g« Vf(xo), H <+ V?f(x0)

5 G+ min{\nn(H), —v)}1I

6: c<+g—Gx

7:  x < solution of the quadratic optimization (13)
& if f(xo) > f(x) then

o: do line search untilf (x¢) < f(x)

10:  end if

11:  if [f(xo) — f(x)]/|f(x)| <threshold then
12: Convergence— true

13:  end if

14: Xo < X

15: until Convergence

The pseudocode for the MVSA algorithm is shown in AlgorithmAls mentioned in subsection 1lI-A, the
initialization x¢ is provided by an expansion of the VCA estimate to increasentimber of pixels that are in

the convex hull of the identified endmembers. The gradiedttae Hessian off are computed in line 4. In line
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5, Amin(H) represents the minimum eigenvalue Hf which is a real number becaudg is symmetric. Since
min{ Amin(H), —v)} < 0, matrix G is negative definite.
To avoid the computation okmin(H) at each iteration, an alternative to the definition@fshown in line 6,

which we found heuristically to work very well in practices, i
G = — vl + diagg?), (14)

where diagg?) stands for a diagonal matrix with diagonal elements giverthgysquare of the elements gf

Because it can only be guaranteed tiEt- H is negative definite in a neighborhood =f*), then it cannot
be guaranteed that(x;x®) is in fact a minorizer off. In order to ensure thaf(xo) > f(x) after solving the
optimization (13),i.e.,, to have a monotonic behavior, we implement in line 9 of MVSAing search betweer
andxg if f(xg) > f(x).

C. A fast interior point method to solve the quadratic prabl€lL3)

At this point, it is also important to notice tha; is of size ofpN x p?, which brings difficulties for solving
problem (13) in terms of computational time and especiallyerms of RAM memory. For instance, for a problem
with p = 20 endmembers and/ = 512 x 512, it would be prohibitive tomanipulateA ;. This roadblockhas been
a major limitation of MVSA in the past. In this work, we addsethis problem by using the interior point method
to solve the quadratic problem (13).

The Karush-Kuhn-Tucker (KKT) conditions for the quadrgtioblem (13) are

Gx—ATAX+ALp+c = 0
Ax—b; > 0
Agx—by = 0 (15)
(Ajx—by);\; = 0,i=1...ny=Np
A >0
where X = [A\1,...,\,,]7, u € RP are the Lagrangian multipliers for the inequality and efjyatonstraints,

respectivelyn; is the number of inequality constraints, and the notati), stands for the-th row of matrixX.
By introducing a slack vectog = [s1,...,s,,]T, the non-linear system (15) is transformed into a non-linea

system of equations that can be solved by the interior pogthod, so that the problem becomes

Gx—ATX+ALp+c = 0
Aix—s—b;y = 0
Apx—bgy = 0 (16)
siANi = 0,i=1...ng
A,s > 0.

A predictor corrector interior point algorithm [27] is ustmsolve (16). The predictor corrector algorithm solves
two times the calculation of the Newton step of the systemapfa¢ions (16); one time to get ttedfine Newton

step and the other to correct the affine step getting the firatdbh step. Notice that the Newton steps in both
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cases should be constrained such thatvectors\ ands are non-negative and strictly positive respectively. The

two systems that need to be solved in order to get the affindinadNewton steps are, respectively,

G AL o -—-AT|lAx™ —rq
A; 0 -I o0 ||ap™ —r
I 2 _ I (17)
Ay 0 0 0 ||lAs™ —rg
0 0 A S [|lAaxd —ASe,
where
ra= Gx—ATX+ALp+c
rr= A;x—s—by
e = AEX — bE
(18)
A =diag A1, ..., \n,)
S =diags1,...,5n,)
e=[1,...,1]"
and
G AL o0 -AT||Ax —rq
A;, 0 -I o0 ||lA —r
I 1 _ I (19)
A 0 0 0 ||As —_—
0 0 A S |[|lAax —ASe — AA*TASe + 5pe
where
AN = diag AN .. AN
AS* = diag A3, ., As2T) (20)
_s’A
r=

ando € (0,1]. The predictor corrector interior point algorithm for thewgon of the quadratic problem is shown
in Algorithm 2.

