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Abstract. This paper describes an approach to estimate the parame-
ters of a motion blur (direction and length) directly form the observed
image. The motion blur estimate can then be used in a standard non-
blind deconvolution algorithm, thus yielding a blind motion deblurring
scheme. The estimation criterion is based on recent results about the
general spectral behavior of natural images. Experimental results show
that the proposed approach is able to accurately estimate both the length
and orientation of motion blur kernels, even for small lengths which are
traditionally difficult.

1 Introduction

In image deconvolution/deblurring problems, the goal is to estimate an original
image f = {f(x, y), x = 1, ..., N, y = 1, ..., N} from an observed version g =
{g(x, y), x = 1, ..., N, y = 1, ..., N}, assumed to have been produced according
to

g(x, y) = f(x, y) ∗ h(x, y) + w(x, y), (1)

where h(x, y) is the blur point spread function (PSF), {n(x, y), x = 1, ..., N, y =
1, ..., N} is a set of independent samples of zero-mean Gaussian noise of variance
σ2, and ∗ denotes the discrete two-dimensional (2D) convolution,

f(x, y) ∗ h(x, y) ≡
∑

u

∑
v

f(u, v) h(x− u, y − v). (2)

After collecting the elements of f , g, and n into vectors f ,g,n ∈ RN×N ,
usually in lexicographic order, (1) can be written in vector notation as

g = Hx + w, (3)

where H is a matrix representing the blur operator. This makes clear that (1) is a
particular case of the general problem of signal/image restoration from linear and
noisy observations. For most non-trivial blur kernels, the corresponding matrix
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is severely ill-conditioned, or even singular, making deconvolution an ill-posed
problem.

It’s well known that the ill-posed nature of image deconvolution demands
some kind of regularization to be used. Among the state of the art methods, we
find those based on total variation (TV) regularization (see [3, 4, 8] and further
references therein) which favors images of bounded variation, without penalizing
possible discontinuities, as well as wavelet-based methods [2, 9, 10], which also
provide regularization without overly penalizing image discontinuities.

In standard deconvolution problems, it’s assumed that H (equivalently h) is
fully and exactly known. In blind deconvolution, the goal is to deblur an image
with (total of partial) lack of knowledge about the blurring operator [13, 14]. It’s
clear that blind deconvolution is significantly more difficult than its non-blind
counterpart [1]. The problem is now ill-posed both with respect to the unknown
original image and to the blur operator. Simply put (and because convolution
can be expressed as a product in the Fourier domain), blind deconvolution can
be seen as the problem of recovering two functions from their product; a clearly
hopeless goal, in the absence of some rather strong assumptions or prior knowl-
edge about the underlying image and blur. Assumptions about the blur PSF
which have been used are positiveness, known shape (e.g., Gaussian blur) or
known support.

There are essentially two alternative approaches to blind deconvolution: (i)
simultaneously estimate the image and the blur [1, 7]; (ii) perform a previous
step of blur estimation and then feed this blur estimate to a classical non-blind
image deblurring algorithm [6]. In this paper, we introduce a blur estimation
technique to be used in an approach of type (ii). More specifically, we introduce
a method to estimate the parameters of a “motion blur” from the noisy blurred
image, with weak assumptions on the underlying original image.

The particular class of blur operators herein considered, known as motion
blur, arises when there is relative motion between the acquisition device (i.e., the
camera) and the scene being acquired. For simplicity, we assume that the camera
is moving with constant speed and direction, with respect to the scene. The
resulting blur kernel/filter has a linear support in the spacial domain and a sinc-
like (recall that sinc(x) = sin(x)/x) behavior in the Fourier domain, leading to
well pronounced valleys in the logarithm of the magnitude of the spectrum of the
observed image. The method proposed in this paper, exploits the identification
of the parameters characterizing this sinc-like behavior (namely, the orientation
and period, which correspond to the orientation and length of the blur kernel)
using the well known Radon transform [5]. The proposed algorithm is able to
accurately estimate the motion blur parameters (orientation and length) for
motion blurs with lengths as short as three pixels.

This paper is organized as follows. In Section 2 we define the motion blur
and corresponding parameters for the continuous and the discrete cases. We also
define the blur kernel structure used in this work. In Section 3.1, we review some
of the state of the art methods and present the proposed algorithm. In section
4 we report the performance of the proposed method and in the final section we
draw some conclusions.
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2 Motion Blur Parameters

In the continuous case, the motion blur PSF is characterized by a normalized
delta function, supported on a line segment with length L and an angle θ (for
example, with respect to the horizontal). The angle gives the direction of motion,
and the length L is proportional to the motion speed. To deal with digital images,
we need a discrete version of this motion blur, defined on the discrete pixel grid.
To produce a straight line segment on a digital grid, we use a standard algorithm
(well known in computer graphics): the digital differential analyzer (DDA) [11].
The length L is assumed to be, for all angles, the number of pixels, and is directly
proportional to the motion speed. As can be easily verified, there is no way to
exactly produce lines with one pixel width in all possible directions.

