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Abstract

This thesis proposes several new techniques for hyperspectral image segmentation based on

discriminative Bayesian approaches, where the posterior class distributions are modeled by the

multinomial logistic regression (MLR) model and the spatial information is modeled by means

of Markov random fields (MRFs). Our proposed framework introduces significant innovations

with regards to previous approaches in the same field, many of which are mainly based on

exploiting the spectral information alone. Another contribution of the thesis is that we enhance

our proposed supervised techniques with semi-supervised learning capabilities, thus exploiting

unlabeled samples by means of an active learning paradigm. Furthermore, the thesis introduces

new active sampling strategies based on labeled query selection which are thoroughly discussed

and compared with previous developments in the same field. Finally, we also develop subspace-

based techniques that can better discriminate land-cover classes in the presence of heavily mixed

pixels. The effectiveness of the proposed techniques is illustrated by comparing with state-of-

the-art methods by using both simulated and real hyperspectral data sets.

Keywords:

Hyperspectral segmentation, active learning, semi-supervised learning, multinomial logistic re-

gression, multi-level logistic prior, unlabeled samples, subspace learning, ill-posed problems.
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Resumo

Esta tese introduz várias contribuições em segmentaçõo de imagem hiperespectral explorando

abordagens discriminativas num quadro conceptual bayesiano. Para um dado pixel, a dis-

tribuiçõo a posteriori das classes, dado o respectivo vector espectral, é modelizada pela regressão

loǵıstica multinomial. A informação contextual espacial contida nas imagem hiperespectrais é

modelizada por um campo estocástico de Markov, mais especificamente pelo modelo loǵıstico

multi-ńıvel. Relativamente ao estado-da-arte em classificação hiperespectral, a presença de in-

formação espacial é um elemento distintivo de todas contribuições. Foram consideradas métodos

semi-supervisionados e supervisionados com aprendizagem activa baseada, respectivamente, em

amostras sem e com etiquetas. Finalmente, desenvolveu-se uma nova técnica de segmentação

baseada em subespaços concebida para lidar com os chamados “pixeis misturados”, que fre-

quentemente surgem em imagens hiperespectrais de média e baixa resolução. Referem-se duas

componentes principais de todas as novas abordagens introduzidas: a) a eficiência dos algorit-

mos de aprendizagem propostos e b) a qualidade das aproximações, obtidas por em técnicas de

cortes em grafos, para os problemas de optimização inteira associados segmentação de máxima

probabilidade a posteriori. A eficiência e competitividade dos métodos propostos é documentada

através de comparações exaustivas com o estado-da-arte usando imagens hiperespectrais reais e

simuladas.

Palavras-Chave:

Segmentação hiperespectral, regressão loǵıstica multinomial, modelo loǵıstico multi-ńıvel, abor-

dagen discriminativa, aprendizagem activa, aprendizagem supervisionada, aprendizagem náo-

supervisionada, aprendizagem baseda em sub-espaços, optimização inteira, cortes em grafos.
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Chapter 1

Introduction

1.1 Context

The work presented in this thesis was supported by the European Community’s Marie Curie

Research Training Networks Program under contract MREST-CT-2005-021175 (European Doc-

toral Program in Signal Processing, SIGNAL), by a Instituto de Telecomunicações (IT) PhD

grant and by the Spanish Ministry of Science and Innovation (HYPERCOMP/EODIX project,

reference AYA2008-05965-C04-02). The SIGNAL project has been awarded funding (about

3.000.000 Euros) for 16 PhD grants + 9 short stays) from the EU Human Resources and Mobil-

ity program. These Early Stage Research Training Host Fellowships are the most competitive

EU Marie Curie Actions. SIGNAL is a consortium of four universities:

• Signal and Systems laboratory (I3S), University of Nice, France.

• KOM department, University of Aalborg, Denmark.

• Technical Institute (IST), University of Lisbon, Portugal.

• Signal and Systems division (ESAT), University of Leuven, Belgium.

SIGNAL was aimed at providing a unified training in signal processing, focusing on the

fundamental research aspects of signal processing, offering early stage researchers (ESRs) an

in-depth knowledge of the field, not restricted to a particular sub-domain of applications. More-

over, due to the strong links of the participants in industrial projects and in various types of

applications, the researchers had the opportunity to apply their results in the real world.

The author of this thesis, Ms. Jun Li, joined SIGNAL as an ESR in September 2007, when

she started her research activity at Instituto Superior Técnico (IST), Lisbon, Portugal, under

the joint supervision of Prof. José M. Bioucas Dias and Prof. Antonio Plaza from University

of Extremadura (UEX), Cáceres, Spain. She registered as a PhD student at IST in October

2008. Her contract with SIGNAL project ended in April 2010. Then she was supported by an
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Table 1.1: Overview of some present and future remote sensing missions including hyperspectral
sensors.

Hyperion* Prisma† EnMAP‡ HyspIRI§

Country of origin USA Italy Germany USA
Spatial Resolution 30 meters 5-30 meters 30 meters 60 meters
Revisit Time 16 days 3/7 days 4 days 18 days
Spectral Range 400-2500 nanometers 400-2500 nanometers 420-2450 nanometers 380-2500 nanometers
Spectral Resolution 10 nanometers 10 nanometers 6.5-10 nanometers 10 nanometers
Swath width 7.7 kilometers 30 kilometers 30 kilometers 120 kilometers
Earth coverage Partial Full Full Full
Launch 2000 2010 2012 2018
Lifetime 10 years ≈ 6 years ≈ 6 years ≈ 6 years

*http://eo1.gsfc.nasa.gov †http://www.asi.it/en/flash en/observing/prisma ‡http://www.enmap.org
§http://hyspiri.jpl.nasa.gov

IT PhD grant for 6 months from May to October 2010. Then she was appointed as a researcher

with the Hyperspectral Computing Laboratory (HyperComp) research group coordinated by

Prof. Antonio J. Plaza at the Department of Technology of Computers and Communications,

University of Extremadura, Cáceres, Spain.

1.2 Thesis overview

This thesis addresses the problem of remotely sensed hyperspectral image segmentation. Re-

motely sensed hyperspectral imaging instruments are capable of collecting hundreds of images,

corresponding to different wavelength channels, for the same area on the surface of the Earth.

The concept of hyperspectral imaging was first introduced at NASA’s Jet Propulsion Laboratory

[59], where a system called Airborne Imaging Spectrometer (AIS) was built to demonstrate this

technology. Today, NASA is continuously gathering high-dimensional image data with instru-

ments such as Jet Propulsion Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer

(AVIRIS). This advanced sensor for Earth observation records the visible and near-infrared

spectrum of the reflected light using more than 200 spectral bands, thus producing a stack of

images in which each pixel (vector) is represented by a spectral signal that uniquely character-

izes the underlying objects (see Figure 1.1). Nowadays, the concept of hyperspectral imaging is

extended to describe systems with hundreds to thousands of spectral channels, with many new

instruments currently in development for spaceborne operation. Table 1.1 presents a summary

of several hyperspectral sensor systems (of satellite type) which are currently in operation or

under development.

The number and variety of processing tasks in hyperspectral remote sensing is enormous

[107]. However, the majority of algorithms can be organized according to the following specific

tasks [125]:

• Dimensionality reduction consists of reducing the dimensionality of the input hyperspectral

2



Figure 1.1: Hyperspectral data cube.

scene in order to facilitate subsequent processing tasks.

• Target and anomaly detection consist of searching the pixels of a hyperspectral data cube

for “rare” (either known or unknown) spectral signatures.

• Change detection consists of finding the “significant” (i.e., important to the user) changes

between two hyperspectral scenes of the same geographic region.

• Classification/segmentation consist of assigning a label to each pixel/region in order to

generate a thematic land-cover map.

• Spectral unmixing consists of estimating the fraction of the pixel area covered by each

material present in the scene.

In this thesis, we particularly focus on the problem of supervised and semi-supervised hy-

perspectral image segmentation (i.e., how to partition an image into spatially consistent regions

associated to different land-cover classes starting from some –limited– reference information

available a priori). The high dimensionality of hyperspectral data in the spectral domain poses

critical problems for supervised algorithms [19, 107], most notably, in order for supervised clas-

sifiers to perform properly there is a need for large training sets in order to avoid the well-known

Hughes effect [68, 84]. However, training samples are limited, expensive and very difficult to

obtain in real remote sensing scenarios.

3



Further, in this problem it is very important to take advantage of the fact that, in addition

to the very rich spectral information available in the hyperspectral data, hyperspectral images

exhibit (as many other classes of images) some kind of piecewise statistical continuity among

neighboring pixels. As a result, hyperspectral image segmentation should exploit such spatial

information in conjunction with spectral information in order to partition an image into a set

of homogeneous regions (in statistical sense). In this regard, hyperspectral image segmentation

provides an extension of multi-class image classification, where the spatial interdependencies

among class labels are enforced by a suitable model. Without loss of generality, in this thesis we

will use the term classification when the learning process only considers the spectral information.

Similarly, we use the term segmentation when the spatial contextual information in the original

scene is used.

In the thesis, we particularly focus on the problem of supervised and semi-supervised hyper-

spectral image segmentation. We introduce several new Bayesian approaches for hyperspectral

image segmentation which include spatial-contextual information in the analysis. Another im-

portant contribution of the thesis is the inclusion of unlabeled samples (which are easy to obtain

in practice) by means of active learning paradigms. Finally, we also develop innovative strategies

to cope with one of the most important problems in hyperspectral image analysis: the presence

of mixed pixels (with possibly many participating constituents at a sub-pixel level) due to lim-

ited spatial resolution, mixing phenomena happening at different scales, etc. For instance, the

pixel vector labeled as “vegetation” in Figure 1.1 may actually comprise a mixture of vegeta-

tion and soil, or different types of soil and vegetation canopies. To address this issue we resort

to subspace-based techniques that can better discriminate land-cover classes in the presence of

heavily mixed pixels.

Combined, these topics intend to address cutting-edge problems in hyperspectral image

analysis and interpretation. To introduce these topics, which will be presented in detail in the

remaining chapters of the present document, we have organize the rest of this introductory

chapter as follows. In Section 1.2.1, we focus on the classification of hyperspectral images,

describing the advantages of discriminative versus generative models in our context, and present

the state-of-the-art in discriminative hyperspectral image classification. Then, we focus on two

widely used discriminative methods: the multinomial logistic regression (MLR) and the support

vector machine (SVM). In Section 1.2.2 we discuss the importance of integrating spatial and

spectral information in hyperspectral image segmentation. We also describe related works in

this area. Furthermore, in Section 1.2.3 we specifically address the problems that supervised

classifiers can found when limited training sets are available. Then, we present available solutions

4



in the literature to cope with this problem by adopting semi-supervised learning and active

learning strategies. Finally, in Section 1.2.4 we present and categorize our main contributions

in this thesis. We particularly address the strategies that we have adopted in order to overcome

the aforementioned problems.

1.2.1 Hyperspectral image classification

The problem of hyperspectral image classification has been tackled in the past using several

different approaches. For instance, several machine learning and image processing techniques

have been applied to extract relevant information from hyperspectral data during the last decade

[107]. In the context of supervised classification, a relevant challenge is the fact that we need to

deal with very high-dimensional data volumes (with limited training samples available a priori).

In other words, due to the small number of training samples and the high number of features

available in remote sensing applications, reliable estimation of statistical class parameters is

a very challenging goal [85]. As a result, with a limited training set, classification accuracy

tends to decrease as the number of features increases. This is known as the Hughes effect [68].

High-dimensional spaces have been demonstrated to be mostly empty [72], thus making density

estimation even more difficult. One possible approach to handle the high-dimensional nature

of hyperspectral data sets is to consider the geometrical properties rather than the statistical

properties of the classes, which leads to the use of kernel methods which have been shown to be

a very effective tool for hyperspectral image interpretation [28]. Another widely used solution

is to resort to Bayesian techniques [70], possibly combined with spatial-contextual information.

In this context, we can define the classification problems in mathematical terms as follows.

Let x = (x1, . . . ,xn) be the observed data (as collected by an imaging spectrometer) and n is

the number of pixels, and y = (y1, . . . , yn) be the label configuration (available a priori). The

posterior density p(y|x) is the central element of the risk-based inference, and we associate the

term classification with ŷi ⇐ argmax p(yi|xi) (only spectral information is considered) and the

term segmentation with ŷ ⇐ argmax p(x|y)p(y) (both spectral and spatial information are

considered). In general, there are two rather different points of view in modeling this density

p(y|x), namely, the generative approach versus the discriminative approach:

Generative approaches: Correspond to the widely used Bayesian perspective, according to

which p(x, y) = p(x|y)p(y), where p(x|y) is the likelihood density, accounting for the image

features given the label configuration and p(y) is the a priori label configuration density. Correct

modeling of these two densities is a serious challenge, compelling model simplifications such as

5



the conditional independence, which assumes that p(x|y) has a factorized form. This problem

worsens in high dimensional feature spaces, where, usually, p(x|y) depends on large number of

parameters.

Discriminative approaches: In a discriminative framework, the class densities p(y|x) are

modeled directly, thus avoiding the learning of the likelihood densities p(x|y). The underlying

rationale is that learning the class posterior p(y|x) is equivalent to learn the boundaries among

the classification regions, what is expected to be simpler and more flexible than learning the

likelihood densities p(x|y). Examples of discriminative learning in classification include logistic

regression, neural networks, the Gaussian process, and generalized additive models. Examples of

recent frameworks aimed at discriminative data segmentation are the conditional random fields

(CRFs) [83], the discriminative random fields (DRFs) [82], and the Gaussian process [2].

In the past, both discriminative and generative models have been used for hyperspectral

image interpretation [6, 25, 27, 28, 30, 34, 37, 38, 53, 90, 91, 132]. We refer to [107] for a

seminal view on recent advances in techniques for hyperspectral image processing. However, and

mainly because of the special difficulties that arise in hyperspectral data interpretation (including

high dimensionality, limited availability of training information, presence of mixed pixels, large

datasets, etc.) discriminative models are often preferred since they are widely regarded as less

complex than generative models. As a result, discriminative approaches can mitigate the curse

of dimensionality introduced by the Hughes effect, because they demand smaller training sets

than generative models [13, 102, 134]. Data interpretation based on the use of discriminant

functions, which basically encode the boundaries between classes in the feature space, is another

effective way of handling very high dimensional data sets [13]. In the following, we provide a brief

literature review of state-of-the-art discriminant classification approaches which only consider

the spectral information. A more detailed introduction of techniques combining both spatial

and spectral information will be provided in subsequent sections of this chapter.

I. Discriminant analysis

Linear Discriminant Analysis (LDA), which is based on optimizing the so-called Fisher’s score,

has been successfully used in many practical remote sensing classification applications aimed at

generating thematic maps in different contexts. For instance, in [122] an investigation based

on the use of linear discriminant and profile analysis for airborne thematic mapper data was

conducted. In [61], classical LDA was used for recognition of different conifer species using

hyperspectral data. In [39], LDA has been used for classification of tropical rain forest tree

6



species using hyperspectral data at different scales. In [94], the canonical LDA has been used for

identifying land cover units in ecology. In [46], a linear constrained distance-based discriminant

analysis (LCDA) was introduced which not only maximizes the ratio of inter-distance between

classes to intra-distance within classes but also imposes a constraint that all class centers must

be aligned along predetermined directions, with practical use in several different applications. In

[47], a constrained linear discriminant analysis (CLDA) approach was proposed for hyperspectral

image detection and classification as well as its real-time implementation. In [6], the regularized

LDA (RLDA) [139] was introduced for hyperspectral hyperspectral classification problems where

in comparison with LDA-based classifiers, i.e., standard LDA, penalized LDA [66], orthogonal

LDA [140], and uncorrelated LDA [74] are also discussed. In [111], a new kernel discriminant

analysis-based projection approach was proposed. In [73], a novel approach based on Fisher

discriminant null space was proposed for decomposition of mixed pixels in hyperspectral imagery.

Some of these approaches will be used in this thesis as comparative frameworks for evaluating

our newly proposed techniques.

II. Support vector machines

Perhaps the most popular discriminative classifier in the remotely sensed hyperspectral image

community is the support vector machine (SVM) [21, 121], which is characterized by its abil-

ity to effectively deal with large input spaces (and to produce sparse solutions) using limited

training samples. This classifier has been successfully used in the context of supervised and

semi-supervised hyperspectral classification problems [29, 64, 65, 67, 98]. In [28], a framework

for kernel-based methods in the context of hyperspectral image classification applications was

presented. Specifically, standard SVMs, regularized radial basis function neural networks (Reg-

RBFNN), kernel Fisher discriminant (KFD) analysis, and regularized AdaBoost (Reg-AB) were

analyzed and inter-compared. The KFD is in fact another effective discriminative method for

hypespectral image classification [50, 99] which benefits from the concept of kernels used in SVMs

to obtain nonlinear solutions. In [25], a novel transductive SVMs (TSVMs) was introduced for

semi-supervised classification exploiting the unlabeled information based on a weighting strategy.

In [30], a framework based on composite kernel machines for enhanced classification of hyper-

spectral images was proposed which exploits the properties of Mercer’s kernels to construct a

family of composite kernels that easily combine spatial and spectral information. In [27], a

new graph-based semi-supervised algorithm was proposed for hyperspectral image classification

problems which efficiently alleviates the curse of dimensionality by exploiting the wealth of un-

labeled information through a graph-based methodology. In [60], a Laplacian SVM (LapSVM)
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was presented for semi-supervised image classification based on kernel machines where SVMs

is regularized with the unnormalized graph Laplacian. In [132], a semi-supervised support vec-

tor machine with cluster kernel was presented. As mentioned in some of the aforementioned

references, an important observation is that the good classification performance demonstrated

by SVMs can be complemented by taking advantage of semi-supervised learning and contex-

tual information. However, the integration of spatial and spectral information is generally done

through the combination of dedicated kernels to spectral and contextual information [30]. The

desired integration can also be accomplished at the feature extraction level, i.e., by reducing the

dimensionality of the input data to a proper subspace in a way that both spatial and spectral

information is considered [105]. On the other hand, in semi-supervised learning the wealth of

unlabeled data that can be obtained from hyperspectral images is exploited. These novel SVM

formulations represent significant developments in which spatial and spectral information can

be easily integrated and analyzed by using proper kernel functions. The capability of semi-

supervised SVMs to capture the intrinsic information present in the unlabeled data can further

mitigate the Hughes phenomenon, and the problems related to the non-stationary behavior of

the spectral signatures of classes in the spatial domain [25].

III. Multinomial logistic regression

One of our main contributions in this work is the use of multinomial logistic regression (MLR)

discriminative classifiers [16], which exhibit some advantages (under certain circumstances) with

regards to previously discussed methods. One of them is the ability to learn the class distri-

butions themselves, which has recently resulted in the successful application of this kind of

discriminative classifier to hyperspectral image classification problems [20, 90, 91]. Sparse MLR

(SMLR) [80] adopts a Laplacian prior enforcing sparsity and therefore controlling the machine

generalization capabilities. Fast sparse MLR (FSMLR) implements an iterative procedure to

calculate the MLR regressors that is O(K2) faster than the original SMLR algorithm in [80]

(where K is the number of classes). In [12], the logistic regression via splitting and augmented

Lagrangian (LORSAL) algorithm [90] opened the door to processing of hyperspectral images

with a very large number of classes. In [20], a Jeffreys prior [71] is adopted to avoid the high

computational complexity invovled in estimating the Laplacian regularization parameters. In

[90, 91] we showed that very good performance can be obtained by setting (in suboptimal sense)

the Laplacian regularization parameter. Therefore, no cross-validation is performed in our work.

This has the advantage of reducing the computational cost. Overall, one of the main purposes

of this thesis work is to illustrate the advantages that MLR can offer in hyperspectral image
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classification and segmentation. These aspects will be emphasized in subsequent sections of this

document.

1.2.2 Hyperspectral image segmentation

In order to improve the accuracies obtained by hyperspectral image classification, a recent trend

is to integrate the spectral and spatial information in the data interpretation. As shown in the

previous section, many hyperspectral image classification techniques are focused on analyzing

the data without incorporating information on the spatially adjacent data, i.e., hyperspectral

data are usually not treated as images, but as unordered listings of spectral measurements with

no particular spatial arrangement. However, the importance of analyzing spatial and spectral

patterns simultaneously has been identified as a desired goal by many scientists devoted to mul-

tidimensional data analysis [107]. This type of processing has been approached in the past from

various points of view. For instance, several possibilities are discussed in [85] for the refinement

of results obtained by spectral-based techniques in multispectral imaging through a second step

based on spatial context. Such contextual classification, extended also to hyperspectral images

[72], accounts for the tendency of certain ground cover classes to occur more frequently in some

contexts than in others. In certain applications, however, the integration of spatial and spectral

information is mandatory to achieve sufficiently accurate mapping and/or detection results. For

instance, urban area mapping requires sufficient spatial resolution to distinguish small spectral

classes, such as trees in a park, or cars on a street [7, 42]. This poses two main challenges:

1. We need to manage very high-dimensional data volumes in which the spatial correlation

between spectral responses of neighboring pixels can be potentially high. As a result, there

is a need to incorporate the spatial arrangement of the data in the development of robust

analysis techniques.

2. Processing algorithms need to become more knowledge-based. With finer spatial resolu-

tions, subtle details which can greatly improve scene interpretation may also be misleading

in certain applications. This suggests that a priori knowledge may be used to improve the

characterization of single elements, as well as the whole scene.

At this point, we should recall again that our terminology in this document will be to

address hyperspectral image segmentation when we are combining both spatial and spectral

information in the analysis of the hyperspectral data. In the following subsections we briefly

review recent advances in this area, including some of the aforementioned techniques for spatial-

spectral integration as well as mathematical morphology-based approaches and their extension
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to hyperspectral image processing [17, 20, 33, 72, 90, 91, 127–130, 135]

I. Extended morphological profiles

Mathematical morphology is a theory for the analysis of spatial structures in image data which

has been successfully applied to remotely sensed images [106]. To analyze the structures of an

image in a systematic way, the morphological profile was first constructed based on the granu-

lometry principle [106]. Such profiles were then adapted to hyperspectral images by means of

extended morphological profiles (EMP) [7], which is built on the morphological profiles (MP) [8]

by applying morphological operators of erosion and dilation (and their shape-preserving coun-

terparts: opening and closing by reconstruction) on the components obtained after performing

a dimensionality reduction on the original hyperspectral image. EMPs provide an intuitive idea

of both the spectral characterization of the pixel vectors in the data and the spatial distribution

of such pixels in the scene. In [42], a new method based on the combination of spatial reclassifi-

cation and mathematical morphology concepts was implemented to process hyperspectral data

collected over urban environments. In [53], a joint spectral-spatial classification algorithm was

developed for hyperspectral data by using SVMs and morphological profiles. This approach is in

fact an extension of the seminal work in [7, 106]. Additional efforts on the integration of spatial

and spectral information using mathematical morphology concepts can be found in [127–130].

II. Markov random fields

Another widely used strategy in the literature to integrate spatial information in hyperspectral

image classification is through the use of Markov random fields (MRFs), which model the piece-

wise statistical continuity among neighboring pixels that is expected in real-world scenarios [42].

In this regard, MRFs exploit the continuity, in probability sense, of neighboring labels. MRF is

a powerful tool for spatial analysis. Its basic assumption is that, in a hyperspectral image, it is

very likely that two neighboring pixels will have the same class label. This simple concept has

been explored in [70], in which an adaptive Bayesian contextual classification procedure that

utilizes both spectral and spatial inter-pixel dependencies was proposed, where the joint prior

probabilities of the classes of each pixel and its spatial neighbors are modeled by an MRF. In

[85], spatial characterization and post-processing is performed to the discriminant analysis fea-

ture extraction (DAFE) method by modeling the spatial neighborhood of a pixel as a spatially

distributed random process. Then, a spatial regularization is performed via the minimization of

an energy functional. In [52], a maximum a posteriori (MAP)-based framework was proposed in

which the class conditional probabilities were learnt by the SVM algorithm and the class prior
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probabilities were modeled by MRFs. In [20, 90, 91], an MRF multi-level logistic (MLL) prior

[58] is adopted in the Bayesian framework where the MAP estimate is efficiently computed by

the α-expansion min-cut-based integer optimization algorithm [23]. This is a crucial step since

the MRF is characterized by its computational complexity. In fact, one of the main contribu-

tions of this thesis is the integration of MRFs with discriminative classifiers for computationally

efficient spatial-spectral segmentation of hyperspectral images.

1.2.3 Semi-supervised and active learning

As mentioned in previous sections of this chapter, in supervised hyperspectral image classification

and segmentation we often have to deal with the limited availability of training samples. This

is because, normally, labeled samples are often very difficult, expensive or time consuming to

collect. With a limited training set, classification accuracy tends to decrease as the number

of features increases. In this section, we discuss several approaches to deal with this problem,

including semi-supervised learning and active learning, which have become very active research

areas in hyperspectral image classification/segmentation.

I. Semi-supervised learning

The performance of hyperspectral image classification and segmentation techniques can be fur-

ther increased by taking advantage of semi-supervised learning, in which the learning is generally

conducted using very few labeled samples (available a priori) and a larger amount of so-called

unlabeled training samples which are automatically generated during the process and with no ex-

tra cost. Recently, several semi-supervised methods have become widely popular, including those

based on models [5, 15, 56, 103], self-learning strategies [115, 117, 138], co-training [15, 100], mul-

tiview learning [24, 119, 126], transductive SVMs [75, 134], and graph-based methods [14, 145].

