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Phase Unwrapping via Graph Cuts
José M. Bioucas-Dias, Senior Member, IEEE, and Gonçalo Valadão

Abstract—Phase unwrapping is the inference of absolute phase
from modulo-2 phase. This paper introduces a new energy
minimization framework for phase unwrapping. The considered
objective functions are first-order Markov random fields. We
provide an exact energy minimization algorithm, whenever the
corresponding clique potentials are convex, namely for the phase
unwrapping classical norm, with 1. Its complexity is

( 3 ), where is the length of the absolute phase do-
main measured in 2 units and ( ) is the complexity of
a max-flow computation in a graph with nodes and edges.
For nonconvex clique potentials, often used owing to their dis-
continuity preserving ability, we face an NP-hard problem for
which we devise an approximate solution. Both algorithms solve
integer optimization problems by computing a sequence of binary
optimizations, each one solved by graph cut techniques. Accord-
ingly, we name the two algorithms PUMA, for phase unwrapping
max-flow/min-cut. A set of experimental results illustrates the
effectiveness of the proposed approach and its competitiveness in
comparison with state-of-the-art phase unwrapping algorithms.

Index Terms—Computed image, discontinuity preservability,
energy minimization, graph cuts, image reconstruction, InSAR,
integer optimization, magnetic resonance imaging (MRI), phase
unwrapping (PU), submodularity.

I. INTRODUCTION

THE need for phase estimation is common to many imaging
techniques, from which we point up interferometric syn-

thetic aperture radar and sonar (InSAR/InSAS) [3]–[9], mag-
netic resonance imaging (MRI) [10], [11], and optical interfer-
ometry [12]. In InSAR, as in InSAS, two or more antennas mea-
sure the phase between them and the terrain; the topography
may then be inferred from the difference between those phases,
relying on simple geometric reasoning. In MRI phase is used,
namely, to determine magnetic field deviation maps, which are
used to correct echo-planar image geometric distortions [13], to
determine chemical shift-based thermometry [14], and to imple-
ment BOLDcontrast-based venography [15]. In optical interfer-
ometry, phase measurements are used to detect objects shape,
deformation, and vibration [12].

In all the examples above, the acquisition system can only
measure phase modulo- , the so-called principal phase value,
or wrapped phase. Formally, we have

(1)
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where is the true phase value (the so-called absolute phase
value), is the measured (wrapped) modulo- phase value,
and ( denotes the set of integers) is an integer accounting
for the number of multiples [5].

Phase unwrapping (PU) is the process of recovering the ab-
solute phase from the wrapped phase . This is, however, an
ill-posed problem, if no further information is added. In fact, an
assumption taken by most phase unwrapping algorithms is that
the absolute value of phase differences between neighboring
pixels is less than , the so-called Itoh condition [16]. If this
assumption is not violated, the absolute phase can be easily de-
termined, up to a constant. Itoh condition might be violated if
the true phase surface is discontinuous, or if the wrapped phase
is noisy. In either cases, PU becomes a very difficult problem, to
which much attention has been devoted [5], [7], [17]–[20], [21].

Phase unwrapping approaches belong mainly to one of the
following classes: path following [17], [22], [23], minimum

norm [19], [20], [24]–[26], [7], Bayesian/regularization [7],
[18], [27]–[32], and parametric modeling [33], [34].

Path following algorithms apply line integration schemes
over the wrapped phase image, and basically rely on the as-
sumption that Itoh condition holds along the integration path.
Wherever this condition fails, different integration paths may
lead to different unwrapped phase values. Techniques employed
to handle these inconsistencies include the so-called branch
cuts [17] and quality maps [5, Ch. 4].

Minimum norm methods try to find a phase solution for
which the norm of the difference between absolute phase
differences and wrapped phase differences (so a second-order
difference) is minimized. This is, therefore, a global minimiza-
tion in the sense that all the observed phases are used to compute
a solution. With , we have a least squares method [35].
The exact solution with is developed in [7] using network
programming techniques. An approximation to the least squares
solution can be obtained by relaxing the discrete domain
to , where M and N are, respectively, the number of lines
and columns, and applying FFT- or DCT-based techniques [5,
Ch. 5], [24]. A drawback of the norm-based criterion is that
it tends to smooth discontinuities, unless they are provided as
binary weights. norm performs better than norm in what
discontinuity preserving is concerned. Such a criterion has been
solved exactly by Flynn [19] and Costantini [20], using network
programming concepts. With the discontinuity pre-
serving ability is further increased at stake, however, of highly
complex algorithms [29], [31]. In particular, norm is gener-
ally accepted as the most desirable in practice. The minimization
of norm is, however, an NP-hard problem [29], for which ap-
proximate algorithms have been proposed in [5, Ch. 5] and [26].

The Bayesian approach relies on a data-observation mecha-
nism model, as well as a priori knowledge of the phase to be
modeled. For instance, in [36], a nonlinear optimal filtering is
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applied, while in [27], an InSAR observation model is consid-
ered, taking into account not only the image phase, but also the
backscattering coefficient and correlation factor images, which
are jointly recovered from InSAR image pairs; [37] proposes
a fractal-based prior, and [32] employs dynamic programming
techniques.