It should be noted that, since the interior point method eoges to thesolution of the KKT conditions and the
guadratic problem is convex, the solution will be unique #mel optimal solution of the quadratic problem. So,
Algorithm 2 converges to the optimal solution. The numbeitefations needed for convergence is dependent on
the allowed error. In all our experiments, we have observed ghataximum number of iterations set empirically
to 150 yielded an error that is negligible from a practicalinpaf view. In this respect, it should be mentioned
that the convergence of Algorithm 2 is quadratic when thereig small. This behavior is certainly related to the
observed negligible error after 150 iterations. In view ledge observations, we have set the maximum number of

iterations to 150 in all experiments.
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Algorithm 2 The predictor corrector interior point algorithm
1: Initialize (XQ,[J,O,SQ,)\Q) with S0, Agp >0

2k« 0

3: while o, p > 1078 do

4 (x,pu,8,A) — (Xk, By, Sk, Ak)

5. solve (17) and getAx®" ApdT A AN

6 pe T2

7. Qg — max{a € (0,1]|(s, A) + a(As? AN > 0}
8 pat < (s + Gat AT T (N + Gan AN /g

3
9 <+ (@)
o

10:  solve (19) and gefAx, Au, As, AX)

11 11— %H

12: & <+ max{a € (0,1]|(s,A) + a(As, AX) > (1 — 71)(s, A) }

130 (Xk1s g 15 Sk 15 A1) < (ks B, Sk, Ak) + G(AX, Ap, As, AX)
14: k<« k+1

15: end while

16: return x;

D. Normal equations and implementation

From the interior point method description in Algorithm 2can be seen that the main computational tasks are
those described in lines 5 and 10 of Algorithmi2,, those related to the computation of the Newton step. In the
case of MVSA, the number of unknowns;i$, the number of inequality constraintsiis = Np, and the number of
equality constraints iz = p, whereN is the number of pixels in the hyperspectral data. As a rethdtJacobian
matrix of the systems (17) and (19) is of sig&Vp +p? +p) x (2Np+ p?+p). This means that, for an image with
250x 190 pixels andg = 20 endmembers, the size of the matrices is already prohibjtiaege for the systems to
be solved directly, both computationally and in terms of RAMmory consumption. However, by exploiting the

Jacobian structure the system, the problem can be solveggssively by deriving the “normal equations” [27] as

follows:
(G+ATST'AANAX+ALA = —rg+ATS 'A(—r; — A 'rpg)
ApAx = -r
E E (21)
As = A;Ax+r;
AN = —STA(A'rps + As),

wherer, g is the last right term of both systems (17) and (19).
It can be seen in (21) that, in order to solve both systems &hd)(19), the first two equations can be solved
by forming a(p? + p) x (p? + p) linear system, thus obtainingx and Au. Then As is obtained from the third

equation usingAx and, finally, AX is obtained from the last equation usidgs.
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The multiplication of the diagonal matrice8=!, A (and their inverses) with vectors can be done by the
membership multiplication of the vector in the diagonal lbé tmatrices with the respective vector. As a result,
there is no need to store explicitly the diagonal matrices,jbst the vectors in the diagonal. The multiplication
of the very large and sparse matriX; with a vectorv in our case can be computed as a matrix by matrix
multiplication,i.e, A;v = VY andA?v = VY7, whereY is the sample matrix an¥ is the matrix formed by
v with column-major order. These multiplications can be defieiently by dense matrix by matrix multiplication.
The same concept applies to the multiplicationfof v. It can be also observed that the symmetric matrix of the
linear system, formed by the first two equations of (21), essgame for the solution dAx and A in both systems
(17) and (19), therefore the inverse is computed just onicee$ in practice is small, say, less than 25, this matrix
is of low dimension and can be computed rapidly.

Up until now, the only remaining challenge is how to efficlgrdtompute the termrATS=1A A ;. Since we want
to avoid using the matriXA ; due to its large size, a methodology will be presented forlatipg the structure
of A;. We will examine first the computation c87S~A. Our goal is to create a compact dense form of this
computation, i.e., without zero elements and without apA?" and the diagonal matri$—'A. Lets;,, A be the

matrix formed by the diagonal #~'A. We can express the multiplication using zero initial indexfollows:

Xo/50Y00 Ap/5pYo01 s AN=Dp/S(N—1)pYoN -1
Ap—1/5p—1Y00 Ap/5pYo01 .. ANp—1/SNp—1Yon-1
(ATS™"A)compact= : : : : . (22)
Mo/soYp-n0  Ap/spYp-1 - Aw-1p/S(v-1)pYp-1)N -1
Ap—1/5p-1Yp-10 Ap/SpY(p-1)1 - Anp-1/snp—1Y(p-1)N—1 |

The multiplicationATS~1AA; can be described also in compact form by the dense matrix Hyixhmaulti-
plication (ATS™1A)compacY © . The final product is @® x p matrix which can be easily factored into the desired

ATS=TAA; p? x p? matrix, using Algorithm 3.

Algorithm 3 Formulation of the matribxA?S—1AA ;.
1 ATS7IAA; <0

2: for i=0topdo
3. for k=0topdo
4: forj=0topdo

5 A?SflAAI[k +jxp+ (k+ix*p)xp? < (A?S’lAAI)Comp[j + (k+1ixp) *p]
6: end for
7. end for

8: end for
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From the preceding discussion we have seen that there isatbtaestore the large matrix ;. The largest matrix
used is the? x N dimensional ATS=! A)compactwhich isp times smaller thad ;. This makes the problem feasible
for values ofp of the order of 20.

