Sparse Distributed Multitemporal Hyperspectral Unmixing

Jakob Sigurdsson, Magnus O. Ulfarsson, Johannes R. Sveinsson, and José M. Bioucas-Dias

Abstract—Blind hyperspectral unmixing jointly estimates spectral signatures and abundances in hyperspectral images. Hyperspectral unmixing is a powerful tool for analyzing hyperspectral data. However, the usual huge size of hyperspectral images may raise difficulties for classical unmixing algorithms, namely due to limitations of the hardware used. Therefore, some researchers have considered distributed algorithms. In this paper, we develop a distributed hyperspectral unmixing algorithm that uses the alternating direction method of multipliers (ADMM), and ℓ1 sparse regularization. The hyperspectral unmixing problem is split into a number of smaller subproblems which are individually solved and then the solutions are combined. A key feature of the proposed algorithm is that each subproblem does not need to have access to the whole hyperspectral image. The algorithm may also be applied to multitemporal hyperspectral images with due adaptations accounting for variability that often appears in multitemporal images. The effectiveness of the proposed algorithm is evaluated using both simulated data and real hyperspectral images.

Index Terms—Hyperspectral unmixing, feature extraction, blind signal separation, linear unmixing, alternating direction method of multipliers, distributed algorithms, multitemporal unmixing

I. INTRODUCTION

INTEREST in hyperspectral images (HSIs) has increased significantly over the past decade, mainly due to high spectral resolution, which enables precise material identification using spectroscopic analysis. HSIs were introduced decades ago in mining and geology. Since then, their use has spread to diverse fields such as manuscript research, medical imaging, and remote sensing [1]–[3].

However, the spatial resolution of HSIs in remote sensing applications is often of the order of meters or tens of meters, such that more than one material may be present within one pixel. Pixels containing more than one material are called mixed pixels, in contrast to pure pixels, which only contain one material. Each pixel in a HSI is thus composed of a mixture of the spectral signatures of materials within the spatial boundaries of the pixel.

The term endmember is used to describe one specific material in a HSI, and an abundance map specifies the percentage of one specific material for all the pixels. Hyperspectral unmixing is the process of estimating the number of endmembers, their spectral reflectance, termed endmember signatures, and their corresponding abundance maps [2], [3].

The linear mixture model (LMM) has extensively been used to model HSIs. If the mixing is assumed to be macroscopic and the image is flat, the LMM is a good approximation for the light scattering phenomenon [2]. However, a remote sensed HSI is not flat and the illumination conditions may vary between sections of the image. For these reasons, the spectral signatures measured by the sensor may vary both in amplitude and form. Also, HSIs of the same region acquired at different times may have endmembers that differ since the acquisition conditions may not be identical for all acquisitions, i.e., the endmembers from these different HSIs may have temporal variability.

HSIs can be very large and with ever-improving optical, computing, and processing equipment, they will only continue to grow in size. This increase in size means that the memory requirements of the hardware used to unmix these big hyperspectral data will also increase. Distributed methods can be used to cope with these ever increasing requirements. The alternative direction method of multipliers (ADMM) [4], [5] is a framework that can be used to develop distributed algorithms. Using ADMM, the optimization problem is solved iteratively; in each iteration, a number of independent subproblems are solved independently and then the different solutions are merged. In this paper, we exploit the structure of the ADMM iterative solver to design a distributed hyperspectral unmixing algorithm, where each independent problem is solved by a processor. Then, the solutions obtained by the processors are merged using moderate communication resources.

A. Regularizers and Constraints In Hyperspectral Unmixing

Hyperspectral unmixing is a blind source separation problem that often uses regularizers to incorporate additional information into the unmixing. From an inverse problem perspective, regularizers help to cope with the ill-conditioned nature of hyperspectral unmixing. Sparsity promoting regularizers have been widely used in hyperspectral unmixing [2], [6]–[9]. A paradigmatic example is the use of sparsity inducing regularizers to promote sparse abundance maps, as it is unlikely for every material in a HSI to be present in every pixel in the image.

Constraining both the endmember signatures and abundances to be nonnegative is common practice in hyperspectral unmixing, since the former are reflectances and the latter are fractions. Constraining the sum of the abundances for each pixel to be one is widely used in hyperspectral unmixing. This constraint is called the abundance sum constraint (ASC). The ASC also stabilize the unmixing solution. However HSIs are...
noisy, and the ASC does not take into account variations in reflectance from the same material. For these reasons, the ASC has received some criticism [10], and it is not obvious whether to relax the ASC or consider it a part of the modeling error [2]. Another constraint that also stabilizes the solution is the endmember norm constraint (ENC). The ENC puts an unit norm constraint on the endmembers, forcing the endmembers to have the same energy. The ENC has been widely used in hyperspectral unmixing [9], [11]–[13].

B. Related Work

A representative class of blind, non-pure pixel based, hyperspectral unmixing methods are variants of nonnegative matrix factorization (NMF). NMF became widely used in many fields of research following the publication of the Lee-Seung algorithm [14] for NMF. Many NMF-type unmixing methods apply a sparsity regularizer on the abundances, typically the \(\ell_1 \) norm [15]–[17]. In [18], the \(\ell_0 \) norm is used to promote sparse abundance maps and it is compared to the \(\ell_1 \) norm. In [9], the \(\ell_q \) \((0 \leq q \leq 1)\) regularizers are thoroughly evaluated for hyperspectral unmixing. The minimum volume regularizer on the mixing matrix [2], [19] is also a common regularizer in hyperspectral unmixing. Distributed and parallel hyperspectral unmixing has received some attention recently. A distributed parallel algorithm was presented in [20], where the HSI is split either by bands or spectra. This approach still requires access to the whole dataset. Two parallel endmembers algorithms are discussed in [21], namely automatic morphological endmember extraction [22], and orthogonal subspace projection [23]. In [12], ADMM was used to develop a distributed version of NMF, and in [24], a partial version of the algorithm proposed here was presented.