Finally, parametric algorithms constrain the unwrapped phase
to a parametric surface. Low-order polynomial surfaces are used
in [33]. Very often in real applications, just one polynomial is
not enough to describe accurately the complete surface. In such
cases the image is partitioned and different parametric models
are applied to each partition [33].

A. Contributions

The main contribution of the paper is an energy minimization
framework for phase unwrapping, where the minimization is
carried out by a sequence of max-flow/min-cut calculations. The
objective functions considered are first-order Markov random
fields, with pairwise interactions. The associated energy is,
therefore, a generalization of the classical norm, used in
phase unwrapping [25]. We show that, if the clique potentials
are convex, the exact energy minimization is achieved by a finite
sequence of binary minimizations, each one solved efficiently
from the computational point of view, by a max-flow/min-cut
calculation on a given graph, building on energy minimization
results presented in [38], [39], and [40]; we, thus, benefit from
existing efficient algorithms for graph max-flow/min-cut calcu-
lations [41]. Accordingly, we call the method to be presented
PUMA algorithm (for PU-max-flow). Besides solving exactly
the classical minimum norm problem for , PUMA is
able to minimize a wider class of energies, rendering flexibility
to the method.

In image reconstruction and in phase unwrapping, in partic-
ular, it is well known that unknown discontinuities pose a chal-
lenging problem (as well as an usual one in practice), for which
nonconvex clique potentials are critical to deal with [5, Ch.
5], [42]–[46]. Nonconvexity, however, turns our minimization
problem into an NP-hard one [29], [39], and part of the concepts
and results developed under the convexity assumption do not
apply any more. Namely, energy cannot be minimized by a se-
quence of binary minimizations, nor each one of these problems
can be solved by the former max-flow/min-cut calculations.

We also introduce an approximate algorithm that tackles
those issues by 1) enlarging the configuration space of each
binary problem and by 2) applying majorize minimize (MM)
[47] concepts to our energy function, which still allow
max-flow/min-cut calculations. For the sake of uniformity, we
still term the obtained algorithm PUMA. Experimental results
illustrate the state-of-the-art competitiveness of the presented
algorithms.

After this paper was submitted, Darbon [48] and Kolmogorov
[49], exploiting the concept of submodularity, independently
generalized the class of energies herein studied, in the convex
scenario. Besides pairwise terms depending on differences,
they have included unary convex terms. These class of energies
arise in many computer vision and image processing problems.
The algorithms they propose are similar to ours, replacing a
binary optimization by a sequence of two binary optimizations.

Fig. 1. Representation of the site (i; j) and its first-order neighbors along with
the variables h and v signalling horizontal and vertical discontinuities, re-
spectively.

A major contribution of Darbon and Kolmogorov is a tight
bound on the number of steps.

Other related works are the steepest descent algorithm of
Murota for minimizing functions [50], the very fast al-
gorithms of Darbon and Sigelle [51], Chambolle [52], and
Hochbaum [53], if pairwise terms are absolute differences.

II. PROBLEM FORMULATION

Fig. 1 shows a site
( is the usual image pixel indexing 2-D grid) and

its first-order neighbors along with the variables and sig-
nalling horizontal and vertical discontinuities, respectively; i.e.,

and signals a discontinuity.
Let us define the energy

(2)

where is an image of integers,
denoting multiples, the so-called wrap-count image,

is the observed wrapped phase
image, is the clique potential, a real-valued function,1 and

and denote pixel horizontal and vertical differences
given by

(3)

(4)

(5)

(6)

Furthermore, each of the above defined left-hand side terms
(3)–(6) is defined to be zero if any of the right-hand side indexes
[ or ] does not belong to .

Our goal is to find the integer image that minimizes en-
ergy (2), being such that , where is the esti-
mated unwrapped phase image. As will be seen in the next sec-
tion, this energy minimization approach yields the classical min-
imum norm formulation or a more general one, depending
on the clique potential .

We should stress that the variables and , conveying
discontinuity information, are introduced when available. In PU
jargon these images are the so-called quality maps. These maps

1The clique is a set of sites that are mutually neighbors. A clique function is
a function defined on cliques, i.e., it depends only on site variables indexed by
the respective clique elements.
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can also be used as continuous variables in , expressing
prior knowledge on phase variability. Quality maps can be
derived, for example, from correlation maps in InSAR, or from
phase derivative variance in a more general setting [5, Ch.3].
Nevertheless, in practice, quality maps are often very noisy or
unavailable, implying blind handling of discontinuities and,
therefore, calling for nonconvex potentials.

Although energy (2) was introduced deterministically in a
natural way, it can also be derived under a Bayesian perspective
as in [7]. Consider a first-order Markov random field prior on
the absolute phase image given by , where

, and is a nor-
malizing constant. Assuming that the wrapped phase is noise-
less, then . Therefore, the maximum a posteriori
(MAP) estimate exactly amounts to minimize with re-
spect to .

III. ENERGY MINIMIZATION BY A SEQUENCE OF BINARY

OPTIMIZATIONS: CONVEX POTENTIALS

In this section, we present in detail the PUMA algorithm. We
show that for convex potentials , the minimization of
can be achieved through a sequence of binary optimizations;
each binary problem is mapped onto a certain graph and a bi-
nary minimization obtained by computing a max-flow/min-cut
on it. Finally, we address a set of potentials tailored to phase
unwrapping.

