From diversity and denoising to phase imaging
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Abstract— Many imaging techniques,e.g., magnetic resonance means of local planes. The proposed approach requires a
imaging (MRI), yield phase images. In these, each pixel re- simulated annealing computation which is a (nowadays) too
trieves the phase up to a modul_c27r r_ad ambiguity, i.e, the much slow optimization technique.
phase wrapped around the principal interval [—-7 =(. Phase
unwrapping (PU) is, then, a crucial operation to obtain ab-
solute phase, which is what embodies physical informationlf ~A. Contributions

the phase difference between neighbor pixels is less tham The main contribution of this paper is to present an algo-

rad, then, phase unwrapping can be obtained unambiguously. . . : e
This, however, is not always the caseE.g., in MRI, where rithm that accomplishes both phase unwrapping and dempisin

absolute phase can be proportional to temperature, we often ~ Our approach is Bayesian. We adopt an observation model
face neighbor phase differences much larger thanr rad. The that is 27-periodic, and discontinuity preserving MRF priors
PU problem is even more challenging for noisy images. This for the absolute phase. A MAP criterion infers the phase by

paper proposes a diversity approach, which consists of usin e _ T heso
two (or more) images of the same scene acquired with differén _er)lf(]pIOI;[Ing.tgl;qrapE Cutts base_d etnerg'y minimization tec u
frequencies. Diversity grants an enlargement of the ambigty € algonthm has W‘? main s ?ps. )
interval [—m 7(, thus, allowing to unwrap images with high 1) Phase unwrapping: we input two (or more) different

phase rates. Furthermore, this paper presents a multi-redation frequency interferograms (of the same scene), which
;ecmhg;?:wingoamp?cl)(s?er?ce)r?()ls'l\r}l%rlyg\? :g;’gg:ﬁteﬁége (Fh)/llrg\lljﬁlel\r/lnR\l/:v)lth provides an extension of tHe-m, ) ambiguity interval
rationale, and apply energy minimization techniques basedn and, consequently., an increasing of the phase rates _that
graph cuts. We illustrate the performance of the algorithm by still allow unwrapping to_be a.well-posed problem. This
showing experimental results, and argue that it is, as far asve frequencydiversity technique is put forward through a
know, state-of-the art competitive. graph-cuts algorithm [6] that minimizes a MRF com-

posed of a sinusoidal data term plus a non-isotropic total

. INTRODUCTION variation (TV) pl’iOI’ [6]

L . 2) Denoising: we achieve denoising by an iteratimelti-
There are nowadays many applications based on phase im- . A
. . . precision MAP-MRF energy minimization graph-cuts

ages. Namely, interferometric synthetic aperture rade84R) . . . .
. . - . algorithm. As in the previous step, (Phase unwrapping),
is used to the generation of digital elevation models, and L . ; ! .

. . . . . the data term is sinusoidal, while a discontinuity pre-
magnetic resonance imaging (MRI) ieg., angiography. In . - S .

. . o serving denoising prior is considered [7], [8].

all of these imaging systems, the acquisition sensors rebd o
the cosine and the sine components of the absolute phase; Il. PROPOSED EORMULATION
that is, we have access only to the phase mo@ulcthe so- ) _
called interferogram. Besides the sinusoidal nonlingatite A Posterlor_ densty_ _
observed data is corrupted by noise. Due to these degradaife consider, as ire.g., [9], the observation data model to
tion mechanisms, phase unwrapping is known to be a vérg given by (1) ‘
difficult problem. In fact, if the magnitude of phase vamati z=eF4n, (1)

between r_1_e|ghbor_ plx_els is larger than ie, the so-called where F has the meaning of frequency, is the absolute
Itoh condition [1] is violated, then the inference of tBe phase, andh a zero-mean, circular, Gaussian noise. The log-

multiples is an ill—posed. probl_em_..These viplations may qfkelihood of ¢, given the observegh — angle(z), is basically
due to undersampling, discontinuities, or noise. see [9]) given by (2)