In [25], a multitemporal unmixing algorithm is proposed, where a dynamical model based on the linear mixing processes is used at each time instant. The estimated endmember spectra are constrained to be similar to a set of endmember spectra that is assumed to be known or estimated in some manner. The abundances are similarly constrained to vary smoothly temporally.

Endmember spectral variability has been addressed by various researchers. In [26], the endmember spectra are assumed to be realizations of multivariate distributions, and in [27], they are represented as spectral signature bundles. In [28], a review of different methods that address spectral variability in HSIs was presented.

The topic of unmixing multitemporal images has also recently received attention. In [29]–[33], multitemporal unmixing was used for change detection, and in [34], an online unmixing of HSIs was introduced, accounting for spectral variability among the different images.

C. Paper Contribution

In this paper, a novel cost function is minimized by using ADMM, to solve two different distributed sparse hyperspectral unmixing problems. The first problem is distributed hyperspectral unmixing and the second problem is distributed multitemporal unmixing. A regularizer is used to promote sparse abundance maps. To handle multitemporal unmixing, the algorithm proposed in [24] is extended to account for spectral variability between the different subproblems by adopting the approach used in [34]. The algorithm can therefore be used to unmix multitemporal HSIs affected by temporal variability.

The proposed algorithm differs from the one in [34], where the hyperspectral unmixing is formulated as a two-stage stochastic program, since it is based on the ADMM and uses dyadic cyclic descent optimization [35]–[38] to solve the ADMM subproblems. The method does not assume that any endmembers are known a priori, or estimated independently, as was done in [25].

When unmixing a HSI, the image is first spatially split into a number of smaller HSIs, which are then independently unmixed. The obtained individual solutions are then merged together. Each individual subproblem is solved using dyadic cyclic descent and the solutions are merged together using ADMM. In this case, we do not assume that there is spectral variability between the different subimages. Each individual subproblem does not need to have access to the full hyperspectral image. The algorithm can thus be applied to very large datasets where traditional methods may fail because of hardware limitations.

When using the algorithm to unmix multitemporal HSIs, each temporal HSI is treated as one subproblem. The spectral variability between the HSIs is properly addressed. Each temporal HSI is unmixed independently and the solutions are merged in a similar way to that of distributed unmixing.

D. Notation

The following notations are used in this paper:

- \(s \) vectors are denoted by lower case bold letters.
- \(S \) matrices are denoted by upper case bold letters.
- \(s^T_p \) \(p \)th row of matrix \(S \).
- \(s_{(j)} \) \(j \)th column vector of \(S \).
- \(S_{(j)} \) \(S \) with its \(j \)th column removed.
- \(s^k \) an estimate of \(s \) at iteration \(k \).
- \(\text{tr}(S) \) the trace of \(S \).
- \(\|s\|_1 \) the \(\ell_1 \) norm of \(s \), which is the absolute sum of the vector.
- \(\|S\|_{1,1} \) the mixed \(\ell_1 \) norm of \(S \), i.e. \(\sum_i \|s_{(j)}\|_1 \).
- \(\|S\|_F \) the Frobenius norm of \(S \).
- \(\Gamma_{M \times r}^+ \) the set of elementwise nonnegative \(M \times r \) matrices where each column has the unit norm.
- \(\mathbb{R}_+^{P \times r} \) the set of elementwise nonnegative \(P \times r \) matrices.
- \(\max(s, 0) \) the elementwise maximum operator.
- \(I(s) \) The elementwise identity operator.

E. Paper Structure

The paper is organized as follows. In Section II, the problem formulation and the proposed algorithm are described. In Section III, the algorithm is evaluated using simulated data. In Section IV, the algorithm is applied to real HSIs. In Section V, conclusions are drawn. In the Appendix, the details of the estimation methods are described.
II. PROBLEM FORMULATION

A. The Minimization Problem

In this paper, we will solve the following minimization problem,

$$\min_{S \in \mathbb{R}^{P \times r}, A \in \mathbb{R}^{M \times r}} \frac{1}{2} \|Y - SA^T\|_F^2 + h\|S\|_{1,1},$$ \hspace{1cm} (1)

where P, M, and r are positive integers representing, respectively, the number of pixels, the number of spectral bands, and the number of endmembers. Y is a $P \times M$ matrix, where each row represents the spectral vector observed at a pixel of the HSI, A is an $M \times r$ matrix where each column holds endmember spectra, and S is a $P \times r$ abundance matrix where each column is a vectorized abundance map. Here, $r \ll P$, since it is assumed that the number of endmembers in the image is much smaller than the number of pixels.

In this paper, we have traded the usual hardness associated with ℓ_0 regularization with the joint use of ℓ_1 and normalization of the columns of the mixing matrix, which is, from the computational point of view, more manageable than ℓ_0 yielding, nevertheless, very good results.

B. Geometrical representation

Promoting sparse abundances has a similar flavor as the minimum volume regularizer [2]. However, it is simpler to use, since dealing with the ℓ_1 regularizer is easier than dealing with the determinant of $A^T A$, which is typically used as a volume regularizer. To illustrate this, we use the Urban data set described in Subsection IV-A. We unmix this data set using different values of the sparsity parameter h, using Algorithm 2 (given in the Appendix), to solve the optimization (1). This is a blind unmixing problem using an ℓ_1 sparsity inducing regularizer on the abundances, while constraining the endmembers to have unit norm.

