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Abstract

Linear spectral unmixing aims at estimating the number of pure spectral substances, also calledendmembers, their

spectral signatures, and their abundance fractions in remotely sensed hyperspectral images. This paper describes a

method for unsupervised hyperspectral unmixing called minimum volume simplex analysis (MVSA), and introduces

a new computationally efficient implementation. MVSA approaches hyperspectral unmixing by fitting a minimum

volume simplex to the hyperspectral data, constraining theabundance fractions to belong to the probability simplex.

The resulting optimization problem, whichis computationally complex, is solved in this work by implementing a

sequence of quadratically constrained subproblems using the interior point method,which is particularly effective from

the computational viewpoint.The proposed implementation (available online: www.lx.it.pt/%7ejun/DemoMVSA.zip)

is shown to exhibit state-of-the-art performancenot only in terms of unmixing accuracy, particularly in non pure pixel

scenarios, but also in terms of computational performance.Our experiments have been conducted using both synthetic

and real data sets. An important assumption of MVSA is that pure pixels may not be present in the hyperspectral

data, thus addressing a common situation in real scenarios which are often dominated by highly mixed pixels. In

our experiments, we observe that MVSA yields competitive performance when compared with that of other available

algorithms that work under the non-pure pixel regime. Our results also demonstrate that MVSA is well-suited to

problems involving a high number of endmembers (i.e., complex scenes) and also for problems involving a high

number of pixels (i.e., large scenes).

Index Terms

Hyperspectral imaging, spectral unmixing, endmember identification, minimum volume simplex analysis (MVSA),

interior point method.

I. I NTRODUCTION

Hyperspectral unmixing is a source separation problem which focuses on the decomposition of the pixel spectra

into a set of constituent spectra, also termedendmembers, and their corresponding fractional abundances present in
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the pixel [1]. Compared with the canonical source separation scenario, the sources in hyperspectral unmixing are

statistically dependent, and the observed mixtures are either linear or nonlinear in nature [2]. The linear mixing

model holds when the mixing scale is macroscopic [3]–[6]. Inthis case, we assume that the acquired spectral vectors

are a linear combination of the endmember signatures present in the scene, weighted by their respective fractional

abundances. In turn, nonlinear mixing holds when the light suffers multiple scattering involving different materials

[7]–[10]. This model assumes that incident solar radiationis scattered by the scene through multiple bounces

involving several endmembers [7]. In practice, nonlinear mixtures happen very often in real scenarios, although

linear models can approximate these complex mixtures with agooddegree of confidence [11]. These characteristics,

together with the high dimensionality of hyperspectral vectors and the large number of pixels present in real scenes,

place the unmixing of hyperspectral mixtures beyond the reach of most source separation algorithms, thus fostering

active research in the field (see [1] for a recent overview of advances in this area).

Linear unmixing techniques can be classified into statistical and geometrical-based. The former category addresses

spectral unmixing as an inference problem, often formulated under the Bayesian framework, whereas the latter

category exploits the fact that the spectral vectors (underthe linear mixing model) lie in a simplex whose vertices

correspond to the endmembers.Here, we focus on the geometrical approach to spectral unmixing (additional details

about the statistical approach can be found in [1] and references therein). It should be noted that the overview

does not intend to be exhaustive, but to introduce some of themost relevant methods that will be compared with

our proposed approach. For instance, important recent techniques such as sparse unmixing [12] or support vector

machine (SVM)-based unmixing [13] are not described in detail.

The geometrical approach exploits the fact that, under the linear mixing model, hyperspectral vectors belong to

a simplex set whose vertices correspond to the endmembers. Therefore, finding the endmembers is equivalent to

identifying the vertices of the aforementioned simplex. The main research lines presented in recent years under this

framework belong to two different groups. Pure pixel based algorithms assume that the scene contains at least one

pure pixel per endmember [1]. More recently, several algorithms dropped this assumption by assuming that no pure

pixels may be present in real hyperspectral scenes [14]. In the following we outline these two approaches.

A. Spectral unmixing with the pure pixel assumption

If there exists at least one pure pixel per endmember (i.e., apixel containing just one material), then unmixing

amounts to finding the spectral vectors in the data set corresponding to the vertices of the data simplex. Some popular

algorithms implemented using this assumption are the vertex component analysis (VCA) [15] and N-FINDR [16],

among many others (see [1], [11] and [17] for more extensive overviews). Among representative algorithms in

this category, maximum volume simplex based techniques like VCA or N-FINDR are based on the fact that, in

p spectral dimensions, thep-dimensional volume defined by a simplex formed by the purestpixels is larger than

any other volume defined by any other combination of pixels. The VCA algorithm iteratively projects data onto a

direction orthogonal to the subspace spanned by the endmembers already determined. The new endmember signature

corresponds to the extreme of the projection. The algorithmiterates until all endmembers are exhausted [15]. The

N-FINDR algorithm finds the set of pixels defining the largestvolume by inflating a simplex inside the data. This
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strategy is opposite to that explored by minimum volume algorithms (addressed in the next subsection), which

instead minimize the volume of the simplex that encloses allpixel observations [18], [19].

B. Spectral unmixing without the pure pixel assumption

If the pure pixel assumption is not fulfilled (this is a more realistic scenario since hyperspectral data are often

dominated by highly mixed pixels [1], [2]) the unmixing process is a rather challenging task. This is because the

endmembers, or at least some of them, are not included in the data set.In his seminal work, Craig [18] presented

this idea which has also been explored by other authors providing different algorithms for minimizing the same

objective function, such as the minimum-volume enclosing simplex (MVES) [19]. The robust MVES (RMVES)

[20] and the simplex identification via split augmented Lagrangian (SISAL) algorithm [21] are variants of these.

Other techniques minimize a regularized least squares fit ofthe data, including the iterative constrained endmembers

(ICE) [22], the sparsity-promoting ICE (SPICE) [23],and the minimum volume constrained nonnegative matrix

factorization (MVC-NMF) [24]. MVC-NMF uses constrained NMF to decompose mixed pixels in multispectral

and hyperspectral remote sensing images. Specifically, MVC-NMF adopts a volume-based constraint together with

NMF for the decomposition of mixed pixels. In this regard, the main difference between ICE and MVC-NMFis

the measure of the simplex that they use as a regularizer [25]. Craig [18] and MVES find a simplex by minimizing

the simplex volume subject to the constraint that all the dimensionally-reduced pixels are enclosed by the simplex.

The MVES algorithm is based on a cyclic minimization procedure, in which a sequence of linear programs (LPs)

are solved. SISAL implements a robust version of the minimumvolume concept which allows violations of the

abundance non-negativity constraint.

At this point, it is important to emphasize that the main difference between the seminal algorithm introduced by

Craig [18] and other strategies like MVES or SISAL lies in thesolution of the optimization problem. It has been

found that the solutions provided by greedy solvers are strongly dependent on the initialization [1]. This handicap

was circumvented by MVES and SISAL by reformulating the optimization problem with respect to the inverse of

the matrix of estimated endmembers [25]. In this work, we present a new computationally efficient implementation

of the minimum volume simplex analysis (MVSA) algorithm introduced in [26] that uses sequential quadratic

programming to solve the optimization problem. The optimization process adopted by the algorithm will be shown

to be faster than (i) the original solver introduced in [26];(ii) MVES which solves exactly the same optimization;

(iii) MVC-NMF.