Frequency diversity based PU algorithms are scarce. We are
aware only of the ones proposeq in [2], [3], and [4]. Rega;dm F(d|) = — cos() — F). @)
the first one it presents interesting but error prone algorit o o _
The second one is a multidimensional version of the minimufgonsidering also that the prior is a MRF, then the logarithm
L? norm type of PU algorithm [5], with relaxation to theof the posterior density is given by (3)
continuum. The weaknesses of this approach are long-tamili _
in particular the oversmoothing of high phase rate slopes. (9) Z cos( 0i) + 1 Z V(i 95) 3)
and discontinuities. Concerning the third, it consists of a ~—
algorithm whose goal is to approximate the true surface by Data fidelity term Prior term

where¢ = e , V is a, to be specified, potential
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under the grant SFRH/BD/25514/2005, and under the basitsftm Instituto and finally,. is the p_rior. parameter th‘_at sets the relative weight
de telecomunicagdes. between the data fidelity and the prior terms.
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B. Diversity

In this paper we consider frequency diversity which is par-
ticularly used in various areas, such ag,, MRI, echographic
Doppler, weather radar, and INSAR. Namely, we deal with two 8
(for the sake of simplicity) frequencie®, = p/q, F> = r/s 6
where {p,q,r, s} € N. Assuming that observations (1) are
independent for each frequency, the log-likelihood is gileg

(4) 2
F(@lh1,12) = —cos (Y1 — F1¢) — cos (Y2 — Fod) . (4) 40 0 40

We have already alluded (Section I-A) to the advantage thg§ 1. piot of a half-quadratic potential

frequency diversity gives in extending ther [ ambiguity

interval. Stating it more clearly, it is easy to show that $iuen

of two cosine functions, having as in (4) different frequesc . . o Lo

F\ = p/q and Fy = /s, where {p,q}, {p.7}, {q,s}, and being convex, which confers some optimization “easinei$s”,
{r, 5} are coprime integetsresults in a third periodic function Still has some discontinuity preservability p_rop_er‘hes _
whose period ig x s; as the initial functions do have periods e are aware of only three integer optimization algorithms,
of respectivelyg and s, we conclude that the period is, inthat are_able to prc_md_e a global minimum for a posterior
general, extended and so the ambiguity reduced. This is §leray like (8), which is composed by a non-convex data
“beat production”, long known in wave physics. It is a welfidelity term and a convex prior poten_ual. Her_eln we refer
known behaviore.g., from wave phenomena, that the greatdP [6]. as it deals with our non-isotropic TV prior. As long
the beat period extension, the smaller the difference ewe®S the energy is a levelable function, i.e., a function that
global and local maxima. Furthermore, it is also well knowAdmits a decomposition as a sum on levels, of functions of its

that beat period extension brings noise amplification. Thy@riables level-set indicatrices at current level (seg, [B]is
trade-off should then be taken into account. easy to build a source-sink graph such that its min-cut gives

the sought global minimizer. For the sake of simplicity we
, . do not describe the above mentioned energy decomposition
C. Phase unwrapping with diversity on level-set dependent functions, as we will not describe
Replacing the data fidelity term in (3) with that given bythe graph construction; we just mention that graph min-cuts
(4), i.e, considering diversity, we obtain based algorithms have been proven very popular in computer
_ ) ] vision, as there are plenty of low-order polynomial comjfilex
E(9) = ZGZV — 003 (Y1, — Fi¢h) — cos (2, — Foi) algorithms to compute them.