A. Equivalence Between Local and Global Minimization

The following theorem is an extension of Lemma 1 in [7],
which, in turn, is inspired by Lemma 1 of [19]. Assuming a
convex clique potential , it assures that if the minimum of

is not yet reached, then, there exists a binary image
(i.e., the elements of are 0 or 1) such that

. Therefore, if a given image is locally
optimal with respect to the neighborhood

, i.e., if for all , then it is
also globally optimal.

Theorem 1: Let and be two wrap-count images such
that

(7)

Then, if is convex, there exists a binary image such
that

(8)

Proof: See the Appendix.

B. Convergence Analysis

In accordance with Theorem 1, we can iteratively compute
, where is such that it minimizes2

, until the the minimum energy is reached. There is
of course the pertinent question of whether the algorithm stops
and, if it does, in how many iterations. Assuming that ,
the next lemma, which is inspired in the Proposition 3.7 of

2Or at least decreases.

[48], leads to the conclusion that after iterations the algorithm
minimizes in .

Lemma 1: Let be a globally optimal minimizer of
on . Then, there exists an image that is a global mini-
mizer of on and

Therefore, can be found by minimizing with
respect to .

Proof: See the Appendix.
Assume that the range of spans over wrap counts. Then

its global minimizer is in the set , and, therefore, Lemma
1 assures that the iterative scheme

starting with , finds this minimizer in at most iter-
ations. Its complexity is, therefore, , where is the com-
plexity of a binary optimization.

C. Mapping Binary Optimizations Onto Graph Max-Flows

Let be the wrap count at time and pixel
. Introducing into (3) and (4), we obtain, respectively

(9)

(10)

After some simple manipulation, we get

(11)

(12)

where

(13)

(14)

Now, introducing (11) and (12) into (2), we can rewrite energy
as a function of the binary variables ,

i.e.,

(15)

Occasionally, and for the sake of notational simplicity, we use
the representation

(16)

where indices correspond now to the lexicographic column
ordering of , and .
Notice that with this representation some terms stand for
horizontal cliques whereas others stand for vertical ones (e.g.,
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and represent vertical and horizontal cliques,
respectively).

The minimization of (15) with respect to is now mapped
onto a max-flow problem. Since the seminal work of Greig et al.
[54], a considerable amount of research effort has been devoted
to energy minimization via graph methods (see, e.g., [38]–[40]
and [55]–[57]). Namely, the mapping of a minimization
problem into a sequence of binary minimizations, computed
by graph cut techniques, has been addressed in works [39] and
[40]. Nevertheless, these two works assume the potentials to
be either a metric or a semi-metric, which is not the case for
the clique potentials that we are considering: from (15), it can
be seen that as a consequence of the presence of

and terms (by definition both a metric and a semi-metric
satisfy the symmetry property). For this reason, we adopt the
method proposed in [38], which generalizes the class of binary
minimizations that can be solved by graph cuts. Furthermore,
the graph structures therein proposed are simpler.

At this point a reference to work [57] should be made: it in-
troduces an energy minimization for convex potentials also by
computing a max-flow/min-cut on a certain graph. However, for
a general convex potential that graph can be huge, imposing in
practice, heavy computational and storage demands.

Following, then, [38], we now exploit a one-to-one map ex-
isting between the energy function (15) and cuts on a directed
graph ( and denote the set of vertices and edges,
respectively) with nonnegative weights. The graph has two spe-
cial vertices, namely the source and the sink . An cut

is a partition of vertices into two disjoint sets
and , such that and . The number of vertices is

(two terminals, the source and the sink, plus the
number of pixels). The cost of the cut is the sum of costs of all
edges between and .

Using the notation above introduced, we have

(17)

where represents or and represents or . En-
ergy is a particular case of the class of functions
addressed in [38], with zero unary terms. Roughly speaking,3

a function of is graph representable, i.e., there exists a
one-to-one relation between configurations [i.e.,
points in the domain of ] and cuts on that
graph, if and only if holds

(18)

In terms of [see expression (17)] in equation (18) can be
stated as , which

3As defined in [38], a function E of n binary variables is called graph-repre-
sentable if there exists a graph G = (V ; E) with terminals s and t and a subset
of vertices V = fv ; . . . ; v g � V � fs; tg such that, for any configuration
� ; . . . ; � , the value of the energy E(� ; . . . ; � ) is equal to a constant plus
the cost of the minimum s-t-cut among all cuts C = S; T in which v 2 S, if
� = 0, and v 2 T , if � = 1 (1 � i � n).

Fig. 2. (a) Elementary graph for a single energy term, where s and t represent
source and sink, respectively, and v and v represent the two pixels involved in
the energy term. In this caseE(1; 0)�E(0;0) > 0 andE(1; 0)�E(1;1) > 0.
(b) The graph obtained at the end results from adding elementary graphs.

is verified due to convexity of . So, our binary function is
graph-representable.

The structure of the graph is as follows: first build vertices
and edges corresponding to each pair of neighboring pixels, and
then join these graphs together based on the additivity theorem
also given in [38].

So, for each energy term and [see expression
(15)], we construct an “elementary” graph with four vertices

, where represents source and the sink,
common to all terms, and represents the two pixels
involved [ being the left (up) pixel and the right (down)
pixel]. Following very closely [38], we define a directed edge

with the weight .
Moreover, if , we define an edge
with the weight or, otherwise, we define
an edge with the weight . In a similar
way for vertex , if , we define an
edge with weight or, otherwise,
we define an edge with the weight .
Fig. 2(a) shows an example where and

. Fig. 2(b) illustrates the complete graph
obtained at the end.

D. Energy Minimization Algorithm

Algorithm 1 PUMA: Graph Cuts Based Phase Unwrapping
Algorithm

Initialization , possible improvement
1: while possible-improvement do
2: Compute and for

every horizontal and vertical pixel pair .
3: Construct elementary graphs and merge them to obtain

the main graph.
4: Compute the max-flow/min-cut -source set;

-sink set .
5: for all pixel do
6: if pixel then
7:
8: else
9: remains unchanged

10: end if



702 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 3, MARCH 2007

11: end for
12: if then
13:
14: else
15: possible-improvement
16: end if
17: end while

Algorithm 1 shows the pseudo-code for the phase unwrapping
max-flow (PUMA) algorithm. It solves a sequence of binary
optimizations until no energy decreasing is possible.

Concerning computational complexity, PUMA takes
flops (measured in number of floating point operations),

where and stand for number of binary optimizations
and number of flops per max-flow computation, respectively. In
Section III-B, we have proofed that the algorithm stops in
iterations, where is the range of in wrap counts. There-
fore, . Concerning , in the results presented in
Section V, we have used the augmenting path type max-flow/
min-cut algorithm proposed in [41]. The worst-case complexity
for augmenting path algorithms is [58], where and

are the number of vertices and edges, respectively. However,
in a huge array of experiments conducted in [41], authors sys-
tematically found out a complexity that is inferior to that of
the push-relabel algorithm [59], with the queue-based selection
rule, which is . Thus, we herein take this bound.

Given that in our graphs and does not de-
pend on , the worst case complexity of the PUMA algorithm is
bounded above by . In Section V, we run a set of exper-
iments where the worst case complexity is roughly . This
scenario has systematically been observed.

Regarding memory usage, PUMA requires 7 bytes.

E. Clique Potentials

So far, we have assumed the clique potentials to be convex.
This is central in the two main results in the paper: the Theorem
1 and the regularity of energy (2). Both are implied by the in-
equality (34)

(19)

shown in Appendix, where .
What if we apply a function to the arguments of ? Using

the notation , we get the proposition

(20)

Now, noting that, by construction,4 and differ from each
other by multiples of , if we choose ,
where is any -periodic real valued function and ,
proposition (20) becomes

(21)

(22)

(23)

4Stated in the proof of Theorem 1.

Fig. 3. (a) Convex functionC(x) = jxj ; (b)Q (x) = x�W(x); (c) the
classical L norm potential given by V (x) = C[Q (x)].

Since any -sampling of is a monotone sequence, it is guar-
anteed that ; so, proposition (23)
follows from expression (19). Therefore, we have the following
result.

Proposition 1: The set of clique potentials considered in The-
orem 1 can be enlarged by admitting functions of the form

, where is a convex function, is a -periodic
function, and is a linear function.

It should be stressed that for such a potential, the regularity
condition (18) is also satisfied; it follows directly from (23). We
can, thus, conclude that the PUMA algorithm is valid for this
broader class of clique potential functions. We next give some
examples of possible clique potentials.

1) The Classical Norm: By far, this is the most widely
used class of clique potentials in phase unwrapping; it is given
by , where is the principal
phase value of defined in the interval . In the jargon,

is termed the wrapping operator. Since and differ
by a multiple of , then .
Therefore, in our setting, we identify immediately

, and .
As stated in the Introduction, methods using this clique poten-

tial find a phase solution for which norm of the difference
between absolute phase differences and wrapped phase differ-
ences (so a second-order difference) is minimized.

From above, we see that is convex given that . There-
fore, we conclude that, for this range of values, PUMA ex-
actly solves the classical minimum norm phase unwrapping
problem.

From now on, we refer to as the
-quantization function and denote .
Fig. 3 plots the potential , the quantiza-

tion function , and the classical norm given by
.

2) Convex Potential: Choosing any convex
and , we obviously get back to the convex potential
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case. For example, the quadratic clique potential
was used in work [7], under a Bayesian approach and a Mar-
kovian prior for the absolute phase. As already said, this poten-
tial tends to smooth phase discontinuities.

IV. NONCONVEX POTENTIALS

In image reconstruction, and in phase unwrapping in partic-
ular, images usually show a piecewise smooth spatial arrange-
ment; this is a consequence of the smoothness of the imaged ob-
jects themselves, and of the discontinuities introduced by their
borders. These discontinuities encode, then, relevant informa-
tion that should be preserved in the reconstructed image.