Fig. 1 shows, for different values of h, projection of the spectral vectors on the plane defined by bands #60 and #140. The endmembers, at the same bands, are also shown as red triangles. The lines between the origin and the endmembers are also shown in green.

From the four figures, we may conclude that when the sparsity parameter is increased, the endmembers shown as red triangles, are being pulled towards each other, implying that the volume defined by the endmembers decreases. This behavior is further highlighted in Fig. 2, where the volume $(\det A^T A)$ is shown as a function of the sparsity parameter.

C. Distributed Unmixing

In order to develop a distributed algorithm, the aim is to decompose (1) into smaller problems. To accomplish this, problem (1) is reformulated into N constrained subproblems as

$$\min_{S_i \in \mathbb{R}^{P \times r}, A_i, Z \in \mathbb{R}^{M \times r}} \sum_{i=1}^{N} \left(\frac{1}{2} \|Y_i - S_i A_i^T\|_F^2 + h\|S_i\|_{1,1} \right)$$ \hspace{1cm} (2)

s.t. $A_i - Z = 0,$

where the subscript i corresponds to subproblem number i, $Y_i = [Y_{1i}^T, Y_{2i}^T, ..., Y_{Ni}^T]^T$, $S_i = [S_{1i}^T, S_{2i}^T, ..., S_{Ni}^T]^T$, A_i is the endmember matrix corresponding to subproblem i, $\sum_i I_i = P$, and Z is the consensus matrix representing the endmember matrix of the global problem. Problem (2) is nonconvex, since $\Gamma^{M \times r}$ is a nonconvex set and the data fidelity term is nonconvex.

D. Distributed Multitemporal Unmixing

For a multitemporal distributed unmixing algorithm, the original problem is decomposed into N subproblems, each one corresponding to the unmixing of a complete HSI acquired at a given time instant. To account for variability in the endmembers, linked to the different acquisition times and seasonal variations, we introduce N perturbation matrices, M_i, into (2) as
The complete Lagrangian is

$$L(Y, S, A, M, \Lambda, Z) = \sum_{i=1}^{N} L_i(Y_i, S_i, A_i, M_i, \Lambda_i, Z).$$

An ADMM-type algorithm is used to solve (3), where (5) is iteratively minimized w.r.t. each optimization variable. The pseudo code for algorithm, termed distributed multitemporal unmixing (DMU), is shown in Algorithm 1. In this algorithm, we use Algorithm 2, shown in the Appendix, to solve the individual subproblems.

Note that each subproblem in Algorithm 1 does not need to have access to the whole image matrix, but only to the corresponding subimage. All the subproblems can thus be solved in parallel. The optimization problem that is solved here is nonconvex and, therefore, there is no guarantee of convergence. We have however systematically observed that the algorithm does perform well, and that the variables of interest (A_i, S_i, M_i) do converge using both simulated and real data.

The stop criteria for Algorithm 2 is

$$\frac{\|A_i^{(k)} + M_i^{k} - (A_i^{k-1} + M_i^{k-1})\|_F}{\|A_i^{k} + M_i^{k}\|_F} < 10^{-7},$$

and

$$\frac{\|S_i^{k} - S_i^{k-1}\|_F}{\|S_i^{k}\|_F} < 10^{-7}.$$
balance, where the data fidelity term is low while the sparsity of sparsity S preferred. The EBIC objective function is [41]

$$\text{EBIC} = M \log(\hat{\sigma}^2) + \frac{1}{P} \|Y - \hat{S}\hat{A}^T\|^2_{\hat{A}^2} + \left(\log(P) + 4\alpha \log(M)\right)d,$$

(10)

where $\alpha \in [0, 1]$, and d is the number of free parameters in the model, i.e.,

$$d = \|\hat{S}\|_0 + Mr - r^2,$$

(11)

where $\|\hat{S}\|_0$ is the number of nonzero values in \hat{S}. Unless stated otherwise, we use $\alpha = 0.5$, and

$$\hat{\sigma}^2 = \frac{1}{PM} \|Y - \hat{S}\hat{A}^T\|^2_{\hat{A}^2}. $$

(12)

The simultaneous estimation of all the parameters is computationally intensive, since we would need to estimate A, S, and M for all combinations of the parameters. Therefore, we will first estimate the number of endmembers, r, using $h = 0$; in this case, the number of free parameters is

$$d = PM + Mr - r^2. $$

(13)

The augmented Lagrangian weight $\rho(k)$ is set to a low value and is incremented in each iteration forcing all endmember matrices A_i to converge to Z as the algorithm iterations evolve. A maximum of 30 iterations is allowed, and $\rho(k)$ is set according to

$$\rho(k) = 10^k \frac{\hat{\sigma}}{\hat{\sigma}} + 0.02MP\sigma^2, $$

(14)

where k is the iteration number, and σ^2 is variance of the HSI. The median absolute deviation [42] is used to calculate σ^2 for each band and the average value is used.

Using (14), $\rho(k)$ is initially very low and in each iteration it is incremented, and in the last iteration $\rho(30) \approx 10^9$. Using this scheme, the different endmember matrices, A_i, will converge to Z. Our experiments show that using (14) gives good results, and the variables of interest do converge.

Setting the number of subproblems, N, is done manually, but when unmixing temporal images, the number of subproblems is the same as the number of temporal HSIs.