From the discussion in this subsection we conclude that thi& womputational tasks in our presented method
are the calculation of A7S ' A)compacY? and the matrix multiplications of the typA;v and A7v. Using a
naive matrix by matrix multiplication, this leads to a conational complexity of the orde®(p®* N + p*N).

In Algorithm 4, we present the predictor corrector algarittvith all the described optimizations. We will explain
the algorithm in relation to Algorithm 2. Line 5 of Algorith/ is replaced by lines 5-20 of Algorithm 4. In these
lines the solution of (17) is obtained using the normal eignat (21). It can also be seen in these lines that we
use the optimizations that we described, like calculathreydompact representation of (22) in line 9 and applying
Algorithm 3 in line 11. Also in line 7 we use a notation also dise Matlab, specifically the (:) notation, which
means to vectorize the matrix in column-major order. Alscewhve use the capital letter of a vector, likg we
mean that the vectot is made a matrix in column-major order. Continuing line 7 dg@ithm 2 is replaced by lines
22-24 of Algorithm 4. Line 10 of Algorithm 2 is replaced by ¢is 27-35 of Algorithm 4. In these lines the linear
system (19) is solved using the normal equations (21). N@tehere we reuse the inverse matrix obtained from line
13. Finally, line 12 of Algorithm 2 is replaced by lines 37-8DAlgorithm 4. Having presented Algorithm 4, line
9 of the basic MVSA Algorithm 1 should call Algorithm 4 for abihing the solution of the quadratic optimization
problem. A flowchart describing the full process of the aitlon from the input (hyperspectral image) to the output

(endmembers) is included in Fig. 2.

MVSA Algorithm

Hyperspectral Image Subspace MM optimization. Endmember signatures
identification and Sequence of convex
Affine projection subproblems

consisting of L

Solution of the quadratic
problem (12) using our
fast interior point method

>

/

Wavelength

aoue1dalld

Fig. 2. Flowchart of the proposed MVSA algorithm, from theum (hyperspectral image) to the output (endmember sigesitu

IV. SIMULATED EXPERIMENTS

In this section we compare the proposed implementation ofSKM\ith some state-of-the-art endmember
extraction algorithms such asCA [30], MVES [19] and MVC-NMF [24]. VCA is a pure pixel-badealgorithm,
while MVES and MVC-NMF are non-pure pixel based algorithms.
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Algorithm 4 Pseudocode of an optimized predictor corrector interiantpalgorithm

1:

10:
11:
12:

13:

14:
15:

16:

17:
18:
19:
20:
21:
22:

23:
24:
25:
26:
27:
28:
29:

30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

2
3
4
5:
6
7
8
9

INPUT: Y, ¢, G, Ag, by, bg

D (%, 1,8, A) + (x0,e,e,e), e =[1,...,1]T

p+—l,o+—1,k+1

: while ( > 108 or p > 10~8) do
sTIA s kA
rg Gxx+c— (LxYT))+ AL« p
ry < (X*Y)(:) —s—b;
rg < Apxx—bg
(ATS™1A)compact+— CalculateCompag¢ly’,s~*AT') //Calculate Equation (22)

(A?SflAA[)compactH (A?SflA)compact* YT
ATS~1AA; «+ ConstructMatriX(ATS~ 1 AA [)compac) //Apply Algorithm 3
K+« G+ATS 1AA;

-1

AL
Ap 0
rh < s\ . x (rf +s)
rh <+ —rqg — (RH*YT)(:)
rh

Inv +

rh +
—rg
AxAm < Inv xrh

Ax  AxAm(1 : p?)
As? o (AX 4 Y)(:) + g
AN _sIN x (s + As?)

T
s* A
P
s aff
aAs ¢ min —s ./As
Asaf<Q
aax — min —X./AX
Axaff<o

Qaff < min(aas, @ax, 1)
paft (5 + aar AT T (X + aar AN /n;
o (o)
Scorrectedt— S + A7 1 L% AN AT o p * A1
rh+s7'X « (r1 + Scorrected
rh <+ —rqg — (RH*YT)(:)
rh

rh +

—rg
AxAm < Inv xrh

Ax +— AxAm(1 : p?)
Ap +— AxAm(p2? + 1 : end
As + (AX *Y)(:) +r1
AX — —sIX x (Scorrectedt As)
T 1— k_-lrl
Qprimal < AH;1<HO —Tks./As
Qdual < AH)l\igO —T* A ./AX
o < min(oprimals Cdual 1)
(%, 1,8, A) < (%, 1,8, A) + a(Ax, Ap, As, AX)
k+—k+1
end while




16

Concerning the parameters involved in the algorithms, wethe following settings. MVSA depends on three
parameters: the parameterensuring that the matri<c shown in (14) is negative definite, the maximum number
of iterations needed for MVSA to converge (outer-loop), &mel maximum number of iterations the interior point
method needs to converge (inner-loop). In all the expertmennducted in this section, these parameters were
set t0107%, 4, and 150The MVES algorithm as implemented by the authors of [19] dejseon the number of
full cycles over the rows of the matrix of the unknowns neetiedonverge. The maximum number of iterations
has been set by the authors 10 x p, wherep is the number of endmembers. In the comparisons bel@v
kept this parametrizatiorFurthermore, in this experiment we use a fast implementatiothe MVES algorithm
distributed by the authors of MVESin which they propose a solution to reduce the dimensignafithe problem
by discarding samples from the interior of the convex hulewlthe number of endmembers are below ten. Here,
we assume that the authors do not use the convex hull for hidjhveensions because the problem of calculating
it is computationally expensive and also due to the fact, imavery high dimensions, the data accumulates close
to the convex hull even if a uniform distribution is assumEthally, MVC-NMF, along with its parameters, have
been optimized for execution in accordance with the gumsliprovided in [24]Specifically, the value of the
MVC-NMF regularization parameter used in our experimests + 0.01.

To evaluate the performance of the different algorithms,aktimated abundance fractioms, and the estimated
mixing matrix, M, are compared with the true one& @ndM, respectively)We recall that MVSA is an unmixing
algorithm that estimates simultaneously the mixing malix= Q! and the abundances = QY.

In all experiments the number of endmemberswas estimated using the HySime method in [28], which has
been shown to be effective for this task, and also for dinmradity reduction purposes [1]. We use several metrics
to evaluate the proposed approach. The first one is the meanesgrror (MSE), denoted §s || . = || M-M |
where|| - || stands for the Frobenius norm. Another metric considereduinexperiments is the reconstruction
error, computed ase = || Y-Y lr = MA - Y | . The third metric used in this work is the spectral angle
distance (SAD) (in degrees) expressed as SARos™! (Hmmﬁ%) (degrees)2]. Although SAD may not be
completely accurate for matching libraries to endmembespecially if the endmembers are themselves mixtures
or if the atmospheric correction process conducted on tla@a@ms not perfect, we have decided to use SAD as it is
a standard metric for spectral signature comparison. Opteimentation of MVSA has been carried out in Matlab,

and compared with the Matlab implementations of the othgorithms tested as provided by their authors.

A. Pure pixel based experiments

This experiment aims at evaluating MVSA for scenarios witineppixels.In this experiment, the synthetic image,
with size of N = 100 x 100 pixels andp = 5 endmembers, is constructed according to the linear mogehdiy
(1) using the procedure described in [3@th maximum purity of 1. That is, for each endmember, theratileast
one pure pixel in the simulated imagehe spectral signaturegere randomly selected from the USGS library [31]

(convolved and downsampled to AVIRIS wavelengtiskhould be noted that the USGS signatures considered in

2available from http://mx.nthu.edu.twisunghan/download/MVESode.zip
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TABLE |
COMPARISON OF ENDMEMBER EXTRACTION ALGORITHMS ON A SYNTHETC IMAGE WITH SIZE OF N = 100 X 100 PIXELSANDp =5
ENDMEMBERSCONTAINING PURE MINERAL SIGNATURES FROM THEUSGSLIBRARY UNDER DIFFERENT NOISE LEVELS THE
COMPUTATIONAL TIME (SECONDS ARE ALSO INCLUDED. ALL THE RESULTS ARE OBTAINED BY AVERAGING30 INDEPENDENT RUNS

VCA MVES MVC-NMF MVSA

dB I ellp re SAD time I ellp re SAD time I ellp re SAD time I'ellp re SAD time
90 0.033 0.003 | 1.652 | 0.134 0.004 0.0 | 0.209 | 8.071 0.040 0.002 | 1.856 | 80.246 0.0004 | 0.0 | 0.026 | 1.125
70 0.038 | 0.004 | 1.687 | 0.135 0.004 | 0.0 | 0.258 | 7.752 0.038 | 0.002 | 1.597 | 82.608 || 0.0004 | 0.0 | 0.025 | 1.224
50 0.043 0.003 | 1.792 | 0.131 0.009 0.0 | 0.408 | 6.327 0.041 0.001 | 1.508 | 79.745 0.003 0.0 | 0.163 | 1.114
30 0.064 | 0.005 | 1.828 | 0.128 0.036 | 0.0 | 1.750 | 3.644 0.040 | 0.002 | 1.599 | 78.747 0.036 | 0.0 | 1.543 | 1.147

experiments are randomly sampled from a subset of the US63&i formed by retaining 62 signatures so that
the minimum angle between any couple of signatures wasrl#nga 10 degreeZero-mean white Gaussian noise,
defined asSNR = 101log;, (]E||YH2/]E||N||%) (dB), has been added to the synthetic scene. In our expesmen
the proposed MVSA algorithm only considers the hard comgtr@Y > 0. As shown in [26], under the hard
constraint MVSA performs very good under relatively low seievels. Finally, it should be noted that the results
are obtained by averagirp independent Monte Carlo runs and all simulated experinfeate been performed in
a desktop PC with the latest Intel Cdi®e CPU and 4 GBs of RAM.

Table | show the results obtained by the aforementioned odstifior the considered scene with different noise
levels. It can be observed that all algorithms provide camaple resultswhich reveals that non pure pixel based
algorithms such as MVSA, MVES and MVC-NMF can tackle well Iplems with pure pixels. Furthermore,
it can be observed that our algorithm provides slightly dretesults tharthe other tested methods in terms of
MSE, reconstruction error, and SAD. Concerning the contjmrtal time, MVSA is notably faster than MVES and
MVC-NMF. A final aspect that should be underlined is that #lloaithms obtained very good reconstruction error,
particularly MVSA and MVES. Both algorithms obtained restmction error close to zero. This is expected due
to the nonnegative constraint that both algorithms usechvforces all pixels into the simplex and leads to very

low reconstruction error.

B. No pure pixel based experiments

In this subsection, we evaluate MVSA by assuming that no pixels exist in the considered image. The same
experimental setting (based on the procedure described@0}) yvas constructed as in the previous experiments,
with size of N = 100 x 100 pixels andp = 5 endmemberdn order to make sure that there are no pure pixels in
the simulated imageabundance fractions witpurities [22] (i.e. maximum abundance fractions) greater than 0.8
are discarded in the simulation so that only mixed pixelsteXables Il show the obtained results from the same
aforementioned methods for the considered scene withréiftenoise levels. As expected, the algorithms without
the pure pixel assumption such B8/SA, MVES and MVC-NMF largely outperform the pure pixelded VCA
algorithm. Another important observation is that, as it W case in the previous experiment, the two minimum

volume based algorithms (MVES and MVSA) obtained very loeorestruction errorg,e., close to zero. This is due
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TABLE I
COMPARISON OF ENDMEMBER EXTRACTION ALGORITHMS ON A SYNTHETE IMAGE WITH SIZE OF N = 100 x 100 PIXELSANDp = 5
ENDMEMBERSCONTAINING NON-PURE MINERAL SIGNATURES(MAXIMUM PURITY OF 0.8) FROM THEUSGSLIBRARY UNDER DIFFERENT
NOISE LEVELS. THE COMPUTATIONAL TIME (SECONDS ARE ALSO INCLUDED. ALL THE RESULTS ARE OBTAINED BY AVERAGING30
INDEPENDENT RUNS

VCA MVES MVC-NMF MVSA

dB Il ellp re SAD time Il ellp re SAD time I el re SAD time [ellp | re SAD time
90 0.146 | 0.024 | 5.909 | 0.130 0.004 | 0.0 | 0.171 | 7.712 0.050 | 0.002 | 1.993 | 81.432 || 0.0004 | 0.0 | 0.023 | 1.120
70 0.157 0.028 | 6.307 | 0.129 0.004 0.0 | 0.189 | 9.369 0.060 0.002 | 1.849 | 79.467 0.0005 | 0.0 | 0.026 | 1.110
50 0.150 | 0.029 | 6.274 | 0.133 0.009 | 0.0 | 0.496 | 6.838 0.049 | 0.002 | 1.848 | 80.188 0.003 | 0.0 | 0.151 | 1.078
30 0.160 0.033 | 6.551 | 0.128 0.039 0.0 | 1.598 | 4.463 0.053 0.002 | 1.896 | 77.981 0.030 0.0 | 1421 | 1.111

to the fact that, under the nonnegativity constraint, theimim volume based algorithms enclose all observations
into the simplex. It can also be observed that, among the nwe pixel based algorithms, MVSA obtains the
best results with respect to SAD, reconstruction error, ®I8E for all considered noise levels. Concerning the
computational time, MVSA is much faster than MVES and MVC-NM

For illustrative purposes, Fig. 3 compares the four metlgrdphically, using a simulation with non pure pixels,
with (a) p = 3 and (b)p = 10 endmembers)N = 100 x 100 spectral vectors, maximum purity of 0.8, and noise
level of SNR=50dB. Finally, Fig. 4 shows the obtained spdignatures after conducting the experiment reported
in Fig. 3(a). These two figures reveal the quality of MVSA msties with regards to those obtained by other

algorithms.
Endmembers and data points (2D projection) Endmembers and data points (2D projection)
0.6 . . . 25 : .
data points data points 4
0471 = true ] 2r * true ]
o2l VCA ® | 15k ¢ VCA ]
+ MVES + MVES
of MVC-NMF ° 1 1f @ MVC-NMF 1
o MVSA o o MVSA
. 0.2 f . 05f ' f
& & <
Z —04f Iy 1  of o3 1
o
-6t ® E -0.5pP* ¢ 4 o E
o @ %
-0.8 q -1r o o ® q
®
-1t a -15f —
® .
12 . . . . - . . . . . . .
-6 -5 -4 -3 -2 -1 -10 -9 -8 -7 -6 -5 -4 -3 -2
VLY Vika's
(&) p = 3 endmembers (bp = 10 endmembers

Fig. 3. Unmixing results for a simulation with non pure pixels ustfifferent numbers of endmembeys:= 3 (a) p = 10 (b) for VCA, MVSA,
MVC-NMF, and MVES algorithms, respectively, whehé denotes the spectral vectoss] = [1,0,...,0]” andv2 = [0,1,0...,0]T.
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Fig. 4. Endmember signatures estimated by MVSA, VCA, MVES and MVEfNin a simulation with SNR= 50dB noise and non pure
pixels, which corresponds to the experiment reported in Bg).

C. Evaluation of the efficiency

An important aspect in this experiment is to analyse theieffiy of the proposed MVSA algorithm from a
computational viewpoint. In order to explore this issue, masv discuss the computational performance of Matlab
implementations of MVSA (by us) and MVES (by the authors 09]j1 using USGS library endmemberall
our experiments were conducted using the latest Intel Cor€RU and 32 GBs of RAM. Notice that here we
only report the results obtained by MVES and MVSA, as bottoatgms solve similar optimization problems
but using a completely different strateghable Il reports the processing time for problems with= 50 x 50,

N =100 x 100 and N = 150 x 150 pixels using different numbers of endmembédrsTable Ill, the number of
endmemberg goes up to 20. This is a very difficult problem and (as we memtibin the previous experiment)
it is difficult to havep = 20 endmembers in one given pixel or a local area. As a resultyithm purpose of
usingp = 20 is to show the computational efficiency of our algorithm foolpems with large scale. At this point,
we also emphasize that in our experiments we have not caesligeirities lower than 0.8 since the probability of
having an abundance larger than a given valug @hnishes ap increaseslt can be seen that in Table 11l MVSA
is very efficient for moderately large and complex problemBich would be impractical for other methods like
MVES. For instance, it only took 23.3 seconds fo 20 and N = 150 x 150, which is prohibitive for the previous
MVSA implementation [26] developed in Matlab, from the vigoints of either RAM memory requirements and
computational time. This problem is also extremely timestoning for the Matlab version of MVES distributed

by the authors of the algorithm, as shown in Table IlI.

V. REAL DATA EXPERIMENTS

The scene used in our real data experiments is the well-kfovtnorne Visible Infra-Red Imaging Spectrometer

(AVIRIS) Cuprite data set, available online in reflectancétsi. This scene has been widely used to validate the

Shttp://aviris.jpl.nasa.gov/html/aviris.freedata.htm
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TABLE Il
PROCESSING TIME(SECONDS OBTAINED FOR THE PROPOSEMVSA ALGORITHM ON SYNTHETIC IMAGES WITHN = 50 X 50,
N =100 x 100, N = 150 x 150, SNR= 70DB AND MAXIMUM PURITY OF 0.8 FOR DIFFERENT NUMBERS OF ENDMEMBERS

MVSA MVES
P 4 8 12 16 20 4 8 12 16 20
N = 50 x 50 03] 05| 08 1.4 3.23 1.9 29 237 527 866

N =100 x 100 07| 16| 28 5.6 8.9 1 141 | 757 1759 | 3453
N = 150 x 150 13| 44 9 144 | 233 || 4.3 | 158 | 1778 | 4197 | 7959

performance of endmember extraction algorithms. The @ortised in experiments corresponds t@58 x 191-
pixel subset of the f970619t01p02r02 online data set inatftece units The scene comprises 224 spectral bands
between 0.4 and 2.pm, with nominal spectral resolution of 10 nm. Prior to the lgsia, bands 1-6, 105-115,
150-170, and 222-224 were removed due to water absorptiioanSNR in those bands, leaving a total of 183
spectral bandgpr which, according to the HySime [28] algorithm, we obtaim estimate op = 14 endmembers.
Here we use HySime to estimate the number of endmembers asli@edihat the result of HySime is quite accurate
judging from the computed low nois&€he Cuprite site is well understood mineralogically, and baveral exposed
minerals of interest, all included in the USGS library colesed in experiments, denoted splibGthd released in
September 2007. In our experiments, we use spectra obt&ioedthis library (convolved and downsampled to
AVIRIS wavelengths) in order to substantiate the qualitytef endmembers derived by MVSA and compare them
with those produced by other algorithms. For illustrativegmses, Fig. 5(a) shows a mineral map produced in 1995
by USGS, in which the Tricorder 3.3 software product was usethap different minerals present in the Cuprite
mining districf. The 250 x 190-pixel subscene used in our experiments is shown in Fig. $hauld be noted that
all experiments with this subscene have been performed iesktop PC with a Intel Core I5 CPU and 4 GBs of
RAM. Concerning the parameters involved in the considered idthgos, we consequentially follow the settings in
the simulated experiments. Regarding the affine projectinhave used the projective projection instead of the
affine one (see [1]) , as the former works slightly better iis #xample.

A fundamental assumption in the minimum volume unmixingoalthms is that, in a given data set, the spectral
samples belong to a simplex and that there are at jeast samples on, or in the neighborhood of, each simplex
facet [1]. It happens that the spatial distribution of Ctgogpectral vectors does not comply with that assumption,
which renders the associated unmixing an ill-posed probleme fact is that, given an estimated simplex, the large
majority of the spectral vectors are outside of that simpikeis a clear symptom of that ill-posedness. For example,
the simplexes estimated by VCA [30], N-FINDR [16], and thesessive volume maximization (SVMAX) [32]
leave, respectively, 47733, 47732, and 47734 samplesdeutse simplex in a maximum of 47750 samples, which

is the size of the dataset. A similar pattern is observedgusimimum volume based algorithms.

4the subscene is available online from http://www.Ix.ifTebioucas/code.htm
Shttp://speclab.cr.usgs.gov/spectral.lib06
Shttp://speclab.cr.usgs.gov/cuprite95.tgif.2. 2umap. gif.
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Fig. 5. (a) The250 x 190-pixel subscene used in our experiments, showing the twtalf different minerals in the Cuprite mining district in
Nevada. The map is available onlfheb) Projection of the data on the first two PCA components.

We conclude therefore, that the spatial distribution of @aspectral vectors is far away from that envisaged in the
minimum volume unmixing framework, thus precluding thosetinods to perform optimally. In order to regularize
the facets of the simplex, we conceived a very simple proeethat nevertheless produces useful results. We start
by running VCAt times and retain the simplex of maximum volume. In the cas€@A, this makes sense given
the random directions that this algorithm uses to find theeexés of the simplex. Far= 30, this procedure takes
just 2 seconds in a standard PC. Next, we project the datansat inflated simplex obtained by allowing the
abundances to be to take negative values. That is, we solvedified fully constrained least square (MFLCS)
problem with the constraints; > —e, wheree > 0 and 1Zai =1,fori=1,...,N. The MFLCS is solved by
a minor modification of the SUNSAL algorithm available in [33Ve apply then MVSA to the the regularized
dataYeg = AycaX/, WhereA,c, is the mixing matrix estimated by VCA ar¥, is the result of the MFLCS just
described. The complete procedure is available in our erdemo: http://www.Ix.it.pt/%7ejun/DemoMVSA.zip.

Fig. 5(b) shows a scatter plot of the original data jointlyhwthe VCA and the MVSA endmembers foe= 0.01.

It is clear that the simplex defined by MVSA is an enlarged ieer®f the one defined by VCA. Table IV shows
the processing time for MVSA, MVES and MVC-NMF, respectivét is remarkable that the advantages of MVSA
in terms of efficiency are significant as, for the considerathdset, MVSA took less than 3 minutes to perform
the computation while MVES spent around 7 hours and MVC-NM®&ktaround 50 minutes in the considered
environment. Such computational efficiency makes MVSA mapplicable in real scenarios.

For illustrative purposes, Fig. 6 shows the abundance miagasned by the MVSA algorithm, where the minerals
are identified by visual interpretation of the estimatedralauinces with regards to the ground truth map in Fig. 5.
In addition, Fig. 7 shows the spectral signatures of theredd endmembers. This figure reveals a good match
between the real and estimated ones. The individual abeedaaps estimated by MVES, MVC-NMF and VCA

are not presented here due to space considerations. Faodtegrwe refer to [19] in which the same real data was



22

TABLE IV
PROCESSING TIME(SECONDS TAKEN BY MVSA, MVES AND MVC-NMF, RESPECTIVELY WHEN PROCESSING THE CONSIDEREBVIRIS

CUPRITE DATA SET.

Method MVSA | MVES | MVC-NMF
Time (Seconds)| 149.93 | 24909 2896

analyzed by MVES, and to [24] where a portion of the currertadset was processed by MVC-NMF. Overall, it
has been observed that the algorithms produce some abundeps that are similar to each other. Although the
results provided by HySime are reasonable judged from tmepoted low noise, it is possible that the number
of endmembers is overestimated which affects the perfocmai MVSA and MVES. On the other hand, the
abundance maps estimated by MVC-NMF were found to be motmclisrom each other. This indicates that the
algorithms are sensitive to the estimation of the numbernaineembers, which in this work is performed by an
external algorithm. In order to have a fair comparison obathms, we decided to report results wjth= 14 (the
HySime estimate) for all the compared methods in this expemi. Overall, the experimental results reported in
this section reveal that the proposed MVSA can produce aimdsults to those provided by other state of the art
algorithms like MVES or MVC-NMF, but in a more computatiolya¢fficient fashion.

(d)

(@) (b)

0.8
0.6
0.4
0.2

1),

) (h)

(k)

Fig. 6. Abundance fraction maps estimated by the propose@M&lgorithm: (a) Chlorapatite WS423, (b) Nontronite NG;1(c) Kaolin/Smect
KLF508 85%K, (d) Kaolinite KGa-2 (pxyl), (e) Buddingtonit&DS85 D-206; (f) Nontronite SWa-1.a, (g) Alunite GDS84 Na@B)
Montmorillonite+llli CM42, (i) Montmorillonite+Illi CM37, (j) Alunite AL706 Na_; (k) Jarosite WS368 Pb, (I) Jarosite JR2501 K, (m)
Chlorite SMR-13.e:30um, (n) Chalcedony CU91-6A.



23

1 1 1
. S 05| o= =T I
0.5 / _____ Real oS, 0.5 / hd ( //"
. ok
. MVSA 0 05 1 15 2 25
05 1 15 2 25 25
1 1 1
/7 r\ 05 f—r" e
0.5 P f"\ 0.5 -
= 0
y ~ 05 1 15 2 25
~ 0 ~ 0 O\o
¥ 05 1 15 2 25 ¥ 05 1 15 2 25 S
~ 1 ~ 1 (ORI
3 @ = i
2 e e =T s g 05| =" ‘
s 05 = ’\V\ s 05 o -
s s o 0
ot : @ = 05 1 15 2 25
= 0 = 0 [}
o 05 1 15 2 25 O o0 2 25 12
r i — —— x 1
/7 y s = = T e
. = _ 0.5 /‘ oy
05 Y 05 s
/ 0
o o 05 1 15 2 25
05 1 15 2 25 05 1 15 2 25 Wavelength(um)
1 1
L= = o F\‘
05 SN 0.5
0 0
05 1 15 2 25 05 1 15 2 25
Wavelength(um) Wavelength(um)
(@) (b) (©

Fig. 7. Endmember signatures in the USGS library and the enudrer estimates obtained by our MVSA algorithm. The cooerding signatures
are, from top to bottom: (a) Chlorapatite WS423, Nontromte-1.a, Kaolin/Smect KLF508 85%K, Kaolinite KGa-2 (pxyBuddingtonite
GDS85 D-206; (b) Nontronite SWa-1.a, Alunite GDS84 NaO3 niaorillonite+llli CM42, Montmorillonite+llli CM37, Alunite AL706 Na_;
(c) Jarosite WS368 Pb, Jarosite JR2501 K, Chlorite SMR<430&im, Chalcedony CU91-6A.

VI. CONCLUSIONS ANDFUTURE LINES

In this paper, we have described a minimum volume simplexyaisa(MVSA) algorithm for unsupervised
hyperspectral unmixing and its efficient implementatioringsthe interior point method. This algorithm is a
representative method of a class of algorithms for endmerakigaction that do not need the presence of pure
pixels in the hyperspectral data. Despite the interest andegl effectiveness of the method in toy examples and
experiments with small data sets, the algorithm had raregnhbused in real applications due to its computational
complexity, resulting from the fact that the involved optation problem was very difficult to handle. In this
regard, one of the main contributions of this work is the preation of a series of strategies in order to lighten the
computational load of MVSA, making it appealing for real leygpectral imaging applications. Another contribution
has been the detailed comparison of MVSA to other algoritfwith and without the pure pixel assumption) using
both simulated and real data sets. Our experiments deratmgtrat, with the presented modifications, MVSA

is competitive with other state-of-the-art solutions imme of endmember identification and spectral unmixing
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accuracy and also in terms of computational complexitys thilowing the application of the algorithm to problems
characterized by a high number of endmembers (i.e., congueres) and also by a high number of pixels (i.e.,
large scenes). In future work, we will include a soft conistran the proposed MVSA algorithm in order to make it
more robust to noise and outliers. Furthermore, the prapeggrithm can also be adapted to extract endmember

bundles using the framework described in [34] to addresses®f endmember variability.
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