It is well known that, in an energy minimization framework
for image reconstruction, nonconvex clique potentials are desir-
able to allow discontinuity preservation (see, e.g., [60, Ch.3]) for
discussion about discontinuity adaptive potentials). We should
note here that, as we have shown in Section III-E, formally, a
nonconvex clique potential is allowed in the algorithm, as long
as every -periodic sampling is convex (about the issue of
convex functions on discrete domains see, e.g., [61]). It is, how-
ever, a trivial reasoning to conclude that this kind of nonconvex
potentials are not discontinuity preserving. We will not enter, in
this paper, into further detail on this subject.

A general nonconvex potential, nevertheless, makes the above
introduced algorithm not valid and the reason is twofold. First,
Theorem 1 demands a -periodically convex , i.e., a potential

such that every -periodic sampling of it is convex. Let us
use the terminology of [39] and call a 1-jump move the operation
of adding a binary image ; so, if is nonconvex it is not pos-
sible, in general, to reach the minimum through 1-jump moves
only. Second, as we emphasize in the sequence, it is trivial to
show that, with a general nonconvex , condition (18) does not
hold with generality for every horizontal and vertical pairwise
clique interaction. This means that we cannot apply the energy
graph-representation used in the binary optimization employed
in Algorithm 1 in Section III-D.

We now devise an approximate algorithm as a minor modifi-
cation of PUMA to handle those two issues.

Regarding the latter, as the problem relies on the nonregu-
larity of some energy terms , i.e., they do not verify
(18), our procedure consists in approximating them by regular
ones. We do that by leaning on majorize minimize MM [47]
concepts. Assume that we still want to minimize
given by (16). corresponds to and, therefore, to

. Consider the regular energy such that

(24)

i.e., majorizes . Define
and . Then

Therefore, the sequence is decreasing.
A possible solution to obtain the replacement terms is, for in-

stance, to increase term until
equals zero; the corresponding graph of

the Fig. 2 has no more negative edge weights. This solution,

Fig. 4. Replacing nonregular energy terms by regular ones; we end up with
an approximate energy. One of the possible approximations is to increase
E (0; 1).

while may not be the best (concerning energy decreasing), is
the simplest to implement: by observing that does not
enter into any of the source/sink edges in the graph, it suffices to
set the interpixel edge (see Section III-C) weight to zero
(thus assuring regularity).

In Fig. 4, we illustrate this energy approximation. We recall
that, using a notation abuse, [see (2)
and (15)]. The regularity condition (18), thus, can be written as

(25)

which, being a convexity expression, means that regularity and
convexity are equivalent for the energy that we are considering.
Continuous convex and concave functions are shown to empha-
size the regular/convex and nonregular/nonconvex parallel.5 We
note again that other energy approximations are possible and
eventually even better; for instance, equally increasing
and until condition (25) is satisfied. This issue is, how-
ever, out of the scope of this paper.

With respect to the first referred reason for non validity of
PUMA, our strategy is to extend the range of allowed moves.
Instead of only 1-jumps we now use sequences of -jumps, in-
troduced in [39], which correspond to add an image (incre-
ments can have 0 or values).

The approximate algorithm presented has proved outper-
forming results in all the experiments we have put it through;
in the next section, we illustrate some of that experiments.
Algorithm 2 shows its pseudo-code.6

Algorithm 2 PUMA (Nonconvex Cliques)

Initialization:
1: for all in ( is the maximum

jump size) do
2: possible-improvement
3: while possible-improvement do

5It should be noted that discrete functions f : �! are convex iff there
exists an extension of f; f : �! , that is also convex.

6We note that, preferably, the maximum jump size should be chosen to be
equal to the range of values of the unwrapped surface divided by 2�.
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4: Compute and for
every horizontal and vertical pixel pair .

5: Find nonregular pixel pairs [
]. If there is any, regularize it

using the MM method (for instance, set the linking
edge weight to zero).

6: Construct elementary graphs and merge them to obtain
the main graph.

7: Compute the max-flow/min-cut -source
set; -sink set .

8: for all pixel do
9: if pixel then

10:
11: else
12: remains unchanged
13: end if
14: end for
15: if then
16:
17: else
18: possible-improvement
19: end if
20: end while
21: end for

Finally, it should be noted that the question of what partic-
ular nonconvex potential to choose is a relevant one. The main
problems, in phase unwrapping, arise both from noise and
from discontinuities presence. The small amplitude noise (vari-
ance smaller than ) is well described by a Gaussian density,
meaning that the potentials near the origin should be quadratic.
In what relates to larger amplitude discontinuities, they should
not be too much penalized and, as such, it makes sense to
employ potentials growing much slower than the quadratic.
This is why it makes sense to choose potentials like, e.g., the
truncated quadratic [43] and the potential used by Geman and
Mclure [62].

V. PUMA APPLICATION EXAMPLES

In this section, we briefly illustrate PUMA performance
on representative phase unwrapping problems. The results
presented were obtained with MATLAB coding (max-flow
algorithm is implemented in C++),7 and using a PC workstation
equipped with a 1.7-Ghz Pentium-IV CPU.

Fig. 5(a) and (b) displays two phase images (256 256
pixels) to be unwrapped; they are synthesized from original
absolute phase surfaces formed by Gaussian elevations with
heights of and rad, respectively, and common standard
deviations and pixels, in the vertical and
horizontal dimensions, respectively. The wrapped images are
generated according to an InSAR observation statistics (see,
e.g., [7]), producing an interferometric pair, with correlation
coefficient 0.7 and 1.0, respectively. The wrapped phase images
are, then, obtained (for each pair), by computing the product of
one image by the complex conjugate of the other, and finally
taking the argument.

7Max-flow code made available at http://www.cs.cornell.edu/People/vnk/
software.html by V. Kolmogorov. See [41] for more details.

Fig. 5. (a) Wrapped Gaussian elevation with 25� height. The associated noise
standard deviation is 1:07 rad. (b) Wrapped Gaussian elevation with 50� height.
The associated noise standard deviation is 0 rad. (c) Image in (a) unwrapped
by PUMA. (d) Image in (b) unwrapped by PUMA. (e) Residues on the image
presented in (a): white and black pixels means positive and negative residues,
respectively. (f) Aliased regions (signalled by white pixels) of the image in (b).
(g) Energy decreasing for the unwrapping of image in (a). (h) Energy decreasing
for the unwrapping of image in (b).

Regarding the first image [Fig. 5(a)], the coherence value of
0.7 corresponds to a noise whose standard deviation is 1.07 rad,
thus inducing a huge number of phase jumps (residues), making
the unwrapping a hard task. Fig. 5(c) shows the corresponding
unwrapped surface by PUMA using a nonquantized norm
potential. Even with low-correlation induced discontinuities,
PUMA successfully accomplishes a correct unwrapping (error
free). We emphasize that our algorithm seeks the correct
wrap-count image, so it does not intend to get rid of the pos-
sible existing noise, whatsoever. Regarding the second image
[Fig. 5(b)], although the coherence value is at the maximum
(there is no noise), it presents phase rates large enough to
produce aliasing, such that the unwrapping becomes a hard
task. Fig. 5(d) shows the corresponding unwrapped surface by
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Fig. 6. Unwrapping times of a 14� height Gaussian surface with PUMA, using
a PC workstation equipped with a 1.7-Ghz Pentium-IV CPU: time (s) versus
image size (n). Time grows roughly asO(n) in all the four shown experiments.
An O(n ) line is shown for reference. (A) Gaussian surface with 1.07 rad
interferometric noise unwrapped with a nonquantized L norm. (B) Gaussian
surface without interferometric noise unwrapped with a nonquantizedL norm.
(C) Gaussian surface with 1:07 rad interferometric noise unwrapped with a clas-
sical (quantized) L norm. (D) Gaussian surface without interferometric noise
unwrapped with a classical (quantized) L norm.

PUMA using again a nonquantized norm potential. Even
with aliasing induced discontinuities, PUMA successfully
accomplishes a correct unwrapping (error free). For both the un-
wrappings, we have chosen the nonquantized norm potential,
as it shows a good performance regarding the unwrapping of this
kind of noisy/aliased wrapped surfaces [7]. Fig. 5(e) shows the
residues existing on the image shown in Fig. 5(a); white pixels
are positive residues and black pixels are negative residues. We
point out that it was not supplied any discontinuity information
to the algorithm. Fig. 5(f) shows the regions of the original image
that present aliasing (white pixels region). Figs. 5(e) and 5(f)
show the energy evolution along the fifteen and 26 iterations
taken by the algorithm to perform the unwrapping of the images
in Figs. 5(a) and 5(b), respectively. It is noticeable a major
energy decreasing in the first few iterations.

As referred to in Section III-D, we have observed approxi-
mately an complexity (where is the size of the input
image) in the experiences we have run with PUMA. Fig. 6 illus-
trates this for the unwrapping of the Gaussian surface with and
without noise, and employing two kinds of clique potentials.

Fig. 7(a) is analogous to Fig. 5(a), but now the original phase
surface is a Gaussian with a rad height and a quarter of the
plane set to zero. This null quarter causes, therefore, many dis-
continuities, which renders a very difficult phase unwrapping
problem. It should be noted that, again, we do not provide any
discontinuity information to PUMA in this experiment. Fig. 7(b)
shows the tentative unwrapped image with a classical norm.
With such a potential, the computed phase is useless. Fig. 7(c)
shows a successful, with an error of in just one pixel (the
dark among white ones in the border), unwrapping in 12 itera-
tions, for which the energy decreasing is shown in Fig. 7(h). Fig.
7(d) shows the mesh corresponding to 7(c). This unwrapping
was obtained using the approximate version of PUMA with the
nonconvex potential depicted in Fig. 7(g), and a maximum jump
size . In Fig. 7(e) and 7(f), we show, respectively, the non-
regular horizontal and vertical cliques during the first iteration

Fig. 7. (a) Wrapped Gaussian elevation with a quarter of the plane with zero
height. (b) Image in (a) tentatively unwrapped with a classical L norm clique
potential. (c) Image in (a) successfully unwrapped (3� 2� error in one pixel)
using a nonconvex clique potential. (d) A “3-D” rendering of the unwrapped
image. (e) Nonregular horizontal cliques (white signalled) during the first iter-
ation (successful unwrapping). (f) Nonregular vertical cliques (white signalled)
during the first iteration (successful unwrapping). (g) Nonregular clique poten-
tial employed. (h) Energy decreasing along the successful unwrapping.

of the algorithm (signalled as white). The number of nonregular
cliques is relatively small (235 and 243, respectively).

Fig. 8(a) shows a phase image (152 458 pixels) to be un-
wrapped. It was obtained from an original absolute phase sur-
face, that corresponds to a (simulated) InSAR acquisition for
a real steep-relief mountainous area inducing, therefore, many
discontinuities and posing a very tough PU problem. This area
corresponds to Long’s Peak, CO, and the data is distributed
with book [5]. The wrapped image is generated according to
an InSAR observation statistics (see, e.g., [14]), producing an
interferometric pair; by computing the product of one image
of the pair by the complex conjugate of the other and finally
taking the argument, the wrapped phase image is then obtained.
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Fig. 8. (a) Wrapped phase image obtained from a simulated InSAR acquisition
from Long’s Peak, CO (data distributed with [5]). (b) Image in (a) unwrapped
by PUMA (32 iterations). (c) Discontinuity information given as input to the
unwrapping process. White pixels signal discontinuity locations. (d) The total
discontinuity information at disposal. White pixels signal discontinuity loca-
tions. (e) Energy decreasing for the unwrapping of image in (a). (f) The poten-
tial employed.

Fig. 8(d) shows a quality map (also distributed with book [5])
computed from the InSAR coherence estimate (see [5, Ch.3])
for further details). However, to illustrate the discontinuity pre-
serving ability of the PUMA method with nonconvex poten-
tials, we have reduced, substantially, the number of supplied dis-
continuities in the algorithm. The corresponding quality map is
shown in Fig. 8(c). The PU problem thus obtained is far more
difficult than the original (i.e., using the complete quality map)
and a nonconvex potential is able to solve it. The resulting phase
unwrapped is “3-D” rendered in Fig. 8(b), corresponding to
an error norm (variance of the image given by the difference
between original and unwrapped phase images) of 0.6 rad .
The unwrapping was obtained using the approximate version
of PUMA, with . In Fig. 8(f), the employed nonconvex,
quantized, potential is depicted. The correspondent analytical
expression is given by . Fig. 8(e) illus-
trates the energy evolution with the algorithm iterations.

Fig. 9(a) shows another phase image (257 257 pixels) to be
unwrapped, which was synthesized from an original surface (dis-
tributed with the book [5]) consisting of two “intertwined” spirals
built on two sheared planes. It should be noticed that the original
phase surface has many discontinuities, which make this an ex-
tremely difficult unwrapping problem, if no information is sup-
plied about discontinuities locations. The approximate version
of PUMA is able to blindly unwrap this image as is shown in

Fig. 9. (a) Wrapped phase image corresponding to an original phase surface
of two intertwined spirals in two sheared planes (data distributed with [5]).
(b) Image in (a) blindly unwrapped by PUMA (31 iterations). (c) A “3-D” ren-
dering of the unwrapped image. (d) Energy decreasing for the unwrapping of
image in (a). Notice that no discontinuities are supplied to the algorithm.

Fig. 9(b), by using a maximum jump size and a nonconvex
potential given by the following analytical expression:

(26)

Fig. 9(c) shows a “3-D” rendering of the unwrapped surface and
Fig. 9(d) shows the decreasing of the energy, along 31 iterations,
in the unwrapping process.

We emphasize that we obtained a correct (error free) unwrap-
ping except for a few (ten or so) pixels; these are pixels that in
image Fig. 9(a) are in the border of the two spirals and further-
more present continuity with both vertical and horizontal neigh-
bors. This is considered an image artifact and not an error of the
algorithm.

Fig. 10(a) shows another phase image (256 256 pixels) to
be unwrapped. As in [31], it is a kind of cylinder upon a ramp
and has a uniform noise of 3 rad. The result of unwrapping this
image using the approximate version of PUMA is shown in Fig.
10(b). It was employed the nonconvex potential

(27)

and a maximum jump size of . Fig. 10(c) shows the pixels
where the unwrapping went wrong; it amounts to only 0.39%
of the total pixels. It should be noticed that no discontinuity in-
formation was supplied to the algorithm, which employed 43
iterations along nearly 100 s. Fig. 10(d) depicts the employed
potential. The results here presented show an apparent more ac-
curate and fast phase unwrapping than those reported in [31]
(note that we use four neighbors for each pixel).

Given the quite different problems presented above, a natural
question arises: Given a certain particular PU problem, what po-
tentials and scheduling should be taken? Firstly, we stress that a
proper answer to this question is out of the scope of the present
paper. However, let us remark that for the problem in Fig. 5 any
kind of nonquantized potential proved to work in all the experi-
ences we have put it through; regarding Fig. 7, we found that most
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Fig. 10. (a) Wrapped phase image corresponding to an original phase surface
given by a kind of cylinder upon a ramp. In all the images, there is a uniform
noise of 3 rad (data reported in [31]). (b) Image in (a) blindly unwrapped by
PUMA (43 iterations). (c) 0.39% of the total number of pixels (shown in white)
had a wrong unwrapping. (d) The potential employed.

of the potentials with exponent less than one are suitable; with re-
spect to Figs. 8 and 10, a more fine tuning of an appropriate po-
tential had to be carried out, and finally, to attain a successfully
solution of the difficult problem presented in Fig. 9, an even more
thorough fine tuning was required. Regarding scheduling, a sim-
ilar pattern of tuning needs was found; the values presented in the
paper proved to give small schedules good enough to solve the
problems. Although we put emphasis in that PUMA algorithm
allows a large family of potentials and move spaces, which gives
flexibility to address different phase unwrapping problems, the
question of finding the more suitable ones is relevant and to be
addressed in the future. It is worth mentioning that there exist reg-
ularization criteria that are, perhaps, more suitable at handling
PU problems due to aliasing induced by high gradients, or due
to noisy images. As an example, we mention work [63] which
employs a second-order Markov random field. Nevertheless, in
what regards blindly preserving discontinuities, the criteria that
we adopt here perform very well.

VI. CONCLUDING REMARKS

We developed a new graph cuts based phase unwrapping
methodology, which embraces, in particular, the minimum
norm class of PU problems. The iterative binary optimization se-
quence proposed in the M algorithm [7] was generalized to a
broader family of clique potentials; this broader set is now given
by the composition of any convex pairwise function, depending
only on differences, with the sum of a -periodic with a linear
function. Furthermore, each binary optimization problem in the
above referred sequence is solved by applying results on energy
minimization using graph cuts from [38]. These optimizations
are computed efficiently using max-flow/min-cut algorithms
well known from combinatorial optimization. The proposed
algorithm, termed PUMA, is an exact solver, in particular, of
the minimum norm class of PU algorithms, for ; its

computational complexity is , where is the number
of multiples and is the complexity of a max-flow
computation in a graph with nodes and edges. In practice,
we have observed that the complexity is , what is in line
with other reports on graph cuts based optimization.

Moreover, we have also addressed the phase discontinuities
issue by employing nonconvex discontinuity preserving poten-
tials. As this turns out to be an NP-hard problem, we devised
an approximate version of the PUMA algorithm by leaning on
two main ideas: first, to apply majorize-minimize approxima-
tion, which allows us to exploit the graph cuts binary optimiza-
tion framework; second, to enlarge the size of allowable bi-
nary moves, thus coping with the local minima arising from
nonconvex potentials. A set of phase unwrapping experiments
presented illustrates the state-of-the-art discontinuity preserving
abilities of PUMA.

APPENDIX

Proof of Theorem 1: This proof parallels the proofs of
Lemma 1 in the appendixes of [7] and of [19], with the appro-
priate modifications to deal with the more general clique poten-
tials here employed.

Define , for where
, with and de-

noting the number of lines and columns respectively (i.e., the
usual image pixel indexing 2-D grid). Given that the energy

depends only on differences between elements of , we
take for . Define and
the wrap-count image sequence , such that

, and

(28)

The energy variation can be de-
composed as

Since by hypothesis, then at least one of the terms
of the above sum is negative. The theorem is proved if we

show that the variation
satisfies , where , for any

. This condition is equivalent to

(29)

for . Introducing (2) into (29), we obtain
, where

(30)

(31)
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where is the clique potential, and and are given
by (3) and (4), respectively, computed at the wrap-count image

. To prove (29), we now show that the terms of corre-
sponding to a given site have positive sum. The
same is true concerning .

The difference , for , is a mono-
tone sequence. This is a consequence of the definition (28):
if the sequence is monotone increasing; if

the sequence is monotone decreasing. There-
fore, the sequence , for , is also mono-

tone. Define , and ,
and without loss of generality let us assume8 . We
will show that the sum of terms of , corresponding to the site

is positive

(32)

By hypothesis, is convex. Also by hypothesis, , so
. Thus

(33)

As is convex, . So,
from (33)

(34)

The same reasoning applies to .
Proof of Lemma 1: The proof is inspired in the Proposi-

tion 3.7 of [48]. The main difference is that the class of energies
herein considered does not have unary terms. The implication of
this is that our steepest descent algorithm, in each steep, finds a
move in the set , whereas the presence of unary
terms imposes the search in the larger set , as pro-
posed in [48, Ch.3.3] and [49].

Define and . Let be the set of
minimizers of on . If for ,
then and the lemma is proved by choosing .
Let us then assume that for . We
proceed by contradiction supposing that , for all

, i.e., for all there exists at least one site
such that

(35)

Given and , define image with
if and zero elsewhere. At least one element of
takes the value and all elements of are less ou equal to
. Therefore, we have .

8The only possibilities are either a � b � c or a � b � c, because the
sequence f�� g is monotone as we have shown.

Since is a linear combination of convex terms, each
one depending only on a difference of two components, then
a reasoning based on (32) leads to

The right-hand side of the above inequality is nonnegative, for
is a global minimizer in . If , hypothesis
(35) would be contradicted because . We then have

but . To verify this, let us analyze the differences
, having in mind that and .

If , then and . Otherwise,
. Then, , contradicting the fact that

is a global minimizer of on . This ends the proof.
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