We refer to [144] for a detailed survey on semi-supervised methods. It should be noted that most

available semi-supervised learning algorithms use some type of regularization which encourages

that “similar” features are associated to the same class. The effect of this regularization is to

push the boundaries between classes towards regions with low data density [32], where a rather

usual way of building such regularizers is to associate the vertices of a graph to the complete set

of samples and then apply the regularizer to the variables defined on the vertices. This trend

has been successfully adopted in several remote sensing studies [25, 27, 91, 107, 132, 143]. Some

of the methods developed in this thesis are based on this strategy.
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II. Active learning

In order to reduce the cost of acquiring large labeled training sets, another strategy in the

literature has been active learning. Active learning is a method of online learning, where a

learner strategically selects new training examples that provide maximal information about the

unlabeled dataset, resulting in higher classification accuracy for a given training set size as

compared to using randomly selected examples. Active learning is most useful when there are

sufficient a number of unlabeled samples but it is expensive to obtain class labels. This strategy

have been successfully applied in several different classification and segmentation problems. In

[96], a mutual information (MI)-based technique for active sampling was proposed for data

query selection, which maximizes the the entropy of labels [81]. In [95], an algorithm called

breaking ties (BT) was proposed for multi-class SVMs using the one-vs-one approach with a

probability approximation which tends to minimize the distance between the first two most

probable classes. In [101], another active sampling approach for SVM classifiers was proposed

based on the distance of the unlabeled data points from the existing hyperplane. In [113], an

active sampling approach which maximizes the Kullback-Leibler divergence of the new label and

the training set was developed. In [133], a survey of active sampling approaches was presented in

the context of remote sensing classification problems, including: (a) the margin sampling (MS)

[26, 120] strategy, which samples the candidates lying within the margin of the current SVM

by computing their distance to the dividing hyperplane [101]; (b) the class of active learning

methods which relies on the estimation of the posterior probability distribution functions of

the classes; (c) the last class of active methods which is based on the query-by-committee

paradigm [41, 55, 124]. Among these active learning algorithms, most of them naively select the

data point with maximum label entropy, least confidence, or maximum disagreement between

multiple learners. In this work, we exploit active learning principles to increase the accuracy of

methods for hyperspectral image classification/segmentation at no cost, and further develop a

new sampling method which overcomes some of the limitations of the aforementioned techniques

for the same purpose.

1.2.4 Thesis contributions

This section summarizes the main topics addressed in the thesis and its main contributions.

As indicated in Fig. 1.2, which graphically represents the main contributions in this work and

their relationship, we particularly focus on the problem of supervised and semi-supervised hy-

perspectral image segmentation (i.e., how to partition an image into spatially consistent regions

associated to different land-cover classes starting from some –limited– reference information
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Discriminative Hyperspectral Segmentation:
• MLR spectral model
• MLL spatial prior

Supervised Semi-supervised

Chapter 3:

• LORSAL
• Active learning: MI, BT and MBT

Chapter 4:

• Subspace based MLR

Chapter 2:

• GEM algorithm
• Active learning

Figure 1.2: Scheme summarizing the thesis organization.

available a priori). For this purpose, we introduce several new Bayesian discriminative ap-

proaches based on the MLR discriminative model (much less complex compared with generative

models since it has much less parameters to learn). In this work, we focus on discriminative

approaches based on MLR classifiers for several reasons:

1. First and foremost, MLR classifiers are able to learn directly the posterior class distri-

butions and deal with the high dimensionality of hyperspectral data in a very effective

way.

2. Second, we adopt a sparsity inducing prior on the regressors in order to obtain sparse

estimates. As a result, most of the components of the regressors are zero. This allows us

to control the complexity of our proposed techniques and their generalization capacity.

3. Finally, the MLR provides the class posterior probability. This plays a crucial role in the

complete posterior probability which includes spectral and spatial information.

These aspects allowed us to introduce significant innovations in the context of supervised

and semi-supervised hyperspectral image segmentation, such as the use of prior probability

distribution based on the MRF which promotes piecewise segmentation results with smooth

transitions between neighboring class labels. Our probabilistic discriminative framework has
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two main advantages. First, it provides a probabilistic interpretation of each label configuration,

thus opening the door to compute risk-based segmentations, such as the MAP. Second, the

probabilistic setup provides suitable tools to infer model parameters. In our spatial prior, we

encourage piecewise smooth segmentations and thus promote solutions in which adjacent pixels

are likely to belong to the same class. In the past, the MAP segmentation was very complex

to compute. However, with the advent of graph-cut tools [22, 23, 79], we can now compute the

MAP estimate efficiently via efficient min-cut based integer optimization techniques.

Another important contribution of the thesis is based on the observation that training sam-

ples are limited, expensive and difficult to obtain in real analysis scenarios. To address this

common situation, we enhance our proposed supervised techniques (based on labeled train-

ing samples) with semi-supervised learning capabilities, thus exploiting unlabeled samples by

means of an active learning paradigm. In this regard, the thesis introduces new active sampling

strategies based on labeled query selection which are thoroughly discussed and compared with

previous developments in the same field. Finally, we also develop innovative strategies to cope

with one of the most important problems in hyperspectral image analysis: the presence of mixed

pixels (with possibly many participating constituents at a sub-pixel level) due to limited spatial

resolution, mixing phenomena happening at different scales, etc. To address this issue we resort

to subspace-based techniques that can better discriminate land-cover classes in the presence of

heavily mixed pixels.

The remainder of the document has been organized so that the specific contributions listed

above and summarized in Fig. 1.2 are presented in different chapters. The chapters are organized

according to the following arrangement:

• Chapter 2 presents a new semi-supervised segmentation algorithm, where the posterior

class distributions are modeled by the MLR and learnt by a new semi-supervised gener-

ative expectation minimization (GEM) algorithm, and the spatial contextual information

is modeled by a Markov random field multi-level logistic (MLL) prior, which enforces

segmentation results in which neighboring labels belongs to the same class.

• Chapter 3 introduces a new supervised Bayesian approach to hyperspectral image seg-

mentation with active learning, where the posterior class distributions are modeled by

the MLR model and learnt by the a recently introduced logistic regression via splitting

and augmented Lagrangian (LORSAL) algorithm. Another contribution of this work is

the introduction of the modified breaking ties (MBT) active sampling scheme, which is

an improvement over the breaking ties (BT) sampling method but with the capacity to

provide unbiased samplings.
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• Chapter 4 presents a new supervised segmentation algorithm for remotely sensed hyper-

spectral images which integrates the spectral and spatial information in a Bayesian frame-

work. A multinomial logistic regression (MLR) algorithm is first used to learn the posterior

probability distributions in spectral sense, using a subspace projection method to better

cope with noise and mixed pixels.

The effectiveness of the proposed innovative techniques is illustrated by comparing their

performance with state-of-the-art methods for supervised and semi-supervised hyperspectral

image segmentation. The comparison is carried out using both simulated and real hyperspectral

data sets. The experiments with simulated images are intended to test the newly proposed

techniques in controlled analysis scenarios, in which relevant aspects such as the sensitivity of

methods to parameter settings or noise can be quantitatively assessed. The experiments with

real images have been conducted using widely standardized data sets in the remote sensing

community, with the ultimate goal to provide detailed and rigorous comparisons of our newly

developed techniques with other widely used strategies for hyperspectral image segmentation.

Combined, these topics intend to illustrate the significant advantages that can be obtained

by the proposed techniques, which effectively integrate spatial and spectral information for

hyperspectral image segmentation. To conclude this chapter, we present the list of publications

that have supported the contributions that will be described in the following chapters of this

document.

1.2.5 List of publications

1. J. Li, J. Bioucas-Dias and A. Plaza. Spectral-spatial hyperspectral image segmentation

using subspace multinomial logistic regression and Markov random fields. IEEE Transac-

tions on Geoscience and Remote Sensing, under revision, 2010.

2. J. Li, J. Bioucas-Dias and A. Plaza. Hyperspectral image segmentation using a new

Bayesian approach with active learning. IEEE Transactions on Geoscience and Remote

Sensing, accepted, 2010.

3. J. Li, J. Bioucas-Dias and A. Plaza. Semi-supervised hyperspectral image segmentation us-

ing multinomial logistic regression with active learning. IEEE Transactions on Geoscience

and Remote Sensing, volume 48, pages 4085−4098, 2010.

4. J. Li, J. Bioucas-Dias, and Antonio Plaza. Supervised hyperspectral image segmentation

using active learning. In IEEE 2nd GRSS Workshop on Hyperspectral Image and Signal

Processing: Evolution in Remote Sensing, pages 1−4, 2010.
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5. J. Li, J. Bioucas-Dias and A. Plaza. Exploiting spatial information in semi-supervised

hyperspectral image segmentation. In IEEE 2nd GRSS Workshop on Hyperspectral Image

and Signal Processing: Evolution in Remote Sensing, pages 1−4, 2010.

6. J. Li, J. Bioucas-Dias, and Antonio Plaza. Semi-supervised hyperspectral image segmen-

tation. In IEEE 1st GRSS Workshop on Hyperspectral Image and Signal Processing, pages

1−4, 2009.

7. J. Li, J. Bioucas-Dias, and Antonio Plaza. Semi-supervised hyperspectral classification

and segmentation with discriminative learning. In SPIE Europe Remote Sensing, volume

7477, 2009.

8. J. Li, J. Bioucas-Dias, and Antonio Plaza. Semi-supervised hyperpsectral image classifi-

cation based on a Markov random field and sparse multinomial logistic regression. In IEEE

International Geoscience and Remote sensing Symposium, volume 3, pages III−817−III−820,

2009.

9. J. Li, J. Bioucas-Dias, and Antonio Plaza. Hyperspectral image classification based on

a fast Bregman sparse multinomial logistic regression algorithm. In 6th EARSeL SIG IS

Workshop, Tel- Aviv, Israel, 2009.

10. J. Li, J. Bioucas-Dias. Minimum volume simplex analysis: a fast algorithm to unmix

hyperspectral data. In IEEE International Geoscience and Remote sensing Symposium

IGARSS, volume 3, pages III−250−III−253, 2008.
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Chapter 2

Semi-Supervised Hyperspectral
Image Segmentation Using
Multinomial Logistic Regression
with Active Learning

Abstract – This chapter presents a new semi-supervised segmentation algorithm, suited to

high dimensional data, of which remotely sensed hyperspectral image data sets are an example1.

The algorithm implements two main steps: (i) semi-supervised learning of the posterior class

distributions, followed by (ii) segmentation, which infers an image of class labels from a posterior

distribution built on the learnt class distributions, and on a Markov random field (MRF). The

posterior class distributions are modeled using multinomial logistic regression (MLR), where

the regressors are learnt using both labeled and, through a graph-based technique, unlabeled

samples. Such unlabeled samples are actively selected based on the entropy of the corresponding

class label. The prior on the image of labels is a multi-level logistic (MLL) model, which enforces

segmentation results in which neighboring labels belongs to the same class. The maximum a

posteriori (MAP) segmentation is computed by the α-Expansion min-cut based integer opti-

mization algorithm. Our experimental results, conducted using synthetic and real hyperspectral

image data sets collected by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS)

system of NASA Jet Propulsion Laboratory over the regions of Indian Pines, Indiana, and Sali-

nas Valley, California, reveal that the proposed approach can provide classification accuracies

which are similar or higher than those achieved by other supervised methods for the considered

scenes. Our results also indicate that the use of a spatial prior can greatly improve the final

results with respect to a case in which only the learnt class densities are considered, confirming

the importance of jointly considering spatial and spectral information in hyperspectral image

segmentation.

1A preliminary much shorter version of this work appeared in [87].
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Index Terms – Hyperspectral image classification, semi-supervised learning, multinomial

logistic regression (MLR), Markov random field (MRF), multi-level logistic (MLL) model.

2.1 Introduction

In recent years, several important research efforts have been devoted to remotely sensed hy-

perspectral image segmentation and classification [85]. Hyperspectral image classification and

segmentation are related problems. In order to define these problems in mathematical terms,

let S ≡ {1, · · · , n} denote a set of integers indexing the n pixels of a hyperspectral image. Let

L ≡ {1, · · · ,K} be a set of K class labels, and let x ≡ (x1, · · · ,xn) ∈ R
d×n denote an image

in which the pixels are d-dimensional feature vectors. Finally, let y ≡ (y1, · · · , yn) ∈ Ln denote

an image of class labels. The goal of hyperspectral image classification is, for every image pixel

i ∈ S, to infer the class labels yi ∈ L from the feature vectors xi ∈ R
d (referred to hereinafter as

spectral vectors). On the other hand, the goal of hyperspectral image segmentation is to parti-

tion the set of image pixels S into a collection of sets Ri ⊂ S, for i = 1, . . . ,K, sometimes called

regions, such that the image pixels in each set Ri be close in some sense2. Nevertheless, in this

chapter, we use the term classification when there is no spatial information and segmentation

when the spatial prior is being considered.

Supervised classification (and segmentation) of high dimensional datasets such as hyper-

spectral images is a difficult endeavor. Obstacles, such as the Hughes phenomenon, arise as the

data dimensionality increases, thus fostering the development of advanced data interpretation

methods which are able to deal with high dimensional data sets and limited training samples

[107].

In the past, both discriminative and generative models have been used for hyperspectral im-

age interpretation. More specifically, techniques based on discriminative models learn directly

the posterior class distributions, which are usually far less complex than the class-conditional

densities in which generative models are supported. As a consequence, discriminative approaches

mitigate the curse of dimensionality because they demand smaller training sets than the gener-

ative ones [13, 102, 134]. Data interpretation based on the use of discriminant functions, which

basically encode the boundaries between classes in the feature space, is another effective way of

handling very high dimensional data sets [13].

Support vector machines (SVMs) [121] and MLR [16] rely, respectively, on discriminant

functions and posterior class distributions, based on which many state-of-the-art classification

2We recall that a partition of a set S is a collection of sets Ri ⊂ S , for i = 1, . . . , where ∪i=1Ri = S and
Ri ∩Rj = ∅, i 6= j

18



methods are built. Due to their ability to effectively deal with large input spaces (and to produce

sparse solutions), SVMs have been successfully used for supervised classification of hyperspectral

image data [28, 53, 107, 109]. In turn, MLR-based techniques have the advantage of being able to

model the posterior class distributions, thus supplying (in addition to the boundaries between the

classes) a degree of plausibility for such classes. Effective sparse MLR methods are available [80].

These ideas have been recently applied to hyperspectral image classification and segmentation,

obtaining promising results [19].

In order to improve the accuracies obtained by SVMs or MLR-based techniques, some efforts

have been directed towards the integration of spatial (contextual) information with spectral in-

formation in hyperspectral data interpretation [19, 53, 107]. However, due to the supervised

nature of these methods, their performance is conditioned by the fact that the acquisition of

labeled training data is very costly (in terms of time and finance) in remote sensing applications.

In contrast, unlabeled training samples can be obtained easily. This observation has fostered

active research on the area of semi-supervised learning, in which classification techniques are

trained with both labeled and unlabeled training samples [32, 81]. This trend has been success-

fully adopted in remote sensing studies [25, 27, 107, 132, 143]. Most semi-supervised learning

algorithms use some type of regularization which encourages that “similar” features belong to

the same class. The effect of this regularization is to push the boundaries between classes to-

wards regions of low data density [32], where a rather usual way of building such regularizer is

to associate the vertices of a graph to the complete set of samples and then build the regularizer

depending on variables defined on the vertices.

In this chapter, we introduce a new semi-supervised learning algorithm which exploits both

the spatial contextual information and the spectral information in the interpretation of remotely

sensed hyperspectral data. The algorithm implements two main steps: (i) semi-supervised learn-

ing of the posterior class distributions, implemented by an efficient version of semi-supervised

learning algorithm in [81], followed by (ii) segmentation, which infers an image of class labels

from a posterior distribution built on the learnt class distributions, and on an MLL prior on the

image of labels. The posterior class distributions are modeled using MLR, where the regressors

are learnt using both labeled and (through a graph-based technique) unlabeled training samples.

For step (i), we use a block Gauss-Seidel iterative method which allows dealing with data sets

that, owing to their large size (in terms of labeled samples, unlabeled samples, and number

of classes) are beyond the reach of the algorithms introduced in [81]. The spatial contextual

information is modeled by means of a MLL prior. The final output of the algorithm is based

on an MAP segmentation process which is computed via a very efficient min-cut based integer
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optimization technique.

The remainder of the chapter is organized as follows. Section 2.2 formulates the problem and

describes the proposed approach. Section 2.3 describes the estimation of the multinomial logistic

regressors, including a generalized expectation algorithm to compute their MAP estimate, and

a fast algorithm based on the Gauss-Seidel iterative procedure. Section 2.4 gives details about

the MLL prior. Section 2.5 addresses the MAP computation of the segmentation via integer

optimization techniques based on cuts on graphs. An active method for selecting unlabeled

training samples is also introduced. Section 2.6 reports performance results for the proposed

algorithm on synthetic and real hyperspectral datasets, and compares such results with those

provided by state-of-the-art competitors reported in the literature. The two real hyperspectral

scenes considered in our experiments were obtained by the AVIRIS over the regions of Indian

Pines, Indiana, and Salinas Valley, California. These scenes have been widely used in the

literature and have high-quality ground-truth measurements associated to them, thus allowing

a detailed quantitative and comparative evaluation of our proposed algorithm. Finally, Section

2.7 concludes with some remarks and hints at plausible future research avenues.

2.2 Problem formulation and proposed approach

With the notation introduced in Section 2.1 in mind, let us define an image region as Rk ≡ {i ∈
S | yi = k}, i.e., Rk is the set of image pixels i ∈ S with class labels yi = k ∈ L. We note that

the collection Ri, for i = 1, . . . ,K, is a partition of S and that the map between vectors y ∈ Ln,

which we term labelings, and partitions of S, which we term segmentations, is one-to-one. We

will, thus, refer interchangeably to labelings and segmentations.

The goal of both image classification (and segmentation) is to estimate y having observed

x, a hyperspectral image made up of d-dimensional pixel vectors. In a Bayesian framework, the

estimation y having observed x is often carried out by maximizing the posterior distribution3

p(y|x) ∝ p(x|y)p(y), where p(x|y) is the likelihood function (i.e., the probability of the features

image x given the labeling y) and p(y) is the prior on the labeling y. Assuming conditional

independency of the features given the class labels, i.e, p(x|y) =∏i=n
i=1 p(xi|yi), then the posterior

p(y|x), as a function of y, may be written as

p(y|x) =
1

p(x)
p(x|y)p(y)

= c(x)

i=n∏

i=1

p(yi|xi)

p(yi)
p(y),

(2.1)

3To keep the notation simple, we use p(·) to denote both continuous densities and discrete distributions of
random variables. The meaning should be clear from the context.
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where c(x) ≡ ∏i=n
i=1 p(xi)/p(x) is a factor not depending on y. The MAP segmentation is then

given by

ŷ = arg max
y∈Ln

{
n∑

i=1

(log p(yi|xi)− log p(yi)) + log p(y)

}
. (2.2)

In the present approach, the densities p(yi|xi) are modeled with the MLR, which corresponds

to discriminative model of the discriminative-generative pair for p(xi|yi) Gaussian and p(yi)

multinomial [97], [118]. Notice that p(yi) can be any distribution, as long as the marginal of

p(y) is compatible with such distribution. The estimation of vector of regressors parameterizing

the MLR is formulated as in [81], following a semi-supervised approach. To compute the MAP

estimate of the regressors, we apply a new Block Gauss-Seidel iterative algorithm. The prior

p(y) on the labelings, y, is an MLL Markov random field, which encourages neighboring pixels

to have the same label. The MAP labeling/segmentation ŷ is computed via the α-Expansion

algorithm [23], a min-cut based tool to efficiently solve integer optimization problems. All these

issues are detailed in the next section.

2.3 Estimation of the logistic regressors

The MLR model is formally given by [16],

p(yi = k|xi,ω) =
exp(ω(k)Th(xi))∑K
k=1 exp(ω

(k)Th(xi))
, (2.3)

where h(x) ≡ [h1(x), · · · , hl(x)]T is a vector of l fixed functions of the input, often termed

features; ω(k) is the set of logistic regressors for class k, and ω ≡ [ω(1)T , · · · ,ω(K−1)T ]T . Given

the fact that the density (2.3) does not depend on translations on the regressors ω(k), we set

ω(K) = 0.

Note that the function h may be linear, i.e., h(xi) = [1, xi,1, · · · , xi,d]T , where xi,j is the

j-th component of xi or nonlinear. Kernels [121], i.e., h(xi) = [1,Kx,x1 , · · · ,Kx,xl
]T , where

Kxi,xj
= K(xi,xj) and K(·, ·) is some symmetric kernel function, are a relevant example of

the nonlinear case. Kernels have been largely used because they tend to improve the data

separability in the transformed space. In this paper, we use a Gaussian Radial Basis Function

(RBF) kernel, K(x, z) ≡ exp(−‖x − z‖2/(2ρ2)), which is widely used in hyperspectral image

classification [28]. From now on, d denotes the dimension of h(x).

In the present problem, learning the class densities amounts to estimating the logistic regres-

sors ω. Since we are assuming a semi-supervised scenario, this estimation is based on a small

set of labeled samples, DL ≡ {(y1,x1), · · · , (yL,xL)}, and a larger set of unlabeled samples,
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XU ≡ {xL+1, · · · ,xL+U}. Given that our approach is Bayesian, we need to build the posterior

density

p(ω|YL,XL,XU ) ∝ p(YL|XL,XU ,ω)p(ω|XL,XU ) (2.4)

= p(YL|XL,ω)p(ω|XL+U ), (2.5)

where YL ≡ {y1, · · · , yL} denotes the set of labels in DL, XL ≡ {x1, · · · ,xL} denotes the set

of feature vectors in DL, and XL+U stands for {XL,XU}. Here, we have used the conditional

independence assumption in the right hand side of (2.5).

The MAP estimate of ω is then given by

ω̂ = argmax
ω

{l(ω) + log p(ω|XL+U )} , (2.6)

where

l(ω) ≡ log p(YL|XL,ω) ≡ log
L∏

i=1

p(yi|xi,ω)

≡
L∑

i=1


xT

i ω
(yi) − log

K∑

j=1

exp(xT
i ω

(j))




(2.7)

is the log-likelihood function of ω given the labeled samples DL and p(ω|XL+U ) acts as prior on

ω. Following the rationale introduced in [81], we adopt the Gaussian prior

p(ω|Γ) ∝ exp

{
−1

2
ωTΓω

}
, (2.8)

where the precision matrix Γ = Γ(XL+U ) is built in such a way that the density p(ω|Γ) promotes

vectors ω leaving “close” labeled and unlabeled features h(x), for x ∈ XL+U , in the same class.

The distance between features is defined in terms of a weighted graph G = (V, E ,B), where V
is the set of vertices corresponding to labeled and unlabeled data, E is a set of edges defined

on V × V, and B is a set of weights defined on E . With these definitions in place, the precision

matrix writes as

Γ(λ) = Λ⊗ (A+ τI),

where symbol ⊗ denotes the Kronecker product, τ > 0 is a regularization parameter, and

Λ ≡ diag(λ1, · · · , λ(K−1))

A ≡ X∆XT

X ≡ [h(x1), · · · ,h(xL+U )]

∆ ≡ Laplacian of the graph G.
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Notice that Γ(λ) is a block diagonal matrix, i.e.,

Γ(λ) = diag(λ1(A+ τI), . . . , λ(K−1)(A+ τI)),

where diag(A1, . . . ,AK) stands for a block diagonal matrix with diagonal blocks A1, . . . ,AK .

In the above definitions, and λ1, · · · , λ(K−1) are non-negative scale factors.

With the definitions above, we have

ωTΓ(λ)ω =
K−1∑

k=1

λk

(
ω(k)TAω(k) + τ‖ωk‖2

)
.

The quadratic term τ‖ωk‖2 acts as a quadratic regularizer, ensuring that the estimation of ω

is not ill-posed. At the same time, in order to ensure that this quadratic regularizer does not

modify the role of matrix A, the value of τ should be much smaller than the largest eigenvalue

of A. In order to interpret the role of the quadratic terms ω(k)TAω(k), let V ≡ {1, · · · , U + L}
and B ≡ {βij ≥ 0, (i, j) ∈ E} denote, respectively, the set of vertices and weights of G. Having

in mind the meaning of the Laplacian of a graph, we have

ω(k)TAω(k) = ω(k)TXT∆Xω(k)

=
∑

(i,j)∈E βij

[
ω(k)T (h(xi)− h(xj))

]2
.

Therefore, the lower values of ω(k)TAω(k), corresponding to the most probable regressors ω(k),

occur when both features xi and xj are in the same side of the separating hyperplane defined by

ω(k). In this way, the prior acts as a regularizers on ω(k), promoting those solutions for which

the features connected with higher values of weights βij are given the same label. This implies

that the boundaries among the classes tend to be pushed to the regions of low density, with

respect to the underlying graph G. In accordance with this rationale, we set in this work

βij = e−‖h(xi)−h(xj)‖
2

. (2.9)

According to a Bayesian point of view, the parameters λ1, . . . , λ(K−1) are random variables

and should be integrated out. We assume that they are distributed according to Gamma den-

sities, which are conjugate priors for the inverse of a variances of Gaussian densities [9]. More

precisely, we assume they are independent and that

λi ∼ Gam(α, β) i = 1, . . . ,K − 1, (2.10)
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where Gam(α, β) stands for a Gamma distribution with shape parameter α and inverse scale

parameter β. Noting that λi, i = 1, . . . ,K − 1 are scaling parameters, we set α, β to very small

values, thus obtaining a density close to that of Jeffreys prior. We note that the Jeffreys prior,

which is non-informative for scale parameters, is obtained by setting to zero the shape and the

inverse scale parameters of a Gamma density.

2.3.1 Computing the MAP estimate of the regressors

To compute the MAP estimate of ω, we use an expectation-maximization (EM) algorithm [43],

where the scale factors λi, for i = 1 . . . ,K − 1, are the missing variables. The EM algorithm is

an iterative procedure that computes, in each iteration, a so-called E-step (for mean value) and

the M-step (for maximization). More specifically, at iteration t, these steps are formally given

by

E-step:

Q(ω|ωt) ≡ E [ log p(ω,λ|D) |ωt] (2.11)

M-step:

ωt+1 ∈ argmax
ω

Q(ω|ωt). (2.12)

In (2.11), D ≡ {DL,XU} denotes the set of labeled and unlabeled samples. The most relevant

property of the EM algorithm is that the sequence p(ωt|D), for t = 1, 2, . . . , is non-decreasing

and, under mild assumptions, converges to local optima of the density p(ω|D).

2.3.2 E-step

From expressions (2.5) and (2.8), we have

p(ω,λ|D) = p(YL|XL,ω)p(ω|Γ(λ))p(λ) cte, (2.13)

where cte does not depend on ω and λ and p(λ) ≡∏K−1
i=1 p(λi). We have then

Q(ω|ωt) = E[log p(YL|XL,ω)− (1/2)ωTΓ(λ)ω + C|ωt]

= log p(YL|XL,ω)− (1/2)ωTE[Γ(λ)|ωt]ω + C ′

= l(ω)− (1/2)ωTΥ(ωt)ω +C ′, (2.14)
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where l(ω) is the log-likelihood function given by (2.7), Υ(ωt) ≡ E[Γ(λ)|ωt], and C and C ′ do

not depend on ω. Since Γ(λ) is linear on λ, then Υ(ωt) = Γ(E[λ|ωt]).

Owing to the use of conjugate Gamma hyper-priors, the expectations E[λi|ω] have well-

known closed forms [9]. For the present setting, we have

γk ≡ E[λk|ω] = (2α + d)[2β + (ω̂(k))T (A+ τI)ω̂(k)]−1,

for k = 1, · · · ,K − 1.

2.3.3 M-step

Given the matrix Υ(ω̂), the M-step amounts to maximize the objective function (2.14), which is

a logistic regression problem with a quadratic regularizer. Hereinafter, we adopt the generalized

expectation maximization (GEM) [43] approach, which consists in replacing, in the M-step, the

objective function Q(·|·) with another one which is simpler to optimize. A necessary condition for

GEM still generating a non-decreasing sequence p(ωt|D), for t = 1, 2, . . . , is that Q(ωt+1|ωt) ≤
Q(ωt|ωt), for t = 1, 2, . . . In order to build a simpler objective function, we resort to bound

optimization techniques [86], which aim, precisely, at replacing a difficult optimization problem

with a series of simpler ones.

Let g(ω) be the gradient of l(ω) given by

g(ω) =
L∑

i=1

(eyi − pi)⊗ h(xi),

where ek is the kth column of the identity matrix of size K and

pi ≡ [p(y = 1|xi,ω), p(y = 2|xi,ω), . . . , p(y = K|xi,ω)]T . (2.15)

Let us define the non-positive definite matrix as

B ≡ −1

2

[
I− 11T

K − 1

]
⊗

L∑

i=1

h(xi)h(xi)
T , (2.16)

where 1 denotes a column vector of 1s and 1T is the transpose of such column vector. We now

define the following quadratic majorizer for function Q resulting from the E-step stated in Eq.

(2.14)

QB(ω|ω̂) ≡ l(ω̂) + (ω − ω̂)Tg(ω̂) + [(ω − ω̂)TB(ω − ω̂)− ωTΓ(ω̂)ω]/2.

Let H(ω) be the Hessian of l(ω). Matrix H−B is semi-positive definite [16], i.e., H(ω) � B
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for any ω. It is then easy to show that

Q(ω|ω̂) ≥ QB(ω|ω̂)

with equality if and only if ω = ω̂. Thus, QB(ω|ω̂) is a valid surrogate function for Q(ω|ω̂).
That is, by replacing Q with QB in (2.11), the inequality Q(ωt+1|ωt) ≥ Q(ωt|ωt) for t = 1, 2, . . .

still holds, which implies p(ωt|D) ≤ p(ωt|D), for t = 1, 2, . . .

The maximizer of QB(ω|ωt) with respect to ω is

ωt+1 = (B− Γ(ωt))
−1(Bωt − g(ωt)),

which amounts to solving a linear system with d(K − 1) unknowns, thus with O((d(K − 1))3)

complexity. This complexity may be unbearable, even for middle-sized data sets. To tackle this

difficulty, a sequential approach in which the algorithm only maximizes QB with respect to one

element of ω at a time is proposed in [81]. Here, the complexity of a complete scanning of all

elements of ω is O(Kd(L + d)), much lighter than O((d(K − 1))3). What we have found out,

however, is that the convergence rate of this algorithm is too small, a factor that rules out its

application in realistic hyperspectral imaging applications.

In order to increase the convergence rate and to handle systems of reasonable size, we im-

plement a Block Gauss-Seidel iterative procedure in which the blocks are the regressors of each

class. Thus, in each iteration, we solve K − 1 systems of dimension d. Furthermore, we have

observed that just one iteration before recomputing the precision matrix Γ is nearly the best

choice. Notice that, even with just one Gauss-Seidel iteration, the algorithm is still a GEM.

The improvement in complexity with respect to the exact solution is given by O((K − 1)2),

which makes a difference when there are many class labels, as it is indeed the case in most

hyperspectral imaging applications.

The pseudo-code for the GEM algorithm to compute the MAP estimate of ω is shown in

Algorithm 2.1, where GEMiters denotes the maximum number of GEM iterations and BSGiters

denotes the number of Block Gauss-Seidel iterations. The notation (·)(k) stands for the block

column vectors corresponding to regressors ω(k).

2.4 The Multi-Level logistic spatial prior

In segmenting real world images, it is very likely that neighboring pixels belong to the same

class. The exploitation of this (seemingly naive) contextual information improves, in some

cases dramatically, the classification performance. In this work, we integrate the contextual
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Algorithm 2.1 GEM algorithm to estimate the MLR regressors ω

Require: ω0, DL, XU , α, β, τ , GEMiters, BSGiters
Ensure: uk,l ≡ [I − 11T/(K − 1)]k,l
R ≡∑L

i=1 h(xi)h(xi)
T , X ≡ [h(x1), · · · ,h(xL+U )]

B := B(X)(∗ build the graph weights according to (2.9) ∗)
∆ := ∆(B) (∗ ∆ is the Laplacian of graph G ∗)
i := 1
A := X∆XT

while i ≤ GEMiter or stopping criterion is not satisfied do

λk := (2α+ d)[2β + (ω
(k)
i )T (A+ τI)ω

(k)
i ]−1, k = 1, . . . ,K − 1

z := Bωi−1 − g(ωi−1)
Ck,l := uk,lR− λl(A+ τI)
for j := 1 to BSGiters do

for k := 1 to K − 1 do

ω
(k)
(i) = solution {Ck,kω

(k) = z(k) −∑K−1
l=1,l 6=k Ck,lω

(l)
i }

end for

end for

end while

information with spectral information by using an isotropic MLL prior to model the image

of class labels y. This prior, which belongs to the MRF class, encourages piecewise smooth

segmentations and thus promotes solutions in which adjacent pixels are likely to belong the

same class. The MLL prior is a generalization of the Ising model [58] and has been widely used

in image segmentation problems [92].

According to the Hammersly-Clifford theorem [10], the density associated with a MRF is a

Gibbs’s distribution [58]. Therefore, the prior model for segmentation has the following structure

p(y) =
1

Z
e

(
−
∑

c∈C

Vc(y)

)

, (2.17)

where Z is a normalizing constant for the density, the sum in the exponent is over the so-called

prior potentials Vc(y) for the set of cliques4 C over the image, and

− Vc(y) =





υyi , if |c| = 1 (single clique)

µc, if |c| > 1 and ∀i,j∈cyi = yj

−µc, if |c| > 1 and ∃i,j∈cyi 6= yj

(2.18)

where µc is a non-negative constant.

The potential function in (2.18) encourages neighbors to have the same label. By varying

the set of cliques and the parameters υyi and µc, the MLL prior offers a great deal of flexibility.

4A clique is a single term or either a set of pixels that are neighbors of one another.
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For example, the model generates texture-like regions if µc depends on c and blob-like regions

otherwise [93]. By taking µc =
1
2µ > 0, the Eq. (2.17) can be rewritten as

p(y) =
1

Z
e

∑

i∈S

υyi + µ
∑

(i,j)∈C

δ(yi − yj)

(2.19)

where δ(y) is the unit impulse function5. This choice gives no preference to any direction. The

unary cliques υyi are defined by the marginal p(yi) in the following sense:

p(yi) =
∑

j=1,...,n,j 6=i

p(yj).

Herein, we assume p(yi) = 1/K, i.e., equiprobable classes. In this case, a simple computation

leads to υyi = cte. Notice that the pairwise interaction terms δ(yi−yj) attach higher probability

to equal neighboring labels than the other way around. In this way, the MLL prior promotes

piecewise smooth segmentations. The level of smoothness is controlled by parameter µ.

In this paper, we consider only first and second order neighborhoods; i.e., considering that

pixels are arranged in a square grid where the distance between horizontal or vertical neighbors

is defined to be 1, the cliques corresponding to first and second order neighborhoods are, re-

spectively, {(i, j) ∈ C | d(i, j) ≤ 1, i, j ∈ S} and {(i, j) ∈ C | d(i, j) ≤
√
2, i, j ∈ S}, where d(i, j)

is the distance between pixels i, j ∈ S.

2.5 Computing the MAP estimate via graph-cuts

Based on the posterior class densities p(yi|xi) and on the MLL prior p(y), assuming equiprobable

classes and according to (2.2), the MAP segmentation is finally given by

ŷ = arg min
y∈Ln

∑

i∈S

− log p(yi|ω̂)− µ
∑

i,j∈C

δ(yi − yj), (2.20)

where p(yi|ω̂) ≡ p(yi|xi,ω), computed at ω̂. Minimization of expression (2.20) is a combinatorial

optimization problem, involving unary and pairwise interaction terms. The exact solution for

K = 2 was introduced in [63] by mapping the problem into the computation of a min-cut

on a suitable graph. This line of attack was reintroduced in the beginning of this century,

and has been intensely researched since then (see, e.g, [4, 22, 23, 79]). As a result of this

research, the number integer optimization problems that can now be solved exactly (or with

a very good approximation) has increased substantially. A key element in graph-cut based

5
i.e., δ(0) = 1 and δ(y) = 0, for y 6= 0
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approaches to integer optimization is the so-called sub-modularity of the pairwise terms: a

pairwise term V (yi, yj) is said to be submodular (or graph-representable) if V (yi, yi)+V (yj, yj) ≤
V (yi, yj) + V (yj, yi), for any yi, yj ∈ L. This is the case of our binary term −µδ(yi − yj). In

this case, the α-Expansion algorithm [23] can be applied. It yields very good approximations to

the MAP segmentation problem and is efficient from a computational point of view, being its

practical computational complexity O(n).

2.5.1 Semi-supervised algorithm

Let XL+U ≡ {xU+1, · · · ,xn} denote the unlabeled set in x. The pseudo-code for the proposed

semi-supervised segmentation algorithm with discriminative class learning MLL prior is shown

in Algorithm 2.2.

Algorithm 2.2 Semi-supervised segmentation algorithm

Require: DL, XU , XL+U , XL+U , GEMiters, BSGiters, α, β, τ , m
1: while stopping criterion is not satisfied do

2: ω̂ := GEM(DL,XU , α, β, τ , GEMiters, BSGiters)
3: P̂ := p̂(xi, ω̂), xi ∈ XL+U

4: (∗ P̂ collects the MLR probabilities (2.15) for all feature vectors in XL+U ∗)
5: Xnew := ϕ(P̂,m)
6: (∗ϕ(P̂,m) selects m unlabeled samples from XL+U . See explanation ∗)
7: XL+U := XL+U + Xnew

8: XL+U := XL+U − Xnew

9: end while

10: P̂ := p̂(xi, ω̂), i ∈ S
11: ŷ := α-Expansion(P̂, µ,neighborhood)

Lines 2, 10, and 11 of Algorithm 2.2 embody the core of our proposed algorithm. Specifi-

cally, line 2 implements the semi-supervised learning of the MLR regressors through the GEM

procedure described in Algorithm 2.1. It uses both the labeled and unlabeled samples. Line 10

computes the multinomial probabilities for the complete hyperspectral image. Line 11 computes

the MAP segmentation efficiently by applying the α-Expansion graph-cut based algorithm. The

neighborhood parameter for the α-Expansion determines the strength of the spatial prior. For

illustrative purposes, Figure 2.1 sketches the most relevant components of the proposed segmen-

tation algorithm in a flow chart.

2.5.2 Active selection of unlabeled samples

Lines 3-8 in Algorithm 2.2 implement the procedure for active selection of unlabeled training

samples. The objective is to select sets of unlabeled samples, based on the actual results provided

by the classifier, that hopefully lead to the best performance gains for the classifier. Contrarily
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Figure 2.1: Block scheme of Algorithm 2.2.

to active selection of labeled samples [44, 96, 133], the selection on unlabeled samples has not

been studied in detail in the literature. These samples are inexpensive and, thus, the question of

how many unlabeled samples should be used in hyperspectral data classification arises. In the

context of the proposed methodology, however, the complexity of the learning process increases

significantly with the incorporation of unlabeled samples, leading to cubic complexity when all

samples (labeled and unlabeled) are used for classification. In turn, active selection of a limited

number of unlabeled samples allows us to reduce computational complexity significantly and to

achieve overall performances that, otherwise, would be only reached with a much larger number

of samples.

In this work, we have considered two strategies for the selection criterion implemented by

function ϕ shown in line 5 of Algorithm 2.2, namely, the following:

(i) randomly: in step 5, these m unlabeled samples are randomly selected from XL+U .

(ii) maximum entropy: in step 5, these m unlabeled samples have the maximum entropy

HI(xi) = [p̂(1), . . . , p̂(K)], xi ∈ XL+U , which correspond to the samples near the classifier

boundaries.

In the literature, active selection studies for the labeled samples give evidence that, maximum

entropy yields very good performance [81, 133]. However, our research is different as we use

active selection for the set of unlabeled samples. Nevertheless, we still consider this criterion for

our approach. In the next section, we will justify the good behavior of this criterion in the case

of active selection of unlabeled samples.

2.5.3 Overall complexity

The complexity of Algorithm 2.2 is dominated by the semi-supervised learning stage of the MLR

regressors implemented through the GEM process in Algorithm 2.1, which has computational

complexity O(d3(K − 1)) as described in Section 2.3.1, and also by the α-Expansion algorithm

used to determine the MAP segmentation, which has practical complexity O(n) as described in

Section 2.5. Since in most applications d3(K − 1) > n, the overall complexity is dominated by

that of the GEM process in Algorithm 2.1, which is used to learn the MLR regressors.
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As already referred, compared with the semi-supervised algorithm presented in [81], the

proposed semi-supervised algorithm is (K − 1)2 faster. For a problem with 500 labeled pixels,

224 bands, and 10 classes on a 2.31GHz PC, with only the first 20 iterations, the proposed

algorithm took 10.53 seconds, whereas the algorithm in [81] took 106.77 seconds.

2.6 Experimental results

In this section, we evaluate the performance of the proposed algorithm using both simulated and

real hyperspectral data sets. The main objective in running experiments with simulated data is

the assessment and characterization of the algorithm in a controlled environment, whereas the

main objective in running experiments with real data sets is comparing its performance with

that reported for state-of-the-art competitors with the same scenes.

This section is organized as follows. Section 2.6.1 reports experiments with simulated data,

and contains the following experiments. In Subsection 2.6.1.I, we conduct an evaluation of the

impact of the spatial prior on the analysis of simulated data sets. Subsection 2.6.1.II performs

an evaluation of the impact of incorporating unlabeled samples to the analysis. Finally, Subsec-

tion 2.6.1.III conducts an experimental evaluation of the increase in classification results after

including the active selection methodology. On the other hand, Section 2.6.2 evaluates the per-

formance of the proposed algorithm using two real hyperspectral scenes collected by AVIRIS

over agricultural fields located at Indian Pines, Indiana [85], and the Valley of Salinas, California

[85]. In this section, the algorithm is compared with state-of-the-art competitors.

It should be noted that, in all experiments other than those related with the evaluation

of the impact of the spatial prior, we use RBF Kernels K(x, z) = exp(−‖x − z‖2/(2ρ2)) to

normalize data6. The scale parameter of the RBF Kernel is set to ρ = 0.6. In our experiments,

we use all of the available spectral bands without applying any feature selection strategy. Since

we use RBF kernels, the overall complexity only depends on the total number of labeled and

unlabeled samples. Thus, the application of feature selection techniques makes no significant

differences in this particular scenario. Although this setting is not optimal for all experiments,

we have observed that it yields very good results in all experiments. In all cases, the reported

values of the overall accuracy (OA) are obtained as the mean values after 10 Monte Carlo

runs, with respect to the labeled samples DL, except for the results over the AVIRIS Salinas

dataset, which are obtained with 5 Monte Carlo runs. The labeled samples for each Monte

Carlo simulation are obtained by resampling a much larger set of labeled samples. Finally,

6The normalization is xi := xi

(
√∑

‖xi‖
2)
, for i = 1, . . . , n, where xi is a spectral vector and x is the collection

of all image spectral vectors.
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it is important to emphasize that in this section we will frequently refer to classification and

segmentation results, respectively, when addressing the results provided by the MLR (spectral-

based classification) and the complete algorithm (which introduces contextual information to

provide a final segmentation).

2.6.1 Experiments with simulated data

In this section, a simulated hyperspectral scene is used to evaluate the proposed semi-supervised

algorithm, mainly to analyse the impact of the smoothness parameter µ. For this purpose, we

generate images of labels, y ∈ Ln, sampled from a 128× 128 MLL distribution with µ = 2. The

feature vectors are simulated according to:

xyi = myi + nyi , i ∈ S, yi ∈ Ln (2.21)

where xyi denotes the spectral vector, myi denotes a known vector, and nyi denotes zero-mean

Gaussian noise with covariance σ2I, i.e., nyi ∼ N (0, σ2I).

In Subsection 2.6.1.I, we address a binary classification problem, i.e., K = 2, with xyi ∈ R
50,

myi = ξiφ, ‖φ‖ = 1, and ξi = ±1. The image of class labels y is shown in Figure 2.2(a), where

labels yi = 1, 2 corresponds to ξi = −1,+1, respectively. In this problem, the theoretical OA,

given by OAopt ≡ 100 (1 − Pe)% and corresponding to the minimal probability of error [49] is

Pe =
1

2
erfc

(
1 + λ0√

2σ

)
p0 +

1

2
erfc

(
1− λ0√

2σ

)
p1, (2.22)

where λ0 = (σ2/2) ln(p0/p1) and p0 and p1 are the a priori class labels.

In Subsection 2.6.1.II, the images of class labels are generated with K = 10 and myi = syi ,

for i ∈ S, where sk, for k ∈ L, are spectral signatures obtained from the U.S. Geological Survey

(USGS) digital spectral library7. For a multi-class classification problem, because the probability

of error is difficult to compute, we use the error bound

Pe ≤
K − 1

2
erfc

(
distmin

2σ

)
, (2.23)

where distmin denotes the minimum distance between any point of mean vectors, i.e., distmin =

mini 6=j‖myi −myj‖, for any yi, yj ∈ L. This is the so-called union bound [13], which is widely

used in multi-class classification problems.

Finally, in Subsection 2.6.1.III we use the same experimental setting as in Subsection 2.6.1.I

except for the number of spectral band, which is set to 200, i.e., xyi ∈ R
200.

7The USGS library of spectral signatures is available online: http://speclab.cr.usgs.gov
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(a) (b) (c)

Figure 2.2: Classification and segmentation results obtained after applying the proposed method
on a simulated hyperspectral scene representing a binary classification problem. (a) Ground-
truth class labels. (b) Classification result (OA=66.94%, with OAopt = 75.95%). (c) Segmenta-
tion result(OA=96.41%).

I. Impact of including a spatial prior

In this example, we use a linear kernel in the characterization of the simulated hyperspectral

scene because it yields the correct discriminative density for the Gaussian observations with

equal covariance matrix. The number of unlabeled samples is set to zero in this experiment,

mainly because our focus is to analyze the effect of the spatial prior independently of other

considerations. Figure 2.3 (a) illustrates the OA results as a function of the smoothness pa-

rameter µ. It should be noted that the segmentation performance is almost insensitive to µ

with µ ≥ 1 for the considered problem. In the following experiments, we empirically set µ = 1.

Again, although this setting might not be optimal, it leads to good and stable results in our

experiments.

On the other hand, Figure 2.3(b-d) presents the OA results with 5, 50 and 500 labeled

samples per class, respectively, as a function of the noise standard deviation σ. As shown in the

plots, it can be observed that the classification OA approaches the optimal value OAopt as the

number of labeled samples is increased, but it is also clear that the number of labeled samples

needs to be relatively high in order to obtain classification accuracies which are close to optimal.

In turn, it can also be observed in Figure 2.3 that the inclusion of the spatial prior provides

much higher segmentation accuracies than those reported for the classification stage (superior in

all cases to the values of OAopt). Further, the sensitivity of these results to the amount of noise

in the simulated hyperspectral image can be compensated by increasing the number of labeled

samples, but accurate values of segmentation OA can be obtained using very few labeled samples,

in particular, when the amount of simulated noise is not very high. This experiment confirms

our introspection that the inclusion of a spatial prior can significantly improve the classification
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Figure 2.3: (a), OA results as a function of the spatial prior parameter µ with L = 10, σ2 = 2.
(b), (c) and (d), OA results as a function of the standard deviation σ of the noise introduced in
the simulated hyperspectral image, considering different numbers of labeled training samples.
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Figure 2.4: OA results as a function of the number of unlabeled samples. (a) Analysis scenario
based on a fixed number of L = 400 (40 labeled training samples per class) and σ = 0.4. (b)
Analysis scenario based on a fixed number of L = 500 (50 labeled training samples per class)
and σ = 0.45. Solid and dash-dot lines represent random selection and maximum entropy-based
active selection, respectively.

results provided by using only spectral information. For illustrative purposes, Figs. 2.2(b) and

2.2(c) show the classification and segmentation maps respectively obtained with σ2 = 2 and

L = 100. In this example, the increase in OA introduced by incorporating the spatial prior with

regards to the optimal classification that can be achieved (OAopt = 75.95%) is clearly noticeable

(about 20.46%), thus revealing the importance of including the spatial prior after classification.

II. Impact of incorporating unlabeled samples

In this subsection, we analyze the impact of including unlabeled samples via an active selection

strategy in the analysis of simulated hyperspectral data. Specifically, we consider two selection

strategies for unlabeled samples: (i) random, and (ii) maximum entropy-based. The latter

corresponds to selecting unlabeled samples close to the boundaries between regions in feature

space. Figure 2.4 shows the OA results obtained for the proposed algorithm as a function of the

number of unlabeled samples for two different analysis scenarios: (a) fixed number of labeled

training samples, L = 400 (40 per class) and noise standard deviation σ = 0.4, and (b) fixed

L = 500 (50 per class) and σ = 0.45. The theoretical OA, termed as OAopt ≡ 100 (1 − Pe)%,

where Pe denotes the union bound in this problem, is also plotted. After analyzing the results

reported in Figure 2.4, the following general observations can be made:

• The inclusion of a spatial prior improves the classification OA.

• The inclusion of unlabeled samples improves the segmentation OA by roughly 15% in

Figure 2.4(a) and in approximately 10% in Figure 2.4 (b). This effect is observed for all
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Table 2.1: OA (%) as a function of the number of unlabeled samples in the toy example illustrated
in Figure 2.5(b).

U 0 50 100 150 200 250 300 350 400 450

OA 55.78 86.19 89.29 87.30 88.17 87.73 89.45 90.13 90.45 91.05

considered numbers of unlabeled samples.

• Finally, it is clear from Figure 2.4 that maximum entropy-based active selection performs

uniformly better than random selection in terms of OAs.

III. Impact of the considered active selection approach

The main objective of this subsection is to provide an informal justification about why the

proposed method for maximum entropy-based active selection of unlabeled samples performs

accurately in experiments. Figure 2.5, with 20 labeled samples (10 per class), illustrates the

improvements in the separation boundaries established by our proposed classifier as the number

of unlabeled samples increases using a toy example. In Figure 2.5(a), in which the noise standard

deviation is set to σ = 0.1, red circles denote the labeled samples. The red line is the classifier

boundary defined without unlabeled samples. An OA of 79.32% was obtained in this case. The

yellow plus signs (a total of U = 50) represent the unlabeled samples. Since we have selected

the unlabeled samples with maximum entropy, and the entropy of a sample increases as it

approaches the boundary, the selected unlabeled samples are over the contour and located in

the area of higher density. The inclusion of these samples have pushed the contour outwards,

thus ensuring that all of them stay in the same classification region. Of course, the movement

of the boundary in the opposite direction would have also left all the unlabeled samples in the

same side of the boundary but would have decreased too much the likelihood term associated

with the labeled samples. In this example, the final OA after including unlabeled samples is

98.6%. A similar phenomenon is observed in Figure 2.5(b), in which σ = 0.3 is considered. For

illustrative purposes, Table 2.1 shows the OA results as a function of the number of unlabeled

samples for the example reported in Figure 2.5(b). Each column of Table 2.1 corresponds to a

different type of color/thickness in 2.5(b), from the thin red line to the thick red line. It is clear

that, as the number of unlabeled samples increases, the definition of the separating boundary

improves along with the overall performance of the classifier.
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(a) (b)

Figure 2.5: Changes in the boundary by the proposed classifier in a binary classification problem
as the number of unlabeled samples (selected using a maximum entropy-based criterion) is
increased.

2.6.2 Experiments with real hyperspectral data

In order to further evaluate and compare the proposed algorithm with other state-of-the-art

techniques for classification and segmentation, in this section we use two real hyperspectral data

sets collected by the AVIRIS instrument operated by NASA/JPL:

• The first data set used in experiments was collected over the Valley of Salinas, in Southern

California, in 1998. It contains 217 × 512 pixels and 224 spectral bands from 0.4 to 2.5

µm, with nominal spectral resolution of 10 nm. It was taken at low altitude with a

pixel size of 3.7 meters. The data includes vegetables, bare soils and vineyard fields. The

upper-leftmost part of Figure 2.6 shows the entire scene (with overlaid ground-truth areas)

and a sub-scene of the dataset (called hereinafter Salinas A), outlined by a red rectangle.

The Salinas A sub-scene comprises 83 × 86 pixels and is known to represent a difficult

classification scenario with highly mixed pixels [108], in which the lettuce fields can be

found at different weeks since planting. The upper-rightmost part of Figure 2.6 shows

the available ground-truth regions for the scene, and the bottom part of Figure 2.6 shows

some photographs taken in the field for the different agricultural fields at the time of data

collection.

• The second data set used in experiments is the well-known AVIRIS Indian Pines scene,

collected over Northwestern Indiana in June of 1992 [85]. This scene, with a size of

145× 145 pixels, was acquired over a mixed agricultural/forest area, early in the growing

season. The scene comprises 224 spectral channels in the wavelength range from 0.4 to

2.5 µm, nominal spectral resolution of 10 nm, and spatial resolution of 20 meters by
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(a) (b) (c)

Figure 2.6: AVIRIS Salinas data set along with the classification maps by using L = 128,
U = 256. Upper part: (a), right: original image at 488 nm wavelength with a red rectangle
indicating a sub-scene called Salinas A; left, ground truth map containing 16 mutually exclusive
land-cover classes. (b) Classification map (OA = 82.55%). (c) Segmentation map (OA =
91.14%). Bottom part: Photographs taken at the site during data collection.

pixel. For illustrative purposes, Figure 2.7(a) shows the ground-truth map available for

the scene, displayed in the form of a class assignment for each labeled pixel, with 16

mutually exclusive ground-truth classes. These data, including ground-truth information,

are available online8, a fact which has made this scene a widely used benchmark for testing

the accuracy of hyperspectral data classification and segmentation algorithms.

I. Experiments with the full AVIRIS Salinas data set

Table 2.2 reports the segmentation and classification scores achieved for the proposed method

with the full AVIRIS Salinas data set, in which the accuracy results are displayed for different

numbers of labeled samples (ranging from 5 to 15 per class) and considering also unlabeled

samples in a range from U = 0 (no unlabeled samples) to U = 2 × L. As shown in Table 2.2,

8http://cobweb.ecn.purdue.edu/ biehl/MultiSpec/
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(a)

(b) (c)

Figure 2.7: AVIRIS Indian Pines scene along with the classification and segmentation maps by
using L = 160, U = 288. (a) Ground truth-map containing 16 mutually exclusive land-cover
classes. (b) Classification map (OA = 62.98%). (c) Segmentation map (OA = 74.98%).
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Table 2.2: Classification (in the parentheses) and segmentation OAs [%] achieved after applying
the proposed algorithm to the full AVIRIS Salinas data set using different numbers of labeled
training samples (L). The number of unlabeled samples U is set to U = 0, L and 2 × L. Each
value of OA reported in the table was obtained with 5 Monte Carlo runs.

Number of total labeled samples for all classes (L)

U 80 128 160 192 240

0 86.74 (80.75) 88.94 (81.97) 91.30 (84.47) 92.22 (84.63) 93.87 (85.85)

L 87.20 (80.98) 89.54 (82.39) 92.31 (84.85) 92.42 (84.81) 94.70 (86.21)

2L 87.21 (81.14) 89.61 (82.40) 92.93 (85.07) 92.85 (84.84) 95.13 (86.49)

the proposed algorithm obtains very good OAs with limited training samples. Specifically, with

only 240 labeled pixels (15 per class), the OA obtained is 93.87% (U = 0), 94.70% (U = L)

and 95.13% (U = 2 × L), which are better than the best result reported in [109] for a set of

SVM-based classifiers applied to the same scene with a comparatively much higher number of

training samples. Specifically, the SVM classifier in [109] was trained with 2% of the available

ground-truth pixels, which means a total of around 1040 labeled samples (about 65 per class).

The results reported in this work are only slightly lower than those reported in [108] using a

multi-layer perceptron (MLP) neural network classifier, trained with 2% of the available ground-

truth pixels, and with multi-dimensional morphological feature extraction prior to classification

(the maximum OA reported in [108] for the full AVIRIS Salinas scene was 95.27%, but this

result again used a comparatively much higher number of training samples).

On the other hand, it can also be seen from Table 2.2 that the inclusion of a spatial prior

significantly improves the results obtained by using the spectral information only (approximately

in the order of 6% increase in OA). Furthermore, the inclusion of unlabeled samples in the

proposed approach increases the OA in approximately 1% or 2% with regards to the case in

which only labeled samples are used. The above results confirm our introspection (already

reported in the simulated data experiments) that the proposed approach can greatly benefit

from the inclusion of a spatial prior and unlabeled samples in order to increase the already good

classification accuracies obtained using the spectral information only. Figure 2.6 (b) and (c)

plot the classification and segmentation maps. Effective results can be seen in these maps.

II. Experiments with the AVIRIS Salinas A Sub-Scene

In this experiment, we use a sub-scene of Salinas dataset, which comprises 83 × 86 pixels and

6 classes. As mentioned above, this sub-scene is known to represent a challenging classification

scenario due to the similarity of the different lettuce classes comprised by the sub-scene, which
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Table 2.3: Segmentation OAs [%] achieved after applying the proposed algorithm to the AVIRIS
Salinas A sub-scene using different numbers of labeled training samples (L). The number of
unlabeled samples U is set in a range between U = 0 and U = 5× L. The classification results
obtained by the proposed method without the spatial prior are also reported. Each value of OA
reported in the table was obtained with 10 Monte Carlo runs.

L

U 18 30 48 60

0 93.64 97.76 98.00 99.68

2L 95.71 98.45 98.76 99.68

3L 95.52 98.71 99.40 99.58

4L 96.70 99.28 99.70 99.52

5L 96.74 99.66 99.62 99.70

Class.(U=5L) 90.86 95.01 96.74 97.47

are at different weeks since planting and hence have similar spectral features only distinguished

by the fraction of lettuce covering the soil in each of the 3.7 meter pixels of the scene. Table 2.3

reports the segmentation (with spatial prior) scores achieved for the proposed method with the

AVIRIS Salinas A sub-scene, in which the accuracy results are displayed for different numbers

of labeled samples (ranging from 3 to 10 per class) and considering also unlabeled samples in

a range from U = 0 (no unlabeled samples) to U = 5 × L. The classification results (obtained

without using the spatial prior and for U = 5L) are also displayed in Table 2.3. As shown in

Table 2.3, the proposed algorithm achieved a segmentation OA of up to 99.28% for U = 4× L

and only 5 labeled samples per class (30 labeled samples in total). This represents an increase

of approximately 4.27% OA with respect to the same configuration for the classifier but without

using the spatial prior. These results are superior to those reported in [109] and [108] for

the classes included in the AVIRIS Salinas A sub-scene using an SVM-based classifier and an

MLP-based classifier with multi-dimensional morphological feature extraction, respectively.

III. Experiments with the AVIRIS Indian Pines data set

Table 2.4 reports the segmentation and classification scores achieved for the proposed method

with the AVIRIS Indian Pines data set, in which the accuracy results are displayed for different

numbers of labeled samples ( ranging from 5 to 15 per class) and considering also unlabeled

samples in a range from U = 0 (no unlabeled samples) to U = 32×k, with k = 0, 1, · · · , 9. As in
previous experiments, the number of labeled samples in Table 2.4 represents the total number

of samples selected across the different classes, with approximately the same amount of labeled
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samples selected for each class. After a detailed analysis of the experimental results reported

on Table 2.4, it is clear that the proposed segmentation method (with spatial prior) provides

competitive results for a limited number of labeled samples, outperforming the same classifier

without spatial prior in all cases by a significant increase in OA (the increase is always in the

order of 10% or higher).

Further, the use of unlabeled samples significantly increases the OA scores reported for the

proposed segmentation algorithm. Just as an example, if we assume that 8 labeled samples

are used per class, increasing the number of unlabeled samples from 0 to 288 results in an OA

increase of approximately 5%, indicating that the proposed approach can greatly benefit not

only from the inclusion of a spatial prior, but also from the incorporation of an active learning

strategy in order to provide results which are competitive with other results reported in the

literature with the same scene. For instance, the proposed algorithm yields better results in

terms of OA than the semi-supervised cluster SVMs introduced in [132]. Specifically, when 128

labeled samples (8 samples per class) are used by our proposed method, the OA of the proposed

approach is 69.79% (U = 288, obtained by active selection), which is comparable to the best

result 69.82% reported in [132] (using 519 labeled samples). For illustrative purposes, Figs.

2.7(b) and 2.7(c) show the classification and segmentation maps, respectively. These figures

indicate effective results without severe block artifacts. Notice that the results plotted in Figure

2.6 and Figure 2.7 are obtained with just 8 and 10 samples per class, respectively. To give an

idea of the quality of this result, we note that the recent semi-supervised technique [132] takes,

approximately, 2 times more training samples to achieve a comparable performance, if we take

into account only classification results, and 4 times more, if we use spatial information (see Table

2.4).

At this point, we want to call attention for the “good” performance of the proposed algorithm,

including the active selection procedure, in the four small size classes, namely “Alfalfa (54

samples)”, “Grass/pasture-mowed (26 samples)”, “Oats (20 samples)”, and “Stone-steel towers

(95 samples)”. Without going into deep details, this performance is essentially a consequence of

having decent estimates for the regressors ω given by (2.6), condition without which the active

selection would fail to provide good results [96].

2.7 Conclusions and future lines

In this paper, we have introduced a new semi-supervised classification/segmentation approach

for remotely sensed hyperspectral data interpretation. Unlabeled training samples (selected

by means of an active selection strategy based on the entropy of the samples) are used to
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Table 2.4: Classification (in parentheses) and segmentation OAs [%] achieved after applying the
proposed algorithm to the full AVIRIS Indian Pines data set using different numbers of labeled
training samples (L). The number of unlabeled samples U is set in a range between U = 0 and
U = 32 × k, with k = 0, 1, · · · , 9. The classification results obtained by the proposed method
without the spatial prior are also reported. Each value of OA reported in the table was obtained
with 10 Monte Carlo runs.

Number of total labeled samples for all classes (L)

U 80 128 160 192 240

0 59.09 (52.94) 64.92 (58.65) 70.85 (63.19) 73.88 (66.51) 78.92 (69.09)

32 61.32 (53.07) 65.34 (58.60) 75.60 (63.44) 79.78 (66.44) 76.52 (68.83)

64 59.32 (53.02) 67.47 (58.32) 72.48 (63.33) 75.79 (66.31) 77.47 (68.51)

96 60.37 (52.85) 67.05 (58.25) 74.43 (63.27) 79.11 (66.23) 79.85 (68.42)

128 61.47 (52.87) 67.26 (57.98) 73.92 (63.11) 76.01 (66.15) 75.63 (68.30)

160 60.71 (52.78) 72.14 (57.98) 73.37 (63.01) 78.27 (66.06) 79.10 (68.32)

192 60.40 (52.77) 69.85 (57.96) 73.53 (62.91) 76.83 (65.96) 79.10 (68.22)

224 61.11 (52.72) 67.18 (57.93) 72.14 (62.91) 77.48 (65.99) 78.01 (68.16)

256 61.59 (52.74) 71.33 (57.85) 74.42 (62.82) 73.92 (65.94) 78.15 (68.08)

288 60.71 (52.65) 69.79 (57.94) 73.02 (62.82) 77.16 (65.84) 79.90 (68.04)

improve the estimation of the class distributions. By adopting a spatial multi-level logistic

prior and computing the maximum a posteriori segmentation with the α-expansion graph-cut

based algorithm, it has been observed that the overall segmentation accuracy achieved by our

proposed method in the analysis of simulated and real hyperspectral scenes collected by the

AVIRIS imaging spectrometer improves significantly with respect to the classification results

proposed by the same algorithm using only the learnt class distributions in spectral space.

This demonstrates the importance of considering not only spectral but also spatial information

in remotely sensed hyperspectral data interpretation. The obtained results also suggest the

robustness of the method to analysis scenarios in which limited labeled training samples are

available a priori. In this case, the proposed method resorts to intelligent mechanisms for

automatic selection of unlabeled training samples, thus taking advantage of an active learning

strategy in order to enhance the segmentation results. A comparison of the proposed method

with other state-of-the-art classifiers in the considered (highly representative) hyperspectral

scenes indicates that the proposed method is very competitive in terms of the (good) overall

accuracies obtained, and the (limited) number of training samples (both labeled and unlabeled)

required to achieve such accuracies. Further work will be directed towards testing the proposed

segmentation approach in different analysis scenarios dominated by the limited availability of

training samples a priori.
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Chapter 3

Hyperspectral Image Segmentation
Using a New Bayesian Approach
with Active Learning

Abstract – This paper introduces a new supervised Bayesian approach to hyperspectral image

segmentation with active learning, which consists of two main steps. First, we use a multinomial

logistic regression (MLR) model to learn the class posterior probability distributions. This is

done by using a recently introduced logistic regression via splitting and augmented Lagrangian

(LORSAL) algorithm. Second, we use the information acquired in the previous step to segment

the hyperspectral image using a multi-level logistic prior that encodes the spatial information.

In order to reduce the cost of acquiring large training sets, active learning is performed based

on the MLR posterior probabilities. Another contribution of this work is the introduction

of a new active sampling approach, called modified breaking ties (MBT), which provides an

unbiased sampling. Further, we have implemented our proposed method in an efficient way. For

instance, in order to obtain the time-consuming maximum a posteriori segmentation, we use the

α-Expansion min-cut based integer optimization algorithm. The state-of-the-art performance

of the proposed approach is illustrated using both simulated and real hyperspectral data sets in

a number of experimental comparisons with recently introduced hyperspectral image analysis

methods.

Index Terms – Hyperspectral image segmentation, sparse multinomial logistic regression,

ill-posed problems, graph cuts, integer optimization, mutual information, active learning.

3.1 Introduction

With the recent developments in remote sensing instruments, hyperspectral images are now

widely used in different application domains [107]. The special characteristics of hyperspectral

data sets bring difficult processing problems. Obstacles, such as the Hughes phenomenon [68],
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come out as the data dimensionality increases. These difficulties have fostered the development

of new classification methods, which are able to deal with ill-posed classification problems. For

instance, several machine learning techniques are applied to extract relevant information from

hyperspectral data sets [19, 30, 36]. However, although many contributions have been made to

this area, the difficulty in learning high dimensional densities from a limited number of training

samples (an ill-posed problem) is still an active area of research.

Discriminative approaches, which learn the class distributions in high dimensional spaces

by inferring the boundaries between classes in feature space [13, 102, 134], tackle effectively

the above mentioned difficulties. Specifically, support vector machines (SVMs) [121] are among

the state-of-the-art discriminative techniques that can be applied to solve ill-posed classification

problems. Due to their ability to deal with large input spaces efficiently and to produce sparse

solutions, SVMs have been used successfully for supervised and semi-supervised classification of

hyperspectral data using limited training samples [25, 28, 34–37, 53, 107]. On the other hand,

multinomial logistic regression (MLR) [16] is an alternative approach to deal with ill-posed

problems, which has the advantage of learning the class probability distributions themselves.

This is crucial in the image segmentation step. As a discriminative classifier, MLR models

directly the posterior densities instead of the joint probability distributions. The distinguishing

features of discriminative classifiers have been reported in the literature before [13, 102, 118]. For

instance, effective sparse MLR (SMLR) methods are available in the literature [80]. These ideas

have been applied to hyperspectral image classification [18, 19, 91] yielding good performance.

Another well-known difficulty in supervised hyperspectral image classification is the limited

availability of training data, which are difficult to obtain in practice as a matter of cost and

time. In order to effectively work with limited training samples, several methodologies have been

proposed, including feature extraction methods such as principal component analysis (PCA),

linear discriminant analysis (LDA), discriminant analysis feature extraction (DAFE), multiple

classifiers and decision fusion [112], among many others [107]. Active learning, which is another

active research topic, has been widely studied in the literature [40, 44, 76, 81, 96, 113, 133].

These studies are based on different principles, such as the evaluation of the disagreement

between a committee of classifiers [133], the use of hierarchical classification frameworks [76, 113],

unbiased query by bagging [40], or the exploitation of a local proximity-based data regularization

framework [44].

In this work, we use active learning to construct small training sets with high training utility,

with the ultimate goal of systematically achieving noticeable improvements in classification

results with regards to those found by randomly selected training sets of the same size. Since
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active learning is intrinsically biased sampling, an issue to be investigated in our experiments is

whether the considered classifier (in this work, the MLR) would be able to cope with the class

imbalance problem that might be inferred during the active learning strategy. Another trend

to improve classification accuracy is to integrate spatial contextual information with spectral

information for hyperspectral data interpretation [19, 53, 107, 130]. These methods exploit, in

a way or another, the continuity (in probability sense) of neighboring labels. In other words, it

is very likely that, in a hyperspectral image, two neighboring pixels have the same label.

In this chapter, we introduce a new supervised Bayesian segmentation approach which ex-

ploits both the spectral and spatial information in the interpretation of remotely sensed hyper-

spectral data sets. The algorithm implements two main steps: (a) learning stage, using the

multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL)[12]

algorithm to infer the class distributions; (b) segmentation stage, which infers the labels from a

posterior distribution built on the learnt class distributions and on a multi-level logistic (MLL)

prior [93]. The computation of the maximum a posteriori (MAP) segmentation amounts at

maximizing the posterior distribution of class labels. This is a hard integer optimization prob-

lem, which we solve by using the powerful graph-cut based α-Expansion algorithm [22]. It yields

exact solutions in the binary case and very good approximations when there are more than two

classes. Furthermore, we aim at significantly exploiting the efficiency of the labeled samples

by means of active learning, thus reducing the size of the required training set and taking full

advantage of the MLR posterior probabilities. In this work, different strategies are used to im-

plement active learning in addition to random sampling (RS): (a) the mutual information (MI)

between the MLR regressors and the class labels[81, 96]; (b) a criterion called breaking ties (BT)

[95]; and (c) our proposed version called modified breaking ties (MBT), which is also intended

to guarantee unbiased samplings among the classes.

The remainder of the chapter is organized as follows. Section 3.2 formulates the hyper-

spectral image segmentation problem. Section 3.3 describes the proposed approach. Section 3.4

presents the active learning algorithms considered in this work. Section 3.5 reports segmentation

results based on both simulated and real hyperspectral datasets in several ill-posed scenarios.

Comparisons with state-of-the-art algorithms are also included and thoroughly described in this

section. Finally, Section 4.5 concludes with a few remarks and hints at plausible future research

lines.
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3.2 problem formulation

Let S ≡ {1, . . . , n} denote a set of integers indexing the n pixels of a hyperspectral image;

let L ≡ {1, . . . ,K} be a set of K labels; let x = (x1, . . . ,xn) ∈ R
d×n denote an image of d-

dimensional feature vectors; let y = (y1, . . . , yn) ∈ Ln be an image of labels; and let DL ≡
{(x1, y1), . . . , (xL, yL)} ∈

(
R
d × L

)L
be a training set where L denotes the total number of

available labeled samples. With the above definitions in place, the goal of classification is to

assign a label yi ∈ L to each pixel i ∈ S, based on the vector xi, resulting in an image of class

labels y. We call this assignment a labeling. On the other hand, the goal of segmentation is to

compute, based on the observed image x, a partition S = ∪iSi of the set S such that the pixels in

each element of the partition share some common properties (i.e., they represent the same type

of land cover). Notice that, given a labeling y, the collection Sk = {i ∈ S | yi = k} for k ∈ L, is a
partition of S. Also, given the segmentation Sk for k ∈ L, the image {yi | yi = k if i ∈ Sk, i ∈ S}
is a labeling. Therefore, we can assume that there is a one-to-one relationship between labelings

and segmentations. Nevertheless, in this paper we will refer to the term classification when there

is no spatial information involved in the processing stage, while we will refer to segmentation

when the spatial prior is being considered.

In a Bayesian framework, inference is often carried out by maximizing the posterior distri-

bution:

p(y|x) ∝ p(x|y)p(y), (3.1)

where p(x|y) is the likelihood function (i.e., the probability of the feature image given the labels)

and p(y) is the prior over the labels in y. Assuming conditional independency of the features

given the labels, i.e., p(x|y) =∏i=n
i=1 p(xi|yi), the posterior p(y|x) may be written as a function

of y as follows:

p(y|x) =
1

p(x)
p(x|y)p(y)

= α(x)

i=n∏

i=1

p(yi|xi)

p(yi)
p(y),

(3.2)

where α(x) ≡∏i=n
i=1 p(xi)/p(x) is a factor not depending on y. The MAP segmentation is then

given by:

ŷ = arg max
y∈Ln

{
n∑

i=1

(log p(yi|xi)− log p(yi)) + log p(y)

}
. (3.3)

In the present approach, the densities p(yi|xi) are modeled as MLRs [16], whose regressors

are learnt via the LORSAL algorithm [12]. As prior p(y) on the labelings, y, we adopt an

MLL Markov random field (MRF) [93], which encourages neighboring pixels to have the same

label. The MAP labeling/segmentation ŷ is computed via the α-Expansion algorithm [23], a
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min-cut based tool to efficiently solve a class of integer optimization problems of which the MAP

segmentation in Eq. (3.3) is an example.

3.3 Proposed approach

As mentioned in the previous section, in this work we model the posterior densities p(yi|xi)

using a MLR, which is formally given by [16]:

p(yi = k|xi,ω) ≡ exp(ω(k)Th(xi))∑K
k=1 exp(ω

(k)Th(xi))
, (3.4)

where h(x) ≡ [h1(x), ..., hl(x)]
T is a vector of l fixed functions of the input, often termed features,

and ω ≡ [ω(1)T , ...,ω(K)T ]T denotes the logistic regressors. Since the density in Eq. (3.4) does

not depend on translations of the regressors ω(K), we take ω(K) = 0 and remove it from ω, i.e.,

ω ≡ [ω(1)T , ...,ω(K−1)T ]T .

It should be noted that function h may be linear, i.e., h(xi) = [1, xi,1, ..., xi,d]
T , where xi,j

is the j-th component of xi. Alternatively, h can also be nonlinear. For the nonlinear case,

kernels are a relevant example and can be expressed by h(xi) = [1,Kxi,x1 , ...,Kxi,xl
]T , where

Kxi,xj
≡ K(xi,xj) andK(·, ·) is some symmetric kernel function. Kernels have been largely used

in this context because they tend to improve the data separability in the transformed space. In

this paper, we present results only for the Gaussian Radial Basis Function (RBF) kernel, given

by K(x, z) = exp(−‖x − z‖2/(2ρ2)). The RBF kernel has been widely used in hyperspectral

image classification [28]. If we denote by γ the dimension of h(x), then we have γ = d + 1 for

the linear case and γ = L+ 1 for the RBF kernel (recall that L is the number of samples in the

training set DL). In addition to the Gaussian RBF kernel, we have considered other alternative

kernels such as the polynomial one. However, we have experimentally tested that the results

obtained are very similar in both cases. Hence, in the following we adopt the Gaussian RBF

kernel as a baseline for simplicity.

3.3.1 LORSAL

In our context, learning the class densities amounts to estimating the logistic regressors ω.

Following the principles of the SMLR algorithm [80], the estimation of ω amounts to computing

the MAP estimate:

ω̂ = argmax
ω

ℓ(ω) + log p(ω), (3.5)
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where ℓ(ω) is the log-likelihood function given by:

ℓ(ω) ≡ log

L∏

i=1

p(yi|xi,ω), (3.6)

and

p(ω) ∝ exp(−λ‖ω‖1) (3.7)

is a Laplacian prior promoting the sparsity on ω (‖ω‖1 denotes the l1 norm of ω) with λ acting

as a regularization parameter. The prior p(ω) forces many components of ω to be zero. Thus,

the Laplacian prior selects just a few kernel functions. The sparseness imposed on the regression

vector controls the MLR classifier complexity and, consequently, enhances its generalization

capacity.

Solving the convex problem in Eq. (3.5) is difficult because the term ℓ(ω) is non-quadratic

and the term log p(ω) is non-smooth. A majorization-minimization framework[69] has recently

been used in [80, 81, 89, 91] to decompose the problem in Eq. (3.5) into a sequence of quadratic

problems. The computational cost of the SMLR algorithm used for solving each quadratic

problem is O((γK)3), which is prohibitive when dealing with datasets with a large number of

features, with a large number of classes, or both. The fast sparse multinomial logistic regression

(FSMLR) [18] estimates the sparse regressors in an efficient way by implementing a block-based

Gauss-Seidel iterative procedure to calculate ω. This procedure is on the order of K2 faster than

the original SMLR algorithm. Thus, the FSMLR algorithm extends the capability of SMLR to

handle data sets with a large number of classes. However, with an overall complexity of O(γ3K),

the complexity of FSMLR is still unbearable in many cases, in particular, for hyperspectral data

sets with high-dimensional features.

In this paper, we resort to the recently introduced LORSAL algorithm [12] to learn the MLR

regressors given by Eq. (3.5). By replacing the log p(ω) in Eq. (3.5) with log p(ν), approximating

ℓ(ω) with a quadratic majorizer, and introducing the constraint ω = ν, the LORSAL algorithm

replaces a difficult non-smooth convex problem with a sequence of quadratic plus diagonal l2-l1

problems which are easier to solve. For additional details see the Appendix located at the end of

this paper. In practice, the total cost of the LORSAL algorithm is O(γ2K) per iteration, which

contrasts with the O((γK)3) and O(γ3K) complexities of SMLR and FSMLR, respectively. As

a result, the reduction of computational complexity is on the order of γK2 and γ, respectively.
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3.3.2 The multi-level logistic (MLL) spatial prior

In order to encourage piecewise smooth segmentations and promote solutions in which adjacent

pixels are likely to belong to the same class, we include spatial-contextual information in our

proposed method by adopting an isotropic MLL prior to model the image of class labels y. This

prior, which belongs to the MRF class, is a generalization of the Ising model [58] and has been

widely used in image segmentation problems (see e.g., [19, 89, 91, 92]).

According to the Hammersly-Clifford theorem [10], the density associated with an MRF is

a Gibbs’ distribution [58]. Thus, the prior model has the structure:

p(y) =
1

Z
e

(
−
∑

c∈C

Vc(y)

)

, (3.8)

where Z is a normalizing constant for the density, the sum in the exponent is over the so-called

prior potentials Vc(y) for the set of cliques C over the image, and:

− Vc(y) =





υyi , if |c| = 1 (single clique)

µc, if |c| > 1 and ∀i,j∈cyi = yj

−µc, if |c| > 1 and ∃i,j∈cyi 6= yj,

(3.9)

where µc is a non-negative constant.

The potential function in Eq. (3.9) encourages neighbors to have the same class label. The

considered MLL prior offers great flexibility in this task by varying the set of cliques and the

parameters υyi and µc. For example, the model generates texture-like regions if µc depends on c

and blob-like regions otherwise [93]. The single clique term υyi determines the marginals p(yi),

i.e., the prior class distributions. In this work, we assume equiprobable classes and this implies

that υyi is constant. We note, however, that any other distribution can be modeled by a suitable

choice of the term υyi . Then Eq. (3.8) can be rewritten as:

p(y) =
1

Z
e

µ
∑

{i,j}∈C

δ(yi − yj)

, (3.10)

where δ(y) is the unit impulse function. This choice gives no preference to any direction. Notice

that the pairwise interaction terms δ(yi − yj) attach higher probability to equal neighboring

labels than the other way around. In this way, the MLL prior promotes piecewise smooth

segmentations, where µ controls the degree of smoothness.
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3.3.3 Computing the MAP estimate via graph-cuts

Using the LORSAL algorithm to learn p(yi|xi) and the MLL prior p(y), and according to Eq.

(3.3), the MAP segmentation is finally given by:

ŷ = arg min
y∈Ln




∑

i∈S

− log p(yi|ω̂)− µ
∑

i,j∈C

δ(yi − yj)



 , (3.11)

where p(yi|ω̂) ≡ p(yi|xi,ω), computed at ω̂. Minimization of Eq. (3.11) is a combinatorial

optimization problem involving unary and pairwise interaction terms, which is very difficult to

compute. Recently developed energy minimization algorithms like graph-cuts [22, 23, 79], loopy

belief propagation [141, 142], and tree-reweighed message passing [78] are efficient tools to tackle

this class of optimization problems. In this work, we use the α-Expansion algorithm [23] to solve

our integer optimization problem [4]. This algorithm yields very good approximations to the

MAP segmentation and is quite efficient from a computational point of view, being the practical

computational complexity of this algorithm O(n). The pseudo-code for the proposed supervised

segmentation algorithm with discriminative class learning and MLL prior is shown in Algorithm

3.1.

Algorithm 3.1 Supervised segmentation algorithm (LORSAL-MLL)

Require: DL, λ, β
1: ω̂ := LORSAL(DL, λ, β)
2: P̂ := p̂(xi, ω̂), i ∈ S
3: ŷ := α-Expansion(P̂, µ)

3.3.4 Overall complexity

The overall complexity of our proposed approach is dominated by the supervised learning of the

MLR regressors through the LORSAL algorithm, shown in Algorithm 3.4 (see Appendix), which

has a complexity of O(γ2K), and by the α-Expansion algorithm used to determine the MAP

segmentation, which has a practical complexity of O(n). In conclusion, if γ2K ≫ n (e.g., h(x)

are kernels and the number of classes is large), then the algorithm’s complexity is dominated by

the computation of the MLR regressors, whereas if γ2K ≪ n, then the algorithm’s complexity

is dominated by the α−Expansion algorithm.

3.4 Active learning

In this work, we use active learning to reduce the need for large amounts of labeled samples.

The basic idea of active learning is to iteratively enlarge the training set by requesting an expert
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to label new samples from the unlabeled set {xi, i ∈ SU} in each iteration, where SU is the set of

unlabeled feature vectors, i.e., spectral vectors in the observed context. The relevant question is,

of course, what vectors in SU are most informative and should be chosen as new samples. In this

paper, we take advantage of the MLR model, which provides the exact posterior probabilities.

Therefore, three different sampling schemes, based on the spectral information (more specifically,

on the MLR posterior probabilities just provided by the LORSAL algorithm) are implemented:

(a) MI-based criterion [81, 96]; (b) BT algorithm [95]; and (c) our proposed MBT scheme.

3.4.1 MI-based active learning

The first active learning scheme considered is an MI-based criterion [81, 96] that maximizes the

mutual information between the MLR regressors and the class labels. Let I(ω; yi|xi) denote

the MI between the MLR regressors and the class label yi. Following [96], the new vector xi is

selected according to:

x̂MI
i = arg max

xi, i∈SU

I(ω; yi|xi), (3.12)

where (see [96] for more details)

I(ω; yi|xi) = (1/2) log(|HMI|/H). (3.13)

Here, H is the posterior precision matrix, i.e., the Hessian of minus the log-posterior [131]

H ≡ ∇2(− log p(ω̂|DL)),

and HMI is the posterior precision matrix after including the new sample xi. In the proposed

approach, we use a Laplacian approximation of the posterior to model p(ω|DL), such that

p(ω|DL) ≃ N (ω|ω̂,H−1), which assumes that the MAP estimate ω̂ remains unchanged after

including the new sample. If the size of the initial training sample is “small”, this assumption

may not hold at the beginning of the active learning procedure. Nevertheless, it has been

empirically observed that it leads to a very good approximation [81, 88]. Under this assumption,

we can compute HMI as follows:

HMI = H+
(
diag(pi(ω̂))− pi(ω̂)pi(ω̂)T

)
⊗ h(xi)h(xi)

T , (3.14)

where pi(ω̂) ≡ [pi,1, . . . , pi,K ]T , pi,k ≡ p(yi = k|xi, ω̂) for k = 1, . . . ,K, and ⊗ is the Kronecker
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Figure 3.1: Graphical illustration of the MI, BT and MBT active learning approaches using a
toy example.

product. Therefore, Eq. (3.13) turns to:

I(ω; yi|xi) = (1/2) log

(
1 +

K∏

k=1

pi,k xT
i H

−1xi

)
. (3.15)

According to Eq. (3.15), the function in Eq. (3.12) is maximized for pi,k ≈ 1/K, i.e., for samples

near the boundaries among classes and corresponding to probability vectors pi with maximum

entropy. This situation is graphically illustrated in Figure 3.1, in which a toy example with four

simulated regions is used for demonstration purposes. As shown by Figure 3.1, the MI focuses

on the most complex area (boundary between the four regions).

3.4.2 BT active learning

The BT active learning algorithm [95] was proposed to achieve diversity in the sampling, thus

alleviating the bias in the MI-based sampling. The decision criterion is:

x̂BT
i = arg min

xi, i∈SU

{
max
k∈L

p(yi = k|xi, ω̂)− max
k∈L\{k+}

p(yi = k|xi, ω̂)

}
, (3.16)

where k+ = argmax
k∈L

p(yi = k|xi, ω̂) is the most probable class for sample xi.

Other than the MI-based criterion, which focuses on the most complex regions (i.e, regions

with the largest number of boundaries), the BT criterion focuses on the boundary region between

two classes, with the goal of obtaining more diversity in the composition of the training set. In
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spite of the better performance generally expected from the BT criterion with respect to the

MI-based one, it may still produce biased sampling, namely, when there are many samples

located close to a boundary. This can be seen in Figure 3.1, which illustrates how the BT

criterion generally focuses on the boundaries comprising many samples, possibly disregarding

boundaries with fewer samples but which may be crucial for the learning procedure needed to

train discriminative classifiers. In the following subsection, we propose a new modified scheme

(called MBT) which promotes even more diversity in the sampling process.

3.4.3 MBT active learning

For a given ω̂ and s ∈ L, let SUs ⊂ SU be the set of pixels such that p(yi = s|xi, ω̂) ≥ p(yi =

k|xi, ω̂), for i ∈ SUs and k 6= s. Then, the MBT criterion simply works as follows:

do

s = next class

select SUs

x̂MBT
i = arg max

xi, i∈SUs , k∈L\{s}
p(yi = k|xi, ω̂),

while stop rule

(3.17)

where the “next class” is chosen by scanning the index set L in a cyclic fashion. We highlight

the following two characteristics of the MBT criterion in Eq. (3.17), both intended to promote

diversity in the selection process as compared with the BT criterion:

• By cyclically selecting subsets of SU containing the pixels with the same MAP label, it is

assured that the MBT criterion does not get trapped in any class.

• The step maxk∈L\{s} p(yi = k|xi, ω̂) tends to select new samples away from complex areas.

As shown by Figure 3.1, the main advantage of the proposed MBT with regards to other

active learning approaches such as MI or BT is that the former method takes into account

all the class boundaries which are crucial to the learning procedure when conducting the

sampling, whereas MI mainly focuses on the most complex area and BT may get trapped

in a single boundary.

After having presented the three sampling methods considered in this work: MI, BT and

MBT, it is now important to emphasize that Eqs. (3.12), (3.16) and (3.17) assume that only

one sample is labeled at each iteration. However, in practice we consider u > 1, i.e., we label

more than one sample per iteration. Let Du ≡ {(x1, y1), . . . , (xu, yu)} be the new labeled set.

For the MBT sampling, we adopt a two-step scheme. First, round(u/K) + 1 new samples per
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class are selected according to Eq. (3.17), where function round(·) simply rounds toward the

nearest integer value. Second, we run Eq. (3.16) to select the u most informative samples for the

recently obtained set. For binary classification problems, the MI, BT and MBT strategies can

be considered equivalent since they lead to exactly the same new labeling for any u. However,

for multi-class problems the three considered strategies may lead to different labelings. In turn,

when u is very small the performance of BT and MBT becomes similar.

To conclude this section, Algorithm 3.2 shows the pseudo-code of the LORSAL algorithm

using active learning (called LORSAL-AL), where β ≥ 0 is the augmented Lagrangian LORSAL

parameter (see Appendix). Finally, the supervised segmentation algorithm with active learning

(called LORSAL-MLL-AL) is shown in Algorithm 3.3.

Algorithm 3.2 LORSAL using active learning (LORSAL-AL)

Require: ω̂, DL, SU , u, λ, β
1: repeat

2: Du := AL(ω̂, SU ) (function AL(·) is one of the sampling methods: RS, MI, BT and
MBT.)

3: DL := DL +Du

4: SU := SU − {1, . . . , u}
5: ω̂ := LORSAL(DL, λ, β)
6: until some stopping criterion is met

Algorithm 3.3 Supervised segmentation algorithm using active learning (LORSAL-AL-MLL)

Require: ω̂, SU , DL, u, λ, β
1: repeat

2: Du := AL(ω̂, SU )
3: DL := DL +Du

4: SU := SU − {1, . . . , u}
5: ω̂ := LORSAL(DL, λ, β)
6: until some stopping criterion is met
7: ŷ := α-Expansion(P̂, µ)

3.5 Experimental results

In this section, we evaluate the performance of the proposed algorithm using both simulated

and real hyperspectral data sets. The main objective of the experimental validation with sim-

ulated data sets is the assessment and characterization of the algorithm in a fully controlled

environment, whereas the main objective of the experimental validation with real data sets is

to compare the performance of the proposed method with that reported for state-of-the-art

competitors in the literature.

It should be noted that, in all of our experiments, we apply the Gaussian RBF kernel
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to a normalized version of the input hyperspectral data. Alternative experiments have been

conducted with other kernels, such as the polynomial one, obtaining very similar results. The

scale parameter is set to a fixed value ρ = 0.6, as we have empirically proved that this setting

leads to good characterization results. Another reason is that we have not observed significant

improvements for small variations of ρ. In the following, we assume that DLi
denotes the initial

labeled set, which is a subset of the available training set, and that Li denotes the number of

samples (recall that L denotes the total number of labeled samples). In practice, we assume

that the initial training samples for each class are uniformly distributed. Concerning the smaller

classes, if the total labeled samples of class k in the ground truth image, say Lk, is smaller than

L/K, we take Lk/2 as the initial number of labeled samples. In this case, larger classes have more

samples. In all cases, the reported figures of overall accuracy (OA) are obtained by averaging

the results obtained after conducting 10 independent Monte Carlo runs with respect to DLi
.

The remainder of the section is organized as follows. Section 3.5.1 reports experiments with

simulated data, with Subsection 3.5.1.I conducting an evaluation of the LORSAL algorithm,

Subsection 3.5.1.II evaluating the impact of the spatial prior, and Subsection 3.5.1.III evaluating

the impact of the active learning approaches. Section 3.5.2 evaluates the performance of the

proposed algorithm using four real hyperspectral scenes collected by the Airborne Visible Infra-

Red Imaging Spectrometer (AVIRIS), operated by NASA Jet Propulsion Laboratory, and by the

Reflective Optics Imaging Spectrometer System (ROSIS), operated by the German Aerospace

Agency (DLR).

3.5.1 Experiments with simulated data

In our simulated data experiments, we generate images of labels denoted by y ∈ Ln, sampled

from a 128× 128 MLL distribution with µ = 2. The feature vectors are simulated according to:

xi = myi + ni, i ∈ S, yi ∈ L, (3.18)

where xi ∈ R
d denotes the spectral vector observed at pixel i, myi denotes a set of K known

vectors, and ni denotes zero-mean Gaussian noise with covariance σ2I, i.e., ni ∼ N (0, σ2I). In

Subsections 3.5.1.I and 3.5.1.II we will not consider the active learning procedure (i.e., L = Li)

because our focus in these two subsections will be on analyzing the competitiveness of the

LORSAL algorithm and on evaluating the role of the spatial prior independently of the active

learning mechanism, respectively. In both cases, the training set DL is a subset of the ground-

truth image, whereas the remaining samples are considered as the test set. Finally, Subsection

3.5.1.III analyzes the impact of including the active learning mechanism in the proposed method.
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We would like to state that, in these experiments, the initial labeled set DLi
is randomly selected

from the ground-truth image, whereas the remaining samples are considered as the validation

set. At each iteration of the active sampling procedure, the new set Du is actively selected from

the test set. This is a sub-optimal procedure for the evaluation of the accuracies. However, in

these experiments, the maximum training set used is made up of 80 samples, which represents

only 0.49% of the whole image. According to this, we believe that the active learning process

would not be harmful to the evaluation of the accuracy in our proposed setting. Therefore, we

do not separate the training and test sets, which also guarantees that the test set remains as

large as possible. In the real image experiments, we completely separate the training and test

sets.

I. Evaluation of the LORSAL algorithm

In this subsection, we generate the simulated hyperspectral data according to the model in Eq.

(3.18), where spectral vectors mi, with i = 1, . . . ,K, were selected (randomly) from the U.S.

Geological Survey (USGS) digital spectral library with d = 224, K = 10, L = 1000, and σ = 1.

In our first experiment, we illustrate the computational efficiency of the LORSAL algorithm.

Figure 3.2 represents the log-posterior ℓ(ω)− λ‖ω‖1 as a function of the computation time for

LORSAL, FSMLR, and SMLR algorithms (implemented in Matlab). As it can be seen in Figure

3.2, LORSAL is by far the fastest algorithm. For a similar log-posterior, the LORSAL algorithm

took about 2 seconds in a desktop PC with Intel Core 2 Duo CPU at 2.40 GHz and 4 GB of

RAM memory, while the FSMLR and SMLR algorithms took, respectively, around 48 and 880

seconds in the same computing environment.

As already mentioned, the regularization parameter λ in Eq. (3.7) controls the sparseness of

the regressors, which is essential to the generalization capacity. However, an inappropriate value

of λ may lead to overfitting or underfitting scenarios. In practice, we estimate λ by using cross-

validation sampling [77] over the initial training set. Nevertheless, in our second experiment we

conduct an analysis of the impact of λ on the achieved performance. Let ξ = 100× nω0
nω

%, where

nω and nω0 denote the number of components and zeros in ω, respectively. Figure 3.3 shows

the OA and ξ as a function of λ, for 10−2 ≤ λ ≤ 30. The impact of λ on the sparsity of ω is

clear. The higher values of OA are obtained for λ ∈ [2, 10] corresponding to levels of sparsity

ξ ∈ [50, 60]%.
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Figure 3.2: Evaluation of the log-posterior in Eq. (3.5) as a function of the computing time
(measured in a desktop PC with Intel Core 2 Duo CPU at 2.40 GHz and 4 GB of RAM memory)
for LORSAL, FSMLR, and SMLR algorithms.
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Figure 3.3: Evaluation of the impact of the regularization parameter, λ, on the overall accuracy,
OA, and on the level of sparsity, ξ.
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(a) Ground-truth (b) Classification map (c) Segmentation map

Figure 3.4: Classification and segmentation results obtained with the proposed algorithm. The
simulated data set was generated according to Eq. (3.18) with d = 500 and σ = 1.5, µ = 2.
(a) Simulated binary map; (b) Classification map produced by the LORSAL algorithm using
L = 100 labeled samples without active learning (OA=60.13%, with OAopt = 71.91%, see text);
(c) Same as (b) but using the MLL spatial prior (OA=92.48%).

II. Impact of the spatial prior

In this experiment, we analyze the impact of the spatial prior on the segmentation accuracy

in a binary problem, i.e., with K = 2. The feature vector is set to mi = ξiφ, where ‖φ‖ = 1

and ξi = ±1. An image of class labels y generated according to the MLL prior in Eq. (3.18)

is shown in Figure 3.4(a), where the labels yi = 1, 2 correspond to ξi = −1,+1, respectively.

In this problem, the theoretical OA, given by OAopt ≡ 100 (1 − Pe)% and corresponding to the

minimal probability of error [49] is:

Pe =
1

2
erfc

(
1 + λ0√

2σ

)
p0 +

1

2
erfc

(
1− λ0√

2σ

)
p1, (3.19)

where erfc(·) is the complementary error function, λ0 = (σ2/2) ln(p0/p1) and p0 and p1 are the

a priori class label probabilities. Usually, model parameters are estimated by cross-validation.

However, in this work we concluded empirically that µ ∈ [2, 6] yields almost optimal results.

In order to reduce computational efficiency, we have not applied cross-validation to derive the

optimal value of this parameter. The aforementioned observation is illustrated in Figure 3.5

where we studied he impact of the spatial prior. Here, Figure 3.5(a) illustrates the OA results

as a function of µ. For the considered problem, with 2 ≤ µ ≤ 6, the LORSAL-ALL algorithm

obtained good segmentation results. It should be noted that 10 independent Monte Carlo runs

were conducted in these experiments and we report only the mean scores obtained. The following

conclusions may be drawn from Figure 3.5:

• The best overall results are obtained by the proposed segmentation algorithm (in all cases,

60



the classification accuracies and the values of OAopt are higher). This confirms our intro-

spection that the inclusion of a spatial prior can significantly improve the classification

results provided by using only spectral information, even for very noisy scenarios [see

Figure 3.5(b)].

• The classification OA approaches the optimal value OAopt as the number of labeled samples

increases [see Figure 3.5(c)]. However, the number of labeled samples needs to be relatively

high in order to obtain classification accuracies which are close to optimal.

• For a fixed number of training samples, the classification accuracy of our proposed method

decreases as the number of bands increases [see Figure 3.5(d)]. This is not surprising in

light of the Huges phenomenon. On the contrary, after including the spatial prior our

supervised segmentation algorithm performs very well even with small training sets and a

large number of bands.

To give a broad picture of the good performance of the proposed algorithm, we finally

illustrate the LORSAL classification and LORSAL-MLL segmentation maps in Figs. 3.4(b) and

(c) for a problem with σ = 1.5 and d = 500 using L = 100 and µ = 2. Clearly, the inclusion of

the spatial prior yields, as expected, much better results.

III. Impact of the active learning approach

In this subsection we analyze the impact of the considered sampling strategies on our proposed

approach. To do so, a new simulated hyperspectral data set is generated according to the model

in Eq. (3.18), with K = 4, σ = 0.8, and vectors myi obtained from the USGS library with

d = 224. Figure 3.6 reports the learning results over 100 independent Monte Carlo runs, where

we consider three different experiments: (a) OA results as a function of L by using Li = u = L/2;

(b) OA results as a function of Li by using L = 60 and u = L − Li; and (c) OA results as a

function of u by using L = 60 and Li = 20 (5 samples per class). Several conclusions can be

obtained from the results reported in Figure 3.6:

• First of all, the active learning procedure improves the segmentation results as expected.

In general, the MBT strategy achieves the best performance.

• Second, as already discussed in Section 3.4, with a small u both MBT and BT lead to very

similar results.

• Furthermore, the results obtained by the MI sampling are highly dependent on the size of

u. For a small size of u (such as u < Li) good results are obtained, e.g. see Figure 3.6(c).
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Figure 3.5: OA results obtained by the proposed algorithm: (a) As a function of the spatial
prior parameter µ. (b) As a function of the noise standard deviation σ. (c) As a function of the
number of labeled samples L. (d) As a function of the number of bands d.
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However, for a large value of u, the MI sampling leads to results which are even worse

than random selection. This is because the MI sampling focuses on the most complex area.

Thus, with a large value of u the new predictions are concentrated in a most complex area

which leads to poor generalization ability of the regressors.

• Finally, the improvements in performance due to active learning are less relevant as the size

of the training set increases, e.g. see Figure 3.6(a). This is expected, since the uncertainty

in the determination of classifier boundaries decreases as the training set size increases.

3.5.2 Experiments with real data sets

In this section, four real hyperspectral data sets are used to evaluate our algorithm. The first

one is the well-known AVIRIS Indian Pines scene, collected over Northwestern Indiana in June

1992 [85]. The scene is available online1 and contains 145 × 145 pixels and 224 spectral bands

between 0.4 and 2.5 microns. A total of 20 spectral bands were removed prior to experiments due

to noise and water absorption in those channels. The ground-truth image displayed in Figure

3.7(a), contains 16 mutually exclusive classes, 7 of which were discarded for their small size

which resulted in insufficient training samples. The remaining 9 classes were used to randomly

generate a set of 4757 training samples, with the remaining samples (4588) used for testing

purposes.

In addition to the AVIRIS Indian Pines scene, we have also used three ROSIS hyperspectral

data sets collected over the town of Pavia, Italy. The data sets consist of 115 spectral bands

between 0.4 and 1.0 microns. Three different subsets of the full data set are considered in our

experiments:

• Subset #1, with 492 × 1096 pixels in size, collected over Pavia city center. The noisy

bands were removed yielding a dataset with 102 spectral bands. The ground truth image

contains 9 ground-truth classes, 5536 training samples, and 103539 test samples.

• Subset #2, with size of 610× 340 pixels, centered at the University of Pavia in Italy. The

noisy bands were removed yielding 103 spectral bands. The ground truth image in Figure

3.8(a), contains 9 ground-truth classes, 3921 training samples, and 42776 test samples.

• Subset #3 includes a dense residential area, with 715 × 1096 pixels. The ground-truth

image contains 9 ground-truth classes, 7456 training samples and 148152 test samples.

1https://engineering.purdue.edu/∼biehl/MultiSpec/
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(a) OA results as a function of L with Li = u = L/2
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(b) OA results as a function of Li with L = 60, u = L− Li
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(c) OA results as a function of u with L = 60, Li = 20

Figure 3.6: Segmentation results obtained by using active learning approaches.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.7: Classification maps by using L = 475, Li = 235, u = 60. (a) Ground truth. (b)
LORSAL-AL (RS), OA = 84.24%. (c) LORSAL-AL (MBT), OA = 86.38%. (d) LDA-AL (RS),
OA = 69.35%. (e) LDA-AL (MBT), OA=70.83%. (f) SVM (RS), OA = 80.43%. (g) PCA+SVM
(RS), OA=76.32%.
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(a) (b) (c)

(d) (e)

Figure 3.8: Classification and segmentation maps obtained for the ROSIS subset #2 by using the
whole training set (L=3921). (a) Ground truth. (b) LORSAL, OA=80.24%. (c) LORSAL-MLL,
OA=86.72%. (d) LDA, OA=73.45%. (e) LDA-MLL, OA=80.67%.
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Table 3.1: Algorithms tested with each considered hyperspectral data set, where classification
algorithms only use the spectral information and segmentation algorithms integrate both spectral
and spatial information. The number of features extracted prior to classification are given in
the parentheses.

Algorithm Feature extraction Indian Pines Subset #1 Subset #2 Subset #3

Classification

LORSAL-AL No Yes Yes Yes Yes

LDA-AL HySime Yes (12) Yes (5) Yes (7) No

SVM No Yes Yes No No

PCA+SVM PCA Yes (31) Yes (30) No No

Segmentation
LORSAL-AL-MLL No No No Yes Yes

LDA-AL-MLL HySime No No Yes (7) No

Table 3.2: Parameter settings in our experiments with real hyperspectral data sets. For Subset
#1, we only run classification experiments therefore no µ is used.

Dataset Indian Pines Subset #1 Subset #2 Subset #3

λ 0.001 0.001 0.001 0.001

µ 4 - 2 1

In our experiments, we compare our proposed approach with LDA [13] and SVMs [28], using

feature extraction based on PCA [49] and hyperspectral signal identification by minimum error

(HySime) [11]. This is because LDA requires that the number of labeled samples be larger than

the dimensionality of the input features. In the case of SVM, we use PCA for feature extraction,

as it is common practice in other studies; whereas in the case of LDA, we use HySime as different

feature extraction strategy which efficiently estimates the subspace. In summary, Table 3.1 shows

the different classification and segmentation algorithms considered in our real data experiments,

where LDA-AL and LDA-AL-MLL integrate the standard LDA classifier and MLL spatial prior

with the proposed active learning approaches. We would also like to emphasize that, in the real

image experiments, no cross-validation is performed. Table 3.2 shows the parameter used for

each data set. Although these parameter settings may be sub-optimal, we have experimentally

tested that they lead to good results for each classifier as it will be shown in experiments. Finally,

it is also worth noting that, in all experiments, all considered algorithms use exactly the same

training sets when there is no active sampling strategy applied. Also, they all share the same

initial training sets when active sampling is considered.
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Figure 3.9: OA results as a function of the number of labeled samples for the AVIRIS Indian
Pines data set.

Experiment 1: AVIRIS Indian Pines Data Set

Our first experiment with the AVIRIS Indian Pines data set is intended to illustrate the con-

tribution of the spatial prior. For this purpose, Figure 3.9 plots the obtained OA results as a

function of the number of labeled samples after 10 Monte Carlo runs (without active sampling).

Here, the training samples are randomly selected from the original training set. From the results

reported in Figure 3.9 we can observe that, by including the spatial prior, the LORSAL-MLL

algorithm greatly improves the classification results obtained by the LORSAL algorithm which

only uses the spectral information.

In a second experiment, we evaluate the performance of the proposed MLR-based classifica-

tion algorithms by using training sets made up of 5% (237 samples), 10% (475 samples) and 25%

(1189 samples) of the original training data. Table 3.3 shows the classification results obtained

after 10 Monte Carlo runs, along with those provided by SVMs and LDA. From Table 3.3, it

can be observed that the proposed MLR-based algorithms obtain good results when compared

to other methods. As expected, the proposed active learning procedure improves the learning

results. For illustrative purposes, the effectiveness of the proposed method with the AVIRIS

Indian Pines scene is further illustrated in Figure 3.7 in which classification maps obtained are

displayed along with their associated OA scores.
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Table 3.3: OA [%] and κ statistic (in the parentheses) obtained with the proposed algorithm
(using different sampling schemes) as a function of the number of labeled samples for the AVIRIS
Indian Pines data set. For comparative purposes, results with LDA and SVMs (with and without
PCA-based feature extraction) are also included.

Training set LORSAL-AL LDA-AL SVMs PCA+SVM

L Li u RS MI BT MBT RS MI BT MBT RS RS

237 117 30
80.65 81.56 82.60 82.80 64.88 66.34 66.14 66.22 74.42 71.30

(0.77) (0.78) (0.80) (0.79) (0.59) (0.61) (0.60) (0.59) (0.70) (0.67)

475 235 60
84.56 87.28 87.54 87.35 69.63 71.97 71.68 70.65 80.06 78.36

(0.82) (0.85) (0.85) (0.84) (0.65) (0.67) (0.67) (0.64) (0.77) (0.74)

1189 597 148
88.45 91.31 91.37 90.56 73.29 75.43 76.05 76.01 86.96 84.62

(0.87) (0.90) (0.90) (0.89) (0.69) (0.71) (0.72) (0.69) (0.85) (0.81)

Table 3.4: OA [%] and κ statistic (in the parentheses) for the ROSIS subset #1, where L(k)

denotes the number of labeled samples per class.

Training set

L(k) 10 20 40 60 80 100

per class

Li 45 90 180 270 360 450

u 9 18 36 54 72 90

LORSAL-AL
RS 95.13 (0.92) 96.29 (0.94) 96.91 (0.95) 97.07 (0.95) 97.37 (0.95) 97.49 (0.96)

MBT 96.14 (0.93) 96.74 (0.94) 97.34 (0.95) 97.67 (0.96) 97.87 (0.96) 97.95 (0.96)

LDA-AL
RS 93.55 (0.89) 95.59 (0.92) 96.20 (0.93) 96.35 (0.94) 96.33 (0.94) 96.29 (0.94)

MBT 95.10 (0.92) 96.34 (0.94) 96.76 (0.94) 97.02 (0.95) 96.97 (0.95) 97.03 (0.95)

SVM RS 93.34 (0.89) 94.45 (0.91) 94.68 (0.91) 94.93 (0.91) 95.35 (0.92) 96.19 (0.94)

PCA+SVM RS 85.57 (0.76) 91.20 (0.85) 94.79 (0.91) 95.68 (0.93) 96.30 (0.94) 96.37 (0.94)

Experiment 2: ROSIS Pavia Data Sets

In this section, the three considered subsets of the ROSIS Pavia data are used to evaluate the pro-

posed approach. The first experiment uses the ROSIS Pavia Data subset #1. In this experiment,

we use small training sets, i.e., L(k) = {10, 20, 40, 60, 80, 100} samples per class. Concerning the

active learning approach, we focus on the MBT method as it provides the flexibility of selecting

a given number of new samples per class at each iteration. Table 3.4 summarizes the results

obtained after 10 Monte Carlo runs by the considered classification algorithms in comparison

with the same standard methods used for reference in the previous subsection. We emphasize

the good classification performance achieved by the proposed LORSAL and LORSAL-AL algo-

rithms. Moreover, Table 3.4 reveals that the MBT sampling procedure further improves the OA

results and the κ statistic.

In our second experiment, we use subset #2 of the Pavia ROSIS data to evaluate the proposed

segmentation algorithm. Table 3.5 illustrates the OA results obtained after 10 Monte Carlo

runs, by using the entire training set. Notice the good performances achieved by the proposed
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Table 3.5: OA [%] and κ statistic (in the parentheses) obtained for the ROSIS Pavia subset #2.

L LORSAL LORSAL-MLL LDA LDA-MLL

3921 80.24 (0.76) 86.72 (0.82) 73.45 (0.67) 80.67 (0.76)
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(a) LORSAL-AL results.
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(b) LORSAL-AL-MLL results

Figure 3.10: OA [%] results as a function of the number of labeled samples for the ROSIS subset
#2.

LORSAL and LORSAL-MLL algorithms (see Table 3.5), where the segmentation result obtained

by the LORSAL-MLL algorithm is comparable to that reported in previous work for an SVM

classifier using extended morphological profiles as input features in [107]. Although a more

exhaustive comparison between these approaches should be conducted using the same training

and test sets, we believe that the fact that our method provides comparable results to a highly

consolidated technique that integrates the spatial and the spectral information is remarkable.

Furthermore, we also evaluate the sensitivity of the proposed AL-based approaches to the size

of the considered training set by using subsets of the original training set. Figure 3.10 shows the

OA results as a function of L, with Li = 450 and u = 20. From Figure 3.10, it can be observed

that the LORSAL-AL and LORSAL-AL-MLL algorithms achieve significant improvements as

compared with the standard RS strategy. Finally, it is also worth noting that the integration of

spatial and spectral information significantly improves the classification results obtained using

spectral information only.

In our final experiment, we consider subset #3 of the Pavia ROSIS data to evaluate the

proposed LORSAL-AL and LORSAL-AL-MLL algorithms by using Li = 8 (only 1 sample per

class) and u = 1. In this experiment, we do not consider the LDA-AL and LDA-AL-MLL

algorithms because the LDA model requires a number of training samples which is larger than
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(a) LORSAL-AL results.
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(b) LORSAL-AL-MLL results

Figure 3.11: OA results as a function of the number of labeled samples for the ROSIS subset
#3.

the dimensionality of the feature space. Figure 3.11 illustrates the OA results (as a function of L)

in this challenging scenario. The good performance achieved by the proposed LORSAL-AL and

LORSAL-AL-MLL algorithms in this analysis scenario is remarkable where, as expected, the

BT and MBT methods lead to similar estimates for the considered problem. Furthermore, the

contribution of the spatial prior is less relevant as the value of L increases. As shown by Figure

3.11, the AL further improves the learning results and, eventually, MI, BT and MBT converge

to very similar OA results. For illustrative purposes, Figure 3.8 displays the classification and

segmentation maps obtained by the considered algorithm configurations (in comparison with

other methods) using the ROSIS Pavia University data set.

3.6 Conclusions

In this paper, we have developed a new (supervised) Bayesian segmentation approach aimed

at addressing ill-posed hyperspectral classification and segmentation problems. The proposed

algorithm models the posterior class probability distributions using the concept of multinomial

logistic regression (MLR), where the MLR regressors are learnt by the logistic regression via

splitting and augmented Lagrangian (LORSAL) algorithm. The algorithm adopts a multi-

level logistic (MLL) prior to model the spatial information present the class label images. The

maximum a posteriori (MAP) segmentation is efficiently computed by the α-Expansion graph-

cut based algorithm. The resulting segmentation algorithm (LORSAL-MLL) greatly improves

the overall accuracies with respect to the classification results just based on the learnt class

distribution. Another contribution of this work is the incorporation of active learning strategies
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in order to cope with training sets containing a very limited number of samples. Three different

sampling approaches, namely: a mutual information (MI)-based criterion, a breaking ties (BT)

strategy, and a newly developed method called modified breaking ties (MBT) are integrated in

the developed classification (LORSAL) and segmentation (LORSAL-MLL) methods, resulting

in two new methods with active learning respectively called LORSAL-AL and LORSAL-MLL-

AL. The effectiveness of the proposed algorithms is illustrated in this work using both simulated

and real hyperspectral datasets. A comparison with state-of-the-art methods indicates that

the proposed approaches yield comparable or superior performance using fewer labeled samples.

Moreover, our experimental results reveal that the proposed MBT approach leads to an unbiased

sampling as opposed to the MI and BT strategies. Further work will be directed towards testing

the proposed approach in other different analysis scenarios dominated by the limited availability

of training samples.

Appendix

The problem described in Eq. (3.5) is equivalent to:

(ω̂, ν̂) = arg min
ω, ν

−ℓ(ω) + λ‖ν‖1 (3.20)

subject to: ω = ν.

By applying the alternating direction method of multipliers (ADMM) [51] (see also [1] and

references therein) to solve the problem in Eq. (3.20), we get the iterative Algorithm 3.4.

In this algorithm, β ≥ 0 sets the augmented Lagrangian weight. Under mild conditions, the

sequence ω̂t, for t = 0, 1, 2 . . . converges to a minimizer of Eq. (3.20), for any β ≥ 0 [51].

Algorithm 3.4 Logistic regression via variable splitting and augmented Lagrangian (LORSAL)

Require: ω(0), ν(0), b(0), λ, β
1: t := 0
2: repeat

3: ω̂(t+1) ∈ argmin
ω

−ℓ(ω) +
β

2
‖ω − ν(t) − b(t)‖2 (3.21)

4: ν̂(t+1) ∈ argmin
ν

λ‖ν‖1 +
β

2
‖ω(t+1) − ν − b(t)‖2 (3.22)

5: b(t+1) := b(t) − ω(t+1) + ν(t+1)

6: t := t+ 1
7: until some stopping criterion is met

It should be noted that the solution of the optimization problem in Eq. (3.21) (line 3 of

Algorithm 3.4) is still a difficult problem because ℓ(ω), although strictly convex and smooth, is

non-quadratic and often very large. We tackle this difficulty by replacing ℓ(ω) with a quadratic
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lower bound given by [16]:

ℓ(ω) ≥ ℓ(ω(t)) + (ω − ω(t))Tg(ω(t)) +
1

2
(ω −ω(t))TB(ω −ω(t)), (3.23)

where B ≡ −(1/2)[I − 11T /K]⊗∑L
i=1 h(xi)h(xi)

T (symbol 1 denotes a vector column of ones)

and g(ω(t)) is the gradient of ℓ at ω(t). Since the system matrix involved in the optimization of

Eq. (3.23), with ℓ(ω) replaced with the quadratic bound given in Eq. (3.23) is fixed, its inverse

can be pre-computed, provided that γ –the dimension of h(xi)– is below, say, a few thousands.

Under mild conditions, the convergence of Algorithm 3.4 with the aforementioned modification

still holds [1, 51].

On the other hand, the solution of the optimization problem in Eq. (3.22) (line 4 of Algorithm

3.4) is simply the soft-threshold rule [45] given by ν̂(t+1) = max{0, abs(u)}signal(u), where

u ≡ (ω(t+1) − b(t)) − λ/β and the involved functions are to be understood component-wise.

As a final note, we reiterate that the complexity of each iteration of the LORSAL algorithm is

O(γ2K), which is must faster than O((γK)3) for the SMLR algorithm [80], and O(γ3K) for the

FSMLR algorithm [18].
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Chapter 4

Spectral-Spatial Hyperspectral
Image Segmentation Using Subspace
Multinomial Logistic Regression and
Markov Random Fields

Abstract – This paper introduces a new spectral-spatial supervised Bayesian segmentation

algorithm for highly mixed hyperspectral images which exploits the contributions of both of the

spectral and spatial information. The posterior probability distributions are learnt by using a

multinomial logistic regression model (MLR), which uses the subspace method to circumvent

the mixture of spectral signatures, thus to exploit the wealth of the spectral information. The

contexture spatial information is modeled by a Markov random field (MRF) multi-level logistic

(MLL) Markov-Gibbs prior. Finally, the maximum a posteriori segmentation (MAP) is efficiently

computed by the α-Expansion min-cut based integer optimization algorithm. State-of-the-art

performance of the proposed approach is illustrated using both simulated and real hyperspectral

data sets in a number of experimental comparisons with recently introduced hyperspectral image

classification methods.

Index Terms – Hyperspectral, Subspace Method, Segmentation, MRF

4.1 Introduction

Supervised classification (and segmentation) of high dimensional datasets such as remotely

sensed hyperspectral images is a difficult endeavor [85]. Obstacles, such as the Hughes phe-

nomenon [68], appear as the data dimensionality increases. This is because the number of

training samples used for the learning stage of the classifier is generally very limited compared

to the number of available spectral bands. In order to overcome this difficulty, several feature

selection [123] and extraction [114] methods have been combined with machine learning tech-
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niques able to perform accurately in the presence of limited training sets, including support

vector machines (SVMs) [28, 121] or multinomial logistic regression (MLR) classifiers [16, 91].

Due to sensor design considerations, the wealth of spectral information in hyperspectral data

is often not complemented by extremely fine spatial resolution. This leads to the presence of

mixed pixels, which represent a challenge for accurate hyperspectral image classification [107]. In

order to address this issue, subspace projection methods [136] have been shown to be a powerful

class of statistical pattern classification algorithms [104]. These methods can handle the high

dimensionality of an input data set by bringing it to the right subspace without losing the original

information that allows for the separation of classes. In some cases, these methods can also

reduce noise and, subsequently, they can reduce the impact of mixed pixels in the classification

process. This is because noise can lead to confusion between spectrally similar classes resulting

from a predominance of mixed pixels, as it is indeed the case in some of the most widely used

data sets in the hyperspectral image classification community such as the famous Indian Pines

image [85], collected by NASA Jet Propulsion Laboratory’s Airborne Visible Infra-Red Imaging

Spectrometer (AVIRIS) [62]. In this scene, pixels in different classes exhibit spectrally similar

signatures due to the early growth cycle of the agricultural features, which barely cover the soil

in a proportion of 5% or less. Since the spatial resolution in this case is 20 meters per pixel, the

scene is dominated by mixed pixels made up of different agricultural features and soil. However,

the reference ground-truth widely used in the hyperspectral classification community associates

image pixels with hard, mutually exclusive class labels. In this context, subspace projection

methods can provide competitive advantages by separating classes which are very similar in

spectral sense, thus addressing the limitations due to highly mixed pixels.

The idea of applying subspace projection methods to improve classification relies on the basic

assumption that the samples within each class can mostly lie in a lower dimensional subspace.

Thus, each class may be represented by a subspace spanned by a set of basis vectors, while the

classification criterion for a new input sample would be the distance from the class subspace

[57, 102, 134]. Recently, several subspace projection methods have been specifically designed for

improving hyperspectral data characterization [3, 31, 123, 137], obtaining successful results. A

more recent trend towards increasing classification accuracies in hyperspectral image analysis is

to make combined use of spectral and spatial-contextual information [19, 53, 90, 91, 107, 129]. In

some of these works, Markov random fields (MRF) have obtained great success in characterizing

spatial information in hyperspectral data sets. MRFs exploit the continuity, in probability sense,

of neighboring labels. The basic assumption is that, in a hyperspectral image, it is very likely that

two neighboring pixels will have the class same label. Despite the fact that spatial information
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plays a very important role in hyperspectral image classification and segmentation, to the best

of our knowledge no previous work has proposed a technique that simultaneously combines the

advantages that can be provided by subspace projection-based classifiers (in spectral sense) and

spatial-contextual information.

In this work, we propose a new Bayesian approach to hyperspectral image segmentation

which combines spectral and spatial information. The algorithm implements two main steps:

(i) Learning, where the posterior probability distributions are modeled by an MLR combined

with a subspace projection method, and (ii) Segmentation, which infers an image of class labels

from a posterior distribution built on the learnt subspace classifier, and on a multi-level logistic

(MLL) prior on the image of labels. The final output of the algorithm is based on a maximum a

posteriori (MAP) segmentation process which is computed via an efficient min-cut based integer

optimization technique. The main novelty of our proposed work is the integration of a subspace

projection method with the MLR and further combined with spatial-contextual information,

which provides a better characterization of the hyperspectral image content in both the spectral

and the spatial domains. As will be shown by our experimental results, the accuracies achieved

by our approach are competitive or superior to those provided by many other state-of-the-art

supervised classifiers for hyperspectral image analysis.

The remainder of the paper is organized as follows. Section 4.2 formulates the problem.

Section 4.3 describes the proposed approach. Section 4.4 reports segmentation results based

on simulated and real hyperspectral datasets in comparison with other state-of-the-art super-

vised classifiers. Finally, Section 4.5 concludes with some remarks and hints at plausible future

research lines.

4.2 Problem formulation

Before describing our proposed approach, let us first define some of the notations that will be

used throughout the paper:

S ≡ {1, . . . , n} Set of integers indexing the n pixels of an image;

K ≡ {1, . . . ,K} Set of K classes;

x = (x1, . . . ,xn) ∈ R
d×n Image in which the pixels are d-dimensional vectors;

y = (y1, . . . , yn) ∈ Ln Image of labels;

D(k)

l(k)
≡ {(y1,x1), . . . , (yl(k) ,xl(k))} Set of labeled samples for class k with size l(k);

x
(k)

l(k)
≡ {x1, . . . ,xl(k)} Set of feature vectors in D(k)

l(k)
;

Dl ≡ {D(1)

l(1)
, . . . ,D(K)

l(K)} Set of labeled samples with size l =
∑K

k=1 l
(k).
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With the above definitions in place, the goal of classification is to assign a label yi ∈ K to

each pixel vector xi, with i ∈ S. This process results in an image of class labels y, and we call

this assignment a labeling. In turn, the goal of segmentation is to partition the set S such that

the pixels in each subset Sk, with S = ∪kSk, share some common property, e.g. they represent

the same type of land cover. Notice that, given a labeling y, the collection Sk = {i ∈ S | yi = k}
for k ∈ K is a partition of S. On the other hand, given the segmentation Sk for k ∈ K, the

image {yi | yi = k, if i ∈ Sk, i ∈ S} is a labeling. As a result, there is a one-to-one relationship

between labelings and segmentations. Without loss of generality, in this paper we use the term

classification when the spatial information in the original scene is not used in the labeling

process. Similarly, we use the term segmentation when the spatial information in the original

scene is used for such labeling.

In a Bayesian framework, the labeling process is usually conducted by maximizing the pos-

terior distribution as follows:

p(y|x) ∝ p(x|y)p(y), (4.1)

where p(x|y) is the likelihood function (i.e., the probability of the feature image given the labels)

and p(y) is the prior over the image of labels. Assuming conditional independency of the features

given the labels, i.e, p(x|y) =∏i=n
i=1 p(xi|yi), then the posterior may be written as a function of

y as follows:

p(y|x) =
1

p(x)
p(x|y)p(y)

=
1

p(x)

i=n∏

i=1

p(xi|yi)p(y)

= α(x)

i=n∏

i=1

p(yi|xi)

p(yi)
p(y),

(4.2)

where α(x) ≡ ∏i=n
i=1 p(xi)/p(x) is a factor not depending on y. In the proposed approach, we

assume the classes are equally likely, i.e., p(yi = k) = 1/K for any k ∈ K. However, any

other distribution can be accommodated, as long as the marginal of p(y) is compatible with the

assumed distribution. Therefore, the maximum a posteriori (MAP) segmentation is given by:

ŷ = arg max
y∈Kn

{
n∑

i=1

(log p(yi|xi) + log p(y)

}
. (4.3)

Following the Bayesian framework described above, we have developed a new algorithm

which naturally integrates the spectral and the spatial information contained in the original

hyperspectral image data. In our proposed algorithm, the spectral information is represented

by class densities p(yi|xi), which are learnt by a subspace projection-based MLR algorithm.
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On the other hand, the spatial prior p(y) is given by an MRF-based MLL which encourages

neighboring pixels to have the same label. The MAP segmentation ŷ is computed via the α-

Expansion algorithm [23], a min-cut based tool to efficiently solve integer optimization problems.

Additional details are given in the following section.

4.3 Proposed approach

Under the linear mixture model assumption, for any i ∈ S we have:

xi = mγi + ni, (4.4)

where m ≡ [m(1), . . . ,m(K)] denotes a mixing matrix composed by the spectral endmembers,

ni denotes the noise, and γi = [γ
(1)
i , . . . , γ

(K)
i ]T denotes the fractional abundances of the end-

members in the mixed pixel xi. Since the distributions p(m) and p(γi) are unknown, it is very

difficult to compute p(xi|yi = k) using a generative model. It happens, however, that the linear

term mγi in (4.4) lives in class dependent subspaces. This is consequence of the linearity of this

term and of the fact the set of materials corresponding to any two different classes are very likely

to be different. With this simple fact in mind, we may then write the observation mechanism

for class k as

x
(k)
i = U(k)z

(k)
i + n

(k)
i , (4.5)

where n
(k)
i is the noise of class k and U(k) = {u(k)

1 , . . . ,u
(k)

r(k)
} is a set of r(k)-dimensional or-

thonormal basis vectors for the subspace associated with class k, and z
(k)
i is, apart from the

noise n
(k)
i the coordinates of x

(k)
i with respect to the basis U(k).

We assume that the class independent random vectors n
(k)
i and z

(k)
i are Gaussian dis-

tributed with zero mean and diagonal covariance matrices, i.e., n
(k)
i ∼ N (0, σ(k)2I), and z

(k)
i ∼

N (0, α(k)I). We are aware that these assumptions are very strong and that they rarely hold

in real data. However, and shown below, they allow to preserve the subspace structure of our

model and yield a robust discriminative model. Based on the above assumptions, we have the

following generative model:

p(xi|yi = k) ∼ N (0, α(k)U(k)U(k)T + σ(k)2I). (4.6)

79



Under the present setup, the generative model in Eq. (4.6) can be computed as follows:

p(xi|yi = k) ∝ exp
{
−1

2x
T
i (α

(k)U(k)U(k)T + σ(k)2I)−1xi

}

= exp

{
−1

2x
T
i

(
I

σ(k)2
− U(k)

σ(k)2

(
I

α(k) +
U(k)T U(k)

σ(k)2

)−1
U(k)T

σ(k)2

)
xi

}

= exp
{
−1

2x
T
i

(
I

σ(k)2
− α(k)

α(k)+σ(k)2
U(k)U(k)T

)
xi

}

= exp
{
−1

2
xT
i x

σ(k)2
+ 1

2
α(k)

α(k)+σ(k)2
‖xT

i U
(k)‖2

}

(4.7)

Let ω
(k)
1 ≡ − 1

2σ(k)2
, ω

(k)
2 ≡ 1

2
α(k)

α(k)+σ(k)2
, ω(k) ≡ [ω

(k)
1 ω

(k)
2 ]T , and ω ≡ [ω(1)T , . . . ,ω(K)T ]T .

With these definitions in mind, we can compute the posterior class density p(yi|xi) as follows:

p(yi = k|xi, ω) =
p(xi|yi = k, ω)p(yi = k)

∑K
k=1 p(xi|yi = k, ω)p(yi = k)

=
exp(ω(k)Tφ(k)(xi))p(yi = k)

∑K
k=1 exp(ω

(k)Tφ(k)(xi))p(yi = k)
,

(4.8)

where φ(k)(xi) = [‖xi‖2, ‖xT
i U

(k)‖2]T . Assuming equiprobable classes, i.e., p(yi = k) = 1/K,

the problem in Eq. (4.8) turns to

p(yi = k|xi, ω) =
exp(ω(k)φ(k)(xi))∑K
k=1 exp(ω

(k)φ(k)(xi))
, (4.9)

which is exactly an MLR [16].

4.3.1 Learning the class independent subspace

Let R(k) = 〈x(k)

l(k)
x
(k)T

l(k)
〉 denote the sample correlation matrix associated with class k, computed

from the training set. By computing the eigendecomposition of R(k), we have

R(k) = E(k)Λ(k)E(k)T , (4.10)

where E(k) = {e(k)1 , . . . , e
(k)
d } is the eigenvector matrix and Λ = diag(λ

(k)
1 , . . . , λ

(k)
d ) is the eigen-

value matrix with decreasing magnitude i.e., λ
(k)
1 ≥ · · · ≥ λ

(k)
d . Moreover, for i ∈ S, vector xi

can be represented as a sum of two mutually orthogonal vectors xi = x̂i + x̃i, where x̂i is the

projection of vector xi on the r(k)-dimensional subspace spanned by the first r(k) eigenvalues,

i.e., λ
(k)
1 , . . . , λ

(k)

r(k)
, and x̃i is projection on the orthogonal subspace spanned by the remaining

eigenvalues.

We take U
(k)

r(k)
= {e(k)1 , . . . , e

(k)

r(k)
} as an estimate of the class independent, r(k)-dimensional
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subspace with r(k) < d and:

r(k) = min
r(k)

{r(k) :
r(k)∑

i=1

λ
(k)
i ≥

d∑

i=1

λ
(k)
i × τ}, (4.11)

where 0 ≤ τ ≤ 1 is a threshold parameter controlling the loss of spectral information after

projecting the data into the subspace.

4.3.2 Learning the MLR regressors

In order to cope with difficulties in learning the regression vector ω associated with bad or ill

conditioning of the underlying inverse problem, we adopt a quadratic prior on ω, so that:

p(ω) ∝ e−β/2‖ω‖2 , (4.12)

where β ≥ 0 is a regularization parameter controlling weight of the prior.

In the present problem, learning the class densities amounts to estimating the logistic re-

gressors ω. Inspired by previous work [16, 19, 80, 90, 91], we can compute ω by calculating the

MAP estimate:

ω̂ = argmax
ω

ℓ(ω) + log p(ω), (4.13)

where ℓ(ω) is the log-likelihood function given by:

ℓ(ω) ≡ log

l∏

i=1

p(yi|xi,ω). (4.14)

The optimization problem in Eq. (4.13) is convex, although the term ℓ(ω) is non-quadratic.

This term can be approximated by a quadratic lower bound given by [16]; for any k ∈ K, we

have:

ℓ(ω(k)) ≥ ℓ(ω
(k)
t ) + (ω(k) − ω

(k)
t )Tg(ω

(k)
t ) +

1

2
(ω(k) − ω

(k)
t )TB(k)(ω(k) − ω

(k)
t ), (4.15)

with:

B(k) ≡ −(1/2)[I − 11T /(K + 1)]⊗
l∑

i=1

φ(k)(xi)φ
(k)(xi)

T , (4.16)

where 1 denotes a column vector of ones and g(ω
(k)
t ) is the gradient of ℓ(·) at ω

(k)
t . Based on

the lower bound (4.15), we implement a instance of the minorization maximization algorithm

[69], which consists in replacing, in each iteration, the objective function ℓ(ω) with the lower
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bound (4.15) and then maximizing it. This procedure leads to

ω̂
(k)
t+1 = argmax

ω(k)
ω(k)T (g(ω̂

(k)
t )−B(k)ω̂

(k)
t ) +

1

2
ω(k)T (B(k) − βI)ω(k). (4.17)

Now the optimization problem in Eq. (4.17) is quadratic and easy to solve, leading to the

following update function:

ω̂
(k)
t+1 = 1

2 (B
(k) − βI)−1(B(k)ω̂

(k)
t − g(ω̂

(k)
t )), for k ∈ K. (4.18)

The system matrix in Eq. (4.18) is fixed, thus the term (B(k)−βI)−1 can be pre-computed. With

this in mind, it is now possible to perform an exact MAP-based MLR under a quadratic prior.

The pseudo-code for the subspace projection-based MLR algorithm, referred to hereinafter as

MLRsub, is shown in Algorithm 4.1. In the algorithm description, iters denotes the maximum

number of iterations. The overall complexity of Algorithm 4.1 is dominated by the computation

of the correlation matrix, which has complexity O(ld2) (recall that l is the number of labeled

samples and d is the dimensionality of the feature vectors).

Algorithm 4.1 MLRsub

Input: ω0, Dl, β, τ , iters
Output: ω, U ≡ {U(1), . . . ,U(k)}
for k = 1 to K do

U(k) ≡ U(X (k)

l(k)
, τ) (∗ U computes the subspace according to Eq. (4.10) ∗)

B(k) ≡ B(U(k), Dl) (∗ B computes the system matrix B according to Eq. (4.16) ∗)
end for

t := 1
while t ≤ iters or stopping criterion is not satisfied do

for k := 1 to K do

g(ω
(k)
t−1) ≡ ∇ℓ(ω

(k)
t−1)

ω
(k)
t = solution {B(k), g(ω

(k)
t−1), U

(k), β}
end for

end while

4.3.3 MRF-based MLL spatial prior

In order to improve the classification performance achieved by using the spectral information

alone, in this work we integrate the contextual information with spectral information by using

an isotropic MLL prior to model the image of class labels y. This approach exploits the fact

that, in segmenting real-world images, it is very likely that spatially neighboring pixels belong

to the same class. This prior, which belongs to the MRF class, encourages piecewise smooth

segmentations and promotes solutions in which adjacent pixels are likely to belong the same
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class. The MLL prior constitutes a generalization of the Ising model [58] and has been widely

used in image segmentation problems [92].

According to the Hammersly-Clifford theorem [10], the density associated with an MRF

is a Gibbs’s distribution [58]. Therefore, the prior model for segmentation has the following

structure:

p(y) =
1

Z
e

(
−
∑

c∈C

Vc(y)

)

, (4.19)

where Z is a normalizing constant for the density, the sum in the exponent is over the so-called

prior potentials Vc(y) for the set of cliques1 C over the image, and:

− Vc(y) =





υyi , if |c| = 1 (single clique)

µc, if |c| > 1 and ∀i, j∈cyi = yj

−µc, if |c| > 1 and ∃i, j∈cyi 6= yj

(4.20)

where µc is a non-negative constant. The potential function in Eq. (4.20) encourages neighbors

to have the same label. The introduced MLL prior offers a great deal of flexibility by allowing

variations of the set of cliques and the parameters υyi and µc. For example, the model generates

texture-like regions if µc depends on c, and blob-like regions otherwise [93]. In this work we take

υyi = cte and µc =
1
2µ > 0. Thus Eq. (4.19) can be rewritten as follows:

p(y) =
1

Z
e

µ
∑

(i, j)∈C

δ(yi − yj)

, (4.21)

where δ(y) is the unit impulse function2. This choice gives no preference to any direction

concerning. A straightforward computation of p(yi), i.e., the marginal of p(y) with respect to i,

leads to p(yi) constant and thus equiprobable, therefore compatible with the assumption made

in (4.2) and (4.8). Notice that the pairwise interaction terms δ(yi−yj) attach higher probability

to equal neighboring labels than the other way around. In this way, the MLL prior promotes

piecewise smooth segmentations, where parameter µ controls the level of smoothness.

4.3.4 MAP estimate via graph-cuts

Let us assume that the posterior class densities p(yi|xi) are estimated using Eq. (4.8). Let us

also assume that the MLL prior p(y) is estimated using Eq. (4.21). According to Eq. (4.3), the

1A clique is a single term or either a set of pixels that are neighbors of one another.
2
i.e., δ(0) = 1 and δ(y) = 0, for y 6= 0
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MAP segmentation is finally given by:

ŷ = arg min
y∈Kn




∑

i∈S

− log p(yi|xi, ω̂)− µ
∑

i∼j

δ(yi − yj)



 . (4.22)

This is a combinatorial optimization problem involving unary and pairwise interaction terms,

which is very difficult to compute. Several new algorithms such as graph-cuts [22, 23, 79], loopy

belief propagation [141, 142], and tree-reweighted message passing [78] have been proposed in

the literature in order to tackle this optimization problem. In this work, we resort to the α-

Expansion graph-cut based algorithm [4, 23]. This method yields good approximations to the

MAP segmentation and is quite efficient from a computational viewpoint, with computational

complexity O(n).

4.3.5 Supervised segmentation algorithm: MLRsubMLL

To conclude the description of our proposed method, Algorithm 4.2 provides a pseudo-code for

our newly developed supervised segmentation algorithm based on a subspace MLR classifier

with MRF-based MLL prior. This algorithm, called MLRsubMLL hereinafter, integrates all

the different modules described in this section. Specifically, line 3 in Algorithm 4.2 learns the

logistic regressors using MLRsub, which is applied to the full hyperspectral image. Here, the

quadratic regularization parameter β ≥ 0 is used to tackle ill-conditioned problems. Line 4 in

Algorithm 4.2 computes the probabilities based on the outcome of MLRsub. Line 5 in Algorithm

4.2 efficiently computes the MAP segmentation by applying the α-Expansion graph-cut based

algorithm, where the neighborhood parameter µ determines the strength of the spatial prior.

Algorithm 4.2 MLRsubMLL

1: Input: x, Dl, β, τ , µ
2: Output: ŷ

3: {ω̂, U} = MLRsub{Dl, β, τ}
4: P̂ := p̂(x, ω̂, U) (∗ P̂ collects the probabilities in Eq. (4.9) ∗)
5: ŷ := α-Expansion(P̂, µ, neighborhood)

The overall complexity of the proposed MLRsubMLL algorithm is dominated by the MLRsub

algorithm inferring the regressors, which has computational complexity O(ld2), and also by the

α-Expansion algorithm used to determine the MAP segmentation, which has practical complex-

ity O(n). In conclusion, if ld2 > n (e.g., the problem is high dimensional, with a large number

of training samples), then the overall complexity is dominated by the subspace-based learning

step. Otherwise, if ld2 < n (e.g., the problem is given by a large number of pixels), then the

overall complexity is dominated by the α-Expansion algorithm.
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4.4 Experimental results

This section uses both simulated and real hyperspectral data sets to illustrate the effectiveness

of the proposed MLRsubMLL segmentation algorithm in different analysis scenarios. The main

goal of using simulated data sets is to assess the performance of the algorithm in a fully con-

trolled environment, whereas the main goal of using real data sets is to compare the algorithm

with other state-of-the-art analysis techniques using widely used hyperspectral scenes. The re-

mainder of this section is organized as follows. Subsection 4.4.1 first explains the parameter

settings adopted in our experimental evaluation. Subsection 4.4.2 then evaluates the proposed

MLRsubMLL algorithm by using simulated data sets, whereas Subsection 4.4.3 evaluates the

proposed segmentation algorithm using real hyperspectral images.

4.4.1 Parameter settings

Before describing our results with simulated and real hyperspectral data sets, it is first important

to discuss the parameter settings adopted in our experiments. In our tests we assume l(k) ≃ l/K

for k ∈ K. For small classes, if the total number of labeled samples per class k in the ground

truth image, say L(k), is smaller than l/K, we take l(k) = L(k)/2. In this case, we use more

labeled samples to represent large classes. It should be noted that, in all experiments, the labeled

sets Dl are randomly selected from the available labeled samples, and the remaining samples

are used for validation. Each value of overall accuracy (OA [%]) is obtained after conducting

10 Monte Carlo runs with respect to the labeled samples Dl. The labeled samples for each

Monte Carlo simulation are obtained by resampling the available labeled samples. Prior to the

experiments, we infer the setting of the quadratic parameter β. In practice, β is relevant to the

condition number of B(k), for k ∈ K. In this work, we set β = e−10 for all experiments.

4.4.2 Experiments with simulated hyperspectral data

In our experiments we have generated a simulated hyperspectral scene as follows. First, we

generate an image of features using a linear mixture model:

xi =

K∑

k=1

m(k)γ
(k)
i + ni, (4.23)

with K = 10. Here, m(k) for k ∈ K are spectral signatures obtained from the U.S. Geological

Survey (USGS) digital spectral library3, and xi is a simulated mixed pixel. An MLL distribution

with smoothness parameter µ = 2 is used to generate the spatial information, and the total size

3The USGS library of spectral signatures is available online: http://speclab.cr.usgs.gov.
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(a) Ground truth (b) Classification map (c) Segmentation map

Figure 4.1: Classification and segmentation maps obtained after applying the proposed method
to a simulated hyperspectral scene with σ = 0.8 and γ = 0.7 by using τ = 0.9, l = 288, µ = 2.
(a) Ground truth class labels. (b) Classification result (OA=49.09%). (c) Segmentation result
(OA=94.34%).

of the simulated image is of 120 × 120 pixels. Zero-mean Gaussian noise with covariance σ2I,

i.e., ni ∼ N (0, σ2I) is finally added to our simple simulated hyperspectral scene. For illustrative

purposes, the image of class labels y is shown in Figure 4.1(a). Assume that xi has class label

yi = kk, then we define γ
(kk)
i as the abundance of the objective class and γ

(k)
i (for k ∈ K and

k 6= kk) as the abundance of the remaining signatures which contribute to the mixed pixel,

where γ
(k)
i are generated according to a simple uniform distribution in the proposed problem.

In order to simplify notations, we take γ
(kk)
i = γ and

∑
k∈K, k 6=ki

γ
(k)
i = 1− γ.

We have conducted five different experiments with the simulated hyperspectral image de-

scribed above. These experiments have been carefully designed in order to analyze several

relevant aspects of our proposed MLRsubMLL segmentation algorithm in a fully controlled

environment:

1. In our first experiment, we evaluate the impact of the presence of mixed pixels on the

segmentation output.

2. In our second experiment, we analyze the impact of the parameter τ (controlling the amout

of spectral information retained after subspace projection) on the segmentation output.

3. In our third experiment, we evaluate the impact of the training set size on the segmentation

output.

4. In our fourth experiment, we analyze the impact of the smoothness parameter µ on the

segmentation output.

5. In our fifth experiment, we evaluate the impact of noise on the segmentation output.
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In all these experiments we will use the optimal value of classification accuracy (OAopt) as

a reference to evaluate the goodness of our reported OA scores. Here, OAopt ≡ 100 (1 − Pe)%,

where Pe is defined as follows [49]:

Pe =

K∑

k=1

∑

i∈K, i 6=k

p(yj = k, j ∈ Sk, Ki), (4.24)

where Kk denotes the k-th class. Eq. (4.24) is minimized when the regions Sk are chosen such

that each xj is assigned to the class for which p(yj = k, j ∈ Sk, Ki) is the smallest. For

a multi-class problem, we use the following error bound as an alternative since Eq. (4.24) is

difficult to compute:

erfc

(
distmin

2σ

)
≤ Pe ≤

K − 1

2
erfc

(
distmin

2σ

)
, (4.25)

where erfc(·) denotes the complementary error function and distmin denotes the minimum dis-

tance between any point of mean vectors, i.e., distmin = mini 6=j‖mi − mj‖, for any i, j ∈ K.

This is the so-called union bound [57], which is widely used in multi-class problems. However,

union bound is not a good measurement to present the difficulty because of the mixtures. Nev-

ertheless, it is worthnothing that, as γ decreases, the difficulty increases, i.e., OAopt decreases.

Thus, in this work we use the union bound, while γ = 1, to define the difficulty of our problem.

Experiment 1: Impact of the presence of mixed pixels

In this experiment we first consider a problem with σ = 0.8 by using τ = 0.9, µ = 2 and

γ ∈ [0.5 1.0]. In this context, the optimal value of classification accuracy is given by OAopt ≤
71.04% with γ = 1. It should be noted that the values of parameters τ and µ in our simulation

are probably sub-optimal. However, we have decided to fix them to the specified values because

we have experimentally observed that these settings lead to good performance in the considered

analysis scenario. Figure 4.2 illustrates the obtained OA results as a function of γ (which

determines the degree of spectral purity in the simulated pixels). In order to show the good

capability of the proposed MLRsubMLL in the task of dealing with limited training sets, only

288 labeled samples (2% of the available samples, evenly distributed among classes) are used as

the training set. Notice the good performance achieved by the proposed MLRsubMLL algorithm

with the classes dominated by mixed pixels. In those classes, the segmentation results provided

by MLRsubMLL significantly outperform the classification results obtained by the MLRsub

using only the spectral information. For illustrative purposes, Figure 4.1 (b) and (c) shows

the respective classification and segmentation maps obtained for the problem with σ = 0.8 and
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Figure 4.2: OA results as a function of the abundance of the objective class: γ, with τ = 0.9,
µ = 2 and l = 288 for a problem with mixed pixels and σ = 0.8. Dash-dot lines with circles
denote the segmentation results obtained by the MLRsubMLL algorithm; dashed lines with
asterisks denote the classification results obtained by the MLRsub algorithm.

γ = 0.7, using τ = 0.9, µ = 2 and l = 288. Moreover, Figure 4.2 indicates that the performance

of both MLRsubMLL and MLRsub increases as the abundance of the objective classes increase.

This is expected, since the problem is easier to solve as the presence of mixed pixels is decreased.

In the following experiments, we will consider γ = 0.7 which leads to a difficult segmentation

problem as shown in Figure 4.2.

Experiment 2: Impact of parameter τ

In our second experiment, we analyze the impact of the threshold parameter τ intended to control

the loss of spectral information after projecting the original hyperspectral data into a subspace.

This parameter is directly related with the number of components retained after the projection,

and with the amount of information comprised by the retained components. To address this

issue, we analyze the performance of the proposed methods for different values of τ in a problem

with σ = 0.8 (OAopt ≤ 71.04% with γ = 1) and γ = 0.7, by using µ = 2. Figure 4.3 illustrates the

OAs obtained by the proposed MLRsub and MLRsubMLL algorithms as a function of τ , where

288 labeled samples are again used as the (limited) training set. Notice the good performance

achieved by the proposed MLRsubMLL segmentation algorithm, which yielded higher OA results

than OAopt in all cases. Furthermore, both classification and segmentation results increase as τ

increases. This is reasonable since the amount of spectral information that is retained after the

projection of the original data into the subspace is increased as τ increases. This also indicates
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Figure 4.3: OA results (as a function of τ) with µ = 2, for a problem with σ = 0.8 and γ = 0.7.

that the proposed methods can perform well in the presence of limited training sets, even after

the dimensionality of the subspace is increased. The robustness of the proposed methods in the

presence of very limited training sets is analyzed in more detail in the following experiment.

Experiment 3: Impact of the training set size

In our third simulated image experiment, we analyze the impact of the training set size on

the segmentation performance. Figure 4.4(a) and (b) respectively report the OA and standard

deviation (std) results obtained by our proposed methods as a function of the number of labeled

samples (l) used in the training process, with τ = 0.9 and µ = 2. Again, these parameter settings

may be sub-optimal but lead to very good results in our experiments. Notice the quality of

the segmentation results obtained by our proposed MLRsubMLL algorithm, which shows high

robustness even with very limited training set sizes. As the number of labeled samples increases,

the OA increases and the standard deviation decreases. This is expected, since an increase of

the number of labeled samples should decrease in the uncertainty when estimating the right

subspace for each class.

On the other hand, we have experimentally observed that the OA and the standard deviation

results respectively converge to very high and very low values for a certain number of labeled

samples. In our particular case, the use of 350 labeled samples resulted in an OA of 97.76% with

std = 0.37. This indicates that robust generalization can be achieved by the combination of MLR

regressors and spatial-contextual information. From this experiment, we can conclude that our

proposed algorithm converges to almost identical results once the classes are well-separated using

89



100 200 300 400 500
20

40

60

80

100

Number of labeled samples

O
ve

ra
ll 

A
cc

u
ra

cy
 (

%
)

τ = 0.9, µ = 2

 

 

MLRsubMLL
MLRsub

100 200 300 400 500
0

2

4

6

8

10

12

Number of labeled samples

S
ta

n
d

an
d

 d
ev

ia
ti

o
n

 

τ = 0.9, µ = 2

 

 

MLRsubMLL
MLRsub
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Figure 4.4: Classification and segmentation results obtained for a problem with σ = 0.8 and
γ = 0.7 by using τ = 0.9, µ = 2. (a) OA results as a function of the number of labeled samples.
(b) Standard deviation (std) results as a function of the number of labeled samples.

a sufficient number of labeled training samples, where the term sufficient in our experiments

means a low percentage of labeled samples. Despite the encouraging results obtained thus

far with the conducted simulations, a more detailed investigation of two additional aspects: the

relevance of the smoothness parameter µ on spatial characterization, and the overall performance

of our proposed approaches in the presence of different noise levels, should be conducted. This

will be done in the next two experiments performed with our simulated hyperspectral scene.

Experiment 4: Impact of parameter µ

In this experiment we conduct an evaluation of the impact of the smoothness parameter µ on

the obtained segmentation results. In practice, we use the cross-validation sampling method [77]

to estimate µ by using available training samples. Figure 4.5 plots the obtained OA results as a

function of µ, with τ = 0.9 and l = 288 (2% of the available samples per class, evenly distributed

among classes). From Figure 4.5, we can conclude that the segmentation performance indeed

depends on the setting of µ. However, even with a sub-optimal parameter setting 1.5 ≤ µ ≤ 4,

the proposed MLRsubMLL algorithm leads to good segmentation results for the considered

problem. This indicates that the algorithm is not very sensitive to the setting of parameter µ

since all values of this parameter in a certain range of interest ultimately lead to high values of

the OA for the considered problem.

It should be noted that, in all experiments conducted thus far, the noise standard deviation

considered in the simulations was σ = 0.8 (a reasonable parameter setting according to our

tests). However, a remaining aspect to be analyzed is the sensitivity of the proposed method to

90



2 4 6 8 10
50

60

70

80

90

The smoothness parameter :µ

O
ve

ra
ll 

A
cc

u
ra

cy
 (

%
)

τ = 0.9,  l =288

 

 

MLRsubMLL
MLRsub

Figure 4.5: OA results as a function of the smoothness parameter µ for a problem with σ = 0.8
and γ = 0.7 with τ = 0.9 and l = 288.

different noise levels.

Experiment 5: Impact of noise

In our last experiment with simulated data we evaluate the impact of noise on the proposed

segmentation algorithm by using only l = 288 labeled samples (2% of the available samples per

class, evenly distributed among classes) as in previous experiments. Figure 4.6 plots the OA

results as a function of the noise standard deviation σ for two different problems: (a) γ = 1; and

(b) γ = 0.7. As shown by Figure 4.6, the performance of the proposed MLRsubMLL algorithm

decreases as σ increases, but the increase in the OAs obtained with regards to the MLRsub

classification are always remarkable. From Figure 4.6, we can also conclude that the results

achieved by our proposed segmentation algorithm are superior to the OAopt result. Specifically,

for the problem with σ = 1.5, the MLRsubMLL obtained a segmentation OA of 58.12% with

γ = 0.7 [see Figure 4.6(b)], which is 15.34% higher than the optimal value (OAopt ≤ 42.78%

with γ = 1) in Figure 4.6(a).

Summarizing, the experimental results conducted with simulated data sets indicate that

the proposed MLRsubMLL algorithm achieves adequate performance in noisy environments

and with limited training sets, exhibiting robustness for a wide range of parameter settings that

simplify the choice of such parameters by the end-user. In other words, although the performance

of the algorithm has been shown to be dependent on the setting of parameters τ and µ, sub-

optimal settings of these parameters are easy to obtain and lead to good characterization results

in different simulation environments. Although the experimental evaluation conducted with
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Figure 4.6: OA results achieved (for two different values of γ) as a function of the noise standard
deviation σ with τ = 0.9, µ = 2, and l = 288.

simulated data sets provided very encouraging results, further analyses with real hyperspectral

scenes and comparisons to other state-of-the-art methods are highly desirable in order to fully

substantiate the proposed method.

4.4.3 Experiments with real hyperspectral data

In order to evaluate the proposed MLRsubMLL algorithm in real analysis scenarios, we use two

widely used hyperspectral data sets respectively collected by AVIRIS and the Reflective Optics

System Spectrographic Imaging System (ROSIS) operated by the German Aerospace Agency

(DLR). For the purpose of comparison, we use other state-of-the-art supervised classifiers such

as linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic discrim-

inant analysis (LogDA), and SVMs [54, 57, 116], which are well-established techniques in the

machine learning community [6, 28, 48, 110]. For these methods, we project the original hyper-

spectral datasets into a subspace by using the hyperspectral signal identification by minimum

error (HySime) method [11] which was observed to perform better than standard eigenvector

calculation considered for the other tested methods, where the loss of spectral information after

projecting the data into the subspace is also controlled by parameter τ as what we consider in our

approach. Furthermore, in order to have a fair comparison with our segmentation method (which

includes spatial-contextual information), in this work we have also expanded the considered dis-

criminant analysis approaches (LDA, QDA and LogDA) with the MLL spatial prior to obtain

segmentation methods (referred to hereinafter as LDAMLL, QDAMLL, and LogDAMLL) that

can be compared with our proposed algorithm. In all experiments, we empirically set τ = 0.999

and µ = 2. Although sub-optimal, we have experimentally tested that these settings lead to good
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characterization results with all the considered data sets, a fact that reveals that the proposed

approach can perform accurately using a variety of hyperspectral scenes collected by different

instruments.

Experiment 1: AVIRIS Indian Pines data set

In our first experiment, we use the well-known AVIRIS Indian Pines data set to analyze the

performance of the proposed algorithm in comparison with other methods. The scene contains

145× 145 pixels and 202 spectral bands. The ground truth data contains 16 mutually exclusive

classes, and a total of 10366 labeled pixels. This image is a classical benchmark to validate

the accuracy of hyperspectral image analysis algorithms and constitutes a challenging problem

due to the significant presence of mixed pixels in all available classes, and also because of the

unbalanced number of available labeled pixels per class.

In order to test the the performance of the proposed algorithms with limited training sets, a

total size of l = 1036 (which represents 10% of the available labeled samples, evenly distributed

among classes) is used for training purposes, where the remaining 90% of the samples were used

for validation. Table 4.1 illustrates the OA, average accuracy (AA), kappa statistic coefficient

(κ), and individual class accuracy [%] results achieved by the proposed algorithms after 10

Monte Carlo runs. By adopting an MLL spatial prior, the segmentation algorithms significantly

improved the classification results obtained by the considered classification algorithms. For

instance, the MLRsubMLL obtained an OA of 93.66%, 19.51% larger than that obtained by

the MLLsub algorithm, whereas the QDAMLL obtained an OA of 90.02%, which is 10.18%

higher than the result obtained by the QDA algorithm. It is remarkable that the MLRsubMLL

algorithm did not provide the best classification results in our experiments (it only outperformed

the classification results provided by LDA). However, the inclusion of the MLL prior improved

more significantly the results obtained by MLRsub than those obtained by the discriminant

analysis methods. A possible explanation for this result is due to the inclusion of the subspace

projection method, which leads to reliable posterior probabilities for each class after reducing

the negative effects caused by noise and mixed pixels.

For illustrative purposes, Figure 4.7 presents the the ground truth and some of the classi-

fication/segmentation results obtained by the different tested methods for the AVIRIS Indian

Pines scene. For each method, we randomly selected one of the maps obtained after conducting

10 Monte Carlo runs. As shown by Figure 4.7, the SVM produced the best classification map

while the MLRsubMLL produced the best segmentation map. An immediate issue resulting

from experiments in Figure 4.7 is whether the use of spatial-contextual information could result
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Table 4.1: Overall, average, individual class accuracies [%] and κ statistic obtained for the
AVIRIS Indian Pines data set. The best results are highlighted in bold typeface.

Class # samples
Classification algorithms Segmentation algorithms

MLRsub LDA QDA LogDA SVM MLRsubMLL LDAMLL QDAMLL LogDAMLL

Alfalfa 54 66.94 82.34 55.91 83.50 94.48 94.62 95.38 67.94 97.69

Bldg-grass-tree-drives 1434 59.05 64.97 68.88 64.42 71.34 86.51 76.37 81.95 96.12

Corn 834 54.48 41.43 71.05 60.72 68.00 87.07 51.29 87.27 81.14

Corn-no till 234 73.68 68.76 88.65 77.04 85.23 91.72 78.16 92.42 93.16

Corn-min till 497 57.43 68.89 73.37 67.68 73.19 86.27 82.44 82.38 79.11

Grass/pasture 747 98.90 97.31 96.82 94.77 96.94 99.52 99.76 98.43 99.12

Grass/pasture-mowed 26 91.01 53.88 74.65 68.97 77.77 85.54 71.99 87.40 85.97

Grass/tree 489 71.89 87.00 19.56 76.67 85.89 90.00 92.00 23.67 90.00

Hay-windrowed 20 71.41 48.60 70.42 67.90 73.74 97.88 77.28 89.69 90.23

Oats 968 75.13 67.25 86.82 75.66 86.31 93.16 73.79 95.16 83.01

Soybeans-no till 2468 77.25 66.76 86.58 74.45 87.03 98.35 94.44 97.30 99.12

Soybeans-min till 614 90.47 70.35 89.86 89.22 92.71 96.42 69.44 86.49 94.13

Soybeans-clean till 212 93.85 95.12 93.23 90.33 94.27 99.18 98.75 96.44 98.36

Stone-steel towers 1294 91.64 84.99 91.64 95.37 97.42 98.86 85.58 98.57 98.86

Wheat 380 99.33 99.73 97.71 97.92 99.13 99.67 99.87 98.79 99.73

Woods 95 94.40 84.32 94.68 92.13 90.29 98.43 87.30 95.78 93.68

OA 74.15 65.22 79.84 75.42 80.56 93.66 79.41 90.02 89.23

AA 77.30 73.67 78.73 79.82 77.81 93.95 83.36 86.23 90.46

κ 70.30 60.61 77.02 72.00 85.86 92.69 76.41 88.56 87.66

in an increase in the SVM classification results. In order to analyze this issue in more detail,

in the following experiment we will consider a recently developed SVM-based classifier which

combines spatial and spectral information [53]. Further, we will also consider a segmentation

method based on the watershed transform [129]. The results for these methods were only avail-

able to us in the framework of experiments previously conducted with the ROSIS University of

Pavia data set [107, 129], and hence could not be included in the AVIRIS Indian Pines image

experiments.

Experiment 2: ROSIS University of Pavia data set

The second real hyperspectral data set that we have considered in experiments was acquired

in 2001 by the ROSIS instrument, flown over the city of Pavia, Italy. The image scene, with

size of 610× 340 pixels, is centered at the University of Pavia. After removing 12 bands due to

noise and water absorption, it comprises 103 spectral channels. Nine ground truth classes, with

a total of 3921 training samples and 42776 test samples were considered in experiments. Two

different tests were performed with this scene.

In our first test we used the entire training set available for this scene in order to train

different classifiers. Table 4.2 reports the obtained values of OA, AA, κ and individual accuracies.

In this comparison, we included the same set of classifiers used in the experiments with the

AVIRIS Indian Pines image, along with two additional spectral-spatial classifiers: an SVM-based

classifier trained with extended morphological profiles (designated in the table by EMP/SVM)

[53], and a segmentation method based on the watershed transform [129]. The results reported in

the table are respectively taken from [107] and [129], where exactly the same training and test sets
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Ground truth MLRsub (72.95%) MLRsubMLL (94.17%)

LDA (66.29%) QDA (79.89%) LogDA (76.41%)

LDAMLL (80.53%) QDAMLL (90.65%) LogDAMLL (88.57%)

SVM (82.51%)

Figure 4.7: Classification/segmentation maps obtained by the different tested methods for the
AVIRIS Indian Pines scene (overall accuracies are reported in the parentheses).
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Table 4.2: Overall, average, individual class accuracies [%] and κ statistic obtained for the
ROSIS University of Pavia data set. The best results are highlighted in bold typeface.

Class
# samples Classification algorithms Segmentation algorithms

Train Test MLRsub LDA QDA LogDA SVM† MLRsubMLL LDAMLL QDAMLL LogDAMLL EMP/SVM† [129]‡

Asphalt 548 6631 65.63 69.45 67.65 70.89 83.71 93.83 89.56 90.68 86.91 95.36 93.64

Bare soil 540 18649 64.80 46.59 73.49 75.06 92.25 98.43 45.93 98.27 98.57 63.72 97.35

Bitumen 392 2099 81.28 63.31 93.53 83.98 81.58 99.32 62.11 93.38 90.38 98.87 96.23

Bricks 524 3064 59.78 88.29 89.52 87.91 92.59 95.19 99.08 98.45 97.39 95.41 97.92

Gravel 265 1345 66.51 39.11 59.79 55.31 70.32 71.13 26.82 62.17 38.21 87.61 66.12

Meadows 532 5029 64.19 81.92 75.73 76.72 70.25 94.80 85.15 84.73 84.59 80.33 75.09

Metal sheets 375 1330 99.78 99.41 99.93 100 99.41 100 99.70 99.93 100 99.48 99.91

Shadows 514 3682 92.82 99.79 99.26 99.79 96.62 96.20 100 99.79 94.09 97.68 96.98

Trees 231 947 72.19 95.07 96.64 96.38 97.81 92.17 94.09 99.80 94.94 98.37 98.56

OA 67.08 75.59 77.95 78.41 80.99 94.10 80.27 89.48 87.04 85.22 85.42

AA 74.11 75.88 83.95 82.90 88.28 93.45 78.05 91.91 83.32 90.76 91.31

κ 58.53 68.16 71.93 72.47 76.16 92.24 73.90 86.46 87.23 80.86 81.30

Notes:
† Results are directly taken from [107], which used EMPs for spectral-spatial characterization prior to SVM-based classification.
‡ Results are directly taken from [129], which used a spectral-spatial classifier based on a pixel-wise SVM classifier with majority voting
within the watershed regions to produce the final segmentation.

mentioned above were used to produce the reported results, thus allowing a fair inter-comparison

of methods. By using the entire training set, the proposed MLRsubMLL algorithm obtained an

OA of 94.10% in the considered analysis scenario. For illustrative purposes, Figure 4.8 presents

the classification and segmentation maps achieved by some of the considered methods.

In our second test we analyze the sensitivity of the considered methods to different training

sets made up of a limited number of samples. For this purpose, we constructed small training

sets by randomly selecting 20, 30, 40, 60, 80, 100 labeled samples per class. Figure 4.9 illustrates

the obtained OA results by the different methods as a function of the number of labeled samples

per class. By using only 60 labeled samples per class (l = 540 samples, which represents around

14% of the entire training set), the proposed MLRsubMLL obtained an OA of 88.85%. This

result is quite remarkable since, for instance, the OA obtained by the EMP/SVM algorithm

by using the entire training set was slightly lower. When a spatial prior was adopted, the

segmentation algorithms in Figure 4.9(b) always achieved significantly better results than their

classification counterparts in Figure 4.9(a), thus indicating the importance of including spatial-

contextual information. In this case, the SVM classifier in Figure 4.9(a) could not improve any

of the segmentation methods in Figure 4.9(b). The figure also indicates that the segmentation

performance of the proposed MLRsubMLL can significantly increase as the number of labeled

samples increases. However, Figure 4.9(a) indicates that the classification OAs cannot increase

so significantly as the size of the training set becomes larger. This is because more reliable

estimates of the posterior probabilities can be obtained by the MAP segmentation algorithm

as the number of labeled samples increases. As a result, the proposed segmentation method

can perform well in the presence of limited training samples and also significantly increase its

performance when additional training samples become available.
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Ground truth MLRsub (67.08%) MLRsubMLL (94.10%)

LDA (75.59%) QDA (77.95%) LogDA (78.41%)

LDAMLL (80.27%) QDAMLL (89.48%) LogDAMLL (87.04%)

Figure 4.8: Classification/segmentation maps obtained by the different tested methods for the
ROSIS University of Pavia scene (overall accuracies are reported in the parentheses)
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Figure 4.9: OA results as a function of the number of labeled samples per class for the University
of Pavia data set.

4.5 Conclusions

In this paper, we have developed a new spectral-spatial segmentation approach which combines

multinomial logistic regression (MLR) with a subspace projection method to better characterize

noise and mixed pixels. It includes contextual information using a multi-level logistic (MLL)

Markov-Gibbs prior. By computing the maximum a posteriori (MAP) segmentation with an

optimized α-expansion graph-cut based algorithm, the proposed segmentation method provides

good accuracies when compared with other methods. It also exhibits robustness to different

criteria, such as noise, presence of mixed pixels, and limited availability of training samples

without the need for fine tuning of input parameters. Although our experimental results are

competitive with those reported for other state-of-the-art spectral and spectral-spatial classifi-

cation/segmentation methods, further work should be focused on conducting additional experi-

ments with real hyperspectral scenes collected by other instruments, such as the new generation

of spaceborne instruments that are currently under development. Given the similar spectral and

spatial resolutions of these instruments with regards to the airborne systems adopted in our real

experiments, we anticipate that the proposed robust segmentation techniques can also perform

accurately with the new generation of satellite instruments.
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Chapter 5

Conclusions and Future Work

This thesis presented new developments for the problems of remotely sensed hyperspectral im-

age classification and segmentation, in which the ultimate goal is to accurately interpret the

image data provided by remotely sensed hyperspectral imaging instruments in the context of

Earth observation applications. Our proposed classification techniques exploit the rich spec-

tral information available in this kind of data (typically, hundreds of spectral bands), while

the developed segmentation techniques make combined use of both the spatial and the spectral

information present in the data. Specifically, we have focused on the problem of supervised and

semi-supervised hyperspectral image classification/segmentation, in which some training data is

assumed to be available a priori, and particularly addressed some of the most relevant challenges

that can be found in this context. These challenges can be summarized as follows:

• First and foremost, we have addressed the problems related with the imbalance between

the high dimensionality of hyperspectral data in the spectral domain and the limited avail-

ability of training samples in real applications, which poses critical problems for supervised

algorithms, most notably, in order to avoid the well-known Hughes effect. In order to ad-

dress this challenge, we have adopted strategies based on semi-supervised learning and

active sampling which allowed us to increase the training set without significant cost and

effort.

• Second, we have used a particular class of discriminative classifiers based on the con-

cept of multinomial logistic regression (MLR), which represent an innovation with regards

to previous developments in the hyperspectral imaging literature. These discriminative

classifiers are able to learn directly the posterior class distributions and deal with the

high dimensionality of hyperspectral data in a very effective way. The structure of MLR

classifiers is very open and flexible. Compared to other techniques, the MLR is based on

computing posterior probabilities, which is a crucial step for Bayesian segmentation (based

on the incorporation of spatial information).
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• Third, in our developments we have taken advantage of the fact that, in addition to the

very rich spectral information available in the hyperspectral data, hyperspectral images

exhibit piecewise statistical continuity among neighboring pixels. In order to take ad-

vantage from this feature, our proposed techniques have been designed to exploit spatial

information in conjunction with spectral information in order to partition an image into

a set of homogeneous regions (in statistical sense).

• Finally, we have also developed innovative strategies to cope with one of the most important

problems in hyperspectral image analysis: the presence of mixed pixels (with possibly

many participating constituents at a sub-pixel level) due to limited spatial resolution,

mixing phenomena happening at different scales, etc. To address this issue we resort to

subspace-based techniques that can better discriminate land-cover classes in the presence

of heavily mixed pixels.

After describing our general contributions, we describe next the specific contributions in the

three main chapters of this thesis. In each case future research lines are identified.

• In chapter 2, we developed a new supervised Bayesian segmentation approach, namely

LORSAL-AL-MLL, aimed at addressing ill-posed hyperspectral classification problems.

LORSAL-AL-MLL models the posterior class probability distributions using the concept

of multinomial logistic regression (MLR), where the MLR regressors are learned by the

logistic regression via splitting and augmented Lagrangian (LORSAL) algorithm. The al-

gorithm adopts a multi-level logistic (MLL) prior to model the spatial information present

the class label images. The maximum a posteriori (MAP) segmentation is efficiently com-

puted by the α-Expansion graph-cut based algorithm. Moreover, active learning based

on maximizing the mutual information between the regressors and the class labels is con-

sidered which can effectively cope with training sets containing a very limited number of

samples. The effectiveness of the proposed algorithm is illustrated using both simulated

and real hyperspectral datasets. A comparison with state-of-the-art methods indicates

that the proposed approach yields comparable or superior performances using fewer la-

beled samples. Further work should be conducted in order to test the proposed method

with additional scenes and analysis scenarios.

• In chapter 3, we developed a new (supervised) Bayesian segmentation approach aimed at

addressing ill-posed hyperspectral classification and segmentation problems. The proposed

algorithm models the posterior class probability distributions using the concept of multi-

nomial logistic regression (MLR), where the MLR regressors are learned by the logistic
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regression via splitting and augmented Lagrangian (LORSAL) algorithm. The algorithm

adopts a multi-level logistic (MLL) prior to model the spatial information present the class

label images. The maximum a posteriori (MAP) segmentation is efficiently computed

by the α-Expansion graph-cut based algorithm. The resulting segmentation algorithm

(LORSAL-MLL) greatly improves the overall accuracies with respect to the classification

results just based on the learned class distribution. Another contribution of this work is

the incorporation of active learning strategies in order to cope with training sets containing

a very limited number of samples. Three different sampling approaches, namely: a mutual

information (MI)-based criterion, a breaking ties (BT) strategy, and a newly developed

method called modified breaking ties (MBT) are integrated in the developed classification

(LORSAL) and segmentation (LORSAL-MLL) methods, resulting in two new methods

with active learning respectively called LORSAL-AL and LORSAL-MLL-AL. The effec-

tiveness of the proposed algorithms is illustrated in this work using both simulated and

real hyperspectral datasets. A comparison with state-of-the-art methods indicates that

the proposed approaches yield comparable or superior performance using fewer labeled

samples. Moreover, our experimental results reveal that the proposed MBT approach

leads to an unbiased sampling as opposed to the MI and BT strategies. Further work will

be directed towards testing the proposed approach in other different analysis scenarios

dominated by the limited availability of training samples.

• In chapter 4, we developed a new spectral-spatial segmentation approach which combines

multinomial logistic regression (MLR) with a subspace projection method to better char-

acterize noise and mixed pixels. It includes contextual information using a multi-level

logistic (MLL) Markov-Gibbs prior. By computing the maximum a posteriori (MAP) seg-

mentation with an optimized α-expansion graph-cut based algorithm, the proposed seg-

mentation method provides good accuracies when compared with other methods. It also

exhibits robustness to different criteria, such as noise, presence of mixed pixels, and lim-

ited availability of training samples without the need for fine tuning of input parameters.

Although our experimental results are competitive with those reported for other state-

of-the-art spectral and spectral-spatial classification/segmentation methods, further work

should be focused on conducting additional experiments with real hyperspectral scenes

collected by other instruments, such as the new generation of spaceborne instruments that

are currently under development. Given the similar spectral and spatial resolutions of

these instruments with regards to the airborne systems adopted in our real experiments,

we anticipate that the proposed robust segmentation techniques can also perform accu-
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rately with the new generation of satellite instruments. Another important research line

deserving future experimentation focuses on the fusion/aggregation of the results obtained

by different classifiers, i.e., by merging the results obtained by different methods using

pixel-wise majority voting.

Finally, another future direction worth being investigated in all cases is the computational

complexity of the developed methods. Although the proposed algorithms have been imple-

mented in an efficient way by means of software optimizations, hardware optimizations related

with parallel computing and efficient partitioning for exploitation of high performance computing

architectures are also feasible. This is a highly relevant problem in the context of hyperspectral

imaging, in which the dimensionality of the hyperspectral data is ever-increasing (instruments

with thousands of spectral bands are currently under development) and the time constraints to

process the data are more and more demanding in many application domains, in which near

real-time performance of algorithm analysis is required in order to adequately exploit the data.

With these issues in mind, a future research line that we are considering is related with the com-

putationally efficient implementation of the proposed approaches in high performance computing

architectures such as clusters of computers, or even more specialized hardware accelerators (sus-

ceptible of being used on-board the sensor platform) including digital signal processors (DSPs),

field programmable gate arrays (FPGAs), or commodity graphic processing units (GPUs).
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[16] D. Böhning. Multinomial logistic regression algorithm. Annals of the Institute of Statistical
Mathematics, 44:197–200, 1992.

[17] J. Bolton and P. Gader. Random set framework for context-based classification with hy-
perspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(11):3810–
3821, 2009.
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[99] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, A. J. Smola, and K. Müller. Invariant
feature extraction and classification in kernel spaces. In Proceeding of Neural Information
Processing Systems, pages 526–532, 1999.

[100] T. M. Mitchell. The role of unlabeled data in supervised learning. In Proceedings of the
6th International Colloquium on Cognitive Science, 1999.

[101] P. Mitra, B. U. Shankar, and S. K. Pal. Segmentation of multispectral remote sensing
images using active support vector machines. Pattern Recognition Letters, 25(9):1067 –
1074, 2004.

[102] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive Bayes. In Proceeding of 16th Annual Conference on Neural
Information Processing Systems, 2002.

[103] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In
Proceedings of the 9th International Conference on Information and Knowledge Manage-
ment, pages 86–93, 2000.

[104] E. Oja. Subspace methods of pattern recognition. Research Studies Press Ltd., Lechworth,
England, 1983.

[105] J. A. Palmason, J. A. Benediktsson, J. R. Sveinsson, and J. Chanussot. Classification of
hyperspectral data from urban areas using morphological preprocessing and independent
component analysis. In IEEE International Geoscience and Remote Sensing Symposium,
volume 1, page 4 pp., 2005.

[106] M. Pesaresi and J. A. Benediktsson. A new approach for the morphological segmentation of
high-resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing,
39(2):309–320, 2001.

[107] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls,
J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, M. Marconcini, J. C. Tilton, and G. Tri-
anni. Recent advances in techniques for hyperspectral image processing. Remote Sensing
of Environment, 113:110–122, 2009.

109



[108] A. Plaza, P. Martinez, J. Plaza, and R. Perez. Dimensionality reduction and classification
of hyperspectral image data using sequences of extended morphological transformations.
IEEE Transactions on Geoscience and Remote Sensing, 43:466–479, 2005.

[109] J. Plaza, A. Plaza, and C. Barra. Multi-channel morphological profiles for classification
of hyperspectral images using support vector machines. Sensors, 9(1):196–218, 2009.

[110] J. Poulsen and A. French. Discriminant function analysis.

[111] S. Prasad and L. M. Bruce. Information fusion in kernel induced spaces for robust subpixel
hyperspectral ATR. IEEE Geosceience and Remote Sensing Letters, 6:572–576, 2009.

[112] S. Prasad, L. M. Bruce, and H. Kalluri. A robust multi-classifier decision fusion framework
for hyperspectral, multi-temporal classification. In IEEE International Geoscience and
Remote Sensing Symposium, pages 3048–3051, 2008.

[113] S. Rajan, J. Ghosh, and M. M. Crawford. An active learning approach to hyperspectral
data classification. IEEE Transactions on Geoscience and Remote Sensing, 46:1231–1242,
2008.

[114] J. A. Richards and X. Jia. Remote sensing digital image analysis: an introduction.
Springer, 4th edition, 2005.

[115] E. Riloff, J. Wiebe, and T. Wilson. Learning subjective nouns using extraction pattern
bootstrapping. In Proceedings of the 7th conference on Natural language learning, pages
25–32, 2003.

[116] B. D. Ripley. Pattern classification and neural networks. Cambridge, 1966.

[117] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised self-training of object
detection models. In 7th IEEE Workshop on Applications of Computer Vision, 2005.

[118] Y. D. Rubinstein and T. Hastie. Discriminative vs. informative learning. In ACM KDD,
volume AAAI Press, pages 49–53, 1997.

[119] V. R. Sa. Learning classification with unlabeled data, 1993.

[120] G. Schohn and D. Cohn. Less is more: active learning with support vector machines. In
Proceedings of the 17th International Conference on Machine Learning, pages 839–846,
2000.

[121] B. Scholkopf and A. Smola. Learning with kernels-support vector machines, regularization,
optimization and beyond. MIT Press Series, Cambridge, MA, 2002.

[122] M. R. Schwaller. A geobotanical investigation based on linear discriminant and profile
analyses of airborne thematic mapper simulator data. Remote Sensing of Environment,
23:23–34, 1987.

[123] S. B. Serpico and G. Moser. Extraction of spectral channels from hyperspectral images for
classification purposes. IEEE transactions on geoscience and remote sensing, 45(2):484–
495, 2007.

[124] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings of the
Fifth Annual Workshop on Computational Learning Theory, pages 287–294, 1992.

[125] G. Shaw and D. Manolakis. Signal processing for hyperspectral image exploitation. IEEE
Signal Processing Magazine, 19:12–16, 2002.

110



[126] V. Sindhwani and P. Niyogi. A co-regularized approach to semi-supervised learning with
multiple views. In the International Conference on Machine Learning Workshop on Learn-
ing with Multiple Views, 2005.

[127] Y. Tarabalka, J. A. Benediktsson, and J. Chanussot. Spectral spatial classification of
hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on
Geoscience and Remote Sensing, 47(8):2973–2987, 2009.

[128] Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton. Multiple spectral
spatial classification approach for hyperspectral data. IEEE Transactions on Geoscience
and Remote Sensing, 48(11):4122–4132, 2010.

[129] Y. Tarabalka, J. Chanussot, and J. A. Benediktsson. Segmentation and classification of
hyperspectral images using watershed transformation. Pattern Recognition, 43:2367–2379,
2010.

[130] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson. SVM and MRF-based
method for accurate classification of hyperspectral images. IEEE Geoscience and Remote
Sensing Letters, 7:640–736, 2010.

[131] M. E. Tipping and A. Smola. Sparse Bayesian learning and the relevance vector machine.
Journal of Machine Learning Research, 1:211–244, 2001.

[132] D. Tuia and G. Camps-Valls. Semi-supervised hyperspectral image classification with
cluster kernels. IEEE Geoscience and Remote Sensing Letters, 6:224–228, 2009.

[133] D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, and W. J. Emery. Active learning methods
for remote sensing image classification. IEEE Transactions on Geoscience and Remote
Sensing, 47(7):2218–2232, 2009.

[134] V. Vapnik. Statistical learning theory. John Wiley, New York, 1998.

[135] S. Velasco-Forero and V. Manian. Improving hyperspectral image classification using
spatial preprocessing. IEEE Geoscience and Remote Sensing Letters, 6:297–301, 2009.

[136] S. Watanabe, P. F. Lambert, C. A. Kulikowski, J. L. Buxton, and R. Walker. Evaluation
and selection of variables in pattern recognition. In Computer and Information Sciences
II, 1967.

[137] J.-M. Yang, B.-C. Kuo, P.-T. Yu, and C.-H. Chuang. A dynamic subspace method for
hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing,
48:2840–2853, 2010.

[138] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In
Proceedings of the 33rd Annual Meeting on Association for Computational Linguistics,
pages 189–196, 1995.

[139] J. Ye, R. Janardan, V. Cherkassky, T. Xiong, J. Bi, and C. Kambhamettu. Efficient
model selection for regularized linear discriminant analysis. In Proceedings of the 15th
ACM International Conference on Information and Knowledge Management, pages 532–
539, 2006.

[140] J. Ye and B. Yu. Characterization of a family of algorithms for generalized discriminant
analysis on undersampled problems. Journal of Machine Learning Research, 6:483–502,
2005.

111



[141] J. Yedidia, W. Freeman, and Y.Weiss. Understanding belief propagation and and its
generalizations. In Proceedings of International Joint Conference on Artificial Intelligence,
pages 239–269, 2003.

[142] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information Theory,
51:2282–2312, 2004.

[143] Y. Zhong, L. Zhang, B. Huang, and L. Pingxiang. An unsupervised artificial immune
classifier for multi/hyperspectral remote sensing imagery. IEEE Transations on Geoscience
and Remote Sensing, 44(2):420–431, 2006.

[144] X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Computer
Sciences, University of Wisconsin-Madison, 2005.

[145] X. Zhu. Semi-Supervised Learning with Graphs. PhD thesis, Carnegie Mellon University,
2005.

112


