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ABSTRACT
Standard vectoring protocols, such as EIGRP, BGP, DSDV, or Babel,

only route on optimal paths when the total order on path attributes

that substantiates optimality is consistent with the extension opera-

tion that calculates path attributes from link attributes, leaving out

many optimality criteria of practical interest. We present a solution

to this problem and, more generally, to the problem of routing on

multiple optimality criteria. A key idea is the derivation of a par-

tial order on path attributes that is consistent with the extension

operation and respects every optimality criterion of a designated

collection of such criteria. We design new vectoring protocols that

compute on partial orders, with every node capable of electing mul-

tiple attributes per destination rather than a single attribute as in

standard vectoring protocols. Our evaluation over publicly available

network topologies and attributes shows that the proposed proto-

cols converge fast and enable optimal path routing concurrently

for many optimality criteria with only a few elected attributes at

each node per destination. We further show how predicating com-

putations on partial orders allows incorporation of service chain

constraints on optimal path routing.
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1 INTRODUCTION
The concept of optimal path is bound to: (1) a set of attributes, which

represents performance metrics in context; and (2) a total order

on attributes, which defines relative preferences among them. The

optimal attribute from a source to a destination in a network is the

most preferred of all path attributes from source to destination and
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an optimal path is one with such an attribute. A binary extension

operation on attributes allows the calculation of the attribute of a

path from the attributes of its constituent links [7, 15, 18, 21, 35, 36,

43, 45].

Standard vectoring protocols, such as EIGRP [34], BGP [33],

DSDV [30], or Babel [11], iterate at every node of a network: (1) ex-

tension operations, which compute attributes to reach destinations

from attributes advertised by neighbors; and (2) selection operations

in accordance with the total order, which elect a single attribute

per destination. This approach only discovers optimal attributes

and paths if the total order is consistent with the extension opera-

tion or, in more precise terms, if the extension operation is isotone

for the total order, meaning that the relative preference between

any two attributes is preserved when both are extended by any

third attribute [7, 15, 35]. Without isotonicity, standard vectoring

protocols fail to route on optimal paths, in general [16, 35, 37].

However, for the most part, total orders representing real-world

performance metrics do not satisfy isotonicity. For example, a quick-

est path is desired to convey a file across a network, which is a

path that minimizes a linear combination of propagation delay and

inverse capacity [9]. Yet, the total order underlying quickest paths

is not isotone [16]. For another example, the choice of a path on

which to stream a video across a network weighs minimal delay

against sufficient available bandwidth to sustain the stream [2]. Yet

again, the total order framing such a choice is not isotone.

1.1 Contribution
The main contribution of this paper is a general solution to the

problem of optimal path routing concurrently for multiple of opti-

mality criteria, which entails a general solution to the problem of

optimal path routing for a single non-isotone optimality criterion.

Optimal path routing for a non-isotone criterion. The so-
lution to this problem is based on two novel ideas. The first is the

substitution of a total order on attributes by a partial order that

satisfies isotonicity while respecting the total order. In a partial

order, one attribute of a pair of attributes is preferred to the other

or the two attributes are incomparable [20]. The set of dominant at-

tributes from a source to a destination in a network consists of those

path attributes with no path attribute from source to destination

preferred to any of them. It is a plural set of pairwise incomparable

attributes, in general, which contains the original optimal attribute.

The second idea is the design of dominant-paths vectoring pro-

tocols that compute on partial orders. These protocols instantiate a

separate computation process per destination, as standard vectoring

protocols do, but have every node elect and advertise to neighbors

a set of dominant attributes to reach the destination rather than

a single most preferred attribute. Every node labels each attribute

of its elected set with a locally unique identifier that is advertised

alongside the attribute [8]. A source of data-packets recognizes

the original optimal attribute among its elected set of dominant

https://doi.org/10.1145/3387514.3405864
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attributes and data-packets are forwarded along a corresponding

path through label-switching at intermediate nodes.

Optimal path routing for multiple criteria. The solution to

this problem is further based on the idea of intersecting the total

orders of a designated collection of optimality criteria to produce

a partial order that satisfies isotonicity while respecting all total

orders of the collection. Then, a dominant-paths vectoring protocol

provides optimal path routing concurrently for all criteria. For every

flow of data-packets, the source chooses the optimality criterion

most appropriate to route that specific flow on to the destination,

with the corresponding optimal attribute found among the set of

dominant attributes computed by the protocol.

The routing state maintained by a dominant-paths vectoring

protocol on a network is proportional to the sizes of the sets of

dominant attributes from sources to destinations. Our solution to

routing on multiple optimality criteria is practical to the extent that

these sets are small. We computed sets of dominant attributes on

annotated Rocketfuel topologies [39]. The results show that the

average number of dominant attributes from source to destination

is below four even for a network with hundreds of nodes and more

than a thousand links.

Another important consideration is the speed of convergence of

a dominant-paths vectoring protocol. The multiple attributes com-

prising a set of dominant attributes are elected in parallel during

an execution of the protocol. Furthermore, we found that isotonic-

ity promotes fast convergence. Our simulations on the Rocketfuel

topologies confirm that the convergence time of a dominant-paths

vectoring protocol operating on an isotone partial order is only

marginally worse than that of a standard vectoring protocol oper-

ating on an isotone total order, and that it is sometimes better than

that of a standard vectoring protocol operating on a non-isotone

total order.

1.2 Roadmap
Routing on a non-isotone optimality criterion and on multiple opti-

mality criteria is first illustrated in Section 2. Section 3 develops a

procedure that starts with a generic collection of optimality crite-

ria and ends with a partial order that respects each criterion and

satisfies isotonicity. Then, Section 4 designs two classes of vector-

ing protocols that compute on partial orders. Section 5 shows how

these protocols can accommodate service chaining constraints. An

evaluation of our solution to routing on multiple optimality crite-

ria is presented in Section 6. Section 7 reviews related work and

Section 8 concludes the paper. The appendices contain proofs of

termination and dominance for vectoring protocols.

This work does not raise any ethical issues.

2 ROUTING ONWIDTHS AND LENGTHS
We illustrate how vectoring protocols based on partial orders al-

low routing on a variety of optimality criteria. In the forthcoming

examples, every link and path in a network is characterized by a

pair width-length belonging to the Cartesian product of positive or
infinite widths and nonnegative lengths. Width represents a metric,

such as capacity or available bandwidth, that extends along a path

with the minimum operator, whereas length represents a metric,

such as delay or number of data-packets in queue, that extends

+∞, 𝟎 : −

10,2 : 𝑥	
𝟐𝟎, 𝟓 :𝒘

𝟐𝟎,𝟏 :𝒙

5,2 : 𝑤
𝟏𝟎,𝟖 :𝒗

10,210,3

20,1

20,4

5,1

𝑢 𝑥

𝑤

𝑣

Figure 1: Stable state of a standard vectoring protocol oper-
ating according to the shortest-widest order for destination
x . Links are annotated with width-lengths. Elected width-
lengths are in bold.

along a path with addition. Therefore, the extension of width-length
(w, l)with width-length (w ′, l ′) is width-length (min{w,w ′}, l +l ′).

Section 2.1 discusses shortest-widest path routing and Section 2.2

continues the discussion with widest-shortest path routing.

2.1 Shortest-widest path routing
A shortest-widest path is a path of minimum length among those

of maximum width from source to destination in a network [43].
1

Shortest-widest paths are selected according to the shortest-widest
order (lexicographic order), which establishes that width-length

(w, l) is preferred to width-length (w ′, l ′) if its width is greater,

w > w ′
, or the widths are equal but its length is smaller, w = w ′

and l < l ′.
In the network of Figure 1, each link is annotated with a pair

width-length and all nodes want to route data-packets to destination

x along shortest-widest paths. By inspection, we readily conclude

that the shortest-widest path fromv to x isvwx , with width-length

(20, 5) = (min{20, 20}, 4+1), and that the shortest-widest path from

u to x is path uvx , with width-length (10, 5) = (min{10, 10}, 3+ 2).

With a standard vectoring protocol, each node elects and adver-

tises to its in-neighbors the most preferred width-length learned

from its out-neighbors. The stable state of such a protocol is shown

in the figure. Destination x elects (+∞, 0) andw elects (20, 1). Node

v learns (10, 2) from x and (20, 5) from w , which is the extension

of (20, 4) of link vw with (20, 1) of the elected width-length at w .

It elects (20, 5), learned fromw , instead of (10, 2), learned from x ,
on account of its greater width. Node u learns (5, 2) fromw , which

is the extension of (5, 1) with (20, 1), and (10, 8) from v , which is

the extension of (10, 3) with (20, 5). It elects (10, 8), learned from v ,
because of its greater width.

Node u forwards data-packets to v , which forwards them tow ,

which delivers them to x . Thus, data-packets with source at u and

destination at x travel along path uvwx , which is not the shortest-

widest path from u to x . The standard vectoring protocol fails to

route data-packets along shortest-widest paths. This is due to the

failure of isotonicity of extension for the relative preferences among

width-lengths [35]. Concretely, (20, 5) is preferred to (10, 2), but

1
This is the standard definition, even if reading from left to right may wrongly suggest

that shortest paths are selected first.
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Figure 2: Product order on width-lengths. The green area
consists of width-lengths that are less preferred than (w, l)
and the blue area of those that are preferred to (w, l). Width-
lengths (w, l) and (w ′, l ′) are incomparable on the product or-
der, but (w, l) is preferred to (w ′, l ′) on the shortest-widest
order.

(10, 8), which is the extension of (10, 3)with (20, 5), is less preferred

than (10, 5), which the extension of (10, 3) with (10, 2).

Now consider the product order on width-lengths [20], which is

such that width-length (w, l) is preferred to width-length (w ′, l ′) if
it is different from (w ′, l ′) and both its width equals or is greater,

w ≥ w ′
, and its length equals or is smaller, l ≤ l ′, than those of

(w ′, l ′). The product order is a partial order. Two width-length such

that one has greater width but the other has smaller length are

incomparable, neither of them being preferred to the other. Figure 2

shows the width-length plane where the set of width-lengths that

are less preferred than (w, l) on the product order is shaded in green
and the set of width-lengths that are preferred to (w, l) is shaded in
blue. Width-lengths (w, l) and (w ′, l ′) are incomparable, yet (w, l)
is preferred to (w ′, l ′) on the shortest-widest order on account of

its greater width.

A width-length in a set of width-lengths is dominant if no width-
length in the set is preferred to it.

2
A dominant path is one whose

width-length is dominant among the width-lengths of all paths

from a source to a destination in a network. Figure 3 shows the

same network as Figure 1. The dominant paths from v to x are vx
and vwx . Their width-lengths, respectively, (10, 2) and (20, 5), are

incomparable. The dominant paths from u to x are uvx and uwx ,
width-lengths (10, 5) and (5, 2), respectively. Path uvwx , the only
remaining path from u to x , has width-length (10, 8), which is less

preferred than width-length (10, 5) of path uvx .
A dominant-paths vectoring protocol computes on the product

order, each node electing and advertising to in-neighbors the set

of dominant width-lengths learned from out-neighbors. The stable

state of such a protocol is shown in Figure 3. Node x elects (+∞, 0)

and w elects (20, 1) as before. Node v learns (10, 2) from x and

(20, 5) fromw . Since these width-lengths are incomparable, both are

elected. Node v differentiates the two width-lengths by assigning

them distinct labels. It assigns label 2 to (10, 2) and label 4 to (20, 5).

These labels are advertised alongside the associated width-lengths

2
In the terminology of order theory, a dominant width-length is a minimal width-
length with respect to the product order.
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Figure 3: Stable state of a dominant-paths vectoring protocol
operating according to the product order on width-lengths
for destination x . Links are annotated with width-lengths.
Labels guide data-packets along shortest-widest paths or
widest-shortest paths as decided by the source.

to in-neighbor u in order to enable expedition of data-packets via

label-switching. Therefore, u learns from v both (10, 5) with label 2

and (10, 8) with label 4. Both become candidate width-lengths to

reach x viav . Fromw ,u also learns (5, 2)with label 2. The dominant

width-lengths of the set {(10, 5), (10, 8), (5, 2)} of candidate width-

lengths at u are (10, 5) and (5, 2), since these two width-lengths are

incomparable, while (10, 8) is less preferred than (10, 5). Node u
elects (10, 5) and (5, 2), assigning label 3 to the former width-length

and label 1 to the latter.

In the figure, an entry at a node of the form

(width, length) , label : next.hop , next.label

reads as follows:

• data-packets sourced at the node that need to travel along

a path with width-length (width, length) are forwarded to

out-neighbor next.hop with label next.label;
• data-packets arriving at the node from an in-neighbor carry-

ing label label are forwarded to out-neighbor next.hop with

the label modified to next.label.

With the dominant-paths vectoring protocol, u has routing and

forwarding information to see that its data-packets traverse a

shortest-widest path tox .Width-length (10, 5) is the shortest-widest

width-length elected at u. Thus, u stamps data-packets with label 2

and forwards them to v . At v , incoming label 2 matches the entry

pointing to out-neighbor x and outgoing label 1. Consequently, v
replaces label 2 with label 1 and forwards the data-packets to x .

2.2 Widest-shortest path routing
A widest-shortest path is a path of maximum width among those

of minimum length from source to destination in a network [43].

Widest-shortest paths are selected according to the widest-shortest
order (colexicographic order), which establishes that width-length

(w, l) is preferred to width-length (w ′, l ′) if its length is smaller,

l < l ′, or the lengths are equal and its width is greater, l = l ′

andw > w ′
.

The dominant-paths vectoring protocol allows for routing a flow

on a shortest-widest path or on a widest-shortest path as is more
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appropriate for that specific flow. Going back to Figure 3, suppose

that u now wants to send data-packets to x along a widest-shortest

path. Width-length (5, 2) is the widest-shortest width-length at u to

reach x . Reading from the entry corresponding to (5, 2), u stamps

data-packets with label 2 and forwards them tow , which replaces

label 2 with label 1 for delivery to x .
Forthcoming Sections 3 and 4 present the concepts, constructs,

and protocols that allow routing on multiple optimality criteria for

arbitrary performance metrics.

3 MULTIPLE OPTIMALITY AND DOMINANCE
We formulate the problem of routing on multiple optimality criteria

with generality and develop constructs that facilitate a solution to

this problem. Section 3.1 introduces basic algebraic routing con-

cepts and presents an algebraic statement for the problem of routing

on multiple optimality criteria. Section 3.2 exemplifies with two

families of optimality criteria on pairs width-length. Section 3.3

introduces partial orders and the possibility of reducing them so

that the algebraic property of isotonicity is satisfied. Section 3.4

transforms the problem of routing on multiple optimality criteria

into that of routing based on a partial order that respects all crite-

ria and satisfies isotonicity. Section 3.5 applies the constructions

expounded in the previous two sections to examples of optimality

criteria on pairs width-length.

3.1 Optimality criteria
Optimal path problems can be formulated with generality in alge-

braic terms [7, 15, 18, 35]. A set S of attributes represents arbitrary
performance metrics. To every link and path in a network is associ-

ated an attribute. The attribute of a path is obtained from the at-

tributes of its constituent links through a binary extension operation,
denoted by ⊕, that we assume to be associative and commutative

with neutral attribute ϵ . Letting a[uv] denote the attribute of link
uv , the attribute a[P] of path P = u0u1 · · ·un−1un is given by

a[P] = a[u0u1] ⊕ · · · ⊕ a[un−1un ].

The attribute of a trivial path, containing just one node, is ϵ .
We consider a collection O of optimality criteria. Optimality

criterion i ∈ O is modeled by a total order ⪯i on attributes, which is

an antisymmetric, transitive, and connex binary relation on the set

of attributes. Connexity means that a ⪯i b or b ⪯i a for all a,b ∈ S .
We write a ≺i b for a ⪯i b and a , b, and say that a is i-preferred to

b and that b is less i-preferred than a. The null attribute • is the least
preferred of all attributes and represents the absence of a valid path.

Given a network, the i-optimal attribute from source s to destina-
tion t , denoted by a∗i (s, t), is the most i-preferred attribute among

all path attributes from s to t . A path from s to t is i-optimal if its

attribute is a∗i (s, t).

Definition 3.1. Binary extension operation ⊕ is inflationary for

total order ⪯i if

b ⪯i a ⊕ b for all a,b ∈ S .

Inflation expresses that the attribute of a path is not i-preferred to
the attribute of any of its subpaths [17, 35].

3
It is typically satisfied

by performance metrics and, therefore, it is assumed throughout

3
Some authors use the term monotonicity for what we call inflation.

the paper. Inflation is related to the termination (convergence) of

standard vectoring protocols in stable states that guide data-packets

from sources to destinations, though not necessarily along i-optimal

paths. The exact nature of this relationship depends on the class of

vectoring protocols considered and is discussed further in Section 4.

Definition 3.2. Binary extension operation ⊕ is isotone for total
order ⪯i if

a ⪯i b implies c ⊕ a ⪯i c ⊕ b for all a,b, c ∈ S .

Isotonicity expresses that the relative i-preference between the

attributes of two paths is preserved when both are prefixed by any

common third path [7, 16, 35]. Contrary to inflation, isotonicity is

only satisfied by a very restricted set of performance metrics (see

next section). When isotonicity holds, a standard vectoring protocol

routes data-packets on i-optimal paths; when it does not hold, data-

packets are not routed on i-optimal paths, in general [16, 35].

3.2 Examples
We present two parameterized families of optimality criteria based

on width-lengths.

K-quickest order. The time required to convey a file of size K
along a path with capacityw and propagation delay l is K/w + l . A
K-quickest path from source to destination in a network is one that

minimizes the time required to convey such a file [9]. Accordingly,

the K-quickest order, ⪯K -Q, is defined by

(w, l) ⪯K -Q (w ′, l ′) if:

K/w + l < K/w ′ + l ′, or K/w + l = K/w ′ + l ′ andw ≥ w ′.

W -wide-shortest order. In order to stream a video of maximum

rateW from source to destination, a network operator would typi-

cally choose aW -wide-shortest path, which is a path of minimum

delay among those with available bandwidth higher than or equal

toW ; if the bandwidth available on every path is lower thanW ,

then it is a path of maximum available bandwidth [2]. Motivated

by this scenario, we define theW -wide-shortest order, ⪯W -S, as a

total order that corresponds to the widest-shortest order for widths

higher than or equal toW and to the shortest-widest order for

widths lower thanW :

(w, l) ⪯W -S (w ′, l ′) if:

w ≥W and (w ′ <W or (w, l) ⪯WS (w ′, l ′));

orw <W and (w, l) ⪯SW (w ′, l ′),

where ⪯WS and ⪯SW denote, respectively, the widest-shortest and

the shortest-widest orders.

Inflation of the criteria. Both the K-quickest order and the

W -wide-shortest order satisfy inflation.

Isotonicity of the criteria. Neither the K-quickest order nor
theW -wide-shortest order satisfy isotonicity, except for the limiting

cases ofK = 0 andW = 0 (widest-shortest order). Routing optimally

on these criteria is not possible with standard vectoring protocols.

3.3 Partial orders and isotonic reductions
A partial order ⪯ on attributes is an antisymmetric, transitive, and

reflexive binary relation on attributes. Reflexivity means that a ⪯ a
for all a ∈ S . Connexity implies reflexivity, so that a total order is a

particular case of a partial order. If a ⪯ b or b ⪯ a, then a and b are
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comparable; otherwise they are incomparable. We still write a ≺ b
for a ⪯ b and a , b, and say that a is preferred to b and that b is

less preferred than a.
Given a network, the set of dominant attributes from source s to

destination t , denoted by A∗(s, t), is the set of path attributes from

s to t such that no path attribute from s to t is preferred to any

of the attributes in the set. The attributes of A∗(s, t) are pairwise
incomparable. A path from s to t is dominant if its attribute belongs
to A∗(s, t).

A key idea for routing on dominant paths through the use of

vectoring protocols is to identify a partial order that satisfies iso-

tonicty within a larger partial order that does not satisfy it. This

idea is embodied in the following definition [25].

Definition 3.3. An isotonic reduction of a partial order ⪯ on at-

tributes is a partial order contained in ⪯ for which ⊕ is isotone.

The more attributes that can be compared, the more efficient the

vectoring protocols that we present in Section 4. Hence, we aspire

to isotonic reductions with as many comparable pairs of attributes

as possible.

Theorem 3.4. Every partial order on attributes ⪯ contains a largest
isotonic reduction ⪯R , which is such that for every pair of attributes
a and b, a ⪯R b if and only if x ⊕ a ⪯ x ⊕ b for every attribute x .

Proof. We show that the binary relation on attributes ⪯R de-

fined by a ⪯R b if x ⊕ a ⪯ x ⊕ b for all x ∈ S is the largest isotonic

reduction of ⪯ on S .
Binary relation ⪯R is a partial order. (1) Reflexivity: a ⪯R a,

because x ⊕ a ⪯ x ⊕ a for all x ∈ S . (2) Antisymmetry: a ⪯R b and

b ⪯R a imply a = b, because a ⪯R b implies a = ϵ ⊕ a ⪯ ϵ ⊕ b = b,
b ⪯R a likewise implies b ⪯ a, and a ⪯ b together with b ⪯ a imply

a = b. (3) Transitivity: a ⪯R b and b ⪯R c imply a ⪯R c , because
x ⊕ a ⪯ x ⊕ b and x ⊕ b ⪯ x ⊕ c together imply x ⊕ a ⪯ x ⊕ c for
all x ∈ S , which implies a ⪯R c .

Binary extension operation ⊕ is isotone for ⪯R . The inequality
a ⪯R b implies (x ⊕ c) ⊕ a ⪯ (x ⊕ c) ⊕ b for all x , c ∈ S . Using
associativity of ⊕, we write (x ⊕c)⊕a = x ⊕(c ⊕a) and (x ⊕c)⊕b =
x ⊕ (c ⊕ b), so that x ⊕ (c ⊕ a) ⪯ x ⊕ (c ⊕ b) for all x , c ∈ S , which
implies c ⊕ a ⪯R c ⊕ b for all c ∈ S .

Partial order ⪯R is the largest isotonic reduction of ⪯ on attributes.
In order to arrive at a contradiction, suppose that there is a partial

order ⪯′
R contained in ⪯, but not strictly contained in ⪯R . Therefore,

there is a ⪯′
R b such that a ⪯ b, while it is not the case that

a ⪯R b. Thus, there is an attribute x for which it is not the case

that x ⊕ a ⪯ x ⊕ b. If ⊕ were isotone for ⪯′
R , then we would have

x ⊕ a ⪯′
R x ⊕ b, which would imply x ⊕ a ⪯ x ⊕ b: a contradiction

was arrived at. □

Inflation remains a desirable property, which is related to the ter-

mination of the vectoring protocols that we present in Section 4 into

stable states that guide data-packets from sources to destinations.

We have the following theorem.

Theorem 3.5. The largest isotonic reduction of an inflationary
partial order is itself inflationary.

Proof. Let ⪯ be a partial order on S for which ⊕ is inflationary

and denote by ⪯R the largest isotonic reduction of ⪯ on S . In order

to show that b ⪯R a⊕b, we need to assert that x ⊕b ⪯ x ⊕(a⊕b) for
all x ∈ S . Because ⊕ is inflationary for ⪯, we have x ⊕b ⪯ a⊕(x ⊕b)
for all x ∈ S . Using associativity and commutativity of ⊕, we write

a ⊕ (x ⊕b) = x ⊕ (a ⊕b), so that x ⊕b ⪯ x ⊕ (a ⊕b) for all x ∈ S . □

3.4 From optimality to dominance
We present a procedure that, from the collection O of optimality

criteria described in Section 3.1, yields a partial order on attributes

that respects all criteria and satisfies isotonicity.

First, we define binary relation on attributes ⪯O as the intersec-
tion of total orders ⪯i , i ∈ O . For every pair of attributes a and b,

a ⪯O b if a ⪯i b for all i ∈ O .

It is easy to verify that binary relation ⪯O is a partial order. Two

attributes are comparable in ⪯O if and only if one of them is i-
preferred to the other for all criteria i .

Second, if ⊕ is not isotone for ⪯O , then we retain only the largest

isotonic reduction of ⪯O , as prescribed by Theorem 3.4, which

we denote by ⪯O,R . Since ⊕ is inflationary for ⪯i , i ∈ O , ⊕ is

inflationary for ⪯O . Then, from Theorem 3.5, we conclude that ⊕

is inflationary for ⪯O,R .

Given a network, let A∗
O,R (s, t) denote the set of dominant at-

tributes from source s to destination t according to partial order

⪯O,R . By construction, ⪯O,R is contained in every total order ⪯i ,

i ∈ O . In other words, a ⪯O,R b implies a ⪯i b for all a,b ∈ S and

all i ∈ O . Therefore, the i-optimal attribute from s to t is one of the
dominant attributes from s to t :

a∗i (s, t) ∈ A∗
O,R (s, t) for all i ∈ O .

In summary, the problem of computing i-optimal attributes,

a∗i (s, t), for all criteria i has been transformed into the problem

of computing sets of dominant attributes determined according

to the largest isotonic reduction of the intersection of all crite-

ria, A∗
O,R (s, t).

3.5 Examples revisited
We apply the constructions of the previous two sections to obtain

largest isotonic reductions and intersections for the total orders on

width-lengths that we have been using as examples.

Proposition 1. The largest isotonic reduction of the shortest-
widest order is the product order on width-lengths.

Proof. We make use of the characterization of largest isotonic

reduction provided by Theorem 3.4. Denote the product order

on width-lengths by ⪯W×L. Clearly, (w, l) ⪯W×L (w ′, l ′) implies

(min(x ,w),m + l) ⪯SW (min(x ,w ′),m + l ′) for every width-length

(x ,m).

Conversely, suppose that (w, l) ⪯W×L (w ′, l ′) does not hold.
Hence,w < w ′

or l > l ′. We need to show that there is width-length

(x ,m) such that (min(x ,w),m + l) ⪯SW (min(x ,w ′),m + l ′) does
not hold. Ifw < w ′

, then it is not the case that (w, l) ⪯SW (w ′, l ′).
We choose (x ,m) = (+∞, 0) to conclude that

(min(+∞,w), 0 + l) = (w, l) ⪯SW (w ′, l ′) = (min(+∞,w ′), 0 + l ′)

does not hold. Otherwise, ifw ≥ w ′
, then it must be the case that

l > l ′. We choose (x ,m) = (w ′, 1) to conclude that

(min(w ′,w), 1+l) = (w ′, 1+l) ⪯SW (w ′, 1+l ′) = (min(w ′,w ′), 1+l ′)
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does not hold. □

Routing optimally on shortest-widest paths is possible by in-

stantiating the dominant-paths vectoring protocols presented in

Section 4 with the product order on width-lengths.

Proposition 2. The largest isotonic reduction of the K-quickest
order equals the intersection of the K-quickest order and the widest-
shortest order. Specifically, width-length (w, l) equals or is preferred
to width-length (w ′, l ′) in the largest isotonic reduction of ⪯K -Q if
and only if (w, l) ⪯K -Q (w ′, l ′) and l ≤ l ′.

Proof. We again make use of Theorem 3.4. First, we show that

(w, l) ⪯K -Q (w ′, l ′) and l ≤ l ′ together imply (min(x ,w),m +
l) ⪯K -Q (min(x ,w ′),m + l ′) for every width-length (x ,m). Two

cases are distinguished.

Case 1: w ≥ w ′. We have min(x ,w) ≥ min(x ,w ′). From l ≤ l ′,
we write

K/min(x ,w) +m + l ≤ K/min(x ,w ′) +m + l ′.

Consequently, (min(x ,w),m + l) ⪯K -Q (min(x ,w ′),m + l ′).
Case 2:w < w ′. From (w, l) ⪯K -Q (w ′, l ′) andw < w ′

, we deduce

that l < l ′. If x ≤ w , then x = min(x ,w) = min(x ,w ′), and we write

K/min(x ,w) +m + l < K/min(x ,w ′) +m + l ′,

so that (min(x ,w),m + l) ⪯K -Q (min(x ,w ′),m + l ′). Ifw < x < w ′
,

then w = min(x ,w) < x = min(x ,w ′). From (w, l) ⪯K -Q (w ′, l ′),
we write

K/min(x ,w) +m + l = K/w +m + l

≤ K/w ′ +m + l ′

< K/min(x ,w ′) +m + l ′.

Once again, (min(x ,w),m + l) ⪯K -Q (min(x ,w ′),m + l ′). Last, if
w ′ ≤ x , then widthsw andw ′

are not diminished by width x . We

obtain (min(x ,w),m + l , ) ⪯K -Q (min(x ,w ′),m + l ′) directly from

(w, l) ⪯K -Q (w ′, l ′).
Second, we show that if either (w, l) ⪯K -Q (w ′, l ′) does not hold

or l > l ′, then there is width-length (x ,m) such that (min(x ,w),m+
l) ⪯K -Q (min(x ,w ′),m + l ′) does not hold. If (w, l) ⪯K -Q (w ′, l ′)
does not hold, then we simply choose (x ,m) = (+∞, 0). Other-

wise, if l > l ′, then we choose (x ,m) = (min(w,w ′), 1) to obtain

K/min(w,w ′) + 1 + l > K/min(w,w ′) + 1 + l ′, which implies that

(min(x ,w),m + l) ⪯K -Q (min(x ,w ′),m + l ′) does not hold. □

The largest isotonic reduction of the K-quickest order is larger
than the product order on width-lengths and it grows as the value

of K gets smaller. In the limiting case of K = 0 (widest-shortest

order), all pairs of width-lengths are comparable. Larger orders

mean more comparable pairs of width-lengths, fewer dominant

width-lengths from source to destination in a network, and more

efficient vectoring protocols.

The following two easy propositions are presented without

proof.

Proposition 3. The intersection of the K-quickest orders for all
K ≥ 0 is the product order on width-lengths.

Proposition 4. The intersection of theW -wide-shortest orders for
allW ≥ 0 is the product order on width-lengths.

Algorithm 1 Dominant-paths non-restarting vectoring protocol.

Nodeu receives set B of attributes fromv pertaining to destination t .

1: DomTabu [v, t] := {a[uv] ⊕ b | b ∈ B}
2: Domu [t] := D⪯({DomTabu [v, t] | v an out-neighbor})

3: if Domu [t] has changed then
4: for all r an in-neighbor do
5: send Domu [t] to r

Routing different flows concurrently on shortest-widest paths,

K-quickest paths for all K , andW -wide-shortest paths for allW , is

possible by instantiating the dominant-paths vectoring protocols

presented in Section 4 with the product order on width-lengths.

4 PROTOCOLS FOR DOMINANT PATHS
We design vectoring protocols that compute on a partial order. If

isotonicity is satisfied, then these protocols are able to route on

dominant paths. Section 4.1 presents the class of dominant-paths

non-restarting vectoring protocols and Section 4.2 presents the

class of dominant-paths restarting vectoring protocols.

4.1 Non-restarting protocol
In a standard non-restarting vectoring protocol, the destination initi-

ates the routing computation only once, by advertising the neutral

attribute to all its in-neighbors, while each node maintains candi-

date attributes to reach the destination via each of its out-neighbors.

At any given moment in time, the node elects the most preferred

attribute over all candidate attributes and forwards data-packets

to the out-neighbor from which the elected attribute was learned.

If the link to that out-neighbor subsequently fails, then the node

re-elects a new attribute from among the remaining candidate at-

tributes. Non-restarting vectoring protocols are most common in

wired networks, with EIGRP [34] and BGP [33] being prototypical.

Non-restarting vectoring protocols can be generalized to work

with a partial order ⪯ on attributes. Let D⪯(A) denote the set of
dominant attributes of set A, which consists of those attributes in

A with no attribute in A preferred to them:

D⪯(A) = {a ∈ A | there is no x ∈ A such that x ≺ a}.

In the canonical dominant-paths non-restarting vectoring protocol,

destination t originates singleton {ϵ}, which it advertises to all its

in-neighbors. Algorithm 1 presents the pseudo-code for when node

u, u , t , receives a set B of attributes advertised by its out-neighbor

v pertaining to destination t . Variable DomTabu [v, t] stores the set
of candidate attributes to reach t via out-neighbor v and variable

Domu [t] stores the set of elected attributes to reach t .
When u receives set B from v , it first computes the set of at-

tributes learned from v , where each such attribute results from the

extension of the attribute of the link tov with an attribute contained

in B (line 1). Then, u finds its own new set of elected attributes as

the set of dominant attributes from among all candidate attributes

learned from each of its out-neighbors (line 2). If there is a change

in the set of elected attributes, then u advertises this set to all its

in-neighbors (lines 3–5).
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Each node assigns a unique label to each of its elected attributes

that is advertised to in-neighbors alongside the attribute [8]. There-

fore, for a given destination, each node maintains a table with

entries of the form

attribute , label : next.hop , next.label.

The table is used as follows:

• Data-packets sourced at the node that need to travel along

a path with attribute attribute, presumably an optimal path

according to some optimality criterion, are forwarded to

out-neighbor next.hop with label next.label.
• Data-packets arriving at the node from an in-neighbor carry-

ing label label are forwarded to out-neighbor next.hop with

the label modified to next.label.
A nodemay install multiple entries with common values of attribute
and label, and different values of next.hop. This allows for routing
data-packets along multiple dominant paths with a common at-

tribute, a possibility that in standard vectoring protocols is known

as ECMP (Equal Cost Multi-Path).

Termination and dominance. A stable state of the dominant-

paths non-restarting vectoring protocol is a state without advertise-

ments in transit in any of the links of the network. The dominant-

paths non-restarting vectoring protocol terminates if, in the absence
of changes in the network, it reaches a stable state from any initial

state.

Inflation alone does not guarantee termination. Two other al-

gebraic properties must be satisfied with respect to the network

on which the protocol is run. First, the attribute of every circuit in

the network must be strictly inflationary. An attribute a is strictly
inflationary if b ≺ a ⊕ b for every non-null attribute b. Widths,

extended with min and ordered by ≥, provide a simple example

where strict inflations fails: whatever widthw , it is not the case that

w ′ > min(w,w ′) for every widthw ′
; in particular,w ′ > min(w,w ′)

is false for w ′ ≤ w . We say that a circuit is strictly inflationary if

its attribute is strictly inflationary. Inflation together with strictly

inflationary circuits prevent oscillatory behaviors.

Second, the set of all path attributes must be finite, to prevent

count-to-infinity. This finiteness can ensured by including a hop-

count field in attributes and invalidating paths with hop-count in

excess of some prespecified maximum value, or, with more preci-

sion, by including a field in every attribute that records the path

traversed by the advertisements that led up to the attribute and

invalidating looping advertisements, as in BGP.

We have the following theorem.

Theorem 4.1. If all circuits are strictly inflationary and the set
of path attributes is finite, then the dominant-paths non-restarting
vectoring protocol terminates.

The proof, which does not rely on isotonicity, is given in Appen-

dix A. It generalizes to partial orders a cognate proof constructed

for total orders [36].

Whether or not isotonicity holds, in stable state the dominant-

paths non-restarting vectoring protocol routes data-packets via

label-switching on paths whose attributes are those elected at the

nodes. If isotonicity holds, then these attributes are dominant.

Theorem 4.2. If isotonicity holds and all circuits are strictly infla-
tionary, then the attributes elected at a node in stable state to reach

Algorithm 2 Dominant-paths restarting vectoring protocol. Node

u receives pair (b,n) from v pertaining to destination t .

1: att := a[uv] ⊕ b
2: if sequ [t] < n then
3: Domu [t] := {att}
4: sequ [t] := n
5: else if sequ [t] = n then
6: Domu [t] := D⪯(Domu [t] ∪ {att})
7: if Domu [t] or sequ [t] have changed then
8: for all r an in-neighbor do
9: send (att, sequ [t]) to r

a destination are the dominant attributes from the node to the des-
tination, that is, Domu [t] = A∗(u, t) in stable state for all nodes u
and t .

The proof is given in Appendix B.

4.2 Restarting protocol
Contrary to a non-restarting vectoring protocol, in a standard

restarting vectoring protocol, the destination regularly initiates fresh

computation instances during which newly elected attributes re-

place those from older instances. A node does not maintain candi-

date attributes to reach the destination via each of its out-neighbors.

Rather, it maintains only an elected attribute to reach the destina-

tion, which is the most preferred attribute learned so far during the

current computation instance. Data-packets are forwarded to the

out-neighbor from which the elected attribute was learned. If the

link to that out-neighbor fails, the node becomes a traffic black hole

for the destination until it learns an attribute coming from a more

recent computation instance. The node propagates information

about the failure to upstream nodes, so that they too become traffic

black holes for a short period of time. DSDV [30] and Babel [11]

are restarting protocols proposed for wireless networks. Recently,

the interest in restarting vectoring protocols has been renewed in

the context of programming routing protocols directly in switching

hardware [21, 29], where memory is scarce and instructions are

primitive, but computation is plenty and fast.

Restarting vectoring protocols can also be generalized to work

with partial orders. In the canonical dominant-paths restarting

vectoring protocol, destination t initiates a routing computation in-

stance by advertising attribute ϵ to all its in-neighbors. Algorithm 2

presents the pseudo-code for when node u, u , t , receives a pair
(b,n) from out-neighborv pertaining to destination t . The pair con-
sists of an attribute b and a sequence number n that identifies the

computation instance to which b belongs. Variable Domu [t] stores
the set of elected attributes to reach t and sequ [t] holds the sequence
number of the computation instance that produces Domu [t].

Whenu receives pair (b,n) fromv , it first computes the extension

of the attribute of its link tov withb (line 1). If the received attribute
is from a computation instance with a higher sequence number

than that of the set of elected attributes, then u replaces this set by

the singleton consisting of the attribute learned fromv and updates

its sequence number (lines 2–4). Otherwise, if the learned attribute

is from the same computation instance as that of the set of elected

attributes and is either preferred to an attribute from this set or is
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incomparable with every attribute from the set, then it is included

in the set of elected attributes while all less preferred attributes are

removed from the set (lines 5–6). The attribute learned from v is

advertised to all in-neighbors of u if it has been included in the set

of elected attributes or the sequence number has been updated.

As in the non-restarting vectoring protocol, in the restarting

vectoring protocol each node maintains, for a given destination, a

table with entries of the form

attribute , label : next.hop , next.label,

with the same meaning as before. However, we opt for a version of

the protocol with a single entry per value of attribute, whose corre-
sponding value of next.hop is the out-neighbor fromwhich attribute
was first learned during the current computation instance. This

option prevents a source from routing data-packets to a destination

along multiple dominant paths with a common attribute, but, on the

other hand, it guarantees that data-packets travel along loop-free

paths without requiring that network circuits be strictly inflation-

ary. Thus, for example, this version of the restarting vectoring

protocol can be used to route on performance metrics represented

exclusively by widths.

Termination and dominance The concept of termination ap-

plies to a single computation instance, which is initiated by a des-

tination when it advertises attribute ϵ to all its in-neighbors. This

concept is operationally relevant when the period with which the

destination initiates fresh computation instances is large compared

to the time it takes for each of them to terminate.

If isotonicity holds, then a restarting vectoring protocol termi-

nates in a stable state where nodes elect dominant attributes to

reach destinations. Contrary to non-restarting vectoring proto-

cols, in restarting vectoring protocols strict inflation of circuits and

finiteness of path attributes are not necessary for termination and

dominance, but, on the other hand, isotonicity must hold even for

basic delivery of data-packets. Without isotonicity, these protocols

may leave some nodes permanently black holed [37].

5 SERVICE CHAINING CONSTRAINTS
The possibility of designing vectoring protocols that compute on

partial orders allows for the solution of routing problems other than

those framed exclusively in terms of optimal paths. We illustrate

this potential with service chaining. A service chain is a sequence

of services that must be applied to a flow of data-packets, each such

service being offered by at least one node in the network. In the

problem of routing on multiple optimal path criteria constrained

by a service chain, we seek to route data-packets on the optimal

paths of the various criteria among those that provide the services

of the chain in due sequence [6, 10, 21, 31]. This problem can be

solved by describing the service chaining constraints in algebraic

terms, a process that calls for a partial order.

Since a vectoring protocol computes attributes of paths in the

direction from destination to source, attributes encode the suffix of

the chain completed along a path. For example, the service chain

represented by string AB has three suffixes:

• ε , describing a path that does not provide service B;
• B, describing a path that provides service B but not preceded

by service A;

𝜺,+∞, 𝟎 , 𝟏:−, −
𝑩,𝟓, 𝟑 , 𝟐: 𝒘,𝟏			
𝑨𝑩,𝟓, 𝟔 , 𝟑: 𝒘,𝟐

𝐴𝐵, 5,7 , −:𝑦, 3
𝜺, 𝟏𝟎,𝟏 , 𝟏: 𝒚, 𝟏
𝑨𝑩, 𝟓, 𝟒 , 𝟐:𝒚, 𝟐

𝜺, 𝟏𝟎,𝟐 , 𝟏:𝒙, 𝟏
𝑨𝑩,𝟏𝟎, 𝟕 , 𝟐: 𝒗, 𝟏
𝑨𝑩,𝟓, 𝟓 , 𝟑:𝒙, 𝟐

𝑩,𝟏𝟎, 𝟐 , 𝟏: 𝒙, 𝟏
𝑨𝑩, 𝟓, 𝟓 , 𝟐: 𝒙, 𝟐

𝐴𝐵, 5,6 ,−: 𝑤, 2
𝑨𝑩, 𝟏𝟎,𝟑 , 𝟏:𝒘, 𝟏

𝑢

𝑣,𝐴

𝑤, 𝐵

𝑥, 𝐴

𝑦

10,4 10,1

10,1
10,1 10,1
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Figure 4: Stable state of a dominant-paths vectoring proto-
col that routes optimally through service chain AB to desti-
nation y. Links are annotated with width-lengths. Nodes v
and x offer service A andw offers service B.

• and AB, describing a path that provides service A followed

by service B.

The suffix of a chain extends as its services are found along a path.

Different suffixes are incomparable.

Figure 4 provides an example of routing on multiple optimality

criteria constrained by service chaining. Links are characterized by

pairs width-length. Link yw has width 5 and all other links have

width 10. Link uv has length 4 and all other links have unit length.

The service chain is AB, composed of service A, offered by v and x ,
followed by service B, offered only byw .

Path uxy, width-length (10, 2), is the only dominant path from

u to y without constraints. Paths uvwxy, width-length (10, 7), and

uxywxy, width-length (5, 5), are the two dominant paths from u to

y that satisfy service chain constraintAB, the latter path containing

cycle ywxy. For instance, if data-packets need to be routed along a

shortest-widest path subject to service chainAB, then they must be

guided along path uvwxy, whereas if they need to be routed along

a widest-shortest path subject to service chain AB, then they must

be guided along path uxywxy.
The dominant-paths vectoring protocol computes on triples

(X ,w, l), where X is a suffix of AB, w is a width and l is a length.
Destination y initiates the routing computation with (ε,+∞, 0).
Node x learns (ε, 10, 1) from y and u learns (ε, 10, 2) from x . Nodew
offers service B. Hence, it learns (B, 10, 2) from x . As a consequence,
y learns (B, 5, 3) from w , which is incomparable with the initial

triple (ε,+∞, 0), because B is incomparable with ε . Both triplets are

elected at y. Node x offers service A. Thus, it learns (AB, 5, 4) from
(B, 5, 3) elected aty. Triples (ε, 10, 1) and (AB, 5, 4) are incomparable,

since ε and AB are incomparable. Nodew further learns (AB, 5, 5)
from x andy learns (AB, 5, 6) fromw . Node x learns (AB, 5, 7) fromy.
However, (AB, 5, 7) is less preferred than (AB, 5, 4) and, thus, is not
elected. Now, v offers service A. It extends the triples (B, 10, 2) and
(AB, 5, 5) elected at w into (AB, 10, 3) and (AB, 5, 6), respectively;
the latter of these is less preferred than the former and, thus, it is

not elected. Finally, u learns (AB, 10, 7) from v and (AB, 5, 5) from
x , in addition to (ε, 10, 2) previously learned from x .
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Labels, which are advertised alongside attributes, enable expedi-

tion of data-packets along service-chain constrained optimal paths.

For example, if u wants to send data-packets to y along a shortest-

widest path subject to chain AB, then it labels them with 1 and

forwards them to v ; data-packets traverse path uvwxy all the way

keeping label 1. If, instead, u wants to send data-packets along

a widest-shortest path, also subject to chain AB, then it labels

data-packets with 2 and forwards them to x ; data-packets traverse
path uxywxy, changing labels from 2 to 1 on their first passage

through y.

6 EVALUATION
Our evaluation intends to answer two main questions. How big are

the sets of dominant attributes in realistic networks? Section 6.2

addresses this question. How do dominant-paths vectoring proto-

cols behave during periods of convergence following a network

event? Sections 6.3 and 6.4 address this question, respectively, for

non-restarting and restarting vectoring protocols. First, Section 6.1

presents the simulator and test networks used in the evaluation.

6.1 Networks and simulator
The test networks used in the evaluation consist of the largest bicon-

nected components of the ISP topologies inferred by the Rocketfuel

project [39]. Every link in a topology is annotated with both an

OSPF weight and a propagation delay. A width was assigned to

each link that is equal to the inverse of its weight, since, by default,

OSPF weights are set as inverse capacities; a length was assigned to

each link that is equal to its propagation delay. Table 1 characterizes

the six networks studied by their numbers of nodes and links.

We built a simulator of vectoring protocols for four instanti-

ations of attributes: pairs width-length, pairs hops-length, pairs

width-hops, and triples width-hops-length.
4
Widths extend with

the minimum operator, while lengths and hops extend with ad-

dition. Each link corresponds to one hop; hence, hops counts the

number of links in a path. The product orders on the pairs and

the triple were considered as well as several total orders on width-

lengths. Advertisements traverse every link first in, first out subject

to a random delay taken from a uniform distribution. We set the

range of random delays from 0.01 to 1 ms. As a measure against

count-to-infinity, advertisements of the non-restarting vectoring

protocols that travel more than a prespecified maximum number of

hops are invalidated. We set that maximum number to 15 as in RIP.

6.2 Sets of dominant attributes
The number of dominant attributes from sources to destinations

determine the viability of our approach to routing on multiple

optimality criteria. These sets can be read off from the stable state

of a dominant-paths vectoring protocol. Table 1 shows the average

number of dominant width-lengths over all source-destination pairs

for all six networks. This number varies between 1.9 and 3.7. In

every network, the number of distinct path widths is an upper

bound on the number of dominant width-lengths for all source-

destination pairs. On the other hand, the number of distinct path

widths in a network equals the number of distinct link widths, since

4
The source code of the simulator is available at https://github.com/miferrei/rmoc-

sigcomm2020-artifact.

Table 1: Number of nodes, number of links, number of dis-
tinct widths, and number of dominant width-lengths for the
six networks considered.

AS number Nodes Links Distinct Dominant

widths width-lengths

1221 50 194 8 1.9

1239 284 1882 19 2.5

1755 73 292 18 2.2

3257 113 558 21 3.5

3967 72 280 19 3.7

6461 129 726 19 2.8

1 2 3 4 5 6 7
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Figure 5: CCDF of the number of dominant attributes in
AS 1239 for the product orders on hops-lengths, width-hops,
width-lengths, and width-hops-lengths. Averages of the dis-
tributions are given inside parenthesis.

the width of a path is the width of one of its links. Table 1 shows

that the average number of dominant width-lengths in the test

networks is well below the upper bound of the number of distinct

link widths.

Figure 5 shows the Complementary Cumulative Distribution

Function (CCDF) of the number of dominant attributes for the

largest of the networks, AS 1239, and all four instantiations of at-

tributes. Path lengths are highly correlated with path hops. In other

words, in most cases a shortest path contains a minimum number

of links. The average number of dominant hops-lengths is only

1.1, while the maximum such number is three. The percentages of

source-destination pairs connected by more than three dominant

attributes are 11.6%, 21.2%, and 31.9%, respectively for width-hops,

width-lengths, and width-hops-lengths, while the averages are 2.2,

2.5, and 2.9. There is more diversity in path lengths than in path

hops, which justifies the finding that there are more dominant

width-lengths than dominant width-hops from sources to destina-

tions. Dominant triples width-hops-length contain dominant pairs

hops-length, width-hops, and width-length. Thus, sets of dominant

width-hops-lengths are expected to be larger than the other sets of

dominant attributes.
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Figure 6: CCDFs of termination times in AS 1239 for a
dominant-paths non-restarting vectoring protocol operat-
ing on the product orders on hops-lengths, width-hops,
width-lengths, and width-hops-lengths. Averages of the dis-
tributions are given inside parenthesis.

6.3 Transient behavior of non-restarting
protocols

We assess the transient behavior of non-restarting vectoring proto-

cols in AS 1239 against two types of network events: the network-

wide announcement of a destination and the failure of a link. The

metric used is the termination time, defined as the duration of the

interval of time elapsed from the moment a network event occurs

until the protocol reaches a stable state. For each network event,

we ran 25 independent trials.

Announcement of a destination. Figure 6a shows the CCDF
of the termination time after a network-wide announcement over

all possible destination nodes and all trials. These curves are rather

smooth and steep (small variance) for all instantiations of attributes.

The average termination times are 6.2 ms, 7.7 ms, 8.3 ms, and

8.4 ms, respectively for hops-lengths, width-hops, width-lengths,

and width-hops-lengths (the curves for width-lengths and width-

hops-lengths almost coincide).

Because of isotonicity, elected attributes at each node to reach a

destination can only be replaced bymore preferred attributes during

each trial. Therefore, the termination time equals the maximum

delay to propagate an advertisement all the way up a dominant

path and is, thus, roughly proportional to the number of links

in a dominant path with the largest such number. As observed

before, path lengths and path hops are correlated. On the other

hand, path widths and path hops are not necessarily correlated;

wide paths from source to destination typically traverse more than

the minimum number of links required to reach the destination

from the source. This justifies the observed fact that those attributes

that involve width lead to longer termination times.

Failure of a link. Figure 6b shows the CCDF of the termination

time after a link failure over all possible links and all trials. The

nodes of AS 1239 are clustered around geographical areas, with

nodes inside each cluster densely connected with links of unit

length. A failure of one of these links has only a localized impact

on state of the protocol. As observed from the figure, 45.3%, 37.4%,

36.7%, and 36.6% of the failures have termination times equal or less

than 1ms, respectively for hops-lengths, width-hops, width-lengths,

and width-hops-lengths.

Apart from this effect, the CCDFs of termination time for a

link failure are more long tailed (large variance) than those for a

network-wide announcement of a destination. For example, 1.5%,

6.2%, 8.4%, and 8.5% of the failures lead to termination times in

excess of 10 ms, respectively for hops-lengths, width-hops, width-

lengths, and width-hops-lengths. In a non-restarting vectoring pro-

tocol, all nodes continuously search for dominant attributes over

all candidate attributes learned from its out-neighbors, while a link

failure ultimately requires some nodes to stabilize on less preferred

attributes than those they started out with. Trying to settle on less

preferred attributes by always electing dominant attributes among

candidates learned from out-neighbors takes many iterations, cor-

responding to as many paths being explored and, hence, to long

termination times [23].

Comparison against various optimality criteria. Figure 7a
shows the CCDF of the termination time after a network-wide an-

nouncement in AS 1239 over all possible destination nodes and

all trials. We plot curves for a dominant-paths vectoring protocol

operating on the product order on width-lengths against two instan-

tiations of a standard vectoring protocol: one operating according

to the widest-shortest order and the other operating according to

the shortest-widest order.

Two important conclusions emerge from Figure 7a. First, the

termination time of the dominant-paths vectoring protocol is not

too far off from the termination time of a standard vectoring proto-

col for widest-shortest paths. The respective averages are 8.3 ms

and 6.3 ms. This is somewhat surprising given that the standard

vectoring protocol elects only one width-length per node per desti-

nation, whereas the dominant-paths vectoring protocol elects, on

average, 2.5 width-lengths per node per destination, with 21.2%

of the nodes electing more than three width-lengths per destina-

tion (see Figure 5). The explanation for the favorable termination

time of a dominant-paths vectoring protocol is that the multiple
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Figure 7: CCDFs of termination times in AS 1239 for a
dominant-paths non-restarting vectoring protocol operat-
ing on the product order onwidth-lengths and for a standard
non-restarting vectoring protocol operating on the widest-
shortest order and on the shortest-widest order. Averages of
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attributes comprising a set of dominant attributes are elected in

parallel during an execution of the protocol.

Second, the termination time of the dominant-paths vectoring

protocol is better than the termination time of a standard vectoring

protocol for shortest-widest paths. The respective averages are

8.3 ms and 9.6 ms, with the CCDF of the termination time of the

latter protocol having a long tail. The explanation lies on isotonicity,

which promotes fast convergence. The shortest-widest order does

not satisfy isotonicity, implying that following a network-wide

announcement of a destination, a node may elect a width-length

that later has to be supplanted by a less preferred width-length.

As mentioned before in the case of a link failure, such a process is

slow. The standard vectoring protocol for shortest-widest paths not

only takes longer to terminate, but, we recall, in stable state may

not route data-packets on shortest-widest paths (see Section 2.1).
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Figure 8: CCDFs of the time to propagate unreachability
in AS 1239 for a dominant-paths restarting vectoring proto-
col operating on the product orders on hops-lengths, width-
hops, width-lengths, and width-hops-lengths. Averages of
the distributions are given inside parenthesis.

In the case of AS 1239, the protocol does not route data-packets on

shortest-widest paths for 30.3% of source-destination pairs.

Figure 7b shows the CCDF of the termination time after a link

failure in AS 1239 over all possible links and all trials. For the

cases of widest-shortest paths and dominant width-length paths,

all link failures cause some alteration in the stable state of the

protocols. However, for the case of shortest-widest paths 21.8% of

link failures do not affect the stable state of the protocol. When

the set of dominant paths contains paths with minimum number

of links, the failure of a link will prevent the node at its tail from

communicating directly with the node at its head. Therefore, at

least that node will need to update its stable state. We previously

observed that path lengths are strongly correlated with paths hops,

which explains why all link failures cause some alteration in the

case of widest-shortest paths and dominant width-length paths.

However, shortest-widest paths favor large widths independently

of the number of links in a path, implying that some links may not

be selected for routing. The failure of such links does not change

the state of the protocol.

Last, we observe that, as in the case of a network-wide announce-

ment of a destination, the curve for shortest-widest paths exhibits

the longest tail.

6.4 Transient behavior of restarting protocols
Every computation instance initiated by a destination in a dominant-

paths restarting vectoring protocol behaves as a network-wide an-

nouncement of a destination in a non-restarting vectoring protocol.

Hence, it can be characterized by the termination times shown in

Figure 6a. When a link fails, the node directly affected by the fail-

ure propagates unreachability information to its upstream nodes.

Figure 8 shows the CCDF of the time it takes for all nodes to with-

draw the elected attributes corresponding to paths that contain the

failed link over all links and all trials. This time duration is smaller

than the termination time after a network-wide announcement
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of a destination because only a fraction of nodes are affected by

the failure.

While unreachability information propagates upstream the fail-

ure, some nodes may be momentarily traffic black holed. Our simu-

lations show that reachability from source to destination is inter-

rupted, on average, on only 0.1% of the cases for width-lengths,

width-hops, and width-hops-lengths, and only on 0.2% of the cases

for hops-lengths. The duration of the interruptions decreases with

the period between consecutive computation instances initiated by

the destination.

7 RELATEDWORK
Algebraic conceptualization of routing. The algebraic frame-

work proposed in References [18, 35, 36] laid the foundations for a

unified treatment of routing problems and protocols, abstracting

away the specificity of performance metrics and protocol parame-

ters. The framework is premised on a total order on attributes. The

present work generalizes the algebraic framework by accepting

partial orders on attributes and by devising vectoring protocols

that compute on them. Moreover, it describes a generic procedure

that reduces a set of total orders to a common partial order that is

isotone and respects all total orders.

Multi-objective path problems. Multi-objective path prob-

lems have been studied by the operations research community [5,

19, 28]. These problems can be described in concrete algebraic terms.

Attributes are tuples of the Cartesian product of elementary metrics,

each of which either extends with + and is totally ordered by ≤ or

extends with min and is totally ordered by ≥ (or extends with max

and is ordered by ≤). Tuples extend term-wise and are partially

ordered by the product order of their term-wise total orders. The

goal is to find sets of dominant tuples from source to destination

in a network and is attained with generalizations of Dijkstra’s and

Bellman-Ford algorithms [5, 19, 28].

The setting considered in this work is broader and the problem

addressed is different. Attributes are not necessarily tuples of el-

ementary metrics. Even when they are, a partial order on them

is derived, rather than assumed a priori, and does not necessarily

coincide with the product order. The goal is to route data-packets

on multiple optimality criteria and is attained with dominant-paths

vectoring protocols.

Multipath routing protocols. Since dominant-paths vectoring

protocols typically find multiple paths from source to destination,

they can be considered a type of multipath routing protocols. Mul-

tipath routing protocols have mostly been proposed as extensions

to BGP with one of the following three goals in mind. A first goal

is to ensure termination both of external BGP [1] and of internal

BGP [13, 40]. A second goal is to improve the data-packet delivery

capabilities of BGP during convergence of the protocol upon a link

failure [14, 22, 27, 41]. And a third goal is to allow the configuration

of more expressive routing policies than is possible with standard

BGP [44]. The BGP multipath routing proposal presented in [42]

addresses all three goals.

The dominant-paths vectoring protocols proposed in this work

target a different goal. We seek to route data-packets on optimal

paths for a variety of optimality criteria, some of which do not

lend themselves to a solution by a standard vectoring protocol. In

addition, our dominant-paths vectoring protocols are formulated

with generality rather than being specific to BGP.

Regular-expression-constrained routing. The service chain-
ing constraints on routing discussed in the text are a particular case

of constraints dictated by regular expressions [26] on annotations

provided to network links. The problem of finding a shortest path

in a network subject to such a constraint is defined in Reference [3]

and mapped to the problem of finding a (unconstrained) shortest

path in a special product graph that combines the network and the

automaton describing the regular expression. The application of

this idea to routing envisages a pre-computation of the product

graph. In References [4, 32, 38], the shortest paths on the prod-

uct graph are centrally computed, whereas in Reference [21], they

are computed by a routing protocol running on the nodes of the

product graph.

The primary problem addressed in this work is routing on mul-

tiple optimality criteria. The solution to this problem leads to

dominant-paths vectoring protocols that compute on partially or-

dered sets of attributes. By modeling path constraints within a set

of attributes, the protocols provide a fully distributed solution to

the problem of constrained optimal path routing. Although the text

only considered the case of service chaining, the generalization to

an arbitrary regular expression should not pose major conceptual

difficulties.

8 CONCLUSIONS AND DISCUSSION
We presented a solution to the problem of routing on multiple

optimality criteria based on the ideas of: (1) intersecting the total

orders of all criteria; and (2) reducing the resulting intersection

to satisfy isotonicity. This process leads to partial orders. We de-

signed vectoring protocols that compute on partial orders to find

dominant attributes and paths from sources to destinations in any

given network. Alongside the advertisement of routing information,

these protocols disseminate the necessary forwarding information

to guide data-packets on dominant paths. Preliminary evaluations

indicate that these protocols converge fast and elect only a few

attributes at each node to reach a destination. While our work-

ing examples emphasized widths, lengths, and hop-counts, the

ideas were developed for arbitrary metrics that satisfy the algebraic

properties of associativity, commutativity, and inflation. Further

bolstering the generality of our approach, we showed how service

chaining constraints could be formulated in terms of partial orders.

To a large extent, the concepts presented here apply to link-

state routing protocols and to centralized control planes. In these

cases, dominant attributes and paths are computed by a sequential

algorithm. A dominant-paths version of Dijkstra’s algorithm can

be designed for this purpose. Then, some forwarding mechanism

must be put in place to guide data-packets on dominant paths.
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A TERMINATION OF NON-RESTARTING
VECTORING PROTOCOLS

We assume that every circuit in the network is strictly inflationary

and that the set of all possible path attributes is finite. We want to

show that the dominant-paths non-restarting vectoring protocol

terminates. The high-level idea of the proof consists in finding a

map from the state of the protocol to a well-ordered set [20]
5
such

that the value of the map decreases every time a node advertises

a set of elected attributes to its in-neighbors. As a well-ordered

set does not contain an infinite strictly decreasing sequence, the

number of advertisements must be finite, which implies termination

of the protocol [24, 36].

We start with a lemma characterizing the set of elected attributes

at a node to reach a destination following the reception of a set of

attributes.

Lemma A.1. Suppose that a node receives a set of attributes ad-
vertised by one of its out-neighbors. Every attribute newly elected
as a consequence of this reception is either the extension of a newly
advertised attribute or is less preferred than an attribute elected before
the reception, or both.

Proof. Suppose that node u receives set B of attributes adver-

tised by its out-neighbor v pertaining to some destination. This set

contains a set B∗ of newly advertised attributes, which are those

that were not included in the previous advertisement sent by v

5
A set is well-ordered if every one of its non-empty subsets has a least element in the

order.
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to u. Let E and E ′ denote the set of attributes elected at u before

and after reception of B, respectively. We want to show that for

every e ∈ E ′ − E, there is b ∈ B∗ such that e = a[uv] ⊕ b or there is

f ∈ E − E ′ such that f ≺ e .
If e was not a candidate attribute for election at u before B is

received, then e must have been learned from an attribute in B∗,
that is, there is b ∈ B∗ such that e = a[uv] ⊕b. Otherwise, if e was a
candidate attribute for election at u before B is received, then there

must have existed an elected attribute that prevented the election

of e , that is, there is f ∈ E such that f ≺ e . Moreover, since e is
elected after B is received, f is no longer a candidate attribute for

election at u, implying that f is no longer elected, f < E ′. Hence,
f ∈ E − E ′. □

We now define the node-attribute digraph as follows:

Vertices. Vertices are pairs node-attribute (u,a) such thatu is a

node and a is either a candidate attribute at u or an attribute

contained in an advertised set of attributes in transit from

u to one of its in-neighbors at any state during execution

of the protocol. Pairs (t , ϵ) with t a destination are included.

Every node-attribute (u,a) is of the form (u,a[P] ⊕b), where
P is a path from u to a node v with (v,b) a node-attribute
pair at the initial state. Since we assume that a[P] = • for

every path P with sufficiently large number of links, the set

of node-attributes is finite.

Arcs. Arcs are of two types: (1) an extension arc ((u,a), (v,b))
if uv is a link in the network, b , •, and a = a[uv] ⊕ b; and
(2) a selection arc ((u,a), (u,b)) if b ≺ a.

Lemma A.2. The node-attribute digraph is acyclic.

Proof. The proof is by contradiction. Let

C = (u0,a0)(u1,a1) · · · (un−1,an−1)(u0,a0)

be a cycle in the node-attribute digraph with minimum number

of arcs. Clearly, a0 is not null, since neither extension arcs nor

selection arcs enter (u0, •). If ((ui ,ai ), (ui+1,ai+1)) is an extension

arc (0 ≤ i < n and addition modulus n), then, because of inflation,
ai+1 ⪯ a[uiui+1] ⊕ ai+1 = ai . Otherwise, if ((ui ,ai ), (ui+1,ai+1)) is
a selection arc, then ai+1 ≺ ai .

Suppose that at least one arc in cycle C is a selection arc. Let

((ui ,ai ), (ui+1,ai+1)) be one such arc. We have

a0 ⪯ an−1 ⪯ · · · ⪯ ai+1 ≺ ai ⪯ · · · ⪯ a1 ⪯ a0,

which is a false statement. Instead, suppose that no arc in C is a

selection arc. Then, all arcs in C are extension arcs. Since C was

chosen with minimum number of arcs, u0u1 · · ·un−1u0 is a circuit
in the network that starts and ends at u0. We have

a0 = a[u0u1] ⊕ · · · ⊕ a[un−1u0] ⊕ a0

= a[u0u1 · · ·un−1u0] ⊕ a0,

which contradicts the fact that attribute a[u0u1 · · ·un−1u0], being
the attribute of a circuit, is strictly inflationary. □

Theorem A.3. If all circuits are strictly inflationary and the set
of path attributes is finite, then the dominant-paths non-restarting
vectoring protocol terminates.

Proof. From Lemma A.2, node-attributes can be topologically

ordered [12] such that for every arc ((u,a), (v,b)) node-attribute
(v,b) is topologically smaller than node-attribute (u,a). Denote by
N the number of node-attribute pairs.

Let ∆ be the set of N -tuples of nonnegative integers with terms

indexed by the topologically ordered set of node-attributes. Set

∆ is lexicographically ordered. Given α , β ∈ ∆, α is lexicograph-

ically smaller than β if there is a node-attribute (u,a) such that

α(u,a) < β(u,a) and α(v,b) = β(v,b) for all node-attributes (v,b)
that are topologically smaller than (u,a). The lexicographic order
well-orders ∆.

We present a map Γ from the state of the protocol to ∆ whose

value decreases lexicografically every time a node advertises a set

of attributes to its in-neighbors. The value of the term of Γ with

index (u,a), Γ(u,a), is defined by

• number of times node u elects attribute a plus the number

of times attribute a is newly advertised in sets of attributes

in transit from u to its in-neighbors, over all destinations.

Suppose that u receives set B of attributes advertised by its out-

neighbor v pertaining to some destination. Set B contains set B∗ of
newly advertised attributes. Let E and E ′ denote the set of attributes
elected at u before and after reception of B, respectively. We have:

• for every b ∈ B∗, the value of Γ(v,b) decreases by one;

• for every f ∈ E − E ′, the value of Γ(u,f ) decreases by one;

• for every e ∈ E ′ − E, the value Γ(u,e) increases by one plus

the number of in-neighbors of u.

Node u advertises set E ′ of attributes to its in-neighbors if E ′−E
is not empty or E − E ′ is not empty. If E ′ − E = ∅ and E − E ′ , ∅,

then no value of a term of Γ increases, while for every f ∈ E −

E ′ the value of Γ(u,f ) decreases. Hence, the value of Γ decreases

lexicographically. On the other hand, if E ′ − E , ∅, then for every

e ∈ E ′ − E the value of Γ(u,e) increases. Lemma A.1 asserts that for

every e ∈ E ′ − E, there is b ∈ B∗ such that e = a[uv] ⊕ b or there is

f ∈ E − E ′ such that f ≺ e . Both (v,b) and (u, f ) are topologically
smaller than (u, e). Therefore, the increase in the value of Γ(u,e)
is accompanied by a decrease in the value of a term of Γ with a

topologically smaller index, Γ(v,b) or Γ(u,f ). Hence, in this case as

well, the value of Γ decreases lexicographically. Since ∆ is well-

ordered by the lexicographic order, Γ cannot decrease indefinitely,

implying an end to the advertisement of sets of attributes. □

B DOMINANCE OF NON-RESTARTING
VECTORING PROTOCOLS

We assume that binary extension operation ⊕ is isotone for partial

order ⪯ and that every circuit in the network is strictly inflationary.

We want to show that the set of elected attributes at nodeu to reach

destination t in stable state, herein denoted by E(u, t), is the set of
dominant attributes from u to t , A∗(u, t).

Destination t always elects singleton {ϵ}. In stable state, the can-

didate attributes at u to reach t are extensions of elected attributes

at its various out-neighbors. The set of elected attributes at u to

reach t satisfies the following fixed-point equation:

E(u, t) = D⪯({a[uv] ⊕ b |b ∈ E(v, t), v out-neighbor of u}).

Lemma B.1. Every dominant attribute from a node to a destination
is the attribute of a simple path from the node to the destination.
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Proof. We show that the attribute of a path containing a circuit

either equals or is less preferred than the attribute of the path

obtained through removal of the circuit.

Let PCQ be a path from node u to destination t that contains
circuit C . Because of inflation, we write

a[Q] ⪯ a[C] ⊕ a[Q] = a[CQ].

And because of isotonicity, we obtain

a[PQ] = a[P] ⊕ a[Q] ⪯ a[P] ⊕ a[CQ] = a[PCQ],

showing that the attribute of path PCQ either equals or is less

preferred than the attribute of path PQ . □

Lemma B.2. Every non-null attribute belonging to the set of elected
attributes at a node to reach a destination is the attribute of a simple
path from the node to the destination.

Proof. Let a0 be a non-null attribute elected at node u0 other
than destination t . Attribute a0 is the extension of some non-null

attribute a1 elected at an out-neighboru1 ofu0. In turn, eitheru1 = t
and a1 = ϵ , or a1 is the extension of some attribute a2 elected at an

out-neighbor u2 of u1. Continuing this process of moving from a

node to one of its out-neighbors through extended attributes, we

either arrive at t or at a node visited before. Strict inflation excludes

the latter hypothesis, so that a0 is the attribute of a simple path

from u0 to t .
The argument above is made precise as follows. Suppose we are

given a0 ∈ E(u0, t), a0 , •, and u0 , t . Let u0u1 · · ·un−1 be the

longest simple path starting at u0 such that

ai = a[uiui+1 · · ·un−1] ⊕ an−1 ∈ E(ui , t),

for all i , 0 ≤ i < n − 1, and an−1 ∈ E(un−1, t). Either un−1 = t
or un−1 , t . In the former case, an−1 ∈ E(t , t) = {ϵ} and, thus,
a0 = a[u0u1 · · ·un−1] ⊕ ϵ = a[u0u1 · · ·un−1], showing that a0 is the
attribute of a simple path from u0 to t .

We now prove that the case un−1 , t leads to a contradiction,

thereby concluding that a0 is indeed the attribute of a simple path

from u0 to t . The fixed-point equation for E(un−1, t) asserts that
there is an out-neighbor un of un−1 and an attribute an ∈ E(un , t)
such that an−1 = a[un−1un ] ⊕ an . Therefore, we may write

ai = a[uiui+1 · · ·un−1] ⊕ an−1

= a[uiui+1 · · ·un−1] ⊕ a[un−1un ] ⊕ an

= a[uiui+1 · · ·un−1un ] ⊕ an ,

for all i , 0 ≤ i < n, and an ∈ E(un , t). Since u0u1 · · ·un−1 was the
longest simple path starting atu0 such thatai = a[uiui+1 · · ·un−1]⊕
an−1 for all i , 0 ≤ i < n − 1, it must be the case that uj = un for

some j , 0 ≤ j < n. Path unuj+1 · · ·un−1un is a circuit and it satisfies

aj = a[unuj+1 · · ·un−1un ] ⊕ an .

The circuit is strictly inflationary, so that aj ≺ an , which contradicts
the fact that both aj and an belong to E(un , t) and, thus, must be

incomparable. □

Lemma B.3. The attribute of every path from a node to a destina-
tion either equals or is less preferred than at least one of the attributes
elected at the node to reach the destination.

Proof. Let un−1 · · ·u1u0 be any path from node u = un−1 to

destination t = u0. We prove by induction that there is an−1 ∈

E(un−1, t) such that an−1 ⪯ a[un−1 · · ·u1u0]. (The indexing of the
nodes of a path from its destination towards its source simplifies

the induction proof.)

The base case is the election of ϵ at destination t , which is also the
attribute of the trivial path composed of t alone. For the induction
step, assume that there is ai ∈ E(ui , t) such that ai ⪯ a[ui · · ·u1u0].
From isotonicity, we write

a[ui+1ui ] ⊕ ai ⪯ a[ui+1ui ] ⊕ a[ui · · ·u1u0] = a[ui+1 · · ·u1u0].

The fixed-point equation for ui+1 implies that there is ai+1 ∈

E(ui+1, t) such that

ai+1 ⪯ a[ui+1ui ] ⊕ ai ⪯ a[ui+1 · · ·u1u0],

concluding the induction step.

For i = n − 1, we obtain an−1 ⪯ a[un−1 · · ·u1u0] with an−1 ∈

E(un−1, t), which is what we wanted to prove. □

Theorem B.4. If isotonicity holds and all circuits are strictly infla-
tionary, then the attributes elected at a node in stable state to reach
a destination are the dominant attributes from the node to the des-
tination, that is, E(u, t) = A∗(u, t) in stable state for every nodes u
and t .

Proof. We show that E(u, t) ⊂ A∗(u, t) and that A∗(u, t) ⊂

E(u, t). Let e ∈ E(u, t). From Lemma B.2, we known that e is the

attribute of a simple path fromu to t . Hence, from Lemma B.1, there

is a ∈ A∗(u, t) and a simple path from u to t with attribute a such

that a ⪯ e . Last, from Lemma B.3, there is e ′ ∈ E(u, t) such that

e ′ ⪯ a ⪯ e . Since the attributes of E(u, t) are pairwise incompa-

rable, it must be the case that e ′ = a = e . Thus, e ∈ A∗(u, t) and
E(u, t) ⊂ A∗(u, t).

The argument forA∗(u, t) ⊂ E(u, t) is analogous. Let a ∈ A∗(u, t).
There is path from u to t with attribute a. From Lemma B.3, there

is e ∈ E(u, t) such that e ⪯ a. From Lemma B.2, e is the attribute
of a simple path from u to t . Last, from Lemma B.1, there is a′ ∈
A∗(u, t) such that a′ ⪯ e ⪯ a. The attributes ofA∗(u, t) are pairwise
incomparable, so that a′ = e = a. Thus, a ∈ E(u, t) and A∗(u, t) ⊂
E(u, t). □
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