C. Proposed approach

In this work, we specifically focus on the minimum volume based approach for hyperspectral unmixing, and further

develop a computationally efficient version of the MVSA method [26]. The MVSA algorithm fits a minimum volume

simplex to the hyperspectral data by constraining the abundance fractions to belong to the probability simplex. The

resulting optimization problem, whichis computationally very complex, is solved in this work by implementing a

sequence of quadratically constrained subproblems using the interior point method [27], thus providing a completely

new perspective on the MVSA method based on an efficient implementation that allows, for the first time in the
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literature, a detailed comparison of its performance with that of other standard methods based on minimum volume

concepts and the non-pure pixel assumption. The main contributions and differences of the proposed work with

regards to [26] can be summarized as follows:

• An interior point algorithm is used to solve the optimization problem, whereas in [26] a sequential quadratic

programming (SQP) approach was used. The proposed optimization greatly reduces the computational com-

plexity of the algorithm and allows for its practical utilization with moderately large and complex hyperspectral

data sets.

• An implementation of the new algorithmis available in the form of an online demonstration1. This optimized

demonstration includes the Matlab source code of the algorithm, together with different analysis examples

including difficult cases with a large number of samples, large number of endmembers, etc. The availability of

the source code will allow interested readers to reproduce our results and to conduct their own experiments.

The remainder of the paper is organized as follows. Section II describes the fundamentals of the MVSA algorithm.

Section III describes our proposed implementation, with particular emphasis on the optimizations conducted.Section

IV presents a detailed experimental evaluation of the algorithm using synthetic data sets. Section V we use a subset

of the popular AVIRIS Cuprite data for evaluation.Section VI summarizes the paper and hints at plausible future

research lines.

II. M INIMUM VOLUME COMPONENT ANALYSIS (MVSA)

Let Y ≡ [y1, . . . ,yN ] ∈ R
L×N denote a matrix collectingN measured spectral vectors of sizeL. We assume

that these vectors are well approximated by the linear mixing model [1]; that is, fori ∈ {1, 2, . . . , N}, we have

yi = Mαi + ni

s.t.: αi ≥ 0, 1T
p αi = 1,

(1)

whereM ≡ [m1, . . . ,mp] ∈ R
L×p is the mixing matrix (mj denotes thej-th endmember signature andp is

the number of endmembers),αi = [αi1, αi2, . . . , αip]
T is the abundance vector,1p = [1, 1, . . . , 1]T is a column

vector of sizep of (the notation[·]T stands for vector or matrix transpose), andni accounts for additive noise. The

constraintsαi ≥ 0 (the notationA ≥ 0 is to be understood componentwise) and1T
p αi = 1 stem from a physical

interpretation of the abundance vector according to which the components ofαi represent fractions occupied by

the corresponding endmembers and, therefore, they are nonnegative and their sum is equal to one.

By collecting the abundance vectors in the matrixA ≡ [α1, . . . , . . . ,αN ] ∈ R
p×N and the noise vectors in

the matrixN ≡ [n1, . . . ,nN ] ∈ R
L×N , we may write the observation equations (1), fori ∈ {1, 2, . . . , N}, in the

compact matrix form

Y = MA+N

s.t.: A ≥ 0, 1T
p A = 1T

N .
(2)

The setC ≡ {x = Mα ∈ R
L : α ≥ 0,1T

pα = 1}, assuming thatM is full rank, is a(p− 1)−simplex, meaning

that C hasp vertices corresponding to the columns ofM. MVSA aims at finding the vertices of the simplexC,

1available from http://www.lx.it.pt/%7ejun/DemoMVSA.zip
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Fig. 1. Illustration of the simplex setC for p = 3. C is the convex hull of the columns ofM. Green circles represent spectral vectors. Red

circles represent vertices of the simplex and correspond tothe endmembers.

and therefore the matrixM, by fitting a simplex of minimum volume to the observed dataY. This concept is

schematized in Fig. 1 forp = 3, whereC denotes the convex hull of the columns ofM, the green circles represent

spectral vectors, and the red circles represent vertices ofthe simplex, which correspond to the endmembers. If there

exist enough samples in the facets of the simplex, then the minimum volume simplex containing the spectral vectors

corresponds to the true one, as illustrated in Fig. 1. Hence,the identification of the minimum volume simplex is, in

the absence of noise, equivalent to the identification ofM (see [1] for further details about the minimum volume

approach to hyperspectral unmixing). In addition to the mixing matrix M, MVSA also estimates the abundance

matrix A.

A. MVSA preprocessing

As discussed before, the vectorsMαi belongs to the simplex setC. However, this is not the case of the measured

vectorsyi = Mαi + ni, owing to the presence of the observation noiseni. Another degradation mechanism

that displaces the measured vectors further away from the original simplex set is the spectral variability due to,

namely, variations in the illumination and surface topography. Spectral variability is often characterized by pixel

dependent scaling factors affecting the abundance vectors. That is, instead ofαi, we haveγiαi, with γi > 0, for

i ∈ {1, 2, . . . , N} and, therefore, the sum-to-one constraint does not hold true.

The observation noise and the spectral variability are two degradation mechanisms which have a negative impact

on the inference of the simplex of minimum volume. In order tomitigate these negative effects, we introduce two

processing steps. In the first step, the signal subspace is identified using the hyperspectral subspace identification

by minimum error (HySime) [28] algorithm. In the second step, the scale factorsγi > 0 are removed by means of

a projection on a suitable affine set. Below, we summarize these steps (for more details, see [1]).

1) Signal subspace identification:The objective of signal subspace identification is the estimation of the subspace

span(M), i.e., the subspace spanned by the columns ofM. Under the observation model (2), the identification of

span(M) may be obtained via the eigendecomposition of the sample correlation matrixYYT /N . However, if the
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noise is band dependent, the inference of span(M) is more complex. We use HySime [28], which assumes band

dependent noise, to estimate the noise covariance matrix and the signal subspace. HySime outputs the estimated

subspace in the form of an orthonormal matrixU ≡ [u1, . . . ,up] ∈ R
L×p whose columns span the same subspace

as M. Notice that, in this paper, the term orthogonal matrix is tobe understood in the sense of matrices with

orthonormal columns. Based onU, we compute the coordinates ofyi, for i ∈ {1, 2, . . . , N}, as

Y ← UTY = UTMA+UTN. (3)

For simplicity, here we useY to denote both the observation and its projection onto the identified subspace.

Consequentially,yi is used to denote the observed and projected vectors.

According to (3), the projected vectors still follow a linear mixing model with mixing matrixUTM ∈ R
p×p,

and noise vectorsUTN. The new model has, however, two significant advantages withrespect to the original one:

a) computational, becausep≪ L in most applications, and b) improved SNR, because‖UTN‖F ≪ ‖N‖F , where

‖X‖2F ≡ trace(XXT ) denotes the Frobenius norm of the matrixX.

Given that span(U) = span(M), apart from estimation errors which are very small ifN is large, then we have

M = UUTM. The implication of this property is that we may estimate thematrix UTM ∈ R
p×p, sayM̂U , and

then obtain the estimate of the original mixing matrix aŝM = UM̂U .

2) Affine projection: The objective of this step is to remove the effect of pixel dependent scale factors and,

thus, to recover the sum-to-one constraint. This goal may beachieved by projecting each spectral vector onto the

hyperplane that best represents the measured data set in theleast squares sense. Here, we follow closely [19].

Let

y ≡
1

N

N∑

i=1

yi, and Y = y1T
N .

The hyperplane that best represents the measured data set inthe least squares sense is given byHy ≡ {y ∈ R
p :

y = y + ET
p−1β, β ∈ R

p−1}, whereEp−1 holds in its columns thep − 1 eigenvalues of the sample covariance

matrix (Y−Y)(Y−Y)T /N corresponding to thep−1 largest eigenvalues of the same matrix [19]. The orthogonal

projection of the measured vectors ontoHy is given by

yi ← y +ET
p−1(yi − y), i ∈ {1, 2, . . . , N}.

Given that, after the projection the vectorsyi ∈ R
p belong to a(p− 1) affine set, then the sum-to-one constraint

is recovered; that is, anyy ∈ Hy may be written as an affine combination ofp linearly independent vectors lying

in Hy.

At this point, we would like to call attention to the fact thatthe affine projection may introduce angle displacements

between the original measured vectors and the corresponding projected ones. These displacements increase with

the spread of the scaling factors [22]. This shortcoming maybe avoided by using the projective projection instead

of the affine projection (see [1] for a detailed discussion onthis issue).

B. MVSA inference criterion
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Our goal is to perform hyperspectral linear unmixing under the linear mixing model assumption. Following the

rationale introduced in [26], [21], we formulate the problem by seeking the smallest(p−1)−simplexC that contains

the data samplesY. Assuming that the noise termUTN shown in (3) –obtained after the data projection step– is

negligible, the hyperspectral unmixing problem may be formulated as

M̂ = argmin
M
| det(M)|,

s.t. : QY ≥ 0, 1T
p QY = 1T

N ,
(4)

whereQ ≡ M−1(see equation (2)); since| det(M)| is the volume defined by the origin and the columns ofM,

the interpretation of optimization (4) is clear: we seek a mixing matrixM = Q−1 defining the smaller simplex that

contains the observed data in the simplexC, which is a facet of the simplex defined by the columns ofM and the

origin.

Sincedet(Q) = 1/ det(M), we can replace the problem (4) with the following:

Q̂ = argmax
Q

log | det(Q)|,

s.t. : QY ≥ 0, 1T
p QY = 1T

N .
(5)

As already mentioned, in this work we are assuming that the noise after the projection step is negligible.

We call attention, however, to a robust to noise and outliersversion of MVSA introduced in [26] and further

developed in [21]. This robustness is the result ofreplacing the hard constraintQY ≥ 0 with a soft constraint

−1Thinge(−QY)1, where hinge(x) is an element-wise operator that, for each component, yields the negative part

of x. However, in this work we only address the unmixing problem under the hard constraintQY ≥ 0 because

our objective is mainly focused on solving(5) in a computationally very efficient way.In the following section,

we describe our proposed implementation of MVSA which aims at obtaining “good” (but sub-optimal) solutions

to the optimization problem (5).

III. PROPOSED IMPLEMENTATION

A. Constraint Reduction

Hyperspectral datasets are often very large (in the sense ofthe number of pixels that they comprise) and, thus,

the optimization problem described in the previous sectionis complex from a computational point of view. In order

to lighten the computational load of the MVSA algorithm, we adopt the strategy followed in [26], [21] to reduce

the number of constraints, which exploits the following fact:
{
Q ∈ R

p×p : 1T
p QY = 1T

N

}

︸ ︷︷ ︸
A

=
{
Q ∈ R

p×p : 1T
p QYYT = 1T

NYT
}

︸ ︷︷ ︸
B

. (6)

To prove thatA = B, we show thatA ⊂ B and thatB ⊂ A. The former relation is trivial. We prove the latter

by reduction to absurdity. Suppose that we are given a matrixQa ∈ A and a matrixQb ∈ B − A. It follows that

1T
p (Qa −Qb)Y 6= 0, or equivalentlyYT ξ 6= 0, whereξT ≡ 1T

p (Qa −Qb), and, becauseQa ∈ B, YYT ξ = 0.

That is,YT ξ belongsto the null space ofY. This is however impossible because theintersectionbetween the null

space ofY and the range ofYT is just the zero vector.



8

Now, assuming thatY is full rank, thenYYT is invertible and we may then write

1T
p QY = 1T

N ⇔ 1T
p Q = qp, (7)

whereqp ≡ 1T
NYT (YYT)

−1
can be obtained beforehand. Then, the problem in (5) is simplified to the following

form:
Q̂ = argmax

Q
log | det(Q)|

s.t. : QY ≥ 0, 1T
p Q = qp.

(8)

Notice that, by applying the constraint reduction, we can greatly reduce the number of active constraints in the

equality constraint (frompN to p).

MVSA is initialized with the set of endmembersM ≡ [m1, . . . ,mp] generated by the VCA [15] algorithm.

We selected VCA because it is one of the fastest among the state-of-the-art pure pixel-based methods. In order to

ensure that most vectors belong to the convex set generated by the columns ofM, we expand the initial simplex

to increase the number of pixels that are inside the convex hull of the identified endmembers, which leads to very

few active nonnegativity constraints,i.e., Qyi > 0 for most pixels. For instance, if there aren samples outside of

the current simplex, withn≪ N , we reduce the number of active constraints in the inequality constraint frompN

to pn. This reduces computational complexity because, during the computation, inactive constraints are temporarily

ignored, although we continue to track them.

B. Minorize-maximization optimization. Sequence of convex subproblems.

The optimization problem (8) becomes convex only whenQ is restricted to the cone of symmetric positive

definite matrices. This is not the case in our application whereQ is neither symmetric nor positive definite yielding

a non-convex and thus quite challenging optimization problem. Herein, we adopt the “minorize-maximization”

(MM) framework [29] to find local optima for (8). The MM schemeis an iterative procedure that, at each iteration,

builds a minorizer of the objective function and maximizes it. When the minorizer function is optimized, the original

objective function is driven downhill as needed. For the MM procedure to make sense, the sequence of minorizers

should be much easier to optimize than the original problem.

Let x ≡ vec(Q) denote the operator that stacks the columns ofQ in the column vectorx, f(x) ≡ log | det(Q)|,

andφ(x;x(t)) denote a minorizer forf at x(t); that is,f(x(t)) = φ(x(t);x(t)), andf(x) ≥ φ(x;x(t)) for all x.

Given that vec(AB) = (BT ⊗ I) vec(A) = (I ⊗A) vec(B), where⊗ denotes the kronecker operator andI the

identity matrix with suitable dimension, then our MM iterative procedure is given by

x(t+1) = argmax
x

φ(x;x(t))

s.t. : AIx ≥ bI , AEx = bE ,
(9)

where
AI ≡ (YT ⊗ I) ∈ R

pN×p2

AE ≡ (I⊗ 1T
p ) ∈ R

p×p2

bI ≡ 0 ∈ R
pN

bE ≡ qp ∈ R
p.

(10)
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Let g(x) ≡ vec(Q−T ) andH(x) ≡ −Kn[Q
−T⊗Q−1], whereKn is the commutation matrix (i.e., Knvec(A) =

vec(AT )) denote, respectively, the gradient and the Hessian off . As a minorizer forf , we use the quadratic function

φ(x;x(t)) ≡ f(x(t)) + g(t)T (x− x(t)) +
1

2
(x− x(t))TG(t)(x− x(t)) (11)

= f(x(t)) + c(t)
T

x+
1

2
xTG(t)x, (12)

whereG ≡ min{λmin(H),−υ)}I, with λmin(H) standing for the minimum eigenvalue ofH and υ > 0 a small

positive number, andc(t) ≡ g(t) −G(t)x(t).

We conclude therefore that the core step in the MVSA algorithm is the computation, in each iteration, of the

solution of a quadratic problem with linear inequality and equality constraints with the following structure:

max cTx+ 1
2x

TGx

s.t. : AIx ≥ bI , AEx = bE ,
(13)

whereAIx ≥ bI and AEx = bE are defined in equation (10). SinceG is negativedefinite, the quadratic

problem (13) is strictly convex and itsdifficulty is equal to finding a solution to a linear optimization problem [27].

Thus we have transformed the non-convex optimization problem into the solution of a sequence of convex quadratic

problems.

Algorithm 1 MVSA pseudocode
1: INPUT: AI , AE , bI , bE , x0 (initialization)

2: Convergence← false

3: repeat

4: g← ∇f(x0), H← ∇2f(x0)

5: G← min{λmin(H),−υ)}I

6: c← g−Gx

7: x← solution of the quadratic optimization (13)

8: if f(x0) > f(x) then

9: do line search untilf(x0) ≤ f(x)

10: end if

11: if |f(x0)− f(x)|/|f(x)| <threshold then

12: Convergence← true

13: end if

14: x0 ← x

15: until Convergence

The pseudocode for the MVSA algorithm is shown in Algorithm 1. As mentioned in subsection III-A, the

initialization x0 is provided by an expansion of the VCA estimate to increase the number of pixels that are in

the convex hull of the identified endmembers. The gradient and the Hessian off are computed in line 4. In line
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5, λmin(H) represents the minimum eigenvalue ofH, which is a real number becauseH is symmetric. Since

min{λmin(H),−υ)} < 0, matrix G is negative definite.

To avoid the computation ofλmin(H) at each iteration, an alternative to the definition ofG shown in line 6,

which we found heuristically to work very well in practice, is

G =− υI+ diag(g2), (14)

where diag(g2) stands for a diagonal matrix with diagonal elements given bythe square of the elements ofg.

Because it can only be guaranteed thatG−H is negative definite in a neighborhood ofx(t), then it cannot

be guaranteed thatφ(x;x(t)) is in fact a minorizer off . In order to ensure thatf(x0) ≥ f(x) after solving the

optimization (13),i.e., to have a monotonic behavior, we implement in line 9 of MVSA aline search betweenx

andx0 if f(x0) > f(x).

C. A fast interior point method to solve the quadratic problem (13)

At this point, it is also important to notice thatAI is of size ofpN × p2, which brings difficulties for solving

problem (13) in terms of computational time and especially in terms of RAM memory. For instance, for a problem

with p = 20 endmembers andN = 512× 512, it would be prohibitive tomanipulateAI . This roadblockhas been

a major limitation of MVSA in the past. In this work, we address this problem by using the interior point method

to solve the quadratic problem (13).

The Karush-Kuhn-Tucker (KKT) conditions for the quadraticproblem (13) are

Gx−AT
I
λ+AT

E
µ+ c = 0

AIx− bI ≥ 0

AEx− bE = 0

(AIx− bI )iλi = 0, i = 1 . . . nI ≡ Np

λ ≥ 0,

(15)

whereλ ≡ [λ1, . . . , λnI
]T , µ ∈ R

p are the Lagrangian multipliers for the inequality and equality constraints,

respectively,nI is the number of inequality constraints, and the notation(X)i stands for thei-th row of matrixX.

By introducing a slack vectors ≡ [s1, . . . , snI
]T , the non-linear system (15) is transformed into a non-linear

system of equations that can be solved by the interior point method, so that the problem becomes

Gx−AT
I
λ+AT

E
µ+ c = 0

AIx− s− bI = 0

AEx− bE = 0

siλi = 0, i = 1 . . . nI

λ, s ≥ 0.

(16)

A predictor corrector interior point algorithm [27] is usedto solve (16). The predictor corrector algorithm solves

two times the calculation of the Newton step of the system of equations (16); one time to get theaffineNewton

step and the other to correct the affine step getting the final Newton step. Notice that the Newton steps in both
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cases should be constrained such thatthe vectorsλ and s are non-negative and strictly positive respectively. The

two systems that need to be solved in order to get the affine andfinal Newton steps are, respectively,



G AT
E

0 −AT
I

AI 0 −I 0

AE 0 0 0

0 0 Λ S







∆xaff

∆µaff

∆saff

∆λaff



=




−rd

−rI

−rE

−ΛSe,




(17)

where

rd ≡ Gx−AT
I
λ+AT

E
µ+ c

rI ≡ AIx− s− bI

rE ≡ AEx− bE

Λ ≡ diag(λ1, . . . , λnI
)

S ≡ diag(s1, . . . , snI
)

e ≡ [1, . . . , 1]T

(18)

and 


G AT
E

0 −AT
I

AI 0 −I 0

AE 0 0 0

0 0 Λ S







∆x

∆µ

∆s

∆λ



=




−rd

−rI

−rE

−ΛSe−∆Λaff∆Saffe+ σρe




(19)

where

∆Λaff ≡ diag(∆λaff
1 , . . . ,∆λaff

nI
)

∆Saff ≡ diag(∆saff
1 , . . . ,∆saff

nI
)

ρ ≡
sTλ

nI

(20)

andσ ∈ (0, 1]. The predictor corrector interior point algorithm for the solution of the quadratic problem is shown

in Algorithm 2.

It should be noted that, since the interior point method converges to thesolutionof the KKT conditions and the

quadratic problem is convex, the solution will be unique andthe optimal solution of the quadratic problem. So,

Algorithm 2 converges to the optimal solution. The number ofiterations needed for convergence is dependent on

the allowed error. In all our experiments, we have observed thata maximum number of iterations set empirically

to 150 yielded an error that is negligible from a practical point of view. In this respect, it should be mentioned

that the convergence of Algorithm 2 is quadratic when the error is small. This behavior is certainly related to the

observed negligible error after 150 iterations. In view of these observations, we have set the maximum number of

iterations to 150 in all experiments.



12

Algorithm 2 The predictor corrector interior point algorithm

1: Initialize (x0,µ0, s0,λ0) with s0, λ0 > 0

2: k ← 0

3: while σ, ρ ≥ 10−8 do

4: (x,µ, s,λ)← (xk,µk, sk,λk)

5: solve (17) and get(∆xaff,∆µaff,∆saff,∆λaff)

6: ρ← sTλ

nI

7: α̂aff ← max{α ∈ (0, 1]|(s,λ) + α(∆saff,∆λaff) ≥ 0}

8: ρaff ← (s + α̂aff∆saff)T (λ + α̂aff∆λaff)/nI

9: σ ←
(

ρaff

ρ

)3

10: solve (19) and get(∆x,∆µ,∆s,∆λ)

11: τk ← 1− 1
k+1

12: α̂← max{α ∈ (0, 1]|(s,λ) + α(∆s,∆λ) ≥ (1 − τk)(s,λ)}

13: (xk+1,µk+1, sk+1,λk+1)← (xk,µk, sk,λk) + α̂(∆x,∆µ,∆s,∆λ)

14: k ← k + 1

15: end while

16: return xk

D. Normal equations and implementation

From the interior point method description in Algorithm 2, it can be seen that the main computational tasks are

those described in lines 5 and 10 of Algorithm 2,i.e., those related to the computation of the Newton step. In the

case of MVSA, the number of unknowns isp2, the number of inequality constraints isnI = Np, and the number of

equality constraints isnE = p, whereN is the number of pixels in the hyperspectral data. As a result, the Jacobian

matrix of the systems (17) and (19) is of size(2Np+p2+p)× (2Np+p2+p). This means that, for an image with

250×190 pixels andp = 20 endmembers, the size of the matrices is already prohibitively large for the systems to

be solved directly, both computationally and in terms of RAMmemory consumption. However, by exploiting the

Jacobian structure the system, the problem can be solved progressively by deriving the “normal equations” [27] as

follows:
(G+AT

I
S−1ΛAI )∆x+AT

E
∆µ = −rd +AT

I
S−1Λ(−rI −Λ−1rΛS)

AE∆x = −rE

∆s = AI∆x+ rI

∆λ = −S−1Λ(Λ−1rΛS +∆s),

(21)

whererΛS is the last right term of both systems (17) and (19).

It can be seen in (21) that, in order to solve both systems (17)and (19), the first two equations can be solved

by forming a(p2 + p)× (p2 + p) linear system, thus obtaining∆x and∆µ. Then∆s is obtained from the third

equation using∆x and, finally,∆λ is obtained from the last equation using∆s.
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The multiplication of the diagonal matricesS−1, Λ (and their inverses) with vectors can be done by the

membership multiplication of the vector in the diagonal of the matrices with the respective vector. As a result,

there is no need to store explicitly the diagonal matrices, but just the vectors in the diagonal. The multiplication

of the very large and sparse matrixAI with a vectorv in our case can be computed as a matrix by matrix

multiplication, i.e., AIv = VY andAT
I
v = VYT , whereY is the sample matrix andV is the matrix formed by

v with column-major order. These multiplications can be doneefficiently by dense matrix by matrix multiplication.

The same concept applies to the multiplication ofAT
I
v. It can be also observed that the symmetric matrix of the

linear system, formed by the first two equations of (21), is the same for the solution of∆x and∆µ in both systems

(17) and (19), therefore the inverse is computed just once. Sincep in practice is small, say, less than 25, this matrix

is of low dimension and can be computed rapidly.

Up until now, the only remaining challenge is how to efficiently compute the termAT
I
S−1ΛAI . Since we want

to avoid using the matrixAI due to its large size, a methodology will be presented for exploiting the structure

of AI . We will examine first the computation ofAT
I
S−1Λ. Our goal is to create a compact dense form of this

computation, i.e., without zero elements and without storing AT
I

and the diagonal matrixS−1Λ. Let sinvλ be the

matrix formed by the diagonal ofS−1Λ. We can express the multiplication using zero initial indexas follows:

(AT
I
S−1Λ)compact=




λ0/s0Y00 λp/spY01 . . . λ(N−1)p/s(N−1)pY0N−1

...
...

...
...

λp−1/sp−1Y00 λp/spY01 . . . λNp−1/sNp−1Y0N−1

...
...

...
...

λ0/s0Y(p−1)0 λp/spY(p−1)1 . . . λ(N−1)p/s(N−1)pY(p−1)N−1

...
...

...
...

λp−1/sp−1Y(p−1)0 λp/spY(p−1)1 . . . λNp−1/sNp−1Y(p−1)N−1




. (22)

The multiplicationAT
I
S−1ΛAI can be described also in compact form by the dense matrix by matrix multi-

plication (AT
I
S−1Λ)compactY

T . The final product is ap2 × p matrix which can be easily factored into the desired

AT
I
S−1ΛAI p2 × p2 matrix, using Algorithm 3.

Algorithm 3 Formulation of the matrixAT
I
S−1ΛAI .

1: AT
I
S−1ΛAI ← 0

2: for i = 0 to p do

3: for k = 0 to p do

4: for j = 0 to p do

5: AT
I
S−1ΛAI [k + j ∗ p+ (k + i ∗ p) ∗ p2]← (AT

I
S−1ΛAI )comp[j + (k + i ∗ p) ∗ p]

6: end for

7: end for

8: end for



14

From the preceding discussion we have seen that there is no need to store the large matrixAI . The largest matrix

used is thep2×N dimensional(AT
I
S−1Λ)compactwhich isp times smaller thanAI . This makes the problem feasible

for values ofp of the order of 20.

From the discussion in this subsection we conclude that the main computational tasks in our presented method

are the calculation of(AT
I
S−1Λ)compactY

T and the matrix multiplications of the typeAIv andAT
I
v. Using a

naive matrix by matrix multiplication, this leads to a computational complexity of the orderO(p3N + p2N).

In Algorithm 4, we present the predictor corrector algorithm with all the described optimizations. We will explain

the algorithm in relation to Algorithm 2. Line 5 of Algorithm2 is replaced by lines 5-20 of Algorithm 4. In these

lines the solution of (17) is obtained using the normal equations (21). It can also be seen in these lines that we

use the optimizations that we described, like calculating the compact representation of (22) in line 9 and applying

Algorithm 3 in line 11. Also in line 7 we use a notation also used in Matlab, specifically the (:) notation, which

means to vectorize the matrix in column-major order. Also when we use the capital letter of a vector, likeX, we

mean that the vectorx is made a matrix in column-major order. Continuing line 7 of Algorithm 2 is replaced by lines

22-24 of Algorithm 4. Line 10 of Algorithm 2 is replaced by lines 27-35 of Algorithm 4. In these lines the linear

system (19) is solved using the normal equations (21). Note that here we reuse the inverse matrix obtained from line

13. Finally, line 12 of Algorithm 2 is replaced by lines 37-39of Algorithm 4. Having presented Algorithm 4, line

9 of the basic MVSA Algorithm 1 should call Algorithm 4 for obtaining the solution of the quadratic optimization

problem. A flowchart describing the full process of the algorithm from the input (hyperspectral image) to the output

(endmembers) is included in Fig. 2.

Fig. 2. Flowchart of the proposed MVSA algorithm, from the input (hyperspectral image) to the output (endmember signatures).

IV. SIMULATED EXPERIMENTS

In this section we compare the proposed implementation of MVSA with some state-of-the-art endmember

extraction algorithms such asVCA [30], MVES [19] and MVC-NMF [24]. VCA is a pure pixel-based algorithm,

while MVES and MVC-NMF are non-pure pixel based algorithms.
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Algorithm 4 Pseudocode of an optimized predictor corrector interior point algorithm
1: INPUT: Y, c, G, AE , bI , bE

2: (x,µ, s,λ)← (x0, e, e, e), e = [1, . . . , 1]T

3: ρ← 1, σ ← 1, k ← 1

4: while (σ > 10−8 or ρ > 10−8) do

5: s−1λ← s−1. ∗ λ

6: rd ← G ∗ x+ c− (L ∗YT )(:) +AT
E
∗ µ

7: rI ← (X ∗Y)(:) − s− bI

8: rE ← AE ∗ x− bE

9: (AT
I
S
−1

Λ)compact← CalculateCompact(Y, s−1λT ) //Calculate Equation (22)

10: (AT
I
S
−1

ΛAI )compact← (AT
I
S
−1

Λ)compact∗Y
T

11: A
T
I
S
−1

ΛAI ← ConstructMatrix((AT
I
S
−1

ΛAI )compact) //Apply Algorithm 3

12: K← G+A
T
I
S
−1

ΛAI

13: Inv←





K A
T
E

AE 0





−1

14: rh← s−1λ . ∗ (rI + s)

15: rh← −rd − (RH ∗YT )(:)

16: rh←





rh

−rE





17: ∆x∆m← Inv ∗ rh

18: ∆x
aff
←∆x∆m(1 : p2)

19: ∆s
aff
← (∆X

aff
∗Y)(:) + rI

20: ∆λaff
← −s−1λ . ∗ (s+∆s

aff)

21: ρ← s
T
λ

nI

22: α∆s ← min
∆saff<0

−s ./∆s
aff

23: α∆λ ← min
∆λaff<0

−λ ./∆λaff

24: αaff ← min(α∆s, α∆λ, 1)

25: ρaff ← (s+ αaff∆s
aff)T (λ+ αaff∆λaff)/nI

26: σ ←
(

ρaff
ρ

)3

27: scorrected← s+ λ−1 . ∗∆λaff. ∗∆s
aff
− σ ∗ ρ ∗ λ−1

28: rh← s−1λ . ∗ (rI + scorrected)

29: rh← −rd − (RH ∗YT )(:)

30: rh←





rh

−rE





31: ∆x∆m← Inv ∗ rh

32: ∆x← ∆x∆m(1 : p2)

33: ∆µ← ∆x∆m(p2 + 1 : end)

34: ∆s← (∆X ∗Y)(:) + rI

35: ∆λ← −s−1λ . ∗ (scorrected+∆s)

36: τ ← 1− 1

k+1

37: αprimal← min
∆s<0

−τ ∗ s ./∆s

38: αdual← min
∆λ<0

−τ ∗ λ ./∆λ

39: α← min(αprimal, αdual, 1)

40: (x,µ, s,λ)← (x,µ, s,λ) + α(∆x,∆µ,∆s,∆λ)

41: k ← k + 1

42: end while
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Concerning the parameters involved in the algorithms, we use the following settings. MVSA depends on three

parameters: the parameterν ensuring that the matrixG shown in (14) is negative definite, the maximum number

of iterations needed for MVSA to converge (outer-loop), andthe maximum number of iterations the interior point

method needs to converge (inner-loop). In all the experiments conducted in this section, these parameters were

set to10−6, 4, and 150.The MVES algorithm as implemented by the authors of [19] depends on the number of

full cycles over the rows of the matrix of the unknowns neededto converge. The maximum number of iterations

has been set by the authors to10 ∗ p, where p is the number of endmembers. In the comparisons belowwe

kept this parametrization. Furthermore, in this experiment we use a fast implementation of the MVES algorithm

distributed by the authors of MVES2, in which they propose a solution to reduce the dimensionality of the problem

by discarding samples from the interior of the convex hull when the number of endmembers are below ten. Here,

we assume that the authors do not use the convex hull for higher dimensions because the problem of calculating

it is computationally expensive and also due to the fact that, in very high dimensions, the data accumulates close

to the convex hull even if a uniform distribution is assumed.Finally, MVC-NMF, along with its parameters, have

been optimized for execution in accordance with the guidelines provided in [24].Specifically, the value of the

MVC-NMF regularization parameter used in our experiments is τ = 0.01.

To evaluate the performance of the different algorithms, the estimated abundance fractions,Â, and the estimated

mixing matrix,M̂, are compared with the true ones (A andM, respectively).We recall that MVSA is an unmixing

algorithm that estimates simultaneously the mixing matrixM̂ = Q̂−1 and the abundanceŝA = Q̂Y.

In all experiments the number of endmembers,p, was estimated using the HySime method in [28], which has

been shown to be effective for this task, and also for dimensionality reduction purposes [1]. We use several metrics

to evaluate the proposed approach. The first one is the mean square error (MSE), denoted as‖ ǫ ‖
F
= ‖ M̂−M ‖

F

where‖ · ‖
F

stands for the Frobenius norm. Another metric considered inour experiments is the reconstruction

error, computed asrǫ = ‖ Ŷ −Y ‖
F
= ‖ M̂Â−Y ‖

F
. The third metric used in this work is the spectral angle

distance (SAD) (in degrees) expressed as SAD= cos−1
(

mT

i
m̂i

‖mi‖‖m̂i‖

)
(degrees)[2]. Although SAD may not be

completely accurate for matching libraries to endmembers,especially if the endmembers are themselves mixtures

or if the atmospheric correction process conducted on the image is not perfect, we have decided to use SAD as it is

a standard metric for spectral signature comparison. Our implementation of MVSA has been carried out in Matlab,

and compared with the Matlab implementations of the other algorithms tested as provided by their authors.

A. Pure pixel based experiments

This experiment aims at evaluating MVSA for scenarios with pure pixels.In this experiment, the synthetic image,

with size ofN = 100× 100 pixels andp = 5 endmembers, is constructed according to the linear model given by

(1) using the procedure described in [30]with maximum purity of 1. That is, for each endmember, there is at least

one pure pixel in the simulated image.The spectral signatureswere randomly selected from the USGS library [31]

(convolved and downsampled to AVIRIS wavelengths).It should be noted that the USGS signatures considered in

2available from http://mx.nthu.edu.tw/∼tsunghan/download/MVEScode.zip
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TABLE I

COMPARISON OF ENDMEMBER EXTRACTION ALGORITHMS ON A SYNTHETIC IMAGE WITH SIZE OFN = 100 × 100 PIXELS AND p = 5

ENDMEMBERSCONTAINING PURE MINERAL SIGNATURES FROM THEUSGSLIBRARY UNDER DIFFERENT NOISE LEVELS. THE

COMPUTATIONAL TIME (SECONDS) ARE ALSO INCLUDED. ALL THE RESULTS ARE OBTAINED BY AVERAGING30 INDEPENDENT RUNS.

VCA MVES MVC-NMF MVSA

dB ‖ ǫ ‖
F

rǫ SAD time ‖ ǫ ‖
F

rǫ SAD time ‖ ǫ ‖
F

rǫ SAD time ‖ ǫ ‖
F

rǫ SAD time

90 0.033 0.003 1.652 0.134 0.004 0.0 0.209 8.071 0.040 0.002 1.856 80.246 0.0004 0.0 0.026 1.125

70 0.038 0.004 1.687 0.135 0.004 0.0 0.258 7.752 0.038 0.002 1.597 82.608 0.0004 0.0 0.025 1.224

50 0.043 0.003 1.792 0.131 0.009 0.0 0.408 6.327 0.041 0.001 1.508 79.745 0.003 0.0 0.163 1.114

30 0.064 0.005 1.828 0.128 0.036 0.0 1.750 3.644 0.040 0.002 1.599 78.747 0.036 0.0 1.543 1.147

experiments are randomly sampled from a subset of the USGS library formed by retaining 62 signatures so that

the minimum angle between any couple of signatures was larger than 10 degrees.Zero-mean white Gaussian noise,

defined asSNR = 10 log10
(
E‖Y

∥∥2
F
/E‖N‖2F

)
(dB), has been added to the synthetic scene. In our experiments,

the proposed MVSA algorithm only considers the hard constraint QY ≥ 0. As shown in [26], under the hard

constraint MVSA performs very good under relatively low noise levels. Finally, it should be noted that the results

are obtained by averaging30 independent Monte Carlo runs and all simulated experimentshave been performed in

a desktop PC with the latest Intel CoreI5 CPU and 4 GBs of RAM.

Table I show the results obtained by the aforementioned methods for the considered scene with different noise

levels. It can be observed that all algorithms provide comparable results,which reveals that non pure pixel based

algorithms such as MVSA, MVES and MVC-NMF can tackle well problems with pure pixels. Furthermore,

it can be observed that our algorithm provides slightly better results thanthe other tested methods in terms of

MSE, reconstruction error, and SAD. Concerning the computational time, MVSA is notably faster than MVES and

MVC-NMF. A final aspect that should be underlined is that all algorithms obtained very good reconstruction error,

particularly MVSA and MVES. Both algorithms obtained reconstruction error close to zero. This is expected due

to the nonnegative constraint that both algorithms use, which forces all pixels into the simplex and leads to very

low reconstruction error.

B. No pure pixel based experiments

In this subsection, we evaluate MVSA by assuming that no purepixels exist in the considered image. The same

experimental setting (based on the procedure described in [30]) was constructed as in the previous experiments,

with size ofN = 100× 100 pixels andp = 5 endmembers.In order to make sure that there are no pure pixels in

the simulated image,abundance fractions withpurities [22] (i.e. maximum abundance fractions) greater than 0.8

are discarded in the simulation so that only mixed pixels exist. Tables II show the obtained results from the same

aforementioned methods for the considered scene with different noise levels. As expected, the algorithms without

the pure pixel assumption such asMVSA, MVES and MVC-NMF largely outperform the pure pixel-based VCA

algorithm. Another important observation is that, as it wasthe case in the previous experiment, the two minimum

volume based algorithms (MVES and MVSA) obtained very low reconstruction errors,i.e., close to zero. This is due
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TABLE II

COMPARISON OF ENDMEMBER EXTRACTION ALGORITHMS ON A SYNTHETIC IMAGE WITH SIZE OFN = 100 × 100 PIXELS AND p = 5

ENDMEMBERSCONTAINING NON-PURE MINERAL SIGNATURES(MAXIMUM PURITY OF 0.8) FROM THE USGSLIBRARY UNDER DIFFERENT

NOISE LEVELS. THE COMPUTATIONAL TIME (SECONDS) ARE ALSO INCLUDED. ALL THE RESULTS ARE OBTAINED BY AVERAGING30

INDEPENDENT RUNS.

VCA MVES MVC-NMF MVSA

dB ‖ ǫ ‖
F

rǫ SAD time ‖ ǫ ‖
F

rǫ SAD time ‖ ǫ ‖
F

rǫ SAD time ‖ ǫ ‖
F

rǫ SAD time

90 0.146 0.024 5.909 0.130 0.004 0.0 0.171 7.712 0.050 0.002 1.993 81.432 0.0004 0.0 0.023 1.120

70 0.157 0.028 6.307 0.129 0.004 0.0 0.189 9.369 0.060 0.002 1.849 79.467 0.0005 0.0 0.026 1.110

50 0.150 0.029 6.274 0.133 0.009 0.0 0.496 6.838 0.049 0.002 1.848 80.188 0.003 0.0 0.151 1.078

30 0.160 0.033 6.551 0.128 0.039 0.0 1.598 4.463 0.053 0.002 1.896 77.981 0.030 0.0 1.421 1.111

to the fact that, under the nonnegativity constraint, the minimum volume based algorithms enclose all observations

into the simplex. It can also be observed that, among the non pure pixel based algorithms, MVSA obtains the

best results with respect to SAD, reconstruction error, andMSE for all considered noise levels. Concerning the

computational time, MVSA is much faster than MVES and MVC-NMF.

For illustrative purposes, Fig. 3 compares the four methodsgraphically, using a simulation with non pure pixels,

with (a) p = 3 and (b)p = 10 endmembers,N = 100× 100 spectral vectors, maximum purity of 0.8, and noise

level of SNR=50dB. Finally, Fig. 4 shows the obtained spectral signatures after conducting the experiment reported

in Fig. 3(a). These two figures reveal the quality of MVSA estimates with regards to those obtained by other

algorithms.
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(a) p = 3 endmembers (b)p = 10 endmembers

Fig. 3. Unmixing results for a simulation with non pure pixels usingdifferent numbers of endmembers:p = 3 (a) p = 10 (b) for VCA, MVSA,

MVC-NMF, and MVES algorithms, respectively, whereY denotes the spectral vectors,v1 ≡ [1, 0, . . . , 0]T andv2 ≡ [0, 1, 0 . . . , 0]T .
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Fig. 4. Endmember signatures estimated by MVSA, VCA, MVES and MVC-NMF in a simulation with SNR= 50dB noise and non pure

pixels, which corresponds to the experiment reported in Fig. 3(a).

C. Evaluation of the efficiency

An important aspect in this experiment is to analyse the efficiency of the proposed MVSA algorithm from a

computational viewpoint. In order to explore this issue, wenow discuss the computational performance of Matlab

implementations of MVSA (by us) and MVES (by the authors of [19]), using USGS library endmembers.All

our experiments were conducted using the latest Intel Core I7 CPU and 32 GBs of RAM. Notice that here we

only report the results obtained by MVES and MVSA, as both algorithms solve similar optimization problems

but using a completely different strategy.Table III reports the processing time for problems withN = 50 × 50,

N = 100 × 100 andN = 150 × 150 pixels using different numbers of endmembers.In Table III, the number of

endmembersp goes up to 20. This is a very difficult problem and (as we mentioned in the previous experiment)

it is difficult to havep = 20 endmembers in one given pixel or a local area. As a result, themain purpose of

usingp = 20 is to show the computational efficiency of our algorithm for problems with large scale. At this point,

we also emphasize that in our experiments we have not considered purities lower than 0.8 since the probability of

having an abundance larger than a given value ofp vanishes asp increases.It can be seen that in Table III MVSA

is very efficient for moderately large and complex problems,which would be impractical for other methods like

MVES. For instance, it only took 23.3 seconds forp = 20 andN = 150×150, which is prohibitive for the previous

MVSA implementation [26] developed in Matlab, from the viewpoints of either RAM memory requirements and

computational time. This problem is also extremely time consuming for the Matlab version of MVES distributed

by the authors of the algorithm, as shown in Table III.

V. REAL DATA EXPERIMENTS

The scene used in our real data experiments is the well-knownAirborne Visible Infra-Red Imaging Spectrometer

(AVIRIS) Cuprite data set, available online in reflectance units3. This scene has been widely used to validate the

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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TABLE III

PROCESSING TIME(SECONDS) OBTAINED FOR THE PROPOSEDMVSA ALGORITHM ON SYNTHETIC IMAGES WITHN = 50 × 50,

N = 100 × 100, N = 150 × 150, SNR= 70DB AND MAXIMUM PURITY OF 0.8 FOR DIFFERENT NUMBERS OF ENDMEMBERS.

MVSA MVES

p 4 8 12 16 20 4 8 12 16 20

N = 50 × 50 0.3 0.5 0.8 1.4 3.23 1.9 29 237 527 866

N = 100 × 100 0.7 1.6 2.8 5.6 8.9 1 141 757 1759 3453

N = 150 × 150 1.3 4.4 9 14.4 23.3 4.3 158 1778 4197 7959

performance of endmember extraction algorithms. The portion used in experiments corresponds to a250 × 191-

pixel subset of the f970619t01p02r02 online data set in reflectance units4. The scene comprises 224 spectral bands

between 0.4 and 2.5µm, with nominal spectral resolution of 10 nm. Prior to the analysis, bands 1–6, 105–115,

150–170, and 222–224 were removed due to water absorption and low SNR in those bands, leaving a total of 183

spectral bands,for which, according to the HySime [28] algorithm, we obtainan estimate ofp = 14 endmembers.

Here we use HySime to estimate the number of endmembers as we believe that the result of HySime is quite accurate

judging from the computed low noise.The Cuprite site is well understood mineralogically, and has several exposed

minerals of interest, all included in the USGS library considered in experiments, denoted splib065 and released in

September 2007. In our experiments, we use spectra obtainedfrom this library (convolved and downsampled to

AVIRIS wavelengths) in order to substantiate the quality ofthe endmembers derived by MVSA and compare them

with those produced by other algorithms. For illustrative purposes, Fig. 5(a) shows a mineral map produced in 1995

by USGS, in which the Tricorder 3.3 software product was usedto map different minerals present in the Cuprite

mining district6. The250× 190-pixel subscene used in our experiments is shown in Fig. 5. Itshould be noted that

all experiments with this subscene have been performed in a desktop PC with a Intel Core I5 CPU and 4 GBs of

RAM. Concerning the parameters involved in the considered algorithms, we consequentially follow the settings in

the simulated experiments. Regarding the affine projection, we have used the projective projection instead of the

affine one (see [1]) , as the former works slightly better in this example.

A fundamental assumption in the minimum volume unmixing algorithms is that, in a given data set, the spectral

samples belong to a simplex and that there are at leastp− 1 samples on, or in the neighborhood of, each simplex

facet [1]. It happens that the spatial distribution of Cuprite spectral vectors does not comply with that assumption,

which renders the associated unmixing an ill-posed problem. The fact is that, given an estimated simplex, the large

majority of the spectral vectors are outside of that simplex, it is a clear symptom of that ill-posedness. For example,

the simplexes estimated by VCA [30], N-FINDR [16], and the successive volume maximization (SVMAX) [32]

leave, respectively, 47733, 47732, and 47734 samples outside the simplex in a maximum of 47750 samples, which

is the size of the dataset. A similar pattern is observed using minimum volume based algorithms.

4the subscene is available online from http://www.lx.it.pt/%7ebioucas/code.htm

5http://speclab.cr.usgs.gov/spectral.lib06

6http://speclab.cr.usgs.gov/cuprite95.tgif.2.2ummap.gif.
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Fig. 5. (a) The250× 190-pixel subscene used in our experiments, showing the location of different minerals in the Cuprite mining district in

Nevada. The map is available online6. (b) Projection of the data on the first two PCA components.

We conclude therefore, that the spatial distribution of Cuprite spectral vectors is far away from that envisaged in the

minimum volume unmixing framework, thus precluding those methods to perform optimally. In order to regularize

the facets of the simplex, we conceived a very simple procedure that nevertheless produces useful results. We start

by running VCA t times and retain the simplex of maximum volume. In the case ofVCA, this makes sense given

the random directions that this algorithm uses to find the extremes of the simplex. Fort = 30, this procedure takes

just 2 seconds in a standard PC. Next, we project the data set in an inflated simplex obtained by allowing the

abundances to be to take negative values. That is, we solve a modified fully constrained least square (MFLCS)

problem with the constraintsαi ≥ −ε, whereε > 0 and1T
p αi = 1, for i = 1, . . . , N . The MFLCS is solved by

a minor modification of the SUNSAL algorithm available in [33]. We apply then MVSA to the the regularized

dataYreg = ÂvcaX̂t, whereÂvca is the mixing matrix estimated by VCA and̂Xt is the result of the MFLCS just

described. The complete procedure is available in our online demo: http://www.lx.it.pt/%7ejun/DemoMVSA.zip.

Fig. 5(b) shows a scatter plot of the original data jointly with the VCA and the MVSA endmembers forǫ = 0.01.

It is clear that the simplex defined by MVSA is an enlarged version of the one defined by VCA. Table IV shows

the processing time for MVSA, MVES and MVC-NMF, respectively. It is remarkable that the advantages of MVSA

in terms of efficiency are significant as, for the considered data set, MVSA took less than 3 minutes to perform

the computation while MVES spent around 7 hours and MVC-NMF took around 50 minutes in the considered

environment. Such computational efficiency makes MVSA moreapplicable in real scenarios.

For illustrative purposes, Fig. 6 shows the abundance maps obtained by the MVSA algorithm, where the minerals

are identified by visual interpretation of the estimated abundances with regards to the ground truth map in Fig. 5.

In addition, Fig. 7 shows the spectral signatures of the estimated endmembers. This figure reveals a good match

between the real and estimated ones. The individual abundance maps estimated by MVES, MVC-NMF and VCA

are not presented here due to space considerations. Furthermore, we refer to [19] in which the same real data was
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TABLE IV

PROCESSING TIME(SECONDS) TAKEN BY MVSA, MVES AND MVC-NMF, RESPECTIVELY, WHEN PROCESSING THE CONSIDEREDAVIRIS

CUPRITE DATA SET.

Method MVSA MVES MVC-NMF

Time (Seconds) 149.93 24909 2896

analyzed by MVES, and to [24] where a portion of the current data set was processed by MVC-NMF. Overall, it

has been observed that the algorithms produce some abundance maps that are similar to each other. Although the

results provided by HySime are reasonable judged from the computed low noise, it is possible that the number

of endmembers is overestimated which affects the performance of MVSA and MVES. On the other hand, the

abundance maps estimated by MVC-NMF were found to be more distinct from each other. This indicates that the

algorithms are sensitive to the estimation of the number of endmembers, which in this work is performed by an

external algorithm. In order to have a fair comparison of algorithms, we decided to report results withp = 14 (the

HySime estimate) for all the compared methods in this experiment. Overall, the experimental results reported in

this section reveal that the proposed MVSA can produce similar results to those provided by other state of the art

algorithms like MVES or MVC-NMF, but in a more computationally efficient fashion.
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Fig. 6. Abundance fraction maps estimated by the proposed MVSA algorithm: (a) Chlorapatite WS423, (b) Nontronite NG-1.a, (c) Kaolin/Smect

KLF508 85%K, (d) Kaolinite KGa-2 (pxyl), (e) BuddingtoniteGDS85 D-206; (f) Nontronite SWa-1.a, (g) Alunite GDS84 Na03, (h)

Montmorillonite+Illi CM42, (i) Montmorillonite+Illi CM37, (j) Alunite AL706 Na ; (k) Jarosite WS368 Pb, (l) Jarosite JR2501 K, (m)

Chlorite SMR-13.e<30um, (n) Chalcedony CU91-6A.
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Fig. 7. Endmember signatures in the USGS library and the endmember estimates obtained by our MVSA algorithm. The corresponding signatures

are, from top to bottom: (a) Chlorapatite WS423, NontroniteNG-1.a, Kaolin/Smect KLF508 85%K, Kaolinite KGa-2 (pxyl),Buddingtonite

GDS85 D-206; (b) Nontronite SWa-1.a, Alunite GDS84 Na03, Montmorillonite+Illi CM42, Montmorillonite+Illi CM37, Alunite AL706 Na ;

(c) Jarosite WS368 Pb, Jarosite JR2501 K, Chlorite SMR-13.e<30um, Chalcedony CU91-6A.

VI. CONCLUSIONS ANDFUTURE L INES

In this paper, we have described a minimum volume simplex analysis (MVSA) algorithm for unsupervised

hyperspectral unmixing and its efficient implementation using the interior point method. This algorithm is a

representative method of a class of algorithms for endmember extraction that do not need the presence of pure

pixels in the hyperspectral data. Despite the interest and proved effectiveness of the method in toy examples and

experiments with small data sets, the algorithm had rarely been used in real applications due to its computational

complexity, resulting from the fact that the involved optimization problem was very difficult to handle. In this

regard, one of the main contributions of this work is the presentation of a series of strategies in order to lighten the

computational load of MVSA, making it appealing for real hyperspectral imaging applications. Another contribution

has been the detailed comparison of MVSA to other algorithms(with and without the pure pixel assumption) using

both simulated and real data sets. Our experiments demonstrate that, with the presented modifications, MVSA

is competitive with other state-of-the-art solutions in terms of endmember identification and spectral unmixing
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accuracy and also in terms of computational complexity, thus allowing the application of the algorithm to problems

characterized by a high number of endmembers (i.e., complexscenes) and also by a high number of pixels (i.e.,

large scenes). In future work, we will include a soft constraint in the proposed MVSA algorithm in order to make it

more robust to noise and outliers. Furthermore, the proposed algorithm can also be adapted to extract endmember

bundles using the framework described in [34] to address issues of endmember variability.
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