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Abstract— Many imaging techniques,e.g., magnetic resonance
imaging (MRI), yield phase images. In these, each pixel re-
trieves the phase up to a modulo-2π rad ambiguity, i.e., the
phase wrapped around the principal interval [−π π(. Phase
unwrapping (PU) is, then, a crucial operation to obtain ab-
solute phase, which is what embodies physical information.If
the phase difference between neighbor pixels is less thanπ
rad, then, phase unwrapping can be obtained unambiguously.
This, however, is not always the case.E.g., in MRI, where
absolute phase can be proportional to temperature, we often
face neighbor phase differences much larger thanπ rad. The
PU problem is even more challenging for noisy images. This
paper proposes a diversity approach, which consists of using
two (or more) images of the same scene acquired with different
frequencies. Diversity grants an enlargement of the ambiguity
interval [−π π(, thus, allowing to unwrap images with high
phase rates. Furthermore, this paper presents a multi-resolution
technique to make denoising. We formulate the problem with
a maximum a posteriori - Markov random field (MAP-MRF)
rationale, and apply energy minimization techniques basedon
graph cuts. We illustrate the performance of the algorithm by
showing experimental results, and argue that it is, as far aswe
know, state-of-the art competitive.

I. INTRODUCTION

There are nowadays many applications based on phase im-
ages. Namely, interferometric synthetic aperture radar (InSAR)
is used to the generation of digital elevation models, and
magnetic resonance imaging (MRI) in,e.g., angiography. In
all of these imaging systems, the acquisition sensors read only
the cosine and the sine components of the absolute phase;
that is, we have access only to the phase modulo-2π, the so-
called interferogram. Besides the sinusoidal nonlinearity, the
observed data is corrupted by noise. Due to these degrada-
tion mechanisms, phase unwrapping is known to be a very
difficult problem. In fact, if the magnitude of phase variation
between neighbor pixels is larger thanπ, i.e., the so-called
Itoh condition [1] is violated, then the inference of the2π
multiples is an ill-posed problem. These violations may be
due to undersampling, discontinuities, or noise.

Frequency diversity based PU algorithms are scarce. We are
aware only of the ones proposed in [2], [3], and [4]. Regarding
the first one it presents interesting but error prone algorithms.
The second one is a multidimensional version of the minimum
L2 norm type of PU algorithm [5], with relaxation to the
continuum. The weaknesses of this approach are long-familiar
in particular the oversmoothing of high phase rate slopes.
and discontinuities. Concerning the third, it consists of an
algorithm whose goal is to approximate the true surface by

This work was supported by the Fundação para a Ciência e Tecnologia,
under the grant SFRH/BD/25514/2005, and under the basic funds to Instituto
de telecomunicações.

means of local planes. The proposed approach requires a
simulated annealing computation which is a (nowadays) too
much slow optimization technique.

A. Contributions

The main contribution of this paper is to present an algo-
rithm that accomplishes both phase unwrapping and denoising.

Our approach is Bayesian. We adopt an observation model
that is 2π-periodic, and discontinuity preserving MRF priors
for the absolute phase. A MAP criterion infers the phase by
exploiting graph-cuts based energy minimization techniques.
The algorithm has two main steps:

1) Phase unwrapping: we input two (or more) different
frequency interferograms (of the same scene), which
provides an extension of the[−π, π) ambiguity interval
and, consequently, an increasing of the phase rates that
still allow unwrapping to be a well-posed problem. This
frequencydiversity technique is put forward through a
graph-cuts algorithm [6] that minimizes a MRF com-
posed of a sinusoidal data term plus a non-isotropic total
variation (TV) prior [6].

2) Denoising: we achieve denoising by an iterativemulti-
precision MAP-MRF energy minimization graph-cuts
algorithm. As in the previous step, (Phase unwrapping),
the data term is sinusoidal, while a discontinuity pre-
serving denoising prior is considered [7], [8].

II. PROPOSED FORMULATION

A. Posterior density

We consider, as in,e.g., [9], the observation data model to
be given by (1)

z = ejFφ + n, (1)

where F has the meaning of frequency,φ is the absolute
phase, andn a zero-mean, circular, Gaussian noise. The log-
likelihood of φ, given the observedψ = angle(z), is basically
(see [9]) given by (2)

f(φ|ψ) = − cos(ψ − Fφ). (2)

Considering also that the prior is a MRF, then the logarithm
of the posterior density is given by (3)

E(φ) ≡
∑

i∈V

− cos(ψi − Fφi)

︸ ︷︷ ︸

Data fidelity term

+µ
∑

(i,j)∈E

V (φi, φj)

︸ ︷︷ ︸

Prior term

, (3)

whereφ = (φ1, φ2, . . . , φ|V|), V is a, to be specified, potential
and finally,µ is the prior parameter that sets the relative weight
between the data fidelity and the prior terms.



