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Abstract

Spectral unmixing aims at finding the spectrally pure constituent materials (also called endmembers) and their

respective fractional abundances in each pixel of a hyperspectral image scene. In recent years, sparse unmixing has

been widely used as a reliable spectral unmixing methodology. In this approach, the observed spectral vectors are

expressed as linear combinations of spectral signatures assumed to be known a priori and present in a large collection,

termed spectral library or dictionary, usually acquired in laboratory. Sparse unmixing has attracted much attention as

it sidesteps two common limitations of classic spectral unmixing approaches: the lack of pure pixels in hyperspectral

scenes and the need to estimate the number of endmembers in a given scene, which are very difficult tasks. However,

the high mutual coherence of spectral libraries, jointly with their ever-growing dimensionality, strongly limits the

operational applicability of sparse unmixing. In this paper, we introduce a two-step algorithm aimed at mitigating the

aforementioned limitations. The algorithm exploits the usual low dimensionality of the hyperspectral data sets. The

first step, similar to the multiple signal classification (MUSIC) array signal processing algorithm, identifies a subset

of the library elements which contains the endmember signatures. Because this subset has cardinality much smaller

than the initial number of library elements, the sparse regression we are led to is much more well-conditioned than

the initial one using the complete library. The second step applies collaborative sparse regression (CSR), which is a

form of structured sparse regression, exploiting the fact that only a few spectral signatures in the library are active.

The effectiveness of the proposed approach, termed MUSIC-CSR, is extensively validated using both simulated and

real hyperspectral data sets.
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I. INTRODUCTION

Spectral unmixing is an important technique for hyperspectral data exploitation [1]. It decomposes the (possibly

mixed) pixel spectra measured by an imaging spectrometer into a collection of pure constituent spectra (called

endmembers) and their corresponding fractional abundances, which quantify the proportion of each pure material

in the pixel [2]. Mixed pixels appear due to the relative low spatial resolution of the sensor flying at high altitudes,

or because the materials form intimate mixtures [3]. In a linear spectral unmixing scenario, the mixed pixels can be

expressed as a linear combination of the endmember signatures present in the scene weighted by their respective

fractional abundances. The exploitation of this model, in spite of its simplicity, has fostered a large amount of

research leading to a plethora of endmember extraction and abundance estimation algorithms developed with (and

without) the assumption that pure pixels1 can be found in the original hyperspectral image. A detailed review of

techniques developed for spectral unmixing in recent years is available at [4].

Linear spectral unmixing has been recently addressed under a sparse regression framework [5], [6]. The core

assumption in this framework is that the observed (generally mixed) spectra measured by a hyperspectral imaging

instrument is well approximated by a linear combination of a small (i.e., sparse) subset of spectral signatures selected

from a large (usually overcomplete) library. As shown in [4], this sparse unmixing formulation has attracted much

attention, as it sidesteps two well known obstacles in classic spectral unmixing methods. First, sparse unmixing

does not require the presence of pure signatures in the data, as the endmembers used for spectral mixture modeling

are collected from a library of pure signatures. Second, sparse unmixing does not require the estimation of the

number of endmembers in a given scene, which has been shown to be a challenging process in the literature.

The ability to obtain meaningful unmixing results by seeking sparse solutions of underdetermined linear systems

of equations depends on the degree of sparseness of the mixtures2 and on the coherence of the library signatures,

measured e.g., in terms of the so-called mutual coherence [7] or of the restricted isometric constants [8]. Qualita-

tively, the higher the mutual coherence, the lower the degree of sparseness ensuring perfect unmixing. Unfortunately,

it happens that in hyperspectral applications the mutual coherence is often very high (i.e., close to 1), thus, limiting

the success of the unmixing via sparse regression. This drawback is somehow mitigated by the very high degree

of sparseness (or low number of endmembers) that most hyperspectral applications exhibit. For an extensive study

on these issues, see [5].

The aforementioned limitation has been partially mitigated by promoting some type of structured sparsity in the

unmixed solutions via suitable regularization terms. Three relevant examples are the total variation (TV) spatial

regularizer [9], which promotes piecewise-smooth fractional abundances, the group-based regularizer in [10], [11],

which promotes pre-defined groups of active endmembers in a single fractional abundance vector, and the mixed

norm regularizers, which promotes the same set of active endmembers across all fractional abundance vectors [12]

(thus the name collaborative sparse regression (CSR)).

1A pure pixel contains just one endmember.
2i.e., the number of library signatures with nonzero weights participating in the mixture.
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A. Related work

Let us assume that the hyperspectral data set to be unmixed is well approximated by the linear mixing model.

In this case, the objective of sparse regression is the determination of the unknown fractional abundance vectors

that share a common sparse support. This is the so-called multiple measurement vector (MMV) problem with

applications, for example, in distributed compressive sensing, direction-of-arrival estimation in radar, magnetic

resonance imaging with multiple coils, diffuse optical tomography using multiple illumination patterns (see [13]–

[15] and references therein).

The determination of sparse solutions for the MMV problem has been pursued actively in recent years. Relevant

examples are greedy methods based on the simultaneous orthogonal matching pursuit [16]–[18], convex relaxation

methods using mixed norms [12], [18]–[20], Bayesian methods enforcing a common sparsity profile via suitable

prior [21], randomized methods [22], and model-based compressive sensing using block-sparsity [23], [24].

The designation “MMV problem” was coined with the advent of sparse regression in the nineties. However,

the same problem, termed as direction-of-arrival (DOA) or the bearing estimation problem has been addressed

since the seventies by the array signal processing community. The multiple signal classification (MUSIC) algorithm

introduced independently in [25] and [26] is the most successful method to solve DOA problems. MUSIC first

estimates an orthonormal basis for the signal subspace based on the empirical covariance matrix and then identifies

the DOAs exploiting the fact that the vectors impinged on the array by the sources are orthogonal to the noise

subspace. If the sources are uncorrelated (fractional abundances in our case) and the noise is Gaussian, independent

(among sources and snapshots) and identically distributed (iid), the MUSIC estimator is a large sample realization

(large number of spectral vectors in our case) of the maximum likelihood estimator [27]. In addition, in the absence

of noise and if the rank of the observations is equal to the number of active elements in the support of vectors, the

MUSIC yields perfect reconstruction [14].

When the rank of the observations is less than the number of active elements in the support of vectors, termed

the “coherent source” problem within the sensor array signal processing context [28], the MUSIC algorithm fails.

However, in this case the sparse regression algorithms are able to provide useful results even with just one

observation. Several sufficient conditions for perfect reconstruction have been derived based on the the restricted

isometric constants of the dictionary (see [14] and references therein).

In conclusion, we have two families of methods to solve the MMV problems. On the one hand, we have the

sparse regression family, which is able to recover, at least in part, the support of the observed vectors, provided

that the dictionary has suitable restricted isometric constants and regardless of the number of observations. On the

other hand, we have the MUSIC based approaches, which yield very good results, provided that the rank of the

observations is no less than the number of elements of the support of the vectors. Very recently, the complementarity

between MUSIC and sparse regression approaches to solve MMV problems has been exploited [13], [14] by first

applying sparse regression methods that identify a subset of the support and then apply MUSIC based methods. In

this paper, we also exploit MUSIC and sparse regression approaches to unmix hyperspectral data, but in a reversed
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order. Below, we detail our contribution.

B. Paper Contribution

In this paper we push forward the research boundary on hyperspectral sparse unmixing. We exploit a simple,

yet fundamental, characteristic of hyperspectral data sets: the number of endmembers present in a given scene

is often much less than the number of library signatures. Based on this characteristic, we introduce a two-step

algorithm aimed at mitigating the aforementioned limitations of hyperspectral sparse unmixing. The first step

starts by identifying the signal subspace and then runs a binary test over the library signatures to identify the

endmembers. The signal subspace is estimated with the Hyperspectral subspace identification by minimum error

(HySime) algorithm [29] and the binary test is similar to the MUSIC [25], [26] array signal processing algorithm. If

the linear mixing model was an exact fit for observed spectral vectors and there was no noise, then the MUSIC step

would, under mild assumptions, exactly identify the endmembers. However, we do have modeling errors and noise.

