
Stabilizing BGP Through Distributed Elimination of
Recurrent Routing Loops
João Luı́s Sobrinho, David Fialho, and Paulo Mateus

Instituto de Telecomunicações and Instituto Superior Técnico
joao.sobrinho@lx.it.pt, fialho.david@protonmail.com, and pmat@ist.utl.pt

Abstract—Despite years of research, the Internet still lacks a
routing protocol with guaranteed termination. As is well-known,
decentralization of routing decisions among the Autonomous
Systems (ASes) that comprise the Internet may result in perma-
nent oscillations of the state of its routing protocol—the Border
Gateway Protocol (BGP). Some permanent oscillations are made
from routing loops—the propagation of routing messages around
the cycles of a network—that come back time and again. We
discovered that the routing loop detection capability of BGP can
be sharpened to predict which routing loops potentially recur and
that the import policies can be adjusted to prevent the recurrence.
The resulting protocol, named Self-Stable BGP (SS-BGP), is
more stable than BGP. For the broad and common class of
isotone routing policies, all permament oscillations are made from
recurrent routing loops. For this class of routing policies, SS-BGP
terminates. Our simulations with realistic Internet topologies and
realistic variations of the Gao-Rexford (GR) inter-AS routing
policies show that SS-BGP arrives at stable states at the expense
of alterations in the import policies of only a handful of ASes.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1] interconnects the
tens of thousands of Autonomous Systems (AS) that constitute
the Internet, providing reachability to hundreds of thousands
of IP prefixes. BGP instantiates a separate computation process
per destination. For a given destination, nodes import routes
received from their neighbors, elect a best route among the
imported routes, and export the elected route to their neigh-
bors. Every route contains a cost and a path, corresponding,
respectively, to the LOCAL-PREF and AS-PATH attributes of
BGP.

Costs take primacy in route election, being transformed
by import and export routing policies, set autonomously at
each node. Autonomy has a price. The routing policies of
different nodes may be incompatible, causing permanent os-
cillations of the state of BGP [2], [3]. Oscillations overload
the control plane and wreak havoc in the data plane, attracting
data-packets to forwarding loops. Paths, contained in routes,
allow detection of routing loops1, with BGP stopping the
propagation of routing messages past those loops. One could
expect that stopping the propagation of routing messages past
routing loops would end oscillations, eventually. However,
that is not the case, for two reasons. First, some permanent
state oscillations are unrelated to routing loops. Second, some
routing loops recur infinitely often.

1A routing loop refers to the propagation of a routing message around a
cycle of a network and should not be confused with a forwarding loop, which
refers to the expedition of data-packets around a cycle of a network.

In this paper, we present an extension to BGP, named Self-
Stable BGP (SS-BGP), that prevents the recurrence of routing
loops. SS-BGP adds to BGP the following test and action:
if, and only if, a node learns from a neighbor a route that
simultaneously offers the best cost to reach a destination
and reveals a routing loop, then the node ignores future
routes to the destination learned from that neighbor. SS-BGP
uses standard BGP routing messages and can be deployed
incrementally.

For a broad and common class of routing policies, char-
acterized by the property known as isotonicity [4], [5], all
permanent state oscillations are made from recurrent routing
loops. For this class of routing policies, SS-BGP terminates,
signifying that it reaches a stable state whatever the initial state
and whatever the delays in the delivery of routing messages.
Isotonicity means that if a node prefers the cost of one route
over that of another route, then a neighbor node does not have
the exact opposite preference between the costs of the two
routes it learns from the former node. When routing policies
are not isotone, SS-BGP still terminates in cases where BGP
does not, although termination is not universally guaranteed.

The remainder of the paper is organized as follows. Sec-
tion II introduces SS-BGP by means of two examples. Sec-
tion III presents the routing model and describes SS-BGP.
Section IV proves that isotonicity guarantees termination of
SS-BGP, while Section V discusses the merits of isotonicity
and its use in practice. Section VI evaluates the performances
of BGP and SS-BGP. Section VII reviews related work and
Section VIII concludes the paper.

II. SELF-STABLE BGP IN ACTION

The Gao-Rexford (GR) model provides a baseline of un-
derstanding for inter-AS routing [6]. The model classifies
business relationships between neighbor ASes into either
provider-customer or peer-peer, and derives sensible routing
policies in that context. Strict adherence to the GR routing
policies stabilizes BGP. However, there is strong evidence
that the GR routing policies are now sometimes violated,
either intentionally [7], [8], [9], [10], to reflect complex goals
of AS administrators, or inadvertently [11], [12], [8], as a
result of misconfigurations. In addition, new types of business
relationships have emerged [13]. In the next two sections, we
introduce SS-BGP with two perturbations of the GR routing
policies that make BGP prone to oscillations.

978-1-5090-6501-1/17/$31.00 @2017 IEEE



Fig. 1. BGP does not terminate, whereas SS-BGP terminates. Letters C and
R

+ represent customer links and peer+ links, respectively. The destination
is x. Dashed arrows represent elected routes and dim links represent deacti-
vated neighbors.

A. Peer+s

The GR routing policies presuppose that neighbor ASes
have either a provider-customer or a peer-peer business rela-
tionship. We call customer link to a link that joins a provider
to a customer; provider link to a link that joins a customer
to a provider; and peer link to a link that joins a peer to
another peer. The GR routing policies distinguish three types
of routes: customer routes, which are those learned from a
customer; peer routes, which are those learned from a peer;
and provider routes, which are those learned from a provider.
A customer route is better than a peer route and the latter
is better than a provider route. All routes are exported to a
customer and customer routes are exported to all neighbors,
these being the only exportations allowed.

In violation of the GR routing policies, some ASes some-
times prefer routes learned from a peer over routes learned
from a customer to reach a destination [8], [9]. We introduce
the concept of peer+ to model such cases. A peer+ is a
neighbor such that the routes learned from that neighbor are
preferred to customer routes. A peer+ link joins a node to
a peer+. A route learned from a peer+ is a peer+ route. We
assume that peer+ routes are exported to all neighbors, as
customer routes are, because, after all, a node that elects a
peer+ route to the detriment of a customer route maintains the
obligation to provide reachability to their common destination.

Routes are couplets of the form (↵, P ), where ↵ is a cost
and P is a path. Costs are one of r

+, c, r, and p, denoting,
respectively, peer+, customer, peer, and provider routes. In the
network of Figure 1, letters C and R

+ stand for customer link
and peer+ link, respectively. Node x is a customer of u, v, and
w. Node v is a peer+ of u; w is a peer+ of v; and u is a peer+

of w. The destination is x.