One big limitation of this DDA-based discrete PSF approximation, or any
discrete representation in general, is that it cannot distinguish between two blur
kernels with nearby angles. This effect is stronger for shorter motion blur kernels.
For example, a three pixels long kernel can only have five different directions
between 0o and 90o. With all these assumptions and limitations in hand, our
goal is to estimate the angle of motion and the motion speed parameters from
an observed image, without knowledge of the underlying original image.

3 Estimation of Motion Blur Parameters

3.1 Natural Image Models

Let us denote as F (ξ, η) the 2D Fourier transform of a natural image f(x, y). As
pointed out in [6], the behavior of log |F (ξ, η)| along lines η = ξ tan θ in the (ξ, η)
plane, is roughly the same for most natural images. While local behavior may be
irregular, the coarse/global behavior is essentially monotonically decreasing with
ξ. In [6], the approximate model log |F (ξ, ξ tan θ)| ' −a |ξ|b, with a, b > 0, was
proposed. Although a and b can vary for different images, this global behavior
is approximately true, regardless of the considered angle.

If we take the Fourier transform of equation (1), we obtain

G(ξ, η) = F (ξ, η)H(ξ, η) + W (ξ, η), (4)

where F, G, H, and W are the Fourier transforms of f, g, h, and w, respectively.
As is common in deconvolution problems, assuming the noise is weak, we have

log |G(ξ, η)| ≈ log |F (ξ, η)H(ξ, η)| (5)

and so the coarse behavior of the G(ξ, η) depends essentially on the product
F (ξ, η)H(ξ, η). Since the coarse behavior F (ξ, η) along lines η = ξ tan θ in the
(ξ, η) plane is approximately independent of θ, the sinc-like structure of H(ξ, η)
is preserved in G(ξ, η). In the presence of noise, the zeros of this sinc function
become local minima. In order to capture these coarse behaviors, we will use the
Radon transform (RT) of log |G(ξ, η)|, as described in the following subsections.
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3.2 The Radon Transform

Let us briefly recall the definition of Radon transform (RT) of a real-valued
function φ(x, y) defined on R2, at angle θ and distance ρ from the origin:

R(φ, ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
φ(x, y) δ(ρ− x cos θ − y sin θ) dx dy, (6)

where δ denotes the Dirac delta function. Equivalently,

R(φ, ρ, θ) =
∫ ∞

−∞
φ(ρ cos θ − s sin θ, ρ sin θ + s cos θ) ds. (7)

The Radon transform R(φ, ρ, θ) is equal to the integral of φ along a line that
forms an angle θ with the x-axis and is at a distance ρ from the origin [5].

3.3 Angle Estimation

The RT has been recently proposed for motion blur estimation in [12, 15]. In [15],
the angle estimate is the one for which the maximum of the RT occurs; naturally,
this only works for rather long blurs, so that the image gets flat, leading to a
maximum of the RT. In [12], the angle estimate is that for which R(φ, ρ, θ),
as a function of ρ, has highest entropy. The authors claim to have a problem
at 45o (due to the finite support of the images): at this angle, the entropy is
maximum because the length of the integral is maximum, thus picking up the
largest amount of noise (according to the authors’ explanation). To circumvent
this problem, they normalize the RT of the image with the RT of a matrix of
1’s of the same dimension as the image. However, this explanation is not true;
the true reason is related to the implementation of RT for digital images.

Our approach circumvents these limitations and allows excellent angle esti-
mation performance, even for very short lengths. We use an exact RT for digital
images, the details of which can be found in [16]. As explained above, for natural
images, log |G(ξ, η)| has an approximate coarse behavior along radial lines, inde-
pendent of the angle; thus the RT obtained by integrating on similar intervals,
that is, with the same area for any direction, will also be approximately equal.
Accordingly, instead of computing the RT for the whole image, we integrate in
the maximum inscribed square,

Rd(f, ρ, θ) =
∫ d

−d

f(ρ cos θ − s sin θ, ρ sin θ + s cos θ)ds, (8)

with d =
√

2
2 N . This RT of log |G(ξ, η)| has approximately the same variance,

independently of θ, thus avoiding the angle-dependence problem pointed out
and addressed in [16]. Consequently, the variance of Rd(log |G(ξ, η)|, ρ, θ), as a
function of θ, depends fundamentally on the orientation of the blur kernel.

The observations made in the previous paragraph lead to our proposed esti-
mate for the angle of the motion blur kernel, which is given by

θ̂ = arg max
θ

var {Rd(log |G(ξ, η)|, ρ, θ)} (9)

where var{} is the variance of the set of values obtained by varying ρ.
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a) Angle = 0o b) Angle = 60o

Fig. 1. Radon transform of the blurred cameraman (L = 10).

3.4 Length Estimation

Once we have θ̂, the estimate of the motion blur direction, we proceed to es-
timate the length of the motion blur kernel. Given that the sinc-like behavior
is preserved in the RT along θ̂, we base the estimation of the blur length on
Rd(log |G(ξ, η)|, ρ, θ̂). This line of attack is also followed in [15] using fuzzy sets
and in [12] exploiting cepstral features. Figure 1 illustates this behaviour. The
RT of the “cameraman” image, for angles θ = 0◦ and θ = 60◦ and blur length
L = 10 exibits a clear sinc-like pattern.

In the present work, we propose an heuristic algorithm simpler than those
introduced in [15, 12], yet accurate. Let’s denote Π(ω) = Rd(log |G(ξ, η)|, ω, θ̂).
From the above rationale, we conclude that the minima of Π(ω) are the minima
of the Fourier transform of a rectangular pulse of size L. Let’s then assume for a
while that Π(ω) is indeed the Fourier transform of a rectangular pulse of length
LS , i.e,

Π(ω) = ejψ(ω) sin(ωLS

2 )
sin(ω

2 )
. (10)

Our goal is to find LS by seeking for the first positive zero of Π(ω) given by
ω0 = 2π

LS
. Since we have determined Rd based on an M point FFT, we approxi-

mate ω0 = 2π
LS

with the frequency 2π
M i corresponding to the minima of the FFT

magnitude. We have then L̂S = round(M/i).
Algorithm 1 shows the pseudo-code for the estimation of the length L̂. The

lines 2, 3, and 4 implement a robust estimator of the first minimum. Line 5 con-
verts distance to number of pixels. Figure 2 illustrates the working of Algorithm
1 with two different RTs.

4 Experimental Results

In this section we evaluate the performance of the proposed algorithm in terms
of the root mean squared error (RMSE) of the estimated parameters. We consid-
ered a set of 7 well known images: cameraman, Lena, Barbara, boats, mandrill,
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Algorithm 1 Length Estimation Algorithm
1: Compute the differences ∆i = Π(ωi)−Π(ωi−1) (only for ω > 0)
2: Compute

∆∗
i =


p ∆i, if ∆i > 0

∆i, otherwise
(11)

where p = 3.
3: Compute the cumulative sums {S1, S2, ...} where Si =

Pi
j=1 ∆∗

i .

4: Find the minimum L̂S = min{S1, S2, ...}.
5: Compute

L̂ =
N

L̂S

C (12)

where C is correction term is given by

C =


cos(θ̂), if |θ̂| ≤ π/4

sin(θ̂), if π/4 < |θ̂| ≤ 3π/4
(13)
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Fig. 2. Radon transform and cummulative sums Si for motion blur of length = 10
pixels, angle = 0o

goldhill and peppers, all of size 256 by 256 pixels. RMSE is computed based on
70 runs, 10 for each image.

4.1 Angle Estimation

The use of previously introduced DDA-based discrete PSF approximation makes
it impossible to distinguish two kernels with nearby angles. Given a blur length
L, we compute the intervals and respective middle angle, θm(L), that leads to
the same blur kernel. For each test angle, we choose the closest θm(L) and use
this value in the simulations. We proceed in the same way for the estimated
angle, which leads to the error defined by

error = θ̂m(L)− θm(L). (14)

Since we can not evaluate all possible scenarios, we considered six different mo-
tion blur lengths, L ∈ {4, 12, 20, 24, 32, 40} pixels, with different blur signal to
noise ratio BSNR ∈ {10, 40} (dB). The obtained results are shown in figure (3).
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Fig. 3. Estimation angle error for different BSNR and different blur length.

The results obtained clearly show the accuracy of the proposed algorithm.
The worst errors are obtained for small blur kernels, as we would expect.

4.2 Length Estimation

In a similar way, we considered four different angles, θ ∈ {0o, 15o, 30o, 45o}, and
two different BSNR, 15 and 40 (dB). The obtained results are shown in figure 4.
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Fig. 4. Estimation length error for different BSNR and different blur angle.

The results again show the accuracy of the proposed algorithm, even in the
worst BSNR. For large blur lengths, the errors are bigger, given that the first zero
of Π(ω) is close to the origin and L̂ is inversely proportional to this corresponding
frequency. Then small errors in this location are very amplified. For short blurs,
the proposed algorithm fails when the BSNR is low. In this situation, the RT is
too noisy, and the heuristic value of p used in Algorithm 1 leads to poor estimate.

5 Conclusions

The paper introduced a robust algorithm to infer motion blur parameters, namely
the motion direction and the motion length. The angular quasi-invariance of
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natural images spectrum was exploited in the Radom transform domain. The
effectiveness of the method was illustrated in a set of experiments.
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