Because of these degrading factors, the binary test in the MUSIC step is designed with a relative high false alarm

probability yielding a set of signatures that, with high probability, contains the endmembers but is, nevertheless,

much smaller than the complete library.

The second step is the collaborative sparse regression (CSR) algorithm introduced in [12] which, in addition

to promoting joint sparsity over the abundance fraction vectors (i.e. collaborative sparseness), operates now on a

pruned library. Because the dimensionality of the pruned library is, usually, much smaller than the dimensionality

of the original library available, the conditioning of resulting sparse regression is naturally improved, and this has

a strong positive impact on the quality of the obtained unmixing results as will be shown in this work.

The remainder of the paper is structured as follows. Section II introduces our MUSIC based approach to select

a subset of the library signatures. Section III emphasizes recent developments in sparse unmixing. Section IV

describes the proposed methodology. Section V analyzes the performance of the proposed approach with simulated

data. Section VI discusses the performance with real hyperspectral data. Section VII concludes the paper with some

remarks and hints at plausible future research lines.

II. THE MULTIPLE MEASUREMENT PROBLEM

Let y ∈ RL denote an L-dimensional observed spectral vector from a given pixel of a hyperspectral image with

L spectral bands and A := [a1, . . . ,am] ∈ RL×m denote a spectral library with m spectral signatures available a

priori. Under the linear mixing model, the observed vector y can be expressed as a linear combination of spectral

signatures taken from the library A as (see [5] for more details)

y = Ax+ n, (1)

where the vector x ∈ Rm holds the fractional abundances and the vector n ∈ RL holds the errors affecting the

measurements at each spectral band. Because the abundance fractions are nonnegative and sum to one, the constraints

x ≥ 0, to be understood in the component-wise sense, and 1T
mx = 1 (1m stands for a column vector with m ones)
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called abundance non-negativity constraint (ANC) and abundance sum-to-one constraint (ASC), respectively, are

often imposed into the model (1).

Assuming that the data set contains n ≫ L pixels organized in the matrix Y := [y1, . . . ,yn], we can write

Y = AX+N, (2)

where X := [x1, . . . ,xn] is the abundance fraction matrix and N := [n1, . . . ,nn] is the noise matrix. Let us

assume momentarily that N = 0 and disregard the ANC and the ASC. In these conditions, finding the sparsest

common support for xi, with i = 1, . . . , n, is precisely an MMV problem, which, formally, corresponds to finding

the solution of the optimization

min
X

∥X∥0 (3)

subject to: Y = AX,

where ∥X∥0 := |S|, S := supp(X) := {1 ≤ i ≤ m : xi ̸= 0}, and xi is the ith row of X.

The MMV problem (3) has a unique solution if and only if [30]

∥X∥0 <
spark(A) + rank(Y)− 1

2
, (4)

where spark(A) denotes the smallest number of linearly dependent columns of A. The term (rank(Y) − 1)/2

represents the MMV gain; that is, by increasing rank(Y), which, under suitable conditions, is achieved by increasing

the number of measurements, we are able to uniquely solve less sparse problems. Because rank(Y) ≤ ∥X∥0 , we

have ∥X∥0 < spark(A)− 1.

When rank(Y) < ∥X∥0, the MMV problem is combinatorial and therefore very hard to solve exactly. As already

referred to in Section I-A, the determination of sparse solutions for the MMV problem has been actively investigated

in recent years (e.g. greedy, convex relaxation, Bayesian, randomized, block-sparsity methods). A much simpler

scenario happens, however, when rank(Y) = ∥X∥0 := k < L. In this case, we can uniquely recover the support

set supp(X) as follows. Let us now write Y = ASX
S , where AS ∈ RL×k and XS are the matrices holding,

respectively, the columns of A and the rows of X, whose indices are in S. Assuming that spark(A) > k + 1 and

that the rows of XS are in general position, then AS has full column rank and XS has full row rank implying that

range(Y) = range(AS). Therefore, an orthogonal basis for range(AS) can be obtained from the singular value

decomposition of Y or of YYT . In the latter we have

YYT = U diag(λ1, . . . , λk)U
T , (5)

where U ∈ RL×k, UTU = Ik, λ1 ≥ λ2, . . . , λk > 0, and range(U) = range(AS). Now noting that aj ∈ range(AS)

if and only if (iff) j ∈ S (otherwise we would have spark(A) ≤ k + 1), we conclude that

j ∈ S iff P⊥
AS

aj = 0, (6)

where P⊥
AS

:= I−UUT is the projector on range(AS)
⊥. The equivalence (6) is the core of the MUSIC algorithm,

which in its original version considers vectors a parameterized by continuous parameters representing DOAs,

whereas in our hyperspectral application a is indexed by a finite index set.
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In conclusion, we have proved the following result, which is a minor modification of Theorem 3.4 of [14]:

Theorem 1. Given the hyperspectral data set Y = AX ∈ RL×n, with X ∈ Rm×n, assume that rank(Y) =

∥X∥0 := k < L, spark(A) > k+1, and the rows of XS are in general position. Then, for j ∈ {1, . . . , n}, we have

that j ∈ supp(X) iff P⊥
AS

aj = 0. �

A. Support Identification in the Presence of Noise

In real applications, we do have noise, i.e. N ̸= 0 in (2), which hinders the estimation of range(AS). To shed

light on the effect of noise, let us assume that the spectral vectors yi, for i = 1, . . . , n, are independent samples

of a random y vector with correlation matrix Ry := E[yyT ] and sample correlation matrix R̂y := YYT /n. In

these conditions, it can be easily concluded that E[R̂y − Ry] = 0 and that E[∥R̂y − Ry∥2] = α/n for some

α > 0. Therefore, for n large enough, the sample correlation matrix R̂y can be taken as a good approximation for

the correlation matrix Ry . Assuming that the noise and the fractional abundances are independent with correlation

matrices Rn and Rx, respectively, then it follows that

Ry = ASRx(S)A
T
S +Rn, (7)

where Rx(S) is the submatrix of Rx containing the rows and columns with indexes in S.

1) White Noise: If Rn = σ2
nI, i.e., the noise is iid, then the eigendecomposition of Ry is

Ry = [U,V] diag(λ1 + σ2
n, . . . , λk + σ2

n, σ
2
n, . . . , σ

2
n) [U,V]T , (8)

where λi, for i = 1, . . . , k is the ith eigenvalue of ASRx(S)A
T
S , U := [u1, . . . ,uk] holds the first k eigenvectors

of Ry and V holds the remaining eigenvalues. If AS and Rx(S) are full rank, then λi > 0 for i = 1, . . . , k and

then range(U) = range(AS). In conclusion, if the noise is iid, then the signal subspace can be easily estimated

from the sample correlation matrix R̂y , provided that n is large enough.

2) Colored or Correlated Noise: If Rn ̸= σ2
nI, the estimation of range(AS) is hard because there is no more a

simple relation between the eigenvectors of Ry and those of ASRx(S)A
T
S [31], [32]. Recently much attention has

been devoted to the estimation of the noise covariance or correlation matrices in the context of DOA problems using

for example autoregressive or autoregressive moving average models and parametric models [32]. A complementary

approach focuses on properties of the signal assuming for example that it is non-Gaussian, or that its temporal

correlation interval is significantly larger than that of noise , or assuming that the signals are linear combinations

of a certain set of known basis functions [32].

In this paper, we adopt the HySime method [29] to estimate the signal subspace range(AS). HySyme was

conceived to exploit the characteristics of hyperspectral data sets. The method starts by estimating the noise

correlation and the signal correlation matrices. The noise correlation matrix is estimated via multiple spectral

band regression [33], which exploits the high correlation between neighboring spectral bands. HySime then selects

the subset of eigenvectors that best represents the signal subspace in the minimum mean square error sense. The

application of this criterion leads to the minimization of a two-term objective function. One term corresponds to
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Fig. 1. Norm of projection of the spectral signatures onto the range(AS)
⊥ normalized by the norm of aj . The values corresponding to

j ∈ S (i.e., the active spactral signatures) are circled. Top: range(AS)
⊥ based on the results yielded by the HySime algorithm, thus having

into account that the noise is colored. Bottom: range(AS)
⊥ computed from the sample correlation matrix under the assumption that the noise

is iid.

the power of the signal projection error and is a decreasing function of the subspace dimension; the other term

corresponds to the power of the noise projection and is an increasing function of subspace dimension.

Figure 1 provides a numerical illustration of the proposed MUSIC based method and of the impact of (wrongly)

assuming that the noise is iid, when in fact it is colored. We have generated a hyperspectral data set according to

model (2) with n = 100000 hyperspectral vectors and library A formed by a subset of m = 327 spectral signatures

of size L = 224 taken from the U.S. Geological Survey (USGS) splib063 library. The subset was chosen such

that the angles between any two signatures are no smaller than 3 degrees. The fractional abundances are uniformly

distributed over the simplex defined by the active spectral signatures in number of k = 8 taken randomly from

A. The noise n is Gaussian zero-mean independent from band to band and from vector to vector with a Gaussian

shaped variance along the bands; the Gaussian shape is centered at the middle band and has a spread4 of 20 bands.

The signal-to-noise ratio (SNR := E ∥Ax∥22 /E ∥n∥22) is set to 20 dB.

For each spectral signature aj , with i = 1, . . . ,m, we compute the norm of projection onto the range(AS)
⊥

3Available online: http://speclab.cr.usgs.gov/spectral.lib06
4Length of the interval between half variance bands.
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normalized by the norm of aj :

εj :=
∥P⊥

AS
aj∥2

∥aj∥2
. (9)

On the top of Fig. 1 the projection matrix P⊥
AS

was computed from the range(AS) provided by the HySime

algorithm. The eight smaller values of εi occur, as desirable, for j ∈ S. In contrast with this very good performance,

some values of εi for j ∈ S on the bottom of Fig. 1 are larger than many other errors for j /∈ S. The reason for

this poorer performance is the assumption that the noise is iid and, thus, computing the range(AS) based on the

sample correlation matrix as described in subsection II-A1.

III. SPARSE UNMIXING OF NON-NEGATIVE FRACTIONAL ABUNDANCES SHARING THE SAME SUPPORT

In the previous section, we showed that the active signatures AS are effectively detected by the MUSIC algorithm

adapted to the hyperspectral scenario. From AS , we can estimate the corresponding fractional abundances by solving,

e.g., the nonnegative constrained least squares (NCLS) optimization problem

min
Z

∥Y −ASZ∥F (10)

subject to: Z ≥ 0,

where ∥B∥F :=
√

trace{BBT }. We have used the Z ∈ R|S|×n instead of XS to keep the notation light. Notice

that we have not included the ASC 1TZ = 1n in (10) because it is hardly satisfied in real applications, namely

owing to spectral variability. See [4] for more details.

In real hyperspectral imaging applications the detection of the support S is hindered by a few degradation mech-

anisms which include nonlinearities not captured by the linear model (1), calibration errors between the signatures

available in the spectral library, and spectral variability within a given scene. These degradation mechanisms imply

errors between the estimated range(AS) inferred from the data Y and the subspace spanned by the corresponding

elements in the library. These errors may lead to incorrect detection of the support S; that is, some of the k smaller

indices εi given by (9) may correspond to inactive spectral signatures.

To avoid missing active signatures, we take a conservative approach by setting the probability of missing a

signature to a low value. In doing so, we end up with a set R of cardinality r := |R| larger than k but nevertheless

much smaller than m, the number of signatures in library A. In addition, we have with high probability S ⊂ R,

i.e., we do not miss any active signature. We will denote the reduced library with respect to R as AR.

The hyperspectral unmixing with respect to the AR, although a much simpler problem than the original one, is

still not trivial because matrix AR tends to be bad-conditioned. We attack this drawback by adding a regularization

term to (10) which promotes sparsity among the rows of Z. More specifically, we solve the optimization problem

min
Z

∥Y −ARZ∥2F + λC∥Z∥2,1 (11)

subject to: Z ≥ 0,
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where ∥Z∥2,1 :=
∑r

i=1 ∥zi∥2 is the mixed ℓ2,1 norm, which promotes sparseness among the rows of Z. Problem

(11) is similar to the collaborative sparse coding problem described in [20], [34], [15], [35]. The main difference is

the introduction of the constraint Z ≥ 0. Notice that the NCLS optimization (10) corresponds to (11) with λC = 0.

Let us assume that r > L, the noise is zero, and that we want to find the sparsest solution of Y = ARZ. In this

case, it is shown in [15] that collaborative, or multichannel, sparse recovery yields a probability of recovery failure

that decays exponentially in the number of channels. In other words, sparse methods have more chances to succeed

when the number of acquisition channels increases. Herein, we summarize the results of Theorem [4.4] in [15],

which assumes that the dictionary AR is normalized and composed by i.i.d. Gaussian entries, the observations are

generated by a set of atoms whose support is S ⊂ {1, 2, . . . ,m} of cardinality k (i.e., there are at most k rows in

the solution matrix which are not identically zero) and
∥∥A+

S al
∥∥
2
≤ α < 1 holds for all l /∈ S, where A+

S is the

pseudoinverse of the matrix AS containing the atoms from AR corresponding to the indices in S. The same theorem

states that, under these assumptions, the solution Z of the linear system of equations Y = ARZ is recovered by

solving an ℓ2,1–norm optimization problem with probability at least 1 −m exp
(
−L

2 (α
−2 − log(α−2) − 1)

)
. The

exponential decay of the error is obvious as α < 1. Although the conditions from the aforementioned theorem

are not met in common hyperspectral data, in which the dictionary atoms (that is, the pure spectral signatures) are

highly correlated, leading to high values of
∥∥A+

S al
∥∥
2
, we have systematically observed the same type of behavior

in our applications. Even when r ≤ L, and thus the system matrix Y = ARZ is determined or overdetermined, the

inclusion of the ℓ2,1 regularizer in (11) has shown to be beneficial as is tends to set to zero the components of the

rows of Z activated by the noise. In the next section, we give experimental evidence of the advantages of including

the ℓ2,1 regularizer in (11). We compute the solution of (11) with the Collaborative Sparse Unmixing algorithm via

Variable Splitting and Augmented Lagrangian (CLSUnSAL) algorithm [12]. CLSUnSAL is an elaboration of the

Sparse Unmixing Algorithm via Variable Splitting and Augmented Lagrangian (SUnSAL) algorithm [36] designed

to enforce the sparsity across pixel vectors. Both SUnSAL and CLSUnSAL exploit the alternating direction method

of multipliers (ADMM) developed in [37] and originally introduced in [38].

IV. THE MUSIC-CSR ALGORITHM

In this section, we describe the proposed hyperspectral unmixing methodology via multiple signal classification

and collaborative sparse regression, which we call MUSIC-CSR. Algorithm 1 shows MUSIC-CSR pseudocode. The

inputs to the algorithm are a hyperspectral data set, Y, a library holding the spectral signatures, A, the number

of signatures to be retained, r, and the regularization parameter, λC , for the CLSUnSAL algorithm. The output is

a pruned library AR with r signatures and the fractional signatures XR. Below, we summarize main steps of the

MUSIC-CSR algorithm.

• Signal Subspace (line 2): Infers the subspace in which the hyperspectral data Y lives. This is done using the

HySime algorithm [29].

• Projection errors (line 5): Computes the distance from each member of the library to the estimated subspace.

The error indicator we use is the normalized Euclidean distance between one member of the library and the
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Algorithm 1: MUSIC-CSR

Input: A ∈ CL×m (library), Y ∈ RL×N (hyperspectral image), r (number of signatures to be retained), λC

(regularization parameter)

Output: AR (detected signatures), XR (fractional abundances with respect to AR)

1 begin

2 E := HySime(Y) (estimate an orthonormal basis for range(AS) using the HySime algorithm [29])

3 P⊥
AS

:= I−EET (projector on range(A⊥
S ))

4 for i = 1 to n do

5 εj :=
∥P⊥

AS
aj∥2

∥aj∥2

6 π := permutation{1, . . . , n : επ(i) ≤ επ(j), i ≤ j}

7 R := {π(i), i = 1, . . . , r}

8 Solve the collaborative sparse regression optimization

XR := argmin
Z

∥Y −ARZ∥2F + λC∥Z∥2,1

subject to: Z ≥ 0,

using the CLSUnSAL algorithm [12].

estimated subspace in which the data lives.