+ oY Vi(dnd). (5)

(i,4)€E D. Denoising with multi-precision

In this section we solve only the phase unwrapping problem.For denoising we take a half quadratic potential type like
So, by admitting a noiseless environment, we may considée one plotted in Fig.1. This potential is quadratic in aigiar
that the unwrapped (true) phagds given by: neighborhood of radiug in order to model Gaussian noise,
and with a flat trend elsewhere to preserve discontinuifieg [

Fi¢ =y + 2k, ®) e choose the radius of because we expect to get (most of
and the) noise wrapped into the intenfatr, = ( after the previous
Fop = g + 2ka, (7) phase unwrapping step.

_ ) ) For the sake of clarity we refer back to the posterior density
for the two independent observations with frequendiesand expression (3), which writes energy Bs= E(¢). Our goal is

Fy, respectively. For th_e sake of simplicity we can deal wit{b computes* = argmin [E(¢)]. We note that the objective
(6) only, and (5) turns into: function, E(¢), is non-convex (both in the data fidelity term
Fy and in the prior term), which makes this optimization prable
Ek) = Z — Cos (1!121. - E(ﬂm - 2’“11‘”)) very difficult. To circumvent this problem we discretize the
icy domain of E, using a discretization interva\. In doing this,
+ Z V (¢1, — 2k1,, 01, —2k1,), (8) we convert the minimization irRV!, whereV denotes the
(i,9)€E set of pixels, into a combinatorial problem that may be slve
with a correspondingly combinatorial optimizatiorefficiently by computing flows on appropriate graphs. Furthe
(minimization) to be done on variableg;,. We take More,we choose to make the_den0|5|ng_opt_|m|zat|on using one
V (1, — 2k1,,01, —2k1,) = |ki — kj| the, so-called, frequency data only. Otherwise the objective function gets
non-isotropic total variation (TV); in spite of such a paiah huge amount of local minima and, as a result, the problem is

1Two integer numbers are said to be coprime if their greatestnaon 2In a sense, this can be interpreted as the most nonconvese afotivex
divisor is the unity. functions



intractable. In doing this we are deciding for a sub-optimakries of experiments on simulated and real data have been

solution. systematically state-of-the art.
We adopt a strategy in which the minimum Bfis searched
for in a sequence of increasing precisions. This way we both I1l. PROPOSED ALGORITHM

avoid getting stuck in local minima (which would be probable

had we started with high precision), and we probably geteclogl Tohriethg]re\l/t'%lgsns?set(;tlg?z Clﬁgg?ﬁwlrg Olijr: DSTIZS(; ;rr?ggtwgn
to optimization inR/Vl. To this end, let us defing € v, 29 ' P bping stag

5; € {0, 1}, and the sets denoising. Algorithm 2 shoyvs a simple tyvo lines high level
pseudo-code of our phase imaging algorithm.
MY, A) = {opeRY ¢ =¢)+5A
( ) { } Algorithm 2 Phase imaging algorithm

MP(¢',A) = {¢> eRM ¢ = ¢ — 5iA} ; 1: Do phase unwrapping with diversity
2: Do denoising with multi-resolution

whereA € R.

Algorithm 1 shows the pseudo-code for our optimization
scheme. In the next section we show some relevant experimental

results.

Algorithm 1 Multi-precision denoising

Initialization: ¢ = v {Interferogram, successup = false, IV. EXPERIMENTAL RESULTS
successdown = false

N N In this section, we briefly illustrate the performance of
1 for A =27 x {2°,271,...,27"} do our algorithm on two representative problems for wich phase

2 while (successup = false OR successdown = falk®) ,nwrapping is a hard problem due to high phase rates of the
3 if syccessup = falsthen unwrapped images.

4 ¢ = arg MMge rru (g,0) E(¢) Fig. 2 (a) displays an image which is given by a Gaussian
5: if E(¢) < E(¢) then having maximum height o607 rad height. Figs. 2 (b) and

6: ¢=¢ (c) show the corresponding wrapped images acquired with
7 else frequenciesF; = 1/1 and F» = 1/5 respectively and having

8 successup = true signal to noise ratio SNR- 4 dB. Fig. 2 (d) displays an image

9: end if of the unwrapped Gaussian, and Fig. 2 (€)-B rendering.

10: end if Fig. 2 (f) shows a3-D rendering after the denoising. It is
11 if successdown = falsthen clear that the algorithm made a perfect phase unwrapping (up
12: ¢ = argmingc /o4 Ay £(P) to a no-meaning additive constant) for which the diversity
13: if £(¢) < E(¢) then information was essential. Concerning the denoising step,
14: ¢:@ the performance is characterized by a improvement ISNR
15: else = 0.0187 dB. This, slight denoising is reflected in Figs. 2
16: successdown = true (h) and (i), which show the histograms (the axis are in rad)
17 end if corresponding to the surfaces rendered in Figs. 2 (e) and
18: end if (f), respectively. It is noticeable that the denoising esathe

19: end while secondary modes in the histogram.

20: end for Fig. 3 is similar to the Fig. 2 but the starting image is

sheared quadratic ramp having maximum heigh22if rad.
. . The frequencies of acquisition af§ = 1/1 and F» = 1/11
Our glgorlthm engages on a gregc_iy succession of up arré%i)ectively and have SNR 7 dB. Again the algorithm made
down binary optimizations. The precision of the minimipati 2 perfect phase unwranping for which the diversity infoiorat
A, starts with the valu@r and ends with the valugr/(2V) P P pping y

where N is a depth of precision. We point out that even | as essential. Concerning the denoising, it has ISNR4792

all the computations could have been done with the highes'%' It IS notlce_zable_that the denoising erases the secondary
modes in the first histogram.

A resolution level from the very beginning, choosing this _. ; ) .
: . . . S Still referring to the histograms, the ones corresponding
multi-resolution schedule increases dramatically (aibigiic o . .
to the noisy images show, in general, a multi modal shape.

improvement) the algorithm speed. .
i L - esides the central mode around zero, there are some modes
To solve the binary optimizations shown in lines 4 and 19 . e
: : a(r]ound multiples of-27 and2x. Those correspond to “spikes
of Algorithm 1, we use the graph-cuts technique presenté . L
. = . as a result of the data observation model. After denoisiey th
in [11]. We further add that thé” is a majorizer, on the :
. . L do disappear.
prior terms, of E. So we apply a majorize-minimize (MM)
[12] technique such as the one applied in [7]. For details see
eg. [7], [11]. We stress that we do not have any guarantees
of reaching a global minimum with Algorithm 1. This is so We have proposed a phase imaging algorithm based on
because, with generality, we are dealing with both non-eenvphase unwrapping with diversity, and denoising with multi-

data fidelity terms and prior terms. However, results in precision. Our approach is a MAP-MRF one. We have chosen

V. CONCLUDING REMARKS
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. - . . ] Fig. 3. (@) Original sheared quadratic ramp phase imagelnfape in (a)
Fig. 2. (a) Original Gaussian ramp phase image. (b) Image)iw(apped g : ; .

with a relative frequency ofl. (c) Image in (a) wrapped with a relative wriap_pe(: with a rel;clltlve frgqbency af. éc) Imag;e In (ﬁ) Wrap_ped with a d
frequency of1/5. (d) Unwrapped image from the previous wrapped imagerse ative r(te]quenc;y ob/ll.é ) Unwrappe L;ngge r(;mht € previous vx(/jrappe
shown in (b) and (c). (e3-D rendering of the image in (d). (§-D rendering gt‘ggfesn dser(i)r%n O'fn tr(1e) ir?qr;ge(ci)ﬁ Egzﬁgntr?em:j%n%istinz g:p?erﬂgto(gr)éngf)
of the image in (d) after the denoising step. (g) Histogramresponding ’

to the surface rendered in (e). (h) Histogram correspontinthe surface corresponding to the §un‘ace rendered in (e). (h) Histogramesponding to
rendered in (f) ' the surface rendered in (f).
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