For simplicity of presentation, we assume that it takes one
unit of time for every routing message to travel across a link.
At T = 0, each of u, v, and w elects route (c, x), learned
directly from x, and exports this route counter-clockwise
around the cycle (upper left sub-figure). At T = 1, u elects
route (r+, vx), learned from v, which is better than the direct
route (c, x), because r

+ is better than c; w elects route
(r+, ux), learned from u; and v elects route (r+, wx), learned
from w (upper right). The peer+s routes are exported further
counter-clockwise around the cycle, so that, at T = 2, u

elects route (r+, vwx); v elects route (r+, wux); and w elects
route (r+, uvx) (lower left). These routes, too, are exported
counter-clockwise around the cycle. At T = 3, u learns route
(r+, vwux) from v; v learns route (r+, wuvx) from w; and w

learns route (r+, uvwx) from u. Each of these routes reveals
a routing loop. They are all discarded, leading u, v, and w,
to elect again the direct route (c, x) (upper left). The state
of BGP goes back to that at T = 0, the routing loops recur
indefinitely, and BGP oscillates forever.

However, u, v, and w can all detect at T = 3 that something
is amiss, in that the neighbor from which they learn the best
cost to reach x simultaneously reveals a routing loop. For
instance, at T = 3, u learns route (r+, vwux) from v, whose
cost r

+ is better than cost c of the direct route (c, x), but
whose path vwux reveals routing loop uvwu. SS-BGP adds
to BGP the following test and action.

SS-BGP: If a route learned from a neighbor carries the best
cost to reach a destination, but the path component of the route
reveals a routing loop, then future routes to the destination
learned from that neighbor are not imported.

We say that a node ‘detects an incongruous cost’ when
the test of SS-BGP is positive and that a node ‘deactivates’
a neighbor when the action of SS-BGP is executed. Routes
learned from a deactivated neighbor are stored locally to allow
a fast routing response if and when the neighbor is reactivated.

With SS-BGP deployed in the network of Figure 1, at
T = 3, each of u, v, and w detects an incongruous cost
and each deactivates its clockwise neighbor (lower right).
Therefore, at T = 4, u does not import route (r+, vx), learned
from v, maintaining its elected route (c, x); v does not import
route (r+, wx), learned from w, maintaining its elected route
(c, x); and w does not import route (r+, ux), learned from u,
maintaining its elected route (c, x). A stable state has been
reached, one that coincides with a stable state of BGP in
a network where the links that join a node to a deactivated
neighbor have been removed.

Deactivating a neighbor alters import policies and entails
a reduction in the reliability of the network. For instance, in
the network of Figure 1, if link ux fails after the stable state
of SS-BGP is reached (lower right), then u is left without
a route to x, because its only remaining neighbor, node v,
is inactive. Our simulations, with realistic Internet topologies
and realistic routing policies show that SS-BGP stabilizes with
the deactivation of only very few neighbors (see Section VI).
Nevertheless, it is important to have a strategy to reactivate
neighbors that were previously deactivated. First, because the



network is dynamic and a previous deactivation might not
repeat itself after changes in topology or routing policies.
Second, because SS-BGP deactivates more neighbors than are
needed for a stable state to be reached. For instance, in the
network of Figure 1, SS-BGP deactivates the neighbors of u,
v, and w around cycle uvwu. However, only one of u, v,
and w would need to deactivate its neighbor around the cycle
for termination of the protocol (see also the false positives of
Section III-D).

The use of timers provides a solution to reactivation. Every
inactive neighbor is associated with a reactivation time that
is chosen when the neighbor is deactivated. Assuming a static
topology and static routing policies, if all nodes around a cycle
choose roughly the same reactivation time for their inactive
neighbors, then recurrent routing loops may be reinstated
around that cycle, to be eliminated again by SS-BGP. However,
if one node chooses a longer reactivation time than all other
nodes, then recurrent routing loops likely are not reinstated
around the cycle. For example, in Figure 1 suppose that u and
v reactivate v and w, respectively, before w reactivates u. After
reactivation of v and w, the protocol reaches a stable state
whereby u elects route (r+, vwx); v elects route (r+, wx); and
w elects route (c, x). Node w learns route (r+, uvwx) from u,
which is discarded, since it reveals a routing loop. Later, when
w reactivates u, there is no candidate route at w to reach x via
u. The elected routes of all nodes are untouched. Reactivation
times can be chosen randomly with a mean that is on a coarser
timescale than that of the propagation of routing messages.
Mean reactivation times can be made adaptive, increasing with
the number of deactivations of the neighbor and decreasing
while the neighbor is active.

B. Siblings

Sibling-sibling relationships complement the business rela-
tionships of the GR model. A sibling link joins a sibling to
another sibling. Siblings share all routes between them. In the
routing policies presented by Liao et al. [13], siblings avoid
sending data-packets through each other towards an outside
destination: when a route is exported to a sibling, it keeps the
information of how it was learned from outside a stretch of
siblings, but the preference of the route decreases.

With siblings, routes are of the form (↵, n, P ), where (↵, n)
is a cost and P is a path. In cost (↵, n), ↵ is one of c, r, and
p, subject to the same interpretation as in the previous section,
and n is a natural number representing the propagation of a
route across n consecutive siblings. Cost (↵, n) is better than
cost (�,m) if (i) ↵ is better than �; or (ii) ↵ = � and n is
smaller than m. In the network of Figure 2, letters C and S

stand for customer link and sibling link, respectively. Nodes
x and y are both providers of z, and siblings of u and v,
respectively. Node u is a provider of v, which is a provider
of w. Nodes u and w are siblings. The destination is z.

We assume that it takes one unit of time both for a routing
message to travel from v to u and for a routing message to
travel from u to v via w. At T = 0, nodes u and v have just
elected routes (c, 1, xz) and (c, 1, yz), learned from x and

Fig. 2. BGP does not terminate, whereas SS-BGP terminates. Letters C and
S represent a customer link and a sibling link, respectively, and the destination
is z.

y, respectively, and exported these routes counter-clockwise
around the cycle. At T = 1, u elects route (c, 0, vyz),
learned from v, which is better than route (c, 1, xz); and v

elects route (c, 0, wuxz), learned from w, which is better
than route (c, 1, yz). The newly elected routes are exported
counter-clockwise around the cycle. At T = 2, u learns route
(c, 0, vwuxz) from v, which reveals a routing loop and is
discarded, electing instead route (c, 1, xz). Similarly, v learns
route (c, 0, wuvyx) from w and discards this route, electing
instead route (c, 1, yz). With BGP, the state of the protocol
goes back to that at T = 0, the routing loops recur indefinitely,
and BGP oscillates forever. In contrast, SS-BGP terminates.
At T = 2, u detects an incongruous cost—cost (c, 0) of route
(c, 0, vwuxz) is better than cost (c, 1) of route (c, 1, xz), but
path vwuxz reveals routing loop uvwu—and deactivates v.
Likewise, v detects an incongruous cost and deactivates w.
A stable state is reached, whereby u elects route (c, 1, xz); v
elects route (c, 1, yz); and w elects route (c, 2, uxz).