• Active set detection (lines 6 and 7): Sorts the normalized projection errors by increasing order and retain the

indexes of first r in the set R.

• Collaborative sparse regression optimization (line 8): Solve a collaborative sparse regression using the identified

pruned library AR using the CLSUnSAL algorithm [12].

In the following we illustrate the proposed MUSIC-CSR algorithm with a toy example. The dataset that we use in

this example was generated using five randomly selected endmembers from a library containing 302 mineral spectra

from the U.S. Geological Survey (USGS) library, denoted splib065, released in September 2007. The number of

spectral bands is L = 224. We generated 5000 spectra by assuming that the fractional abundances follow a Dirichlet

distribution. The datacube was contaminated with iid Gaussian noise. The variance was set to a value yielding

SNR = 20 dB. This very high level of noise makes the problem very difficult.

In order to estimate the data subspace in this problem, we used the HySime algorithm which provided an

estimated number of endmembers equal to five. The first five eigenvectors returned by HySime were used to define

the subspace, and the library members were projected to the estimated subspace. For each member, the Euclidean

distance to the subspace was then computed. Fig. 2 shows the obtained projection errors for all members. The errors

5Available online: http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 2. Projection errors of the library members for the considered simulated toy example. The red circles show the projection errors of the

true endmembers.

corresponding to true endmembers are highlighted with red circles. Note that these have the lowest projection errors

among all the library members. The projection errors were then ordered in ascendent order so that the first five

correspond to the true endmembers, as expected from Fig. 2. The reduced library AR was then built by retaining

the members corresponding to the lowest r = 13 projection errors, which correspond to a maximum allowed error

of 0.045. The members are displayed in Fig. 3 (in this figure, the true endmembers are represented in black color).

The mutual coherence of the obtained library (0.9983) was slightly lower than that of the original library (0.9986).

Finally the unmixing was performed using CLSUnSAL in two different situations: using A – i.e., without pruning

– (CSR) and using AR – i.e., after dictionary pruning – (MUSIC-CSR). Fig. 4(a) shows the true fractional abundances

in the considered simulated toy example. Fig. 4(b) shows the cumulative abundance values (sum of the abundances

for all pixels) corresponding to each endmember material. Fig. 4(c) shows the fractional abundances estimated by

CSR with the cumulative abundance values displayed in Fig. 4(d). Finally, Fig. 4(e) shows the fractional abundances

estimated by MUSIC-CSR with the cumulative abundance values displayed in Fig. 4(f). In all cases, the algorithm

was tuned for optimal performance in the considered scenarios: the parameter λC was set to 0.1 for the unmixing

cases using A and to 10−2 for the unmixing cases using AR.

From Fig. 4, we can conclude that the fractional abundances inferred by MUSIC-CSR are indeed closer to the

true ones than those inferred by the CSR. The qualitative differences bewtween the two strategies can be appreciated

both in the abundance plots and in the amplitude of the cumulative abundances. Most importantly, the MUSIC-
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Fig. 3. Spectral signatures from the USGS spectral library which were retained after the pruning process.

CSR could properly identify the correct set of endmembers in order to explain the observed data. The positions

of the true endmembers in the original library were: 93, 131, 225, 269 and 284. If we take into account only the

highest 5 values of the cumulative abundances, Fig. 4 indicates that these correspond to the members: 94, 124,

166, 213 and 269 for the CSR and to members: 93, 131, 225, 269 and 284 for the MUSIC-CSR. As a result, the

MUSIC-CSR is able to identify all the true endmembers that were used to generate the data, while the CSR could

only identify correctly one of them. This is due to the fact that the original library contained groups of spectral

signatures representing the same mineral.

V. EXPERIMENTAL RESULTS USING SIMULATED DATA

In this section, we test the effectiveness of the proposed dictionary pruning method in various simulated scenarios.

The section is organized as follows. First, we describe the spectral libraries used in our simulated data experiments

and the generated datasets. Then, we describe the considered performance discriminators. We use only datasets

affected by noise, as the case in which the observations are not affected by noise is trivial. Next, the sparse

unmixing methods presented in section III are applied to the simulated data sets using both the full library and

pruned versions with different numbers of signatures (i.e., in the latter case, step (8) of the MUSIC-CSR algorithm

performs unmixing using also NCLS and SUnSAL algorithms, in order to exemplify the applicability of the proposed

dictionary pruning methodology shown in steps (2)–(7) of the same algorithm in generic scenarios where per–pixel

computation might be necessary). The obtained results are discussed from the viewpoint of estimation accuracy and
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Fig. 4. (a) True fractional abundances in the considered simulated toy example. (b) Cumulative abundance values (sum of the abundances for

all pixels) corresponding to each material. (c) Fractional abundances estimated by CSR. (d) Cumulative abundance values estimated using CSR.

(e) Fractional abundances estimated by MUSIC-CSR. (f) Cumulative abundance values estimated using MUSIC-CSR.
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(a) A1 library with tree (green), weed (blue and soil (red) spectra. (b) A2 library with actinolite (green), alunite (blue) and nontronite (red) spectra.

Fig. 5. (a) Five randomly selected spectral signatures from each class in spectral library A1. (b) Five randomly selected spectral signatures

from each class in spectral library A2.

computational performance. The section concludes with a discussion on the most important observations resulting

from the experiments conducted with simulated data.

A. Spectral Libraries

In our experiments with simulated data, we used two spectral libraries with very different characteristics. This

allowed us to evaluate the proposed pruning methodology in different scenarios. In the following we provide a

description of the two considered libraries.

• The first library, denoted hereinafter as A1, contains 50 soil, 200 citrus canopy, and 50 weed canopy reflectance

spectra measured in a commercial Citrus orchard near Wellington, South Africa, using an Analytical Spectral

Devices (ASD) field spectroradiometer with a 25◦ foreoptic, covering the 350–2500 nm spectral range. The

library was compiled from field campaigns conducted at different periods during the growing season [39]. The

major water absorption regions, sensitive to changing atmospheric water vapor content, were excluded from

the analysis. Then, 290 spectral bands were randomly retained (out of 1798). This was done in order to deal

with a very difficult problem, as in this case the mutual coherence of the library approaches one. The library is

structured in three groups corresponding to the material classes: soil, citrus canopy, and weed. Fig. 5(a) plots

five randomly selected spectral signatures contained in A1 for each class. Note that, while the soil signatures

can be easily distinguished, confusions between the other two (vegetation) classes can easily occur.

• The second library, denoted hereinafter as A2 contains 240 randomly selected signatures from the USGS library,

comprising different mineral types. The spectral signatures in this library are made up of reflectance values

given in 224 spectral bands and distributed uniformly in the interval 400–2500 nm. The mutual coherence of

A2 also approaches one. The library contains 55 groups of materials, each containing a variable number of

signatures (between 1 and 17) describing different alterations of the same mineral. Fig. 5(b) plots five randomly

selected spectral signatures contained in A2 for three different minerals: actinolite, alunite and notronite.
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B. Simulated Data Cubes

The spectral libraries A1 and A2 were used to generate various simulated hyperspectral data sets. Specifically,

three data cubes were generated using each library corresponding to different numbers of endmembers: k = {3, 6, 9}.

The first three data cubes, denoted by DC1, DC2 and DC3, were generated using signatures from A1, while the

other three data cubes, denoted by DC3, DC4 and DC6, were generated using signatures from A2. The endmembers

were randomly selected as follows. In order to construct DC1, DC2 and DC3, we randomly selected one, two and

three endmembers from each available class, respectively. The main reason for this selection was to avoid the case

in which all the endmembers belong to the same class. On the other hand, at most one endmember was selected

from each class in the construction of DC4, DC5 and DC6. This was done in order to avoid using more than one

spectral signature for the same endmember. All the simulated data cubes comprised 5000 simulated spectra, where

the fractional abundances of endmembers follow a Dirichlet distribution uniformly over the probability simplex

[40]. The data cubes were then contaminated with white noise, using three levels of signal-to-noise ratio SNR:

30dB, 40dB and 50dB. For clarity, Table I shows the principal characteristics of the simulated data cubes.

TABLE I

MAIN CHARACTERISTICS OF THE SIX SIMULATED DATA CUBES CONSIDERED IN OUR STUDY

Simulated Data cube DC1 DC2 DC3 DC4 DC5 DC6

Spectral library A1 A1 A1 A2 A2 A2

Number of endmembers (k) 3 6 9 3 6 9

Number of pixels 5000 5000 5000 5000 5000 5000

SNR(dB) 30/40/50 30/40/50 30/40/50 30/40/50 30/40/50 30/40/50

C. Performance Discriminators

In our experiments we use several performance discriminators in order to substantiate the accuracy of the sparse

unmixing process, with and without dictionary pruning. An important parameter for the pruned libraries is the number

of the correctly retained endmembers and their projection errors, which will be given for all our tests. Regarding the

quality of the reconstruction of spectral mixtures, the performance discriminator adopted in this work is the signal

to reconstruction error [5]: SRE ≡ E[∥x∥22]/E[∥x− x̂∥22], measured in dB: SRE(dB) ≡ 10 log10(SRE). We use this

measure instead of the root mean square error (RMSE) [41] as it gives more information regarding the power of the

error in relation with the power of the signal. The higher the SRE(dB), the better the unmixing performance. We

also computed a so-called “probability of success,” ps, which is an estimate of the probability that the relative error

power be smaller than a certain threshold. This metric is a widespread one in sparse regression literature, and is

formally defined as follows: ps ≡ P (∥x̂− x∥2/∥x∥2 ≤ threshold). This performance measure gives an indication

about the stability of the estimation that is not inferable directly from the SRE (which is an average).

In this work, as we are more interested in finding the correct fractional abundances of the endmember classes

(not necessarily of a specific member of the library), we will consider also the case in which the abundance of one
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endmember is represented by the sum of abundances of all the members of the class (group of materials) associated

to the endmember. In other words, we highlight the performance indicators not only for the individual members

of the library (i.e., per member assessment), but also for each group considered as an unique endmember (i.e., per

group assessment). In the former case, the threshold value used to compute the ps is set to 5dB. This is because

we have shown in previous work that solutions attaining this value can be considered of high quality [5]. On the

other hand we also emphasize that, when computing the ps metric per group, most of the unmixing results lead

to higher SRE(dB). This means that the ps is equal or very close to one. In this situation, we set a higher quality

threshold of 15dB. By doing this, we can better discriminate between the accuracy achieved by different sparse

unmixing methods. The computation times will be also reported for all our experiments.

D. Performance Evaluation

The proposed dictionary pruning methodology was applied to the simulated data cubes by retaining different

numbers of signatures r = {20, 40, 60}. The algorithms discussed in section III were used to solve the unmixing

problem with the full and with the pruned libraries. All algorithms (except NCLS which is parameter-free) were

tuned empirically for optimal performance by carefully adjusting the parameters in each test and reporting only

the best obtained results. Four different experiments have been conducted, intended to analyze the quality of the

selected endmembers after pruning, the quality of the estimated fractional abundances per member and per group,

and the computational performance of the different techniques tested.

TABLE II

NUMBER OF CORRECTLY EXTRACTED MEMBERS FROM THE ORIGINAL LIBRARIES AFTER THE PRUNING PROCESS USING SIMULATED DATA

CUBES CONSTRUCTED USING DIFFERENT SIGNAL-TO-NOISE RATIO (SNR) VALUES

Data Cube (true number of endmembers) Size of the library after pruning SNR=30dB SNR=40dB SNR=50dB

20 3 3 3

DC1 (3) 40 3 3 3

60 3 3 3

20 6 6 6

DC2 (6) 40 6 6 6

50 6 6 6

20 7 9 9

DC3 (9) 40 9 9 9

60 9 9 9

20 3 3 3

DC4 (3) 40 3 3 3

60 3 3 3

20 6 6 6

DC5 (6) 40 6 6 6

50 6 6 6

20 8 9 9

DC6 (9) 40 9 9 9

50 9 9 9
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Fig. 6. Projection errors for the members of A1 and A2, when the simulated datacubes DC1 and DC4 are contaminated with noise having

SNR=30dB and 40 members from each library are retained in the pruning process.

1) Experiment 1: Quality of Selected Endmembers After Pruning: Table II shows the number of correctly selected

members from the original spectral libraries after the pruning process. From Table II, it can be seen that the proposed

pruning method is able to identify the correct endmembers in most cases. Only some difficulties were encountered

in situations in which the number of endmembers is high (k = 9) and the SNR is very low (30dB). On the other

hand, the method is able to retain correctly all the endmembers when the SNR is higher than 40dB, which is

a reasonable SNR level in most hyperspectral applications. On the other hand, Fig. 6 illustrates the projection

errors measured for the members of A1 and A2 after analyzing the data cubes DC1 and DC4, respectively. In the

figure, the projection errors measured for the retained endmembers are highlighted with red circles, while the green

circles indicate the position of the actual endmembers. From Fig. 6, it can be concluded that the true endmembers

always exhibit very low projection errors. Although A1 is characterized by a high variability of the three classes

of endmembers, only a few members are really close to the inferred subspace. Despite A2 is more heterogeneous

(i.e., it contains a larger number of classes as compared to A1), a clear gap can be observed in the projection

errors measured for the true endmembers and those measured for the other members in the library. This confirms

the results reported on Table II.

2) Experiment 2: Accuracy of Estimated Abundances Per Member: Table III shows the SRE(dB) and the ps

achieved by the considered unmixing techniques per member for the simulated data cubes generated using the library

A1. Similarly, Table IV shows the same performance indicators for the simulated data cubes generated using A2.

From Tables III and IV, it can be seen that the SRE(dB) and ps values computed per member are generally higher

for A2. This is because A2 is more heterogeneous in nature than A1. As expected, the methods which enforce

sparsity explicitly (SUnSAL and CLSUnSAL) perform better than NCLS. In general, the performances of all the

algorithms improve systematically after dictionary pruning. Not surprisingly, the performances of the algorithms
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TABLE III

SRE(DB) AND ps PER MEMBER BY THE CONSIDERED UNMIXING TECHNIQUES FOR SIMULATED DATA CUBES: DC1, DC2 AND DC3

SRE(dB)

Method Library size
DC1 (k = 3) DC2 (k = 6) DC3 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

300 (full) 1.25 3.27 3.77 0.10 2.75 4.07 -0.78 0.93 2.58
60 2.23 3.57 3.82 1.25 3.47 4.26 0.39 2.17 3.45
40 2.53 3.63 3.82 1.40 3.52 4.27 1.22 2.74 3.56
20 2.82 3.69 3.83 2.20 3.91 4.34 1.35 3.51 3.75

SUnSAL

300 (Full) 1.44 3.28 3.78 1.19 3.22 4.10 -0.25 0.97 2.76
60 2.26 3.57 3.82 2.21 3.91 4.26 0.76 2.17 3.45
40 2.56 3.63 3.82 2.71 4.06 4.34 1.36 2.74 3.56
20 2.94 3.69 3.83 3.21 4.21 4.36 1.36 3.51 3.75

CLSUnSAL

300 (Full) 2.78 3.68 3.83 2.57 4.05 4.36 0.61 1.86 3.35
60 3.08 3.73 3.84 3.46 4.21 4.38 2.14 3.20 3.67
40 3.19 3.75 3.84 3.80 4.26 4.39 2.59 3.36 3.69
20 3.43 3.78 3.84 3.92 4.32 4.40 1.49 3.54 3.75

ps

Method Library size
DC1 (k = 3) DC2 (k = 6) DC3 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

300 (Full) 0.09 0.25 0.31 0.04 0.19 0.39 0 0.01 0.08
60 0.15 0.29 0.32 0.10 0.30 0.41 0.02 0.08 0.22
40 0.18 0.29 0.32 0.12 0.30 0.41 0.05 0.12 0.24
20 0.22 0.30 0.32 0.22 0.36 0.42 0.02 0.22 0.27

SUnSAL

300 (Full) 0.10 0.25 0.31 0.08 0.25 0.39 0 0.02 0.12
60 0.15 0.29 0.32 0.14 0.36 0.41 0.03 0.08 0.22
40 0.19 0.29 0.32 0.19 0.38 0.42 0.05 0.12 0.24
20 0.23 0.30 0.32 0.29 0.40 0.42 0.05 0.22 0.27

CLSUnSAL

300 (Full) 0.21 0.30 0.32 0.13 0.38 0.42 0 0.02 0.20
60 0.23 0.31 0.32 0.27 0.41 0.43 0.04 0.17 0.25
40 0.25 0.31 0.32 0.35 0.41 0.43 0.10 0.19 0.26
20 0.28 0.31 0.32 0.37 0.42 0.43 0.03 0.23 0.27

improve when the retained number of signatures approaches the true number of endmembers for both A1 and A2.

The only exception corresponds to the simulated data cube DC3 (using A1), in which only 20 members from the

original library are retained. However, this behavior is not related to the pruning methodology itself but to the

ability of the chosen subspace estimator (in our case, the HySime method) to infer the correct subspace in such

environment affected by strong signature variability. Moreover, the spectral confusion between the endmembers is

high in this particular case since DC3 was generated using three signatures from each available classes of materials

(soil, tree, weed). The same decrease in terms of accuracy is observed for DC5 and DC6 when the observations

are affected by high noise (SNR=30dB) and only 20 members of the original library were retained. Even so, it can

be observed that the unmixing results for any pruning level improve in terms of accuracy when compared to the

results obtained with the original library. It should be noted that SNR values of 30dB are not typically encountered

in practice since modern hyperspectral instruments provide high SNR values [42]. Another important observation

from Tables III and IV is that the considered unmixing algorithms perform better when the number of endmembers

in the image is low (see results for DC1 and DC4). This was already observed in the original sparse unmixing

formulation [5]. After analyzing the accuracy of the unmixing results computed per member, we conclude that

dictionary pruning can significantly improve the obtained unmixing accuracies in most cases.

3) Experiment 3: Accuracy of Estimated Abundances Per Group: Table V shows the SRE(dB) and the ps

achieved by the considered unmixing techniques per group for the simulated data cubes generated using the library

A1. Similarly, Table VI shows the same performance indicators for the simulated data cubes generated using A2.
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TABLE IV

SRE(DB) AND ps PER MEMBER BY THE CONSIDERED UNMIXING TECHNIQUES FOR SIMULATED DATA CUBES: DC4, DC5 AND DC6

SRE(dB)

Method Library size
DC4 (k = 3) DC5 (k = 6) DC6 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

240 (Full) 7.86 15.60 21.62 0.77 4.53 9.24 0.25 3.91 8.80
60 9.70 18.59 28.25 3.45 8.43 15.46 4.52 10.45 18.48
40 12.63 21.66 31.18 3.53 8.77 16.08 5.46 11.62 19.90
20 14.01 23.09 32.60 5.07 11.20 19.05 4.79 13.23 21.54

SUnSAL

240 (Full) 7.96 16.06 25.66 1.82 5.75 11.16 1.39 4.25 10.20
60 10.30 18.59 28.25 3.45 8.43 15.46 4.52 10.45 18.48
40 12.63 21.66 31.18 3.54 8.77 16.08 5.46 11.62 19.90
20 14.01 23.09 32.60 5.07 11.20 19.05 4.87 13.23 21.54

CLSUnSAL

240 (Full) 9.62 17.77 27.69 3.51 8.03 15.77 2.75 6.39 12.55
60 13.33 22.26 31.81 5.80 11.54 18.43 6.37 12.50 20.44
40 13.41 22.37 31.86 6.02 12.06 19.15 6.71 13.15 21.49
20 14.34 23.43 32.90 8.89 13.92 20.98 5.76 14.86 23.53

ps

Method Library size
DC4 (k = 3) DC5 (k = 6) DC6 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

240 (Full) 0.83 1.00 1.00 0.14 0.51 0.97 0.08 0.42 0.96
60 0.92 1.00 1.00 0.38 0.88 1.00 0.51 0.97 1.00
40 0.99 1.00 1.00 0.40 0.90 1.00 0.63 0.99 1.00
20 1.00 1.00 1.00 0.59 0.96 1.00 0.58 0.99 1.00

SUnSAL

240 (Full) 0.84 1.00 1.00 0.20 0.64 0.99 0.11 0.45 0.99
60 0.94 1.00 1.00 0.38 0.88 1.00 0.51 0.97 1.00
40 0.99 1.00 1.00 0.40 0.90 1.00 0.63 0.99 1.00
20 1.00 1.00 1.00 0.59 0.96 1.00 0.58 0.99 1.00

CLSUnSAL

240 (Full) 0.96 1.00 1.00 0.36 0.91 1.00 0.18 0.75 1.00
60 1.00 1.00 1.00 0.65 1.00 1.00 0.75 1.00 1.00
40 1.00 1.00 1.00 0.69 1.00 1.00 0.78 1.00 1.00
20 1.00 1.00 1.00 0.91 1.00 1.00 0.68 1.00 1.00

We recall that, in this case, the threshold used to compute ps was set to 15, which decreases the probability of

this performance discriminator to approach one. Tables V and VI are consistent with our observations related to

the performance discriminators computed per member. Specifically, we can observe improvements in unmixing

performance in all cases, particularly when the noise levels are not very high. For the cases with a low number of

endmembers in the original data, the probability of success approaches optimal performance (see DC1 and DC4).

The low ps observed in some cases is due to the high threshold set in computing this performance measure. At

the same time, the values of SRE(dB) are generally higher than 5dB (this value corresponds to high quality in the

estimation of the fractional abundances). On the other hand, the unmixing results obtained with pruned libraries

are always more accurate than those obtained with the corresponding full library. This is particularly the case for

the simulations using A2 as the baseline library.

4) Experiment 4: Computational Performance of the Considered Algorithms: Table VII reports the computation

times measured for the considered algorithms. The times are expressed in milliseconds and correspond to the average

running times, per pixel, for fixed values of the regularization parameters (λ = λC = 10−4). The maximum number

of iterations was set to 1000 in all cases. The NCLS solution was calculated using the SUnSAL algorithm, by setting

the regularization parameter to λ = 0. The algorithms were executed on a desktop PC with an Intel Core Duo CPU

@2.5GHz and 4GB of RAM memory. The times reported for the unmixing algorithms with dictionary pruning

already include the computation time of the pruning process. From Table VI, we can conclude that a significant

decrease in computation time can be observed for all algorithms when dictionary pruning is performed. In some



20

TABLE V

SRE(DB) AND ps PER GROUP BY THE CONSIDERED UNMIXING TECHNIQUES FOR SIMULATED DATA CUBES: DC1, DC2 AND DC3

SRE(dB)

Method Library size
DC1 (k = 3) DC2 (k = 6) DC3 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

300 (Full) 9.06 16.66 24.77 7.93 14.57 22.31 9.22 14.12 19.66
60 18.27 27.31 37.21 12.92 19.51 28.10 13.08 19.37 28.46
40 18.58 27.70 37.67 12.88 19.71 28.29 14.04 21.43 30.00
20 17.89 27.03 36.94 13.93 21.78 30.92 9.83 23.34 32.53

SUnSAL

300 (Full) 11.44 16.84 26.17 12.26 20.66 21.13 8.66 11.22 17.29
60 19.28 27.31 37.21 12.71 23.61 26.34 11.34 16.34 25.43
40 19.91 27.70 37.67 13.13 22.28 28.51 11.82 18.40 26.97
20 19.97 27.03 36.94 17.12 25.49 28.82 8.80 20.31 29.50

CLSUnSAL

300 (Full) 13.80 22.57 32.20 14.67 22.63 31.52 9.51 13.34 21.58
60 19.80 29.46 38.80 17.14 25.65 34.20 12.37 18.26 26.89
40 20.60 30.00 39.59 17.85 25.98 35.22 12.67 19.29 27.12
20 21.24 30.66 40.35 17.92 26.45 35.39 10.83 20.50 29.51

ps

Method Library size
DC1 (k = 3) DC2 (k = 6) DC3 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

300 (Full) 0.33 0.75 1.00 0.27 0.61 0.99 0.31 0.59 0.94
60 0.86 1.00 1.00 0.60 0.90 1.00 0.55 0.91 1.00
40 0.87 1.00 1.00 0.60 0.91 1.00 0.63 0.97 1.00
20 0.86 1.00 1.00 0.70 0.95 1.00 0.37 0.99 1.00

SUnSAL

300 (Full) 0.49 0.76 1.00 0.57 0.99 0.99 0.30 0.60 0.95
60 0.90 1.00 1.00 0.64 1.00 1.00 0.59 0.91 1.00
40 0.92 1.00 1.00 0.65 1.00 1.00 0.65 0.97 1.00
20 0.92 1.00 1.00 0.89 1.00 1.00 0.31 0.99 1.00

CLSUnSAL

300 (Full) 0.60 0.99 1.00 0.77 1.00 1.00 0.42 0.78 1.00
60 0.92 1.00 1.00 0.89 1.00 1.00 0.69 0.98 1.00
40 0.95 1.00 1.00 0.93 1.00 1.00 0.72 0.99 1.00
20 0.96 1.00 1.00 0.93 1.00 1.00 0.44 0.99 1.00

cases, the decrease is weakly correlated with the number of members retained from the original library (see, for

example, the computation times measured for the SUnSAL method applied to the data cubes generated using A1).

This is because, when the library is pruned, not only the number of computations decreases dramatically but also

the algorithms converge faster. As a result, in this case the algorithms do not reach the imposed limit of 1000

iterations. This is a very encouraging result, which further confirms the advantages that can be gained by applying

the proposed methodology.

Summarizing, in this section we have conducted extensive tests to evaluate the potential of the proposed dictionary

pruning methodology using simulated data sets. The libraries used in our tests exhibit distinct characteristics with

regards to the type of materials represented in those libraries. While A1 contains three groups of signatures,

corresponding to soil, citrus canopy and weed, A2 contains 55 groups of mineral signatures. Our results indicate

that dictionary pruning significantly improves the unmixing results in all cases, both in terms of the accuracy of the

solutions and the time to obtain them. The accuracy of the solutions always improved after the pruning process,

regardless of whether they were computed per member or per group. We have also shown that dictionary pruning

allows unmixing algorithms to converge faster to optimal solutions. Although our results with computer simulations

are encouraging, further experiments with real hyperspectral data should be conducted.

VI. EXPERIMENTAL RESULTS USING REAL DATA

This section exemplifies the applicability of the proposed dictionary pruning methodology in real environments.

In our previous work [43], we conducted a qualitative evaluation of the proposed pruning methodology using the
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TABLE VI

SRE(DB) AND ps PER GROUP BY THE CONSIDERED UNMIXING TECHNIQUES FOR SIMULATED DATA CUBES: DC4, DC5 AND DC6

SRE(dB)

Method Library size
DC4 (k = 3) DC5 (k = 6) DC6 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

240 (Full) 8.40 16.14 22.07 2.48 6.28 10.97 1.20 4.90 9.94
60 10.18 19.01 28.69 7.14 13.61 21.38 6.13 12.78 21.18
40 13.63 22.59 32.10 7.34 13.83 21.73 7.39 14.19 22.62
20 15.15 24.12 33.62 10.07 20.26 28.58 6.45 15.85 24.38

SUnSAL

240 (Full) 8,39 16,60 26,23 4,61 8,60 13,64 2,91 5,96 11,35
60 10,88 19,01 28,69 7,87 14,28 22,05 6,13 12,78 21,18
40 13,63 22,59 32,10 8,08 14,50 22,40 7,39 14,19 22,62
20 15,15 24,12 33,62 10,85 20,93 29,25 6,52 15,85 24,38

CLSUnSAL

240 (Full) 9,84 18,20 27,94 5,94 10,22 18,82 4,01 7,76 13,91
60 14,03 23,16 32,47 9,39 16,66 24,51 7,77 14,37 22,73
40 14,24 23,35 32,60 11,25 17,99 25,15 8,62 15,38 23,80
20 15,23 24,39 34,10 15,07 21,99 30,10 7,43 16,99 25,83

ps

Method Library size
DC4 (k = 3) DC5 (k = 6) DC6 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

240 (Full) 0.15 0.71 0.99 0.01 0.13 0.35 0 0.01 0.10
60 0.34 0.89 1,00 0.09 0.54 0.99 0.02 0.35 0.99
40 0.54 0.99 1.00 0.12 0.58 0.99 0.06 0.52 1.00
20 0.66 1.00 1.00 0.36 0.96 1.00 0.09 0.71 1.00

SUnSAL

240 (Full) 0.14 0.74 1.00 0.02 0.22 0.53 0 0.02 0.21
60 0.35 0.89 1.00 0.09 0.54 0.99 0.02 0.35 0.99
40 0.54 0.99 1.00 0.12 0.58 0.99 0.06 0.52 1.00
20 0.66 1.00 1.00 0.36 0.96 1.00 0.08 0.71 1.00

CLSUnSAL

240 (Full) 0.19 0.88 1.00 0.05 0.40 0.93 0 0.03 0.41
60 0.57 0.99 1.00 0.09 0.77 1.00 0.02 0.49 1.00
40 0.58 0.99 1.00 0.22 0.89 1.00 0.05 0.64 1.00
20 0.66 1.00 1.00 0.62 0.99 1.00 0.12 0.80 1.00

well-known Cuprite data set collected by the Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS), which is

available online in reflectance units6. The aforementioned real data experiment is related to the tests conducted in

section V with the A2 library, in which a dictionary composed entirely of mineral signatures was used. The results

included in [43] demonstrated that the unmixing results (obtained with both NCLS and SUnSAL algorithms) were

correlated with the ground-truth data available, and the minerals of interest exhibited good spatial distribution. In

that scene, a quantitative evaluation was not possible, as the ground-truth information available is a classification

map obtained by the USGS Tricorder algorithm, in which each pixel is assigned to a certain endmember class

without providing information about the fractional abundance of each endmember.

In this work, we use a different real hyperspectral data set for which the true fractional abundances of endmembers

are available. The data set comprises in situ measurements of reflectance spectra collected over mixed ground plots

(i.e., covered by more than one material class) in a commercial Citrus orchard near Wellington, South Africa. Mixed

pixel spectra were measured for different material class combinations: (i) tree-soil; (ii) tree-weed; (iii) tree-soil-

weed. For each mixture combination, 25 mixed pixel spectra were measured. For each pixel, specific endmember

spectra and ground cover fraction distributions were determined. The reflectance spectra were measured from nadir

at a height of 4 m using an ASD field spectroradiometer with a 25 foreoptic, covering the 350–2500 nm spectral

range. The major water absorption regions, sensitive to changing atmospheric water vapor content, were excluded

from the analysis, thus obtaining a dataset with 1798 spectral bands. The plot-specific endmembers were acquired

6http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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TABLE VII

COMPUTATION TIMES (MILLISECONDS) FOR THE UNMIXING ALGORITHMS, WITH AND WITHOUT PRUNING, IN SIMULATED EXPERIMENTS

Spectral library: A1

Method Library size
DC1 (k = 3) DC2 (k = 6) DC3 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

240 (Full) 12.95 13.86 12.86 13.04 8.52 8.25 13.61 4.24 4.21
60 1.26 1.21 0.49 0.86 0.39 0.47 0.49 0.40 0.53
40 0.78 0.89 0.27 0.58 0.26 0.27 0.25 0.26 0.24
20 0.52 0.42 0.18 0.26 0.12 0.17 0.12 0.13 0.15

SUnSAL

240 (Full) 15.39 15.64 14.61 15.3 10.26 9.93 15.38 5.06 5.31
60 1.89 1.76 1.18 0.63 0.59 0.51 0.62 0.62 0.56
40 1.10 1.16 0.34 0.36 0.35 0.32 0.35 0.38 0.31
20 0.58 0.41 0.21 0.21 0.20 0.21 0.23 0.19 0.17

CLSUnSAL

240 (Full) 47.32 46.72 47.12 46.96 46.91 47.68 47.08 46.77 47.46
60 12.83 13.19 12.84 12.90 13.52 13.02 12.77 12.99 13.04
40 10.85 10.60 10.73 10.68 10.67 10.75 10.97 10.81 10.77
20 8.50 8.64 8.66 8.81 8.65 8.67 8.73 9.34 8.72

Spectral library: A2

Method Library size
DC4 (k = 3) DC5 (k = 6) DC6 (k = 9)

SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB SNR=30dB SNR=40dB SNR=50dB

NCLS

240 (Full) 9.01 8.63 8.64 8.87 9.56 9.83 10.35 8.43 8.44
60 1.4 1.15 1.23 1.12 1.39 1.01 1.11 0.88 0.44
40 0.8 0.86 0.81 0.84 0.70 0.51 0.83 0.89 0.29
20 0.36 0.37 0.35 0.39 0.39 0.21 0.30 0.29 0.21

SUnSAL

240 (Full) 10.39 10.53 11.09 10.31 10.66 11.01 10.38 10.66 11.04
60 1.85 1.67 1.57 1.57 1.67 1.13 1.60 1.36 0.68
40 1.16 1.05 0.99 1.07 1.06 0.69 1.05 1.11 0.39
20 0.55 0.65 0.59 0.58 0.66 0.17 0.62 0.42 0.38

CLSUnSAL

240 (Full) 32.71 32.95 32.67 32.93 33.07 32.91 32.77 33.13 32.94
60 13.42 12.70 12.93 13.04 13.04 12.61 13.15 13.69 12.74
40 10.43 10.65 10.42 10.31 10.11 10.39 10.28 10.12 10.41
20 7.96 8.16 8.03 8.10 8.01 7.93 8.02 8.09 7.93

by measuring the reflectance of a number of pure soil, sunlit crown and weed spectra in each plot. Measurements

were taken from nadir at 1 m above the object of interest. The relative cover of each material was extracted from

digital images of a Sony DCP-P8/3.2-megapixel camera. This dataset has previously been used in [44] and has

the advantage that true spectral endmembers and cover fraction distributions are available. For a more detailed

description of the experimental set-up conducted in order to obtain the reference information for this scene, we

refer to [44].

The spectral library used in our experiments, denoted by B, is a collection of 971 spectra acquired on the

ground in different days, including the day in which the data were acquired. The library comprises 85 soil spectra,

839 tree spectra and 57 weed spectra, with 1798 spectral bands in the spectral range from 350–2500 nm. From

these set of spectra, 52 soil spectra, 76 tree spectra and 49 weed spectra were acquired the same day as the data

were collected. Thus, these endmembers can be considered as the ones generating the observations. The algorithms

detailed in section III were used to unmix the data using the full library and two pruned versions: B1 and B2,

respectively containing subsets of 200 and 100 spectra from B. In our experiments, we considered only the results

computed per group as this strategy is the most appropriate bearing in mind the structure of the hyperspectral data

and the available library. The threshold used in computing the probability of success is set to 10dB, and the data

subspace was estimated using the HySime algorithm. This approach estimated the subspace dimension to be 56.

Consequently, the first 56 eigenvectors returned by HySime were retained to define the estimated data subspace.

Fig. 7 shows the projection errors measured for the members in B, obtained after applying the proposed pruning
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Fig. 7. Projection errors measured for the members in B in the experiment with real hyperspectral data, obtained after applying the proposed

pruning methodology. The projection errors of the members acquired on the ground the same day as the hyperspectral data were collected are

highlighted with red circles. The green line represents the threshold used when 200 members were retained from the library B in the pruning

process.

methodology. The projection errors of the endmembers acquired on the ground the same day as the hyperspectral

data were collected are highlighted with red circles. The green line represents the threshold used when 200 members

were retained from the library B in the pruning process. Note that the members acquired at the same time as the

image data always have projection errors close to zero. On the other hand, there is a clear gap between those

members and all the other ones, which might help an end-user decide which signatures from the available library

were the ones that really generate the considered hyperspectral data. Fig. 8 plots the best SRE(dB) scores obtained

by the unmixing methods described in section III in each pixel of the considered dataset. The average SRE(dB),

along with the probability of success ps, are also indicated in the plots. In all cases, the regularization parameters

involved in each method were tuned for optimal performance and only the best results from each considered

unmixing method are reported. From Fig. 8, we conclude that the obtained unmixing performances always improve

after dictionary pruning, an observation that was already emphasized in our experiments with simulated data. Note

that, despite the fact that there are 177 spectra contained in the library that generates the data, the obtained results

indicated that the unmixing accuracy computed per group still improves when only 100 members are retained.

This is due to the fact that the retained endmembers can successfully explain the observed data without confusion

resulting from the presence of supplementary members in the spectral library.

To conclude this section, Table VIII reports the computation times (in milliseconds) measured after applying
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Fig. 8. The best SRE(dB) scores obtained by the considered unmixing methods in each pixel of the real hyperspectral dataset. The average

SRE(dB), along with the probability of success ps, are also indicated in the plotsT

the proposed unmixing algorithms to the real hyperspectral data set (with and without pruning) on a desktop PC

with an Intel Core Duo CPU @2.5GHz and 4GB of RAM memory. The times reported in Table VIII correspond

to the average running times, per pixel, for fixed values of the regularization parameters, where the parameters

involved were optimized and set empirically to λ = λC = 10−3. In all cases, the algorithms were set to run at

most 1000 iterations. From Table VIII, we can conclude that the computing time of the considered algorithms

decreases dramatically after the pruning is performed (the pruning time is always included in the times reported

in Table VIII). A significant decrease in computation time is observed for unmixing methods which act per pixel

(NCLS and SUnSAL). Combined with the experimental results with simulated data, the experiments conducted

with real data indicate that the proposed dictionary pruning methodology is able to improve the unmixing accuracy

and computational performance of the considered spectral unmixing algorithms.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a new dictionary pruning methodology for spectral libraries intended to

increase the accuracy of spectral unmixing algorithms while reducing their computation time. We exploit the fact
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TABLE VIII

COMPUTATION TIMES (MILLISECONDS) FOR THE UNMIXING METHODS, WITH AND WITHOUT PRUNING, IN A REAL DATA EXPERIMENT

Method B (971 members) B1 (200 members) B2 (100 members)

NCLS 24.20 1.47 0.80

SUnSAL 24.98 1.66 0.73

CLSUnSAL 125.65 32.08 20.32

that hyperspectral pixel vectors generally live in a lower-dimensional subspace. The proposed approach has been

extensively evaluated using both real and hyperspectral data sets. In all cases, dictionary pruning reveals as a

relatively simple yet very powerful strategy to improve unmixing performance, particularly when combined with

sparse unmixing algorithms that conduct the estimation of fractional abundances using large spectral libraries, thus

circumventing important problems such as the estimation of the number of endmembers (which translates here to the

identification of an optimal subset of members in the considered spectral library) and the identification of the spectral

signatures of such endmembers when there are no pure observations in the hyperspectral data. With the proposed

pruning strategy, we bring sparse unmixing to a new domain in terms of computational performance (now much

more manageable than in previous efforts such as [5], [9], [12]) and also in terms of unmixing performance, thus

enhancing the practical application of sparse unmixing techniques in real problems. A possible direction for future

work is to adapt the proposed pruning method to identify spectral signatures based on the physical parameters of the

endmembers on the ground. Another research line worth being explored in future developments is how to exploit

possible alternative ways of discriminating between actual states of the same endmembers in different scenarios

(e.g., seasonal variations of the same endmember in different temporal periods).
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