B. Diversity

In this paper we consider frequency diversity which is par-
ticularly used in various areas, such as,e.g., MRI, echographic
Doppler, weather radar, and InSAR. Namely, we deal with two
(for the sake of simplicity) frequenciesF1 = p/q, F2 = r/s
where {p, q, r, s} ∈ N. Assuming that observations (1) are
independent for each frequency, the log-likelihood is given by
(4)

f(φ|ψ1, ψ2) = − cos (ψ1 − F1φ) − cos (ψ2 − F2φ) . (4)

We have already alluded (Section I-A) to the advantage that
frequency diversity gives in extending the[−π π[ ambiguity
interval. Stating it more clearly, it is easy to show that thesum
of two cosine functions, having as in (4) different frequencies
F1 = p/q and F2 = r/s, where{p, q} , {p, r}, {q, s}, and
{r, s} are coprime integers1, results in a third periodic function
whose period isq× s; as the initial functions do have periods
of respectivelyq and s, we conclude that the period is, in
general, extended and so the ambiguity reduced. This is the
“beat production”, long known in wave physics. It is a well
known behavior,e.g., from wave phenomena, that the greater
the beat period extension, the smaller the difference between
global and local maxima. Furthermore, it is also well known
that beat period extension brings noise amplification. This
trade-off should then be taken into account.

C. Phase unwrapping with diversity

Replacing the data fidelity term in (3) with that given by
(4), i.e., considering diversity, we obtain

E(φ) ≡
∑

i∈ν

− cos (ψ1i
− F1φi) − cos (ψ2i

− F2φi)

+ µ
∑

(i,j)∈E

V (φi, φj) . (5)

In this section we solve only the phase unwrapping problem.
So, by admitting a noiseless environment, we may consider
that the unwrapped (true) phaseφ is given by:

F1φ = ψ1 + 2k1π, (6)

and
F2φ = ψ2 + 2k2π, (7)

for the two independent observations with frequenciesF1 and
F2, respectively. For the sake of simplicity we can deal with
(6) only, and (5) turns into:

E(k) ≡
∑

i∈V

− cos

(

ψ2i
−
F2

F1
(ψ1i

− 2k1i
π)

)

+ µ
∑

(i,j)∈E

V
(
ψ1i

− 2k1i
, ψ1j

− 2k1j

)
, (8)

with a correspondingly combinatorial optimization
(minimization) to be done on variablesk1i

. We take
V

(
ψ1i

− 2k1i
, ψ1j

− 2k1j

)
= |ki − kj | the, so-called,

non-isotropic total variation (TV); in spite of such a potential

1Two integer numbers are said to be coprime if their greatest common
divisor is the unity.

Fig. 1. Plot of a half-quadratic potential

being convex, which confers some optimization “easiness”,it
still has some discontinuity preservability properties2.

We are aware of only three integer optimization algorithms,
that are able to provide a global minimum for a posterior
energy like (8), which is composed by a non-convex data
fidelity term and a convex prior potential. Herein we refer
to [6], as it deals with our non-isotropic TV prior. As long
as the energy is a levelable function, i.e., a function that
admits a decomposition as a sum on levels, of functions of its
variables level-set indicatrices at current level (see [6]), it is
easy to build a source-sink graph such that its min-cut gives
the sought global minimizer. For the sake of simplicity we
do not describe the above mentioned energy decomposition
on level-set dependent functions, as we will not describe
the graph construction; we just mention that graph min-cuts
based algorithms have been proven very popular in computer
vision, as there are plenty of low-order polynomial complexity
algorithms to compute them.

D. Denoising with multi-precision

For denoising we take a half quadratic potential type like
the one plotted in Fig.1. This potential is quadratic in an origin
neighborhood of radiusπ in order to model Gaussian noise,
and with a flat trend elsewhere to preserve discontinuities [10].
We choose the radius ofπ because we expect to get (most of
the) noise wrapped into the interval[−π, π( after the previous
phase unwrapping step.

For the sake of clarity we refer back to the posterior density
expression (3), which writes energy asE ≡ E(φ). Our goal is
to computeφ∗ = argmin [E(φ)]. We note that the objective
function,E(φ), is non-convex (both in the data fidelity term
and in the prior term), which makes this optimization problem
very difficult. To circumvent this problem we discretize the
domain ofE, using a discretization interval∆. In doing this,
we convert the minimization inR|V|, whereV denotes the
set of pixels, into a combinatorial problem that may be solved
efficiently by computing flows on appropriate graphs. Further-
more, we choose to make the denoising optimization using one
frequency data only. Otherwise the objective function getsa
huge amount of local minima and, as a result, the problem is

2In a sense, this can be interpreted as the most nonconvex of the convex
functions



intractable. In doing this we are deciding for a sub-optimal
solution.

We adopt a strategy in which the minimum ofE is searched
for in a sequence of increasing precisions. This way we both
avoid getting stuck in local minima (which would be probable,
had we started with high precision), and we probably get close
to optimization in R

|V|. To this end, let us definei ∈ V ,
δi ∈ {0, 1}, and the sets

MU (φ′,∆) ≡
{

φ ∈ R
|ν| : φi = φ′i + δi∆

}

MD(φ′,∆) ≡
{

φ ∈ R
|ν| : φi = φ′i − δi∆

}

,

where∆ ∈ R.
Algorithm 1 shows the pseudo-code for our optimization

scheme.