III. SELF-STABLE BGP

Section III-A presents a model for the routing policies that
are realizable with BGP, adapted from [14], and Section III-B
relates termination of BGP to the combined routing policies of
nodes around the cycles of a network. Section III-C presents
the pseudo-code of canonical SS-BGP and Section III-D in-
troduces a variant of SS-BGP, which more accurately predicts
recurrent routing loops.

A. Routing policies

A BGP route is an association between a destination and
a set of attributes. LOCAL-PREF and AS-PATH are, respec-
tively, the first and second attributes considered in the election
of a route from among a set of candidate routes. The LOCAL-
PREF attribute of a route is a level of preference assigned
locally to the route. The AS-PATH attribute of a route contains
the sequence of nodes through which the destination has
been successively advertised. BGP routing messages contain
the AS-PATH attribute, but not the LOCAL-PREF attribute.
They may optionally contain a COMMUNITY attribute. The
LOCAL-PREF attribute of a route may depend on the AS-
PATH attribute and on the COMMUNITY attribute, whenever
present, in received BGP routing messages [1].



Rather than using LOCAL-PREF explicitly, we prefer to
characterize BGP routes pertaining to a destination by couplets
of the form (↵, P ), where ↵ is a cost, and P is a path, as we
did in the examples of Section II, because such representation
is better suited to semantic interpretations of routing policies.2
Costs are totally ordered by �. We write: ↵ � � if ↵ � � or
↵ = �; ↵ � � if � � ↵; and ↵ ⌫ � if � � ↵. If ↵ � �,
then we say that cost ↵ is better than cost � and that cost �
is worse than cost ↵. The election among costs is represented
by binary operation u: ↵ u � = ↵ if ↵ � �, and ↵ u � = �,
otherwise. We write u{↵0,↵1, . . . ,↵n�1} for the best cost of
the set of costs {↵0,↵1, . . . ,↵n�1}. The symbol • denotes
unreachability, being worse than any cost.

Paths are totally ordered by �. Order � respects the lengths
of paths, but is otherwise arbitrary. Given paths P and Q,

P �Q ) |P |  |Q|,

where |P | denotes the number of links of P . The election
among paths is represented by binary operation M: P M Q =
P if P �Q or P = Q, and P M Q = Q, otherwise. We write
M {P0, P1, . . . , Pn�1} for the best path of the set of paths
{P0, P1, . . . , Pn�1} with respect to �.

Couplets are ordered lexicographically. Couplet (↵, P ) is
better than couplet (�, Q), and couplet (�, Q) is worse than
couplet (↵, P ), if

↵ � � _ (↵ = � ^ P �Q).

Function T [uv], called the extender of link uv, describes
how the costs of routes are transformed from v to u. A cost �
at v gives rise to cost T [uv](�) at u. Function T [uv] subsumes
the export policies of v in relation to u and the import
policies of u in relation to v. By modeling the transformation
of costs with a function, we exclude the possibility of two
routes with the same cost at v producing two routes with
different costs at u. A route (�, Q) at v gives rise to learned
route (T [uv](�), vQ) at u, if T [uv](�) � •. Learned route
(T [uv](�), vQ) becomes a candidate route for election at u,
if u 62 vQ, that is, if a routing loop is not revealed. If either
T [uv](�) = • or u 2 vQ, then u cannot reach the destination
via v, a fact which we represent by couplet (•, •).

Isotonicity is an important property for guaranteed termina-
tion of SS-BGP (see Section IV). The routing policies of link
uv are isotone if the relative preference between two costs at
v is preserved between the corresponding costs at u:

8↵,� ↵ � � ) T [uv](↵) � T [uv](�).

In other words, the routing policies of link uv are isotone
if T [uv] is an increasing function. Equivalently, the routing
policies of link uv are isotone if T [uv] preserves binary
operation u:

8↵,� T [uv](↵ u �) = T [uv](↵) u T [uv](�).

2For instance, the GR routing policies are positively stated in terms of
customer, peer, and provider routes. However, different AS administrators
may assign different values of LOCAL-PREF to any of these types of routes.

Both the GR routing policies with peer+, Section II-A,
and the GR routing policies with siblings, Section II-B, are
isotone. For example, consider the case of the GR routing
policies with peer+s and let u be a provider of v. We have
T [uv](r+) = T [uv](c) = c (peer+ and customer routes are
exported to providers) and T [uv](r) = T [uv](p) = • (peer
and provider routes are not exported to providers). Applying
T [uv] to each of the costs in the ordered sequence

r

+ � c � r � p,

yields the sequence

c = c � • = •,

which is ordered as well. The same is true if u is a peer, a
peer+, or a customer of v. For the isotonicity of siblings, we
refer to [14].

B. Termination and cost-circuits
The state of BGP is composed of the candidate and elected

routes at the various nodes and the routing messages in transit
across links. A state is stable if there are no routing messages
in transit. BGP terminates if a stable state is eventually
reached, whatever the initial state and whatever the delays
of routing messages across links. A cost-circuit is a pair
(↵, uCu), where ↵ is a cost and uCu is a circuit around cycle
C starting and ending at node u of C. A route with cost ↵

dispatched by u around C (in the direction opposite to that of
the circuit) is learned back at u with cost T [uCu](↵), where
T [uCu] is the composition of the extenders of all links of the
circuit. Thus, function T [uCu] models the transformation of
the costs of routes around circuit uCu. Cost-circuit (↵, uCu)
is absorbent if the route learned from around the cycle has
a worse cost than or the same cost as the dispatched route,
T [uCu](↵) ⌫ ↵; it is not absorbent if it has a better cost,
T [uCu](↵) � ↵.

The work of Sobrinho [14] relates termination of BGP
to a property of routing policies around the cycles of a
network. From that work, the following two propositions
relating termination of BGP to cost-circuits can be derived,
and they provide insight into the design and termination of
SS-BGP.

Proposition 1 If there is a cost-circuit that is not absorbent,
then BGP does not terminate for some destination, either in
the network or in some sub-network obtained after a number
of link failures.

This proposition justifies chasing and eliminating non-
absorbent cost-circuits. However, elimination of those cost-
circuits may not suffice for termination of BGP.

Proposition 2 If routing policies are isotone and all cost-
circuits are absorbent, then BGP terminates for all destina-
tions.

This proposition implies that, in the case of isotone routing
policies, the elimination of non-absorbent cost-circuits stabi-
lizes BGP.



C. Pseudo-code

SS-BGP can be regarded as an extension to BGP that elim-
inates enough non-absorbent cost-circuits at run time to attain
a stable state. As BGP, SS-BGP treats different destinations
separately. Given a destination, each out-neighbor3 of a node
is either active or inactive. Initially, all out-neighbors of a node
are active. The node stores candidate routes to reach the des-
tination via each of its out-neighbors, but elects a route exclu-
sively among the candidate routes of its active out-neighbors.
Algorithm 1 presents canonical pseudo-code of SS-BGP for
when node u receives routing message (�, vQ) from its active
out-neighbor v. Variables CostTu[w] and PathTu[w] store,
respectively, the candidate cost and the candidate path to reach
the destination via out-neighbor w, and variables Costu and
Pathu, store, respectively, the elected cost and elected path
to reach the destination. The special cases CostTu[u] and
PathTu[u] contain the fixed cost and the fixed path of a route
originated at u. A node u that originates a route pertaining to
the destination, (CostTu[u],PathTu[u]) 6= (•, •), is called a
destination node. Anycast routing is anticipated, in which case
there is more than one destination node.

The election of a cost in Line 2 runs over all active out-
neighbors of u to the exception of v, and the election of a
path in Line 3 runs over all active out-neighbors of u, to the
exception of v, for which the candidate cost equals the elected
cost. The only differences between SS-BGP and BGP are in
Lines 5 and 6, which are absent in the latter protocol. The test
in Line 5 is positive if and only if u detects an incongruous
cost, that is, if and only if the cost learned from v is better
than the best of all candidate costs, but the path learned from
v reveals a routing loop. If u detects an incongruous cost, then
it deactivates v in Line 6, meaning that future routes to the
destination learned from v are not imported.

D. False positives and the enhanced SS-BGP

Due to race conditions, a node may detect an incongruous
cost while the underlying cost-circuit is absorbent. Suppose
that node u elects a route with cost ↵ learned from outside
cycle C. The route propagates around C, later being learned
back at u as a route with cost T [uCu](↵). While the route
propagates around C, the best route at u learned from outside
C changes to one with cost �. Node u may detect an incon-
gruous cost, T [uCu](↵) � �, while cost-circuit (↵, uCu) is
absorbent, T [uCu](↵) ⌫ ↵. We call false positive to such
a condition. The network of Figure 3 provides a concrete
example. Letters C, R+, and R stand for customer link, peer+

link, and peer link, respectively. The destination is z. In the
stable state, u elects route (c, yz). Now, suppose that link yz

fails. News of the failure reach u first through neighbor y,
so that u changes its elected route to (c, xyz), learned from
x. This route propagates around cycle uvwu, from u to w

to v, and back to u. Before the route arrives back at u, this
node learns that x no longer has a route to z and, thus, elects
route (r, z), learned directly from z. When route (c, xyz),

3In this section, we distinguish between out-neighbor and in-neighbor.

Algorithm 1 SS-BGP code for when node u receives routing
message (�, vQ) from its active out-neighbor v.

CostTu[v] := T [uv](�); PathTu[v] := vQ

Costu := u{CostTu[w] | w 6= v}
Pathu :=M {PathTu[w] | Costu = CostTu[w], w 6= v}
if CostTu[v] = • or u 2 PathTu[v] then

5: if CostTu[v] � Costu then . incongruous cost
deactivate v

CostTu[v] := •; PathTu[v] := •
else . CostTu[v] � • and u 62 PathTu[v]

Costu := Costu u CostTu[v]
10: if Costu = CostTu[v] then

Path := Pathu M PathTu[v]

if Costu or Pathu have changed then
if Costu � • then

for all w in-neighbor do
15: send (Costu, uPathu) to w

else
for all w in-neighbor do

send (•, •) to w

Fig. 3. When yz fails, u needlessly deactivates v with SS-BGP, whereas it
will not deactivate v with ESS-BGP.

propagating around cycle uvwu, is learned back at u as route
(c, vwuxyz), this node detects an incongruous cost—since c

is better than r—and deactivates v, despite the absorbency of
cost-circuit (c, uvwu).

Enhanced SS-BGP (ESS-BGP) refines the test for deacti-
vation used by SS-BGP for the purpose of reducing false
positives to a bare minimum (see forthcoming Theorem 1).
With ESS-BGP, a node only deactivates a neighbor if an
incongruous cost is detected and the tail of the path learned
from the neighbor, with the loop discounted, coincides with
the elected path. In order to make this condition precise, we
introduce the following notation. If P is a path and u is a node
of P , then the tail of P at u, denoted by u �P , is the subpath
of P that starts at the successor of u along P . For example,
if P = rstuvwxyz, then u � P = vwxyz. With ESS-BGP,
Line 5 of Algorithm 1 is substituted by

if CostTu[v] � Costu and u � PathT u [v ] = Pathu then

Going back to the example of Figure 3, when u learns route
(c, vwuxyz) from around cycle uvwu, it compares tail xyz of
path vwuxyz (xyz = u � vwuxyz) with path z of the elected
route. They are different and, hence, u does not deactivate v.



The routing policies of a network are static if they do not
change with time.

Theorem 1 With static routing policies, ESS-BGP is immune
to false positives.

Proof: Because routing policies are static, any two can-
didate routes at a node, (↵, P ) and (�, Q), that contain the
same path, Q = P , must contain the same cost, � = ↵.

Suppose that some node u elects route (↵, P ), which
propagates around some cycle C before being learned back
at u as route (T [uCu](↵), CuP ). Let (�, Q) be the best
candidate route at u learned from outside C just before
(T [uCu](↵), CuP ) is learned from around C. With ESS-
BGP, u deactivates its neighbor around C if and only if
T [uCu](↵) � � and Q = P . Since routing policies are static,
Q = P implies � = ↵. Therefore, condition T [uCu](↵) � �

writes as T [uCu](↵) � ↵, implying that cost-circuit (↵, uCu)
is not absorbent: there is no false positive.

Theorem 1 implies that, under static routing policies, if
all cost-circuits are absorbent, then ESS-BGP has the same
behavior as BGP. The stabilizing effect of ESS-BGP is felt
only when routing policies make BGP prone to oscillations,
as it should. Since the timescale at which routing policies
change is coarser than the timescale at which routing messages
propagate in the network, ESS-BGP ought not to suffer from
false positives in practice. Contrary to the case of SS-BGP,
we do not have proof that ESS-BGP terminates under isotone
routing policies, but it did stabilize in all our simulations (see
Section VI).

IV. TERMINATION OF SS-BGP AND ISOTONICITY

In Section IV-A, we present a proof that isotonicity implies
termination of SS-BGP and in Section IV-B, we show through
an example that, without isotonicity, SS-BGP may not termi-
nate.

A. Proof of termination

We consider a fixed destination in a network. Routing
messages are delivered across any given link in first-in-first-
out order with arbitrary, but finite delay.

Lemma 1 Given an arbitrary initial state, the set of all routes
in all possible executions of SS-BGP is finite.

Proof: An elected or candidate route (�, Q) at v, or a
routing message (�, vQ) in the initial state can only give rise to
(•, •) or to routes of the form (T [uPv](�), PvQ), where uPv

is a path in the network and T [uPv] denotes the composition
of the extenders of all links of uPv. Since the number of paths
in the network is finite, the set of all routes in all possible
executions is finite.

Lemma 2 An update of elected route at a node to one with
the same or a better cost gives rise, at an in-neighbor, to one of
three conditions: (i) no change of elected route; (ii) an update

of elected route to one with the same or a better cost; or (iii)
the detection of an incongruous cost.

Proof: Suppose that v updates its elected route from
(�, Q) to (�0

, Q

0), with �

0 � �, sending routing message
(�0

, vQ

0) to its in-neighbor u. Let: (i) (↵�
, P

�) be the best
route at u, to the exception of the candidate route learned
from v, just before reception of routing message (�0

, vQ

0); (ii)
(↵, P ) be the elected route at u just before reception of routing
message (�0

, vQ

0); (iii) and (↵0
, P

0) be the elected route at u
after reception of routing message (�0

, vQ

0). We want to show
that either ↵0 � ↵ or u 2 vQ

0 and T [uv](�0) � ↵

�.
We divide the proof into four mutually exclusive cases,

conditioning on the presence of u on paths vQ and vQ

0.
u 62 vQ

0 and u 62 vQ: We have ↵

0 = T [uv](�0) u ↵

� and
↵ = T [uv](�) u ↵

�. Because of isotonicity of link uv,
T [uv](�0) � T [uv](�). Thus, ↵0 = T [uv](�0) u ↵

� �
T [uv](�) u ↵

� = ↵.
u 62 vQ

0 and u 2 vQ: We have ↵

0 = T [uv](�0) u ↵

� �
↵

� = ↵.
u 2 vQ

0 and u 62 vQ: We have ↵0 = ↵

� and ↵ = T [uv](�)u
↵

�. If T [uv](�) � ↵

�, then, because of isotonicity of
link uv, T [uv](�0) � T [uv](�) � ↵

�, meaning that u

detects an incongruous cost. Otherwise, if T [uv](�) ⌫
↵

�, then ↵

0 = ↵

� = ↵.
u 2 vQ

0 and u 2 vQ: We have ↵

0 = ↵

� = ↵. (It may be
that u also detects an incongruous cost in this case.)

Lemma 3 An execution of SS-BGP where no node ever de-
tects an incongruous cost either terminates or there is an
instant of time such that from hence every node updates its
elected route to one with the same or a better cost.

Proof: The proof is by contradiction. Suppose that we
are given an infinite execution where no node ever detects an
incongruous cost and that there is at least one node u that
updates its elected route from some (↵, P ) to some (↵0

, P

0),
with ↵

0 � ↵, infinitely often. Since, from Lemma 1, the set of
all routes in the execution is finite, there is a pair (u, P ), with
u a node and P a path, such that u updates its elected route
from some (↵, P ) to some (↵0

, P

0), with ↵

0 � ↵, infinitely
often. Let (u, P ) be such a pair with minimum P according to
order �. It cannot be the case that P is originated at u, since
the cost of an elected route at u is never greater than the cost
of an originated route. Hence, there is a neighbor v of u such
that P = vQ and v updates its elected route from some (�, Q)
to some (�0

, Q

0) infinitely often, giving rise to the updates at
u. Since (u, P ) was chosen to have minimum P such that u
updates its elected route from some (↵, P ) to some (↵0

, P

0),
with ↵

0 � ↵, infinitely often, the elected route at v is updated
from some (�, Q) to some (�0

, Q

0), with �

0 � �, only finitely
many times. Therefore, there is an update of elected route at v
from some (�, Q) to some (�0

, Q

0), with �

0 � �, which gives
rise, when routing message (�0

, vQ

0) arrives at u, to an update
of elected route from (↵, P ) to (↵0

, P

0), with ↵

0 � ↵. Since



u never detects an incongruous cost, we have a contradiction
from Lemma 2.

Lemma 4 An execution of SS-BGP where no node ever de-
tects an incongruous cost and every node updates its elected
route to one with the same cost terminates.

Proof: We present a function F from the state of the
protocol to a well-founded set, which decreases with the
reception of every routing message that preserves the cost of
elected route at the receiving node. From Lemma 1, we deduce
the finiteness of the set of all paths appearing in routes of all
executions where every node updates its elected route to one
with the same cost. For such a set of paths, let the rank of path
P , denoted by r(P ), be the ordinal number of P according to
order �, with the empty path having rank 0. If P � Q, then
r(P ) < r(Q). Let n � 1 be the rank of a path of maximum
rank.

The range of F is the set of n-tuples of non-negative
integers ordered lexicographically. The i-th coordinate of F ,
denoted by Fi, counts: (i) the number of elected routes (↵, P )
such that r(P ) = i; plus (ii) the number of routing messages
(↵, uP ) in transit such that r(P ) = i. Suppose that u receives
routing message (�0

, vQ

0) from v. Let (↵, P ) and (↵, P 0) be
the elected routes at u just before and after routing message
(�0

, vQ

0) is received, respectively. Further, let r(Q0) = i,
r(P ) = j, and r(P 0) = k. We distinguish three mutually
exclusive cases.
P

0 = P : Fi decreases by one, so that F decreases.
P

0 = vQ

0: Fi decreases by one, Fj decreases by one, Fk

increases by one plus the number of in-neighbors of u.
Since P

0 = vQ

0, we have P

0 �Q

0. Thus, i < k, so that
F decreases.

P

0 6= P and P

0 6= vQ

0: Fi decreases by one, Fj decreases by
one, Fk increases by one plus the number of in-neighbors
of u. It must be that case that route (↵, P ) was learned
from v. Therefore, P = vQ. Since the cost of the elected
route at u is the same just before and after the routing
message is received, we must have P �P

0: otherwise, u
would have elected route (↵, P 0) instead of route (↵, P ).
Thus, j < k, so that F decreases.

Theorem 2 An execution of SS-BGP where no node ever
detects an incongruous cost terminates.

Proof: From Lemma 3, either the execution terminates or
there is an instant of time t such that from hence every node
updates its elected route to one with the same or a better cost.
From Lemma 1, we deduce that the set of all costs appearing in
routes of all executions is finite. Therefore, the cost of elected
route at every node cannot improve indefinitely. Either the
execution terminates or there is an instant of time t

0, t0 > t,
such that from hence every node updates its elected route to
one with the same cost. From Lemma 4, we conclude that the
execution terminates.

Theorem 3 SS-BGP terminates.

Proof: The proof is by contradiction. Suppose that we
are given an infinite execution. The number of detections of
incongruous costs is finite, because every detection deactivates
an out-neighbor and the number of out-neighbors is finite. But
then, from a certain time onwards, no node ever detects an
incongruous cost, which contradicts Theorem 2.

B. When isotonicity does not hold

We go back to the model of Section II-A, but instead of
assuming that peer+ routes are exported to all neighbors, we
now assume that these routes are exported only to customers,
as is the case with standard peer routes. As a consequence,
the routing policies of a peer+ link uv are not isotone: we
have r

+ � c, but T [uv](r+) = • � r

+ = T [uv](c).
Consider the network of Figure 1 with the new assumption
regarding peer+ routes. At T = 1, all of u, v, and w elect
the peer+ route learned from their clockwise neighbor. They
do not export these elected routes around the cycle—rather,
they withdraw the routes that they had previously advertised.
Hence, at T = 2, all of u, v, and w elect route (c, x), as
they did at T = 0. BGP oscillates forever without a trace of
routing loops. Because the oscillatory behavior is not made
from routing loops, SS-BGP and ESS-BGP behave as BGP,
oscillating forever.

However, isotonicity of the routing policies of all links is not
necessary for termination of SS-BGP or ESS-BGP. In Figure 1,
if, for instance, v and w export peer+ routes to all neighbors,
but u exports them only to customers, then u will deactivate
v at T = 3, a condition which stabilizes the protocol.

V. ON ISOTONICITY

Isotonicity brings benefits to inter-AS routing. First, as this
paper shows, isotonicity guarantees termination of SS-BGP.
Second, isotonicity guarantees visibility of the relevant routing
information to every node. Conversely, without isotonicity,
BGP may hide relevant routing information from some nodes.
In extreme cases, a node may fail to elect a route to reach a
destination, despite the existence of a path from the node to
the destination allowed by the routing policies. Consider the
network of Figure 1 without links wu and ux, and with peer+

routes exported only to customers (see Section IV-B). Nodes
w and v elect, respectively, routes (c, x) and (r+, wx) to reach
x. Because peer+ routes are not exported across a peer+ link,
u does not elect a route to reach x. However, there is a path
from u to x, path uvx, that is allowed by the routing policies.

Apart from the routing policies examined in this paper,
little is known about the prevalence of isotonicity in inter-AS
routing practices. Gill et al. [9] surveyed approximately 100
AS administrators (out of a universe of tens of thousands)
about their routing policies. The survey does not inquire
explicitly about isotonicity. But, it inquires about next-hop
routing policies, asking AS administrators whether the cost of
a route depends exclusively on the AS from which the route
was learned. Gill et al. estimate that at least 68% of the ASes



use next-hop routing policies. We observe that with next-hop
routing policies, isotonicity can be ensured solely through local
regulation of export policies, without coordination between
nodes. Suppose that node u uses next-hop routing policies
in regard to routes learned from its neighbor v. The routing
policies of link uv are isotone if and only if the routes that v
exports to u are all better than the routes it does not export
to u [15].

VI. EVALUATION

We ran simulations of BGP, SS-BGP, and ESS-BGP over re-
alistic topologies of the Internet with realistic routing policies.
Section VI-A describes the simulator and the input networks.
Section VI-B compares the stability properties of BGP with
those of SS-BGP and ESS-BGP, and Section VI-C discusses
partial deployment of SS-BGP.

A. Simulator and input networks
We developed our own discrete-event simulator.4 In the sim-

ulator, routing messages traveling across a link are subjected
to a random delay drawn from a uniform distribution in the
interval from 0.01 to 1 seconds, and delivered in a first-in-
first-out order. The announcements and withdrawals of routes
at each AS are paced by the Minimum Route Advertisement
Interval (MRAI) [1], for which we took the reference value of
5 seconds.

The input networks to the simulator start off with AS-level
topologies of the Internet made available by CAIDA [16].
These topologies list pairs of ASes annotated with either a
provider-customer or a peer-peer relationship. CAIDA’s AS-
level topologies are updated monthly. We report results for the
topology from July 1st, 2016. We first removed the few ASes
from the AS-level topology that could not reach other ASes by
a customer, a peer, or a provider route. Out of 54, 733 ASes,
786 were removed.

Tier-ones (14 of them) are ASes without providers, whereas
stubs (45, 914 of them) are ASes without customers. They
stand, respectively, at the top and bottom of the provider-
customer hierarchy. Stubs produce and consume data-packets,
but they do not transit them: they do not export to neighbor
ASes routes learned from other neighbor ASes. Therefore,
stubs never contribute to permanent oscillations of the state
of BGP. In order to save on simulation time, stubs were
removed from the initial topology, while the origination of
their routes was delegated to their providers. We ended up
with a digraph containing 8, 033 ASs, 21, 854 customer links,
that same number of provider links, and 134, 182 peer links.

The GR routing policies serve as benchmark. Assuming, as
we do, that ties among customer (peer, provider) routes are
broken by the lengths of the paths carried in those routes,
BGP terminates under these routing policies. We perturb the
GR routing policies in two ways, each of which makes BGP
prone to oscillations.

• Substitution of some peer links by peer+ links, with peer+

routes exported to all neighbors (see Section II-A). Peer+

4https://github.com/davidfialho14/bgp-simulator.

links are chosen randomly from the set of all peer links
according to a uniform distribution. We present results
for three percentages of peer+ links: 1%, 5%, and 10%.

• Substitution of some links by sibling links (see Sec-
tion II-B). We resorted to CAIDA’s Inferred AS to
Organizations Mapping Dataset [17] to identify pairs of
ASes that belong to the same organization. The two links
between each of these pairs were replaced by sibling
links. We ended up with 4, 038 sibling links, which
amount to 3% of the peer links.

B. Stability results

The basic experiment is a simulation run, in which a
destination AS originates a route that is propagated network-
wide according to the rules of the routing protocol subject
to the routing policies in effect. The termination time of an
AS in a simulation run is the time it takes for its elected
route to stabilize. For any given destination, we executed 100
simulation runs with different seeds for generating random
delays across links. The termination time of the routing
protocol for that destination is the average of the termination
times of all ASes over all 100 simulation runs. BGP may fail
to terminate in the presence of peer+s or siblings. Given a
destination, if at least one AS in at least one simulation run
of BGP has a termination time greater than 300 times the
termination time of BGP with the GR routing policies, then
we declare non-termination for that destination.

Non-termination of BGP. The mere presence of peer+s
and siblings does not automatically create non-absorbent cost-
circuits. Moreover, we recall from Section III-B that the
presence non-absorbent cost-circuits does not imply non-
termination of BGP for all destinations—it only implies non-
termination for at least one destination. We first assess the
impact of peer+s and siblings on the stability of BGP. Table I
shows the percentage of destinations from among 200 destina-
tions chosen randomly with a uniform distribution for which
BGP does not terminate, subject to the GR routing policies
with peer+s and the GR routing policies with siblings. Each
percentage of peer+s represents an average over five samples.
The following conclusions can be drawn.

• Peer+s are much likelier to induce oscillations of the state
of BGP than siblings. The percentage of destinations for
which BGP does not terminate is 62.8%, 46.7%, and
36.6%, respectively, for 1%, 5%, and 10% of peer+ links,
whereas the percentage of destinations for which BGP
does not terminate is only 2%, for 3% of sibling links.

• Interestingly, the stability of BGP increases with the
percentage of peer+s. Non-absorbent cost-circuits come
in different lengths, measured in terms of the number
of links they contain. Considered in isolation, the like-
lihood of reaching a stable state is higher in shorter
non-absorbent cost-circuits than in longer ones. As the
percentage of peer+s increases so does the presence of
short non-absorbent cost-circuits. ASes belonging to these
loops are likely to see their elected routes stabilize,



despite simultaneous membership of those ASes in long
non-absorbent cost-circuits.

TABLE I
PERCENTAGE OF DESTINATIONS FOR WHICH BGP DOES NOT TERMINATE.

Policies Non-termination
Siblings (3%) 2.0%

Peer+ (1%) 61.8%
Peer+ (5%) 45.8%

Peer+ (10%) 35.6%

Detection of incongruous costs. Table II shows the number
of detections of incongruous costs that it takes SS-BGP and
ESS-BGP to terminate, averaged over the 200 destinations.
The difference in detections between SS-BGP and ESS-BGP
is justified by false positives, which occur with the former
detection method and are absent in the latter. The interesting
conclusion to be taken from these results is that only very
few detections are needed for stabilization. For instance, at
5% of peer+s, ESS-BGP terminates after 10.3 detections,
corresponding to 0.006% of all links in the input network.
The number of detections equals the number of deactivations
of neighbor ASes and, thus, equals the number of import
policies that are altered. Hence, the results show that SS-BGP
and ESS-BGP stabilize BGP at the expense of affecting the
import routing policies of only very few ASes.

TABLE II
NUMBER OF INCONGRUOUS COSTS DETECTED.

Detections
Policies SS-BGP ESS-BGP

Siblings (3%) 1.2 1.0
Peer+ (1%) 5.7 4.3
Peer+ (5%) 23.8 10.3

Peer+ (10%) 64.4 17.8

Termination times. Table III compares the termination
time of BGP, for those destinations for which the protocol
terminates, to the termination time of SS-BGP. The termination
time of ESS-BGP is very similar to that of SS-BGP and is
omitted. We conclude that even for destinations for which BGP
terminates, SS-BGP terminates faster. For instance, at 5% of
peer+s, BGP takes 37.0 seconds to terminate, while SS-BGP
takes 25.6 seconds to terminate, a reduction of 30.8%.

TABLE III
TERMINATION TIME OF BGP, FOR WHEN IT TERMINATES, AND OF

SS-BGP.

Termination (s.)
Policies BGP SS-BGP Reduction

GR 7.3 7.3 0%
Siblings (3%) 13.9 13.7 1.4%

Peer+ (1%) 29.5 21.7 25.6%
Peer+ (5%) 37.0 25.6 30.8%

Peer+ (10%) 37.4 26.8 28.3%

C. Partial deployment
Termination of SS-BGP for all possible destinations in a

given network does not require deployment of SS-BGP at

every node. Termination is ensured if all nodes that belong
to at least one non-absorbent cost-circuit deploy SS-BGP.
We investigate this condition for the case of the GR routing
policies with peer+s, which are likelier than siblings to produce
oscillations. In this case, it can be verified from the definition
that a node belongs to a non-absorbent cost-circuit if and only
if it is at the tail of a peer+ link and that link belongs to a
cycle all links of which are peer+ links or customer links.

Table IV, under the heading ‘Loop’, presents the percentage
of ASes that belong to a non-absorbent cost-circuit in the
input network (from where stubs were removed). We conclude
that the deployment of SS-BGP on selected 7.8% of the
ASes is sufficient for termination at 1% of peer+ links. The
percentage of ASes that need to deploy SS-BGP increases with
the percentage of peer+ links, reaching 28.0% at 10% of peer+

links.

TABLE IV
PERCENTAGE OF ASES THAT BELONG TO A NON-ABSORBENT
COST-CIRCUIT AND THAT ARE AT THE TAIL OF A PEER+ LINK.

Loop Tail
Peer+ (1%) 7.8% 8.5%
Peer+ (5%) 21.4% 21.5%

Peer+ (10%) 28.0% 28.2%

An AS cannot tell from its routing configuration whether
or not it belongs to a non-absorbent cost-circuit. However, it
can tell from its routing configuration whether or not it has a
link to a peer+, which condition is necessary for membership
in a non-absorbent cost-circuit: if all ASes with a link to a
peer+ deploy SS-BGP, then termination is guaranteed. This
conclusion prompts a simple guideline for AS administrators,
stating that they can autonomously violate the GR routing
policies by preferring some peers over some customers as long
as SS-BGP is deployed in their networks. Table IV, under the
heading ‘Tail’, presents the percentage of ASes at the tail of at
least one peer+ link, showing that these percentages are close
to those of the ASes that belong to non-absorbent cost-circuits.

VII. RELATED WORK

The problem of BGP state oscillations caused by incom-
patible routing policies is not new. However, none of the
solutions proposed to date is satisfactory. We survey related
work divided into three main groups.

Modifications to BGP. Griffin and Wilfong [18],
Ahronovitz et al. [19], Ee et al. [20], and Agarwal et al. [21],
all propose solutions to stabilize BGP that work with routes
that were elected in the past and no longer are. In [18], an
elected route is stored and advertised along with its history,
which records the sequence of past routes that justifies the
elected route. Histories with repeated routes uncover incom-
patible routing policies and serve to identify routes that should
be filtered to arrive at a stable state. In [19], each node keeps
a list of routes that were elected in the recent past. When
an elected route is repeated in the list, the node launches a
token which, on arriving back, confirms an incompatibility and
identifies a route to be filtered. In [20], each node likewise



keeps a list of routes that were elected in the recent past.
Routes carry a global precedence value which is the first
parameter consulted in the election of a route—the smaller the
better. The global precedence value is incremented each time
a node elects a route which is worse than one of the old routes
in its list. In [21], detection of conflicting routing policies is
based on [18], but rather than filtering routes to avoid future
oscillations, multiple routes are sent to neighbor nodes. Albeit
in different degrees, all the proposals above involve taxing
modifications to BGP and require network-wide deployment
to earn their benefits. In contrast, SS-BGP is an extension to
BGP, and it promotes stability even during partial deployment.

Policy restrictions that ensure termination of BGP. The
class of inflationary routing policies guarantees termination
of BGP [5], [22], [23]. The routing policies of link uv are
inflationary if a route at v gives rise to a route at u with
the same or a worse cost. However, inflation is an artificial
property insofar as inter-AS routing is concerned, because
it implies a comparison between two costs held at different
nodes. Inflation does not hold for the GR routing policies with
peer+, with siblings, or if customers or providers are divided
into distinct classes of preference. In contrast, isotonicity does
not have the artificiality of inflation, being satisfied by baseline
inter-AS routing policies.

Policy guidelines with cycles to avoid. Several works
present guidelines for the configuration of BGP accompanied
by an identification of cycles that should be avoided in
any given network [6], [13]. For example, the GR routing
policies exclude cycles where every node is a customer (a
provider) of the next node around the cycle. Guidelines provide
broad insights into routing. However, they smooth over much
diversity found in practice. In addition, they do not come with
a mechanism to avoid the identified cycles of incompatible
routing policies during an execution of BGP. Isotonicity allows
for a wide range of routing policies, with SS-BGP resolving
policy incompatibilities at run time.

VIII. CONCLUSIONS

SS-BGP is an extension to BGP that prevents recurrent
routing loops, thereby attaining better stability properties than
BGP. For the important class of isotone routing policies, SS-
BGP terminates.

We conducted simulations of BGP and of SS-BGP on
Internet topologies with variants of the GR routing policies.
We verified that, contrary to BGP, SS-BGP reaches a stable
state in all cases, with alterations in the import routing policies
of only very few nodes. As a matter of fact, SS-BGP needs
to be deployed only in the ASes that do not comply with the
GR routing policies in order for its stabilizing effects to have
network-wide impact.

ACKNOWLEDGMENTS

We thank José Brázio, Franck Le, and Jennifer Rexford
for commenting on earlier drafts of this work, and we thank
our shepherd, Marco Chiesa, for a stimulating interaction,
positively reflected in the final paper. We acknowledge the

support of Fundação para a Ciência e Tecnologia under grant
UID/EEA/50008/2013.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),”
January 2006, RFC 4271.

[2] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations
in inter-domain routing,” Computer Networks, vol. 32, no. 1, pp. 1–16,
2000.

[3] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” IEEE/ACM Transactions on Networking,
vol. 10, no. 2, pp. 232–243, April 2002.

[4] M. G. Gouda and M. Schneider, “Maximizable routing metrics,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 663–675,
August 2003.

[5] J. L. Sobrinho, “An algebraic theory of dynamic network routing,”
IEEE/ACM Transactions on Networking, vol. 13, no. 5, pp. 1160–1173,
October 2005.

[6] L. Gao and J. Rexford, “Stable Internet routing without global coor-
dination,” IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp.
681–692, December 2001.

[7] V. Giotsas, M. J. Luckie, B. Huffaker, and kc claffy, “Inferring complex
AS relationships,” in Proc. ACM Internet Measurement Conference,
November 2014, pp. 23–30.

[8] R. Mazloum, M. Buob, J. Augé, B. Baynat, D. Rossi, and T. Friedman,
“Violation of interdomain routing assumptions,” in Proc. Passive and
Active Measurement Conference, March 2014, pp. 173–182.

[9] P. Gill, M. Schapira, and S. Goldberg, “A survey of interdomain routing
policies,” ACM SIGCOMM Computer Communications Review, vol. 44,
no. 1, pp. 28–34, January 2014.

[10] R. Anwar, H. Niaz, D. R. Choffnes, Í. S. Cunha, P. Gill, and E. Katz-
Bassett, “Investigating interdomain routing policies in the wild,” in Proc.
ACM Internet Measurement Conference, October 2015, pp. 71–77.

[11] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
misconfiguration,” in Proc. ACM SIGCOMM 2002, August 2002, pp.
3–16.

[12] S. Deshpande, M. Thottan, and B. Sikdar, “An online scheme for the
isolation of BGP misconfiguration errors,” IEEE Tranactions on Network
and Service Management, vol. 5, no. 2, pp. 78–90, 2008.

[13] Y. Liao, L. Gao, R. Guérin, and Z.-L. Zhang, “Safe interdomain routing
under diverse commercial agreements,” IEEE/ACM Transactions on
Networking, vol. 18, no. 6, pp. 1829–1840, December 2010.

[14] J. L. Sobrinho, “Correctness of routing vector protocols as a property of
network cycles,” IEEE/ACM Transactions on Networking, vol. 25, no. 1,
pp. 150–163, February 2017.

[15] J. Feigenbaum, V. Ramachandran, and M. Schapira, “Incentive-
compatible interdomain routing,” in Proc. ACM Conference on Elec-
tronic Commerce, June 2006, pp. 130–139.

[16] “AS relationships,” http://www.caida.org/data/as-relationships, July
2016, CAIDA.

[17] “Mapping autonomous systems to organizations,” http://www.caida.org/
research/topology/as2org/, July 2016, CAIDA.

[18] T. G. Griffin and G. Wilfong, “A safe path vector protocol,” in Proc.
IEEE INFOCOM, Tel-Aviv, Israel, March 2000, pp. 490–499.

[19] E. Ahronovitz, J. König, and C. Saad, “A distributed method for dynamic
resolution of BGP oscillations,” in Proc. International Parallel and
Distributed Processing Symposium, April 2006.

[20] C. T. Ee, V. Ramachandran, B.-G. Chun, K. Lakshminarayanan, and
S. Shenker, “Resolving inter-domain policy disputes,” in Proc. ACM
SIGCOMM, August 2007, pp. 157–168.

[21] R. Agarwal, V. Jalaparti, M. Caesar, and P. B. Godfrey, “Guaranteeing
BGP stability with a few extra paths,” in Proc. International Conference
on Distributed Computing Systems, June 2010, pp. 221–230.

[22] N. Feamster, R. Johari, and H. Balakrishnan, “Implications of autonomy
for the expressiveness of policy routing,” IEEE/ACM Transactions on
Networking, vol. 15, no. 6, pp. 1266–1279, December 2007.

[23] A. Wang, L. Jia, W. Zhou, Y. Ren, B. T. Loo, J. Rexford, V. Nigam,
A. Scedrov, and C. Talcott, “FSR: Formal analysis and implementation
toolkit for safe interdomain routing,” IEEE/ACM Transactions on Net-
working, vol. 20, no. 6, pp. 1814–1827, December 2012.


