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ABSTRACT
Image denoising is a classical problem which has been addressed
using a variety of conceptual frameworks and computational tools.
Most approaches use some form of penalty/prior as a regularizer,
expressing a preference for images with some form of (general-
ized) “smoothness”. Total variation (TV) and wavelet-based meth-
ods have received a great deal of attention in the last decade and
are among the state of the art in this problem. However, as far as
we know, no experimental studies have been carried out, compar-
ing the relative performance of the two classes of methods. In this
paper, we present the results of such a comparison. Prior to that,
we introduce a new majorization-minimization algorithm to imple-
ment the TV denoising criterion. We conclude that TV is outper-
formed by recent state of the art wavelet-based denoising methods,
but performs competitively with older wavelet-based methods.

Index terms – Image restoration, total variation, image denoising,
majorization-minimization algorithms.

1. INTRODUCTION: WAVELET-BASED AND
TOTAL-VARIATION DENOISING

In image denoising problems, the goal is to estimate an original
imagex from an observed noisy versiony, modelled as

y = x + n, (1)

wheren is a sample of a zero-mean white Gaussian field of vari-
anceσ2. In this paper, we overload the notationx andy with
different meanings:(i) a 2D (M ×N ) array of image pixel values,
(ii) the same values lexicographically stacked into a vector (MN -
dimensional),(iii) a function,x : Ω → IR, y : Ω → IR, defined
on some domainΩ ⊂ IR2 (say, Ω = [0, 1] × [0, 1]). Which
notation is being used at each point will be clear from the context.

Good denoising performance can only be achieved with some
form of regularization (a prior, in Bayesian terms) penalizing “un-
desirable” solutions. Accordingly, typical criteria have the form

x̂ = arg min
x

{
‖y − x‖2 + λ P (x)

}
, (2)

where‖y − x‖2 has an obvious meaning for vectors or 2D arrays
(sum of all the squared element-wise differences) and stands for

‖y − x‖2 =

∫

Ω

(y(t) − x(t))2 dt,

This work was partially supported byFundaç̃ao para a Cîencia e Tec-
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whenx andy are defined on the continuous domainΩ, whileP (x)
denotes a penalty function(al) which is designed to have small val-
ues for “desirable” estimates.

In wavelet-based (WB) formulations, (1) becomes

y = Wθ + n, (3)

as a result of writingx = Wθ, whereθ is the vector of represen-
tation coefficients and the set of columns ofW is a wavelet basis
or a redundant dictionary. The penalized estimate ofθ is thus

θ̂ = arg min
θ

{
‖y − Wθ‖2 + λ P (θ)

}
, (4)

whereP (θ) is a penalty function expressing certain properties of
the wavelet coefficients of the “desirable” images. In Bayesian ap-
proaches,P (θ) is minus de logarithm of a prior, usually express-
ing the sparseness of the wavelet coefficients of natural images
[5, 8]. ChoosingP (θ) and solving (4) have been the focus of a
vast literature; let us simply mention the seminal reference [4] and
some more recent publications where comprehensive literature re-
views can be found: [5, 8, 10]. Wavelet based methods hold the
current state of the art in image denoising [10]. A key feature of
wavelet-based methods is their ability to remove noise while keep-
ing important image detail, such as edges.

In total variation(TV) denoising (introduced in [11], see also
[3] for a review of recent advances and literature), a continuous
domain formulation is adopted and the estimation criterion is a
variational problem,

x̂ = arg min
x

{∫

Ω

(y(t) − x(t))2 dt + λ TV(x)

}
, (5)

where TV(x) is the integral of the norm of the gradient ofx, called
thetotal variationof functionx,

TV(x) ≡
∫

Ω

|∇x(t)| dt, (6)

and where the minimization is over all square integrable functions
defined onΩ. It has been shown that TV denoising is able to re-
move noise, but does so while preserving image edges, which are
perceptually important. Solving (5) is usually considerably more
difficult than solving (4) and has been the focus of a consider-
able amount of work over the last decade. Most of the approaches
adopted to deal with (5) fall into one of three classes [3]:(i) solving
the associated Euler-Lagrange equation, which is a nonlinearpar-
tial differential equation(PDE);(ii) using methods based on dual-
ity, still formulated in the continuous domain, which avoid some



of the difficulties of (5) at the cost of replacing it by a constrained
variational problem;(iii) direct optimization methods applied to a
discrete version of (5). Almost all the literature on TV denoising
follows the first two approaches; however, in practice, since com-
puter implementations can only handle images on discrete lattices,
the solution methods derived on the continuous domain have to be
replaced by discrete approximations. Consequently, all classes of
approaches have to undergo some discretization. The choice to be
made is between:(a) deriving a solution method on the continu-
ous domain and then discretizing it;(b) discretizing the problem
and then using a finite-dimensional optimization algorithm. In this
paper, we propose a method of type(b), which belongs to the class
of majorization-minimization(MM) algorithms [6]. Recently, we
have proposed a similar MM algorithm for image deconvolution,
a related (but different) problem [1]. Another finite-dimensional
algorithm for TV denoising has been recently proposed in [2].

The remaining sections of the paper are organized as follows.
Section 2 introduces the discrete version of the TV denoising cri-
terion and the proposed MM algorithm. Experimental results are
presented in Section 3, and Section 4 concludes the paper.

2. AN MM ALGORITHM FOR TV DENOISING

2.1. Discretization of the TV Denoising Criterion

A discrete version of (5)-(6) can be obtained by considering that
the functionsx andy have been uniformly sampled. At this point,
we switch the notation and start assuming thatx andy denote
vectors containing all these samples arranged in (say) column lex-
icographic ordering.

Using local differences to approximate the two orthogonal com-
ponents of the gradient, we can write a discrete version of the TV
penalty (denoted as TVd),

TVd(x) =
∑

i

√
(∆h

i
x)2 + (∆v

i
x)2, (7)

where∆h

i and ∆v

i are operators corresponding to, respectively,
horizontal and vertical first order differences, at pixeli; that is,
∆h

i x ≡ xi −xl(i) and∆v

i x = xi −xa(i), wherel(i) anda(i) de-
note the nearest neighbors ofi, to the left and above, respectively.

The resulting denoising criterion is thus a finite dimensional
optimization problem:

x̂ = arg min
x

{
‖x − y‖2 + λ TVd(x)

}
. (8)

It is important to observe that although TVd(x) is a convex func-
tion of x, it is not everywhere differentiable, which makes solving
(8) a difficult task.

2.2. MM Algorithms

Let L(x) be some function to be minimized (e.g., the objective
function in (8)). Consider the class of iterative algorithms that
produce a sequence{x̂(t), t = 1, 2, ...} according to

x̂
(t+1) = arg min

x

Q(x, x̂
(t)). (9)

Consider that functionQ(·, ·) satisfies the following properties:
Q(x,x′) ≥ L(x), for anyx, x′, andQ(x′,x′) = L(x′). Then,

L(x̂(t+1)) ≤ Q(x̂(t+1)
, x̂

(t)) ≤ Q(x̂(t)
, x̂

(t)) = L(x̂(t)) (10)

where the first inequality results fromQ(x,x′) ≥ L(x), for any
x, x′, and the second one from the fact that, by definition (see
(9)), Q(x, x̂(t)) attains its minimum atx = x̂(t+1). This shows
that the algorithm defined by (9) produces a sequence of mono-
tonically descendent values of the objective function. The origin
of the termmajorization-minimization(MM) also becomes clear:
MM algorithms work by considering, at each iteration, amajorizer
(or upper bound) of the objective function which isminimizedto
obtain the next estimate [6].

Under mild conditions, namely thatQ(x,x′) is continuous in
(x,x′), all limit points of the MM sequencex(t) are stationary
points ofL, andL(x(t)) converges monotonically toL(x∗), for
some stationary pointx∗. If, additionally,L is strictly convex,x(t)

converges to the global minimum ofL. Proofs of these properties
are similar to those of similar properties of the EM algorithm [12].

MM algorithms have three (trivially shown) properties, of which
we will make use below:

Property 1: Any functionQa(x,x′) differing from Q(x,x′) by
an additive term and/or a multiplicative factor (both inde-
pendent ofx) defines the same MM algorithm.

Property 2: Let L(x) = L1(x) + L2(x); consider two majoriz-
ers, Q1(x,x′) ≥ L1(x) and Q2(x,x′) ≥ L2(x), both
with equality if x = x′. Then, all the following func-
tions majorizeL(x) (with equality forx = x′) and can
thus be used in an MM algorithm :Q1(x,x′) + Q2(x,x′),
L1(x) + Q2(x,x′), andQ1(x,x′) + L2(x).

Property 3: The monotonicity property of MM algorithms is kept
if, instead of exactly minimizingQ(x, x̂(t)) at each itera-
tion (as in (9)), the following weaker condition is satisfied:

x̂
(t+1) is such thatQ(x̂(t+1)

, x̂
(t)) ≤ Q(x̂(t)

, x̂
(t)).

Notice that this is the only property of̂x(t+1) that was in-
voked in (10) to show monotonicity. A similar reasoning
underlies generalized EM (GEM) algorithms [12]. We thus
thus adopt the termgeneralized MM(GMM) algorithms.

2.3. Majorizing the TV Penalty

We now derive a quadratic majorizer forλ TVd. The choice of a
quadratic upper bound is motivated by the fact that if that bound is
added to the data term‖x − y‖2, the resulting function will be an
upper bound for the complete objective function (see Property 2,
in Subsection 2.2). Moreover, this upper bound will be quadratic,
its minimization leading to a linear system of equations.

The square root function, for non-negative arguments, is strictly
concave, thus upper-bounded by any of its tangents,i.e., for any
a ≥ 0 anda′ ≥ 0,

√
a ≤

√
a′ +

a − a′

2
√

a′

, (11)

with equality if and only ifa = a′. It follows that the function
QTV(·, ·) defined as

QTV(x,x
′) = TVd(x′) +

λ

2

∑

i

[
(∆h

i x)2 − (∆h

i x
′)2

]
√

(∆h

i
x′)2 + (∆v

i
x′)2

+
λ

2

∑

i

[
(∆v

i x)2 − (∆v

i x
′)2

]
√

(∆h

i
x′)2 + (∆v

i
x′)2

(12)



satisfiesQTV(x,x′) ≥ TVd(x) for any x, x′, with equality for
x = x′. FunctionQTV(x,x(t)) is thus a quadratic upper bound
function for TVd(x). Finally, notice that the terms(∆h

i x
′)2 and

(∆v

i x
′)2 in the numerators are simply additive constants which

can be ignored as they do not affect the resulting MM algorithm
(see Property 1, in Subsection 2.2).

Let Dh andDv denote matrices such thatDhx andDvx are
the vectors of all horizontal and vertical (respectively) first order
differences. Define also the vectorw(t) whosei-th element is

w
(t)
i

= λ

(
2

√
(∆h

i
x(t))2 + (∆v

i
x(t))2

)
−1

, (13)

the diagonal matrix

Λ
(t) = diag(w(t)

,w
(t)), (14)

and the matrixD = [(Dh)T (Dv)T ]T . With these definitions in
place,QTV(x,x(t)) can be written as a quadratic form

QTV(x,x
(t)) = x

T
D

T
Λ

(t)
Dx + K(x(t)), (15)

whereK(x(t)) is a constant independent ofx, thus irrelevant for
the MM algorithm. Finally, addingQTV(x,x(t)) to the data term
‖x − y‖2, we obtain the complete quadratic upper bound (after
dropping additive constants),

Q(x,x
(t)) = x

T
(
D

T
Λ

(t)
D + I

)
x − 2 x

T
y. (16)

Since this is a quadratic function, minimization w.r.t.x leads to

x̂
(t+1) = solution

x

{(
D

T
Λ

(t)
D + I

)
x = y

}
. (17)

Of course, this system can not be solved analytically, due to its
huge dimension:MN × MN , for M × N images.

2.4. Solving the Update Equation

In addition to its size, (17) has an additional difficulty: when one
(or more) term(s)(∆h

i x
(t))2 + (∆v

i x
(t))2 goes to zero (which is

very likely to happen under the TV penalty), the corresponding
element(s) of vectorw(t) goes to infinity and so do some elements
of the system matrix

(
DT Λ(t) D + I

)
. In other words, there is no

numerically stable way to handle this matrix when some elements
of Λ(t) go to infinity. We sidestep this difficulty by invoking the
well known matrix inversion lemma,

D
T
Λ

(t)
D + I =

[
I − D

T
(
DD

T + (Λ(t))−1
)−1

D

]
−1

which leads to
x̂

(t+1) = y − D
T
z
(t) (18)

where

z
(t) = solution

z

{[
DD

T + (Λ(t))−1
]
z = Dy

}
. (19)

Notice that now, the matrix of the system to be solved involves
(Λ(t))−1 instead ofΛ(t); the elements of(Λ(t))−1 go to zero, in-
stead of infinity, when pairs of local differences go to zero. We
thus have a matrix which can be handled in a numerically stable
way. Notice also that we never have to explicitly invert any matrix,
simply solve the corresponding system of equations. To deal with
(19), we adopt the standardconjugate gradient(CG) algorithm

[9]. Invoking Property 3 of MM algorithms (see Subsection 2.2),
we obtain a GMM algorithm by running just a few CG iterations.

In summary, the proposed algorithm for TV denoising is com-
posed of two alternating steps. Starting with some initial estimate
x̂(1), the algorithm proceeds by cyclically repeating the following
steps until some stopping criterion is met:

Step 1: compute matrix(Λ(t))−1 using (13)-(14);

Step 2: update the estimate by applying (18)-(19).

Let us make some comments about implementation of this al-
gorithm. Computing(Λ(t))−1 is simpler than computingΛ(t) it-
self, as is obvious from its definition in (13)-(14). The vectorDy

in (19) can be pre-computed, stored, and used during the algo-
rithm. The only operation involving

[
DDT + (Λ(t))−1

]
required

by the CG algorithm are matrix-vector products; these products
can be very efficiently computed (for an arbitraryv) as

[
DD

T + (Λ(t))−1
]
v = (DD

T )v + (Λ(t))−1
v,

where(Λ(t))−1v is just the product of a diagonal matrix by a vec-
tor and matrix(DDT ) can be pre-computed. Finally, computation
of (DDT )v, whenv is some image, corresponds to the convolu-
tion of v (in its 2D form) by a small local kernel, which can be
carried out much more efficiently (with linear cost) than the ex-
plicit matrix-vector multiplication (which has quadratic cost). The
same thing is true for the product byDT in (18).

The results presented in the next section were obtained with
a MATLAB implementation running on a 3GHz Pentium PC. The
CG algorithm for (19) is stopped when the relative decrease of the
objective function falls below10−5; this always happened (in all
the cases considered) after no more than about 15 CG iterations,
sometimes much less than that; each CG iteration takes about 0.5
seconds for512 × 512 pixels images.

3. EXPERIMENTS

3.1. Illustrative Examples

In this subsection, we show an example with the single purpose of
illustrating the proposed algorithm. Figure 1 shows a noisy Lena
image (withσ = 15) and the TV denoised image produced by
the proposed algorithm; still in Figure 1, the evolution of the ob-
jective function and the PSNR are plotted, showing that the MM
algorithm practically converges after 6 iterations.

3.2. Comparison with Wavelet-Based Methods

Comparing TV with wavelet denoising is delicate, as there are free
parameters of the algorithms which can affect their performance.
Namely, the choice ofλ is critical; we have verified experimentally
thatλ =

√
3σ is a good general purpose choice for a large range

of values ofσ (see [5] for an empirical-Bayes justification of this
threshold value in wavelet-based denoising context).

Table 1 shows the results of the four methods: TV denoising,
classical wavelet-based soft thresholding (SF), the methods pro-
posed in [5], [7] (see those papers for details). For SF, the threshold
value was obtained in a clairvoyant way (using the original image
to obtain the best PSNR); although this gives an unfair advantage
over the other methods, the result of SF are always the worst. It is
remarkable that TV, despite the simplicity of the underlying crite-
rion, can perform competitively with these wavelet-based methods
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Fig. 1. Upper row: noisy (σ = 15) and TV restored images.
Bottom row: evolution of the TV objective function (left) and the
PSNR (right).

for the Lena image. For the Barbara image, the presence of strong
texture makes the TV criterion less competitive.

Table 2 shows the results of TV and the method from [10]; in
these results, TV is outperformed, at all noise levels and for all im-
ages, by this state of the art method, which uses explicit models of
inter-coefficient dependencies and sophisticated wavelet represen-
tations (the steerable pyramid). Given the difference in complexity
of the TV penalty and the model used in [10], this is not surprising.

Table 1. PSNR (dB) results for the methods mentioned in the text;
[7]-(a) and [7]-(b) refer to two different methods proposed in [7].

Lena
σ = 10 σ = 15 σ = 20 σ = 25

TV 33.99 32.20 30.93 29.93
soft rule 32.00 29.57 28.04 26.66

[5] 32.74 30.48 28.74 27.38
[7] (a) 33.72 31.37 29.63 28.22
[7] (b) 34.25 32.33 31.00 29.96

Barbara
σ = 10 σ = 15 σ = 20 σ = 25

TV 30.56 28.25 26.79 25.73
soft rule 30.37 27.67 25.91 24.68

[5] 31.28 28.79 27.03 25.71
[7] (a) 32.32 29.72 27.93 26.53
[7] (b) 32.46 30.03 28.39 27.21

4. CONCLUSIONS

We have introduced a new MM algorithm to implement a discrete
version of the total variation denoising criterion. We have also car-
ried out a detailed experimental comparison of TV versus wavelet

Table 2. PSNR (dB) results for the wavelet-based method from
[10] and for TV denoising.

Lena Barbara Boats
σ [10] TV [10] TV [10] TV
10 35.61 33.99 34.03 30.56 33.58 31.94
15 33.90 32.20 31.86 28.25 31.70 30.17
20 32.66 30.93 30.32 26.79 30.38 28.97
25 31.69 29.93 29.13 25.73 29.37 28.07
50 28.61 27.17 25.48 23.28 26.38 25.42
75 26.84 25.41 23.65 22.29 24.79 23.90
100 25.64 24.08 22.61 21.52 23.75 22.78

denoising. The main conclusions were that TV is outperformed
by recent state of the art wavelet denoising methods, but performs
competitively with older wavelet methods.
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