The variation parameter ψ is set according to

$$\psi = 10^3 \sigma^2, $$

(15)

where σ^2 is estimated using [42]. For this value of ψ, the temporal perturbation matrices M_i will be constrained, but still be able to adapt and capture the temporal variations of the endmembers.

The procedure for estimating the parameters is:

1) Choose the number of subproblems, N.

2) Estimate the dimensionality, r, with $h = 0$ using (10), (12) and (13). This is done by unmixing the data using different values of r and then calculating the EBIC using the solutions obtained. The value of r that yields the lowest EBIC is then chosen.

3) Estimate the sparsity parameter, h, for a given r, using (10), (11) and (12). In a similar manner as when estimating r, different solutions are obtained using different values of h. The value of h that yields the lowest EBIC is chosen.

To lighten the overall computational complexity in our simulations and experiments, we use one subproblem to estimate the parameters. We have observed in our simulations that using only one subproblem gives an accurate estimate of the parameters and yields good results. The estimated set of parameters is then used for all the subimages.

G. The Subimages

There are no constraints on how the HSI is split up, but different splittings may affect the speed of the algorithm. Here, we show two methods to split the HSI into subimages, the first method splits the HSI vertically into spatially continuous N strips. The second method will randomly place each pixel in the image into one of the N subimages. By randomly selecting pixels into subproblems, we increase the probability that all the endmembers will be present in all the subimages. This will decrease the convergence time of the algorithm and improve the performance. Our proposed algorithm uses the random splitting. An illustration of these two methods is shown in Fig. 3. These two methods to split the data into subimages will be denoted spatial and random splitting, respectively.

Fig. 3. Left: A simulated image. Center: spatial splitting into 4 subimages. Right: random splitting.

III. SIMULATIONS

To evaluate the algorithm, we will use simulated data. The endmembers are mineral signatures from a pruned USGS spectral library\(^2\), containing 100 distinct spectral signatures where the minimum spectral angle distance between any two signatures is 0.16 rad (9°). The first and last spectral bands are removed so the number of bands used is $M = 222$.

In these simulations, five endmembers from the pruned library are used. The abundances are generated following a Dirichlet distribution, with unit parameters (i.e., uniform on the simplex) [43]. Abundance variability is also added by allowing the sum of each abundance vector to be between 0.7 and 1.3. The sparsity of the abundance maps is approximately 35%, which means that 35% of all abundance values are set to zero. This is implemented by randomly setting entries in the abundance map to zero. Gaussian i.i.d. noise is added to the simulated data, resulting in a signal to noise ratio of 35dB. The maximum purity of any pixel in the image is 85%.

The spatial dimensions of the simulated image is 200×80 pixels. The image is split into $N = 4$ equal subimages, where

\(^2\)http://speclab.cr.usgs.gov/spectral.lib06
the each subimage is \((200 \times 20)\) pixels in size. We will use both spatial and random splitting, respectively. The simulated data will also be unmixed using \(N = 1\) subimage, i.e., unmix the whole image in the classical way without splitting it.

In these simulations, the sparsity parameter is estimated using the EBIC, the number of endmembers is manually set to the correct value, \(r = 5\). We manually set \(r\) to the correct value so we are able to evaluate the algorithm.

However, to show that EBIC does yield good results, we show in Fig. 4 the calculated EBIC using the simulated data generated as described in Subsection III-A. The number of endmembers was varied in the interval \(r = 3, \ldots, 10\). EBIC correctly estimated the rank for this simulated data. In Fig. 5, EBIC and SAD plots obtained when estimating \(\lambda\), when \(r = 5\) are given.

In Table I, we can see that the distributed unmixing and the classical unmixing results are very similar. The metrics calculated are virtually identical and show that both the endmembers and abundances are very similar to the original data.

Simulation 3 All of the endmembers are found in all of the subimages and spectral variability is added to the different subimages.

For each simulation, 10 simulations are performed, new endmembers are randomly selected from the library, and new abundance maps are generated. The following metrics are used to evaluate the algorithm:

\[
\text{nMSE}_{AS} = \frac{\|S\mathbf{A}^T - \hat{S}\mathbf{A}^T\|^2_F}{\|S\mathbf{A}^T\|^2_F}, \quad (16)
\]

\[
\text{nMSE}_{S} = \frac{\|S - \hat{S}\|^2_F}{\|S\|^2_F}, \quad (17)
\]

\[
\text{sad}(\hat{a}_{(j)}, a_{(j)}) = \arccos \left(\frac{\hat{a}_{(j)}^T a_{(j)}}{\|\hat{a}_{(j)}\| \|a_{(j)}\|} \right), \quad (18)
\]

\[
\text{SAD}(\hat{A}, A) = \frac{1}{r} \sum_{j=1}^{r} \text{sad}(\hat{a}_{(j)}, a_{(j)}). \quad (19)
\]

\(\text{nMSE}_{AS}\) measures the reconstruction error, and \(\text{nMSE}_{S}\) measures the reconstruction error of the abundance maps. The columns in \(\hat{A}\) are scaled to have the same \(\ell_2\) norm as the columns of \(A\). The columns of \(\hat{S}\) are also scaled so that the product, \(\hat{S}\hat{A}^T\), is not changed, before calculating the \(\text{nMSE}_{S}\). The spectral angle distance (SAD) is given in (18) and calculates the angle between the two endmembers being considered and a low value means that the two endmembers being compared are similar and a high value means that the two endmembers are dissimilar. The SAD given in (19) calculates the average SAD for all the endmembers in a HSI.