Algorithm 1 Multi-precision denoising

Initialization: φ = ψ {Interferogram}, successup = false,
successdown = false

1: for ∆ = 2π ×
{
20, 2−1, . . . , 2−N

}
do

2: while (successup = false OR successdown = false)do
3: if successup = falsethen
4: φ̂ = arg min

φ̂∈MU (φ,∆) Ẽ(φ̂)

5: if E(φ̂) < E(φ) then
6: φ = φ̂
7: else
8: successup = true
9: end if

10: end if
11: if successdown = falsethen
12: φ̂ = arg min

φ̂∈MD(φ,∆) Ẽ(φ̂)

13: if E(φ̂) < E(φ) then
14: φ = φ̂
15: else
16: successdown = true
17: end if
18: end if
19: end while
20: end for

Our algorithm engages on a greedy succession of up and
down binary optimizations. The precision of the minimization,
∆, starts with the value2π and ends with the value2π/(2N)
where N is a depth of precision. We point out that even if
all the computations could have been done with the highest
∆ resolution level from the very beginning, choosing this
multi-resolution schedule increases dramatically (a logarithmic
improvement) the algorithm speed.

To solve the binary optimizations shown in lines 4 and 12
of Algorithm 1, we use the graph-cuts technique presented
in [11]. We further add that thẽE is a majorizer, on the
prior terms, ofE. So we apply a majorize-minimize (MM)
[12] technique such as the one applied in [7]. For details see,
e.g., [7], [11]. We stress that we do not have any guarantees
of reaching a global minimum with Algorithm 1. This is so
because, with generality, we are dealing with both non-convex
data fidelity terms and prior terms. However, results in a

series of experiments on simulated and real data have been
systematically state-of-the art.

III. PROPOSED ALGORITHM

The previous sections culminate in our phase imaging
algorithm. It consists of a phase unwrapping stage and then
denoising. Algorithm 2 shows a simple two lines high level
pseudo-code of our phase imaging algorithm.

Algorithm 2 Phase imaging algorithm
1: Do phase unwrapping with diversity
2: Do denoising with multi-resolution

In the next section we show some relevant experimental
results.

IV. EXPERIMENTAL RESULTS

In this section, we briefly illustrate the performance of
our algorithm on two representative problems for wich phase
unwrapping is a hard problem due to high phase rates of the
unwrapped images.

Fig. 2 (a) displays an image which is given by a Gaussian
having maximum height of50π rad height. Figs. 2 (b) and
(c) show the corresponding wrapped images acquired with
frequenciesF1 = 1/1 andF2 = 1/5 respectively and having
signal to noise ratio SNR= 4 dB. Fig. 2 (d) displays an image
of the unwrapped Gaussian, and Fig. 2 (e) a3-D rendering.
Fig. 2 (f) shows a3-D rendering after the denoising. It is
clear that the algorithm made a perfect phase unwrapping (up
to a no-meaning additive constant) for which the diversity
information was essential. Concerning the denoising step,
the performance is characterized by a improvement ISNR
= 0.0187 dB. This, slight denoising is reflected in Figs. 2
(h) and (i), which show the histograms (the axis are in rad)
corresponding to the surfaces rendered in Figs. 2 (e) and
(f), respectively. It is noticeable that the denoising erases the
secondary modes in the histogram.

Fig. 3 is similar to the Fig. 2 but the starting image is
sheared quadratic ramp having maximum height of225 rad.
The frequencies of acquisition areF1 = 1/1 andF2 = 1/11
respectively and have SNR= 7 dB. Again the algorithm made
a perfect phase unwrapping for which the diversity information
was essential. Concerning the denoising, it has ISNR= 5.4792
dB. It is noticeable that the denoising erases the secondary
modes in the first histogram.

Still referring to the histograms, the ones corresponding
to the noisy images show, in general, a multi modal shape.
Besides the central mode around zero, there are some modes
around multiples of−2π and2π. Those correspond to “spikes”
as a result of the data observation model. After denoising they
do disappear.

V. CONCLUDING REMARKS

We have proposed a phase imaging algorithm based on
phase unwrapping with diversity, and denoising with multi-
precision. Our approach is a MAP-MRF one. We have chosen



 

 

 

 

 

 

 

 

Fig. 2. (a) Original Gaussian ramp phase image. (b) Image in (a) wrapped
with a relative frequency of1. (c) Image in (a) wrapped with a relative
frequency of1/5. (d) Unwrapped image from the previous wrapped images
shown in (b) and (c). (e)3-D rendering of the image in (d). (f)3-D rendering
of the image in (d) after the denoising step. (g) Histogram corresponding
to the surface rendered in (e). (h) Histogram correspondingto the surface
rendered in (f).

both non-convex data fidelity and prior potential terms, in
the MRF, so there is no hope to find the global minimum
efficiently. Thus, we propose a sub-optimal minimization
based on graph cuts. Our approach inherits much of the PUMA
algorithm [7], however, we do extend it by taking into account
a data fidelity term and a denoising operation. The results are
encouraging; to our knowledge they are state-of-the-art.
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