The algorithms used to unmix the simulated data are:

- The proposed distributed algorithm (DMU).
- The non-distributed version of DMU, with \(N = 1\) (DMU1).
- Vertex Component analysis, an endmember estimation algorithm (VCA) [44].
- A statistical approach to identifying endmembers in hyperpectral images (ICE) [45].
- Minimum volume constrained nonnegative matrix factorization (MVC) [46].

VCA is a geometrical endmember estimation algorithm which assumes that there are pure pixels in the image. We include VCA in our comparisons despite the fact that there are not pure pixels in our simulations as it is a well known and used method.

A. Simulation 1

Here, all of the endmembers are found in every subimage. Table I shows the average SAD, along with one standard deviation between the estimated endmembers and the original endmembers. The HSI is split into subimages using the spatial method.

In Table I, we can see that the distributed unmixing and the classical unmixing results are very similar. The metrics calculated are virtually identical and show that both the endmembers and abundances are very similar to the original data. The sparsity (\% of zero values) of the abundance matrix is also shown for the proposed method and for MVC, along with...
TABLE I
THE METRICS CALCULATED USING THE RESULTS OF SIMULATION 1, WHERE ALL OF THE ENDMEMBERS ARE FOUND IN ALL OF THE SUBIMAGES

<table>
<thead>
<tr>
<th>Endm. #</th>
<th>DMU</th>
<th>DMU_1</th>
<th>VCA</th>
<th>ICE</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.065 ± 0.003</td>
<td>0.005 ± 0.003</td>
<td>0.051 ± 0.029</td>
<td>0.023 ± 0.022</td>
<td>0.018 ± 0.008</td>
</tr>
<tr>
<td>2</td>
<td>0.018 ± 0.020</td>
<td>0.018 ± 0.020</td>
<td>0.072 ± 0.056</td>
<td>0.058 ± 0.057</td>
<td>0.021 ± 0.008</td>
</tr>
<tr>
<td>3</td>
<td>0.009 ± 0.010</td>
<td>0.009 ± 0.100</td>
<td>0.062 ± 0.023</td>
<td>0.037 ± 0.041</td>
<td>0.033 ± 0.031</td>
</tr>
<tr>
<td>4</td>
<td>0.021 ± 0.036</td>
<td>0.021 ± 0.036</td>
<td>0.073 ± 0.059</td>
<td>0.048 ± 0.074</td>
<td>0.025 ± 0.029</td>
</tr>
<tr>
<td>5</td>
<td>0.032 ± 0.053</td>
<td>0.032 ± 0.053</td>
<td>0.117 ± 0.099</td>
<td>0.137 ± 0.210</td>
<td>0.032 ± 0.034</td>
</tr>
<tr>
<td>average</td>
<td>0.017 ± 0.017</td>
<td>0.017 ± 0.017</td>
<td>0.075 ± 0.061</td>
<td>0.061 ± 0.026</td>
<td></td>
</tr>
<tr>
<td>nMSE_{AS}(dB)</td>
<td>−49.93 ± 0.27</td>
<td>−49.93 ± 0.27</td>
<td>N/A</td>
<td>N/A</td>
<td>−61.567 ± 0.06</td>
</tr>
<tr>
<td>nMSE_{S}(dB)</td>
<td>−28.42 ± 3.58</td>
<td>−28.41 ± 3.59</td>
<td>N/A</td>
<td>N/A</td>
<td>−20.987 ± 3.74</td>
</tr>
</tbody>
</table>

Sparsity of \(S \) | 18% | 18% | N/A | N/A | 3% |

Average Computation time | 196s | 71s | 0.16s | 63s | 168s |

B. Simulation 2

In this simulation, we will investigate how the distributed algorithm performs when some endmembers are not present in all subimages. The simulation is split into two parts. In the first simulation (denoted by \(a \)), endmembers 1 and 5 are only present in subimages 1 and 4, respectively. The presence of endmembers in each of the subimages is shown in Table III. The HSI is split into subimages using the spatial method.

In the second part (denoted by \(b \), the same data is used as in the first part, but here the random splitting method was used.

splitting, the probability of every endmember being present in every subimage is greatly increased.

In Table II, we can see that the results of the distributed unmixing are not as good as the results obtained using the non-distributed approach when the spatial splitting is used, and the results are in fact worse than the methods we compare to. The SAD is high and the variance is also quite high. This is also reflected in the higher values of the reconstruction metrics, nMSE_{AS} and nMSE_{S}. The proposed method (with spatial splitting) has trouble coping with this data because the number of endmembers in the subimages is not the same as the number of estimated endmembers. However, when the random splitting is used, the distributed approach works as well as the non-distributed approach.

C. Simulation 3

Here, the endmembers will be present in all subimages, but the endmembers in each image will have spectral variability. The variability is added to each endmember so that the endmembers in each subproblem will not be identical. In Fig. 7, the variability vectors, along with two endmembers in one of the simulations are shown. The endmembers for one subimage

![Fig. 6. The SAD, calculated when the signal to noise ration (SNR) of the simulation data varies from 20dB to 40dB.](image_url)

TABLE III

THE PRESENCE OF ENDMEMBERS IN THE SUBIMAGES. IN SIMULATION (A), ENDMEMBERS 1 AND 5 ARE ONLY PRESENT IN SUBIMAGES 1 AND 4, RESPECTIVELY

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Subimage #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

the average computational time needed. The proposed method is more computationally intensive than the other methods. Note that the parallel calculations for DMU are simulated as described in subsection III-D. In Fig. 6, the SAD is shown as a function of the signal to noise ratio (SNR) of the simulation data. The proposed method does very well compared to the other when the SNR is larger than 26dB, but ICE achieves a lower SAD when the noise is less than 26dB.
are composed of a consensus endmember from the library, and variability is introduced by adding one of the variability vectors shown in Fig. 7 to the endmembers.

In this simulation, VCA, ICE and MVC are used to unmix each subimage separately and the average metrics are calculated and compared to the proposed algorithm, and given in Table IV. In addition to evaluation of the perturbed endmembers \((Z + M_i)\) for each subproblem, we will also examine the consensus endmembers \((\hat{Z})\).

1) DMU(\(Z\)): Here we are only evaluating the non-variable part of the endmembers without perturbations.
2) DMU(\(Z + M_i\)): \(M_i\) is the perturbation matrix. Therefore, \(Z + M_i\) are the endmembers found for subproblem \(i\).

In Table IV, we can see that the algorithm is able to estimate the perturbed endmembers very well. The common endmembers are similar to the real endmembers, but with the addition of the perturbation matrix \((M_i)\), the estimation is greatly improved. Thus, the majority of the endmember morphology is captured by \(Z\) and the variations are captured by \(M_i\). This is shown in Fig. 8.

D. Computations

In this section, we will examine the running time of DMU, which is programmed in Matlab. The data needed for each subproblem is saved in a Matlab (.mat) file. Each individual subproblem reads all the data it needs from the mat file and saves the result in mat-file. The combination part of the algorithm reads all the individual results files and combines the results. The parallel calculations are simulated, meaning that the computational time for the individual subproblems are assumed to be equal to the longest computational time of individual subproblems.

We unmix simulated data using \(N \in \{1, \ldots, 128\}\). The setting is the same as in Simulation 1, but the number of pixels is \(P = 90000\). The sparsity parameter is estimated to be \(h = 0.0089\), and this value is used in all the simulations.

As can be seen in Fig. 9, if the subproblems are solved in parallel, the distributed algorithm can be faster than the non distributed one \((N = 1)\), given that the number of subproblems is not very low, i.e., when \(N > 30\). If the number of subproblems is small, the computation times may increase because of the extra computations needed to solve the distributed problem. This is apparent in Fig. 9 when \(2 \leq N \leq 30\).

When a hyperspectral image is split into \(N\) subimages, the data each subproblem needs to have access to is the subimage, \(Y_i\) of size \(P \times M_i\), and its corresponding endmember and abundance data, i.e., \(A_i\) of size \(M \times r\) and \(S_i\) of size \(P \times r\). The overhead data that is needed by each subproblem are three matrices: \(A_i\), \(Z\), and \(M_i\), each of size \(M \times r\). Given that for a typical hyperspectral image, \(P_i \gg M\) and \(M \gg r\), and \(P_i = P/N\), the memory requirements for each subproblem is reduced by a factor of \(N\), compared to the memory needed to process the whole image.

IV. REAL HYPERSONTICAL IMAGES

A. The HYDICE Urban Image

The first real HSI used here is a HYDICE image\(^3\) of an urban landscape. The number of spectral bands in this data set is 210 and covers the 400-2500nm spectral range.

This image is 307×307 pixels and the whole image is used. Spectral bands numbered [74-77 86-90 102-111 136-153 202-210] are manually identified as water absorption or noisy bands, and are removed, resulting in 164 usable bands. Matrix \(Y\) is thus of dimensions 307\(^2\) × 164. An RGB image, generated using the hyperspectral data, is shown in Fig. 11. The RGB image is created by using specific spectral bands from the data set, to represent the red, green, and blue channels of the RGB image. The HSI image is split into \(N = 4\) matrices using random splitting. Using EBIC, the number of estimated number are estimated \(r = 8\), and the sparsity parameter is \(h = 0.002\) (resulting in 13% sparsity in the abundance maps).

The Urban image will also be unmixed without splitting the image (using the proposed algorithm), and with MVC, respectively. Three out of eight abundance maps estimated by the algorithms are shown in Fig. 11. The results obtained by the DMU and the DMU\(_1\) algorithm are very similar. The abundance maps shown are easily associated with material seen in the RGB image. The three maps represent trees, grassy areas, and rooftops, respectively.

B. The AVIRIS Cuprite Image

The second real world hyperspectral image we will consider is the Aviris Cuprite image\(^4\) which has 224 spectral bands covering 410-2450nm. The image is 350 × 350 pixels in size. We discard spectral bands [1 2 105-115 150-170 222-224] and use the remaining 187. An RGB generated image of the scene in shown in Fig. 10.

We unmix the image using four values for \(N\), respectively, i.e., \(N = \{1, 8, 16, 32\}\). Using EBIC, the sparsity parameter was estimated to be \(h = 0.0022\) (resulting in approximately 10% sparsity), and the number of endmembers was \(r = 11\).

A ground truth for this image is not available, but the image has been used extensively by researchers and there are many well documented minerals exposed in the landscape. These minerals are known to be in the USGS spectral library. We compare the endmembers obtained, to the spectral signatures in this library. The spectral signatures in the library that have the lowest SAD from the estimated endmembers are found and given in Table V. The SAD values in Table V can not be viewed as quality metrics, since a unmixing ground truth is not available for this data set. Here, the SAD only shows how similar the different solutions are. Both the endmembers and the abundances estimated using different values for \(N\) were very similar. Many of the endmembers that had the lowest SAD from the estimated endmembers are known to be in the area. The reconstruction error,

\[
\text{ERR} = \frac{\|Y - \hat{S} \hat{A}^T\|_F^2}{\|Y\|_F^2}, \tag{20}
\]

\(^3\)http://www.agc.army.mil/hypercube/
\(^4\)http://aviris.jpl.nasa.gov/data/free_data.html
Fig. 7. Left: The variability added to the subimage endmembers. Center and right: The 4 different variations used.

TABLE IV
THE METRICS CALCULATED USING THE RESULTS OF SIMULATION 3, WHERE VARIABILITY IS ADDED TO THE ENDMEMBERS

<table>
<thead>
<tr>
<th>Endm. #</th>
<th>$\text{DMU}(Z + M_i)$</th>
<th>$\text{DMU}(Z)$</th>
<th>VCA</th>
<th>ICE</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.096 ± 0.003</td>
<td>0.046 ± 0.030</td>
<td>0.060 ± 0.054</td>
<td>0.051 ± 0.038</td>
<td>0.034 ± 0.039</td>
</tr>
<tr>
<td>2</td>
<td>0.007 ± 0.005</td>
<td>0.034 ± 0.013</td>
<td>0.041 ± 0.034</td>
<td>0.053 ± 0.056</td>
<td>0.036 ± 0.008</td>
</tr>
<tr>
<td>3</td>
<td>0.009 ± 0.012</td>
<td>0.041 ± 0.032</td>
<td>0.045 ± 0.028</td>
<td>0.043 ± 0.056</td>
<td>0.030 ± 0.021</td>
</tr>
<tr>
<td>4</td>
<td>0.030 ± 0.062</td>
<td>0.074 ± 0.105</td>
<td>0.089 ± 0.096</td>
<td>0.090 ± 0.121</td>
<td>0.048 ± 0.072</td>
</tr>
<tr>
<td>5</td>
<td>0.007 ± 0.005</td>
<td>0.044 ± 0.027</td>
<td>0.046 ± 0.036</td>
<td>0.033 ± 0.041</td>
<td>0.031 ± 0.027</td>
</tr>
<tr>
<td>average</td>
<td>0.012</td>
<td>0.048</td>
<td>0.056</td>
<td>0.050</td>
<td>0.032</td>
</tr>
</tbody>
</table>

| nMSE$_{AS}$(dB) | -51.52 ± 0.34 | N/A | N/A | N/A | -37.745 ± 4.10 |
| nMSE$_{S}$(dB) | -20.36 ± 6.56 | N/A | N/A | N/A | -15.844 ± 3.39 |

Fig. 8. One of the estimated endmembers in Simulation 3. The consensus endmember ($z_{(j)}$) is similar to the original, but the estimated endmember ($z_{(j)} + m_{(j)}$) is much closer to the original.

Fig. 9. The computational time as a function of the number of subproblems.

is also calculated and given in Table V.

In Fig. 12, three out of eleven endmembers and abundance maps are shown. All the DMU solutions and the ERR, for different values of N are very similar.

C. The AVIRIS Lake Tahoe Images

In this subsection multiple AVIRIS HSIs from the Lake Tahoe region5 are unmixed. We will focus on a small 200×150

5Available at http://aviris.jpl.nasa.gov/alt_locator/
Fig. 11. In the top row, an RGB image of the Urban dataset is show along with the endmembers estimated by the DMU algorithm. In the other rows, three out of eight abundance maps are shown, estimated by the DMU, DMU₁ and MVC algorithms, respectively.
Fig. 12. Three of eleven endmembers and corresponding abundance maps estimated by DMU for $N = \{1, 8, 16, 32\}$.

pixel region surrounding a small lake named Mud Lake\(^6\). These HSIs are referred to as Mud Lake. The HSIs have 244

\(^6\)Latitude: 38.84197°, longitude: -119.7356347°
TABLE V
THE SPECTRAL ANGLE DISTANCE BETWEEN LIBRARY SIGNATURES AND THE ENDMEMBERS OBTAINED.

<table>
<thead>
<tr>
<th>Endmember # / Mineral</th>
<th>N = 1</th>
<th>N = 8</th>
<th>N = 16</th>
<th>N = 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Montmorillonite CM20</td>
<td>0.078</td>
<td>0.120</td>
<td>0.097</td>
<td>0.098</td>
</tr>
<tr>
<td>2. Roscoelite EN124</td>
<td>0.110</td>
<td>0.133</td>
<td>0.122</td>
<td>0.124</td>
</tr>
<tr>
<td>3. Alunite-K</td>
<td>0.093</td>
<td>0.093</td>
<td>0.092</td>
<td>0.090</td>
</tr>
<tr>
<td>4. Hematitic_Alt_Tuff</td>
<td>0.107</td>
<td>0.120</td>
<td>0.117</td>
<td>0.116</td>
</tr>
<tr>
<td>5. Fluorapatite WS416</td>
<td>0.060</td>
<td>0.058</td>
<td>0.052</td>
<td>0.057</td>
</tr>
<tr>
<td>6. Illite IL105</td>
<td>0.113</td>
<td>0.096</td>
<td>0.107</td>
<td>0.103</td>
</tr>
<tr>
<td>7. Jarosite WS368</td>
<td>0.090</td>
<td>0.111</td>
<td>0.107</td>
<td>0.101</td>
</tr>
<tr>
<td>8. Hematite_Thin_Film</td>
<td>0.073</td>
<td>0.082</td>
<td>0.108</td>
<td>0.127</td>
</tr>
<tr>
<td>9. Chlorite_Serpentine</td>
<td>0.105</td>
<td>0.080</td>
<td>0.081</td>
<td>0.087</td>
</tr>
<tr>
<td>10. Sagebrush YNP-SS-2</td>
<td>0.084</td>
<td>0.120</td>
<td>0.115</td>
<td>0.112</td>
</tr>
<tr>
<td>11. Alumina+Kao+Hemat</td>
<td>0.148</td>
<td>0.149</td>
<td>0.148</td>
<td>0.139</td>
</tr>
<tr>
<td>Average SAD</td>
<td>0.0966</td>
<td>0.1056</td>
<td>0.1041</td>
<td>0.1050</td>
</tr>
<tr>
<td>ERR</td>
<td>6.3e-05</td>
<td>6.3e-05</td>
<td>5.9e-05</td>
<td>5.9e-05</td>
</tr>
</tbody>
</table>

TABLE VI
THE AVERAGE RECONSTRUCTION ERRORS CALCULATED FOR THE MUD LAKE DATASET.

<table>
<thead>
<tr>
<th></th>
<th>DMU</th>
<th>MVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>avERR</td>
<td>4.30e-05</td>
<td>4.13e-05</td>
</tr>
</tbody>
</table>

V. CONCLUSIONS

In this paper, a sparse distributed hyperspectral unmixing algorithm is developed using ADMM and an ℓ_1 regularizer. The model parameters are estimated using the extended Bayesian information criteria. The hyperspectral image is split into N subproblems, and each subproblem is independently solved. The unmixing results from these subproblems are then merged into a global solution using ADMM. As each subproblem does not need to have access to the whole dataset, the algorithm can be applied on very large datasets. The algorithm is able to account for spectral variability between the different subproblems and is thus well suited to unmix multitemporal hyperspectral data. The algorithm is extensively evaluated using simulation data and compared to other well established unmixing algorithms. Using this simulated data, the algorithm performs very well and is able to achieve comparable results to non-distributed algorithms. An evaluation is also performed using three real hyperspectral images, one of which is a multitemporal image, acquired on five different dates. The algorithm performs well on all the real hyperspectral images, and the results of the multitemporal unmixing gives more consistent endmembers than independently unmixing each temporal HSI.

APPENDIX

Estimation Methods

In this appendix, we detail the estimation methods used to solve the minimization problem in Algorithm 1. A cyclic descent method is used which iteratively estimates the variables of interest. In the following subsections, the algorithm is derived.

A. S-step

Estimating S_i is done by minimizing

$$S_i^{k+1} = \arg\min_{S_i \in \mathbb{R}^{r_i \times N}} \frac{1}{2} \|Y_i - S_i (A_i^k + M_i^k)^T\|_F^2 + h\|S_i\|_{1,1} \quad (22)$$

The task of estimating one column of S_i is done by minimizing

$$s_{(i)(j)}^{k+1} = \arg\min_{s_{(i)(j)} \in \mathbb{R} \times N} \frac{1}{2} \|R_{ij} - s_{(i)(j)} (a_{(i)(j)}^k + m_{(i)(j)}^k)^T\|_F^2 + h\|s_{(i)(j)}\|_1 \quad (23)$$

where $R_{ij} = Y_i - S_{i,j} (A_{i,j}^k + M_{i,j}^k)^T$. The update rule for $s_{(i)(j)}^{k+1}$ is nonnegative soft thresholding [47], i.e.,

$$s_{(i)(j)}^{k+1} = \alpha \max(0, R_{ij} (a_{(i)(j)}^k + m_{(i)(j)}^k) - h), \quad (24)$$

where $\alpha = 1/\|a_{(i)(j)}^k + m_{(i)(j)}^k\|^2$. When the problem is multitemporal unmixing, and M_i needs to be estimated, we add a debiasing step which attempts to remove the bias caused by spectral bands. We remove water absorption bands, leaving 179 spectral bands.

Five images are used in this evaluation. These images and their acquisition dates are shown in Fig. 13. Eleven pixels from image (a) and 14 pixels from image (e) are removed from the data. These are outlier pixels, some of them having overflow errors.

The results obtained by the proposed algorithm are compared to the results obtained when unmixing the images with MVC. To acquire consistent results using MVC, we initialize the algorithm, using the endmembers obtained using VCA [44] on the first image (April 10, 2014). MVC is thus initialized identically for all the HSI. The proposed algorithm is initialized with random values.

The number of subproblems is equal to the number of images, i.e., $N = 5$. Using a majority vote, the number of endmembers used is $r = 11$. The sparsity parameters are estimated to be $h_i = \{5.1e-4, 1.6e-3, 1e-3, 1e-3, 5e-4\}$, resulting in an average sparsity of 17% for the abundance maps. A ground truth for this image is not available so we will evaluate the algorithm by examining the consistency of the endmembers and we will also calculate the average reconstruction error,

$$\text{avERR} = \frac{1}{N} \sum_{i=1}^{N} \frac{\|Y_i - \hat{S}_i \hat{A}_i^T\|_F^2}{\|Y_i\|_F^2}, \quad (21)$$

for the proposed algorithm, and also for MVC.

In Fig. 13, two abundance maps estimated using DMU and MVC are shown. The abundance maps have similarities with the RGB image, one map is associated with the circular agricultural region in the upper left corner of the image while the other is associated with the water region in the lower part of the image. We will refrain from drawing more conclusion from the abundance maps since an accurate ground truth is not available.

In Fig. 14, the endmembers corresponding to the abundance maps in Fig. 13 are shown. The endmembers estimated by DMU are more consistent and have less variations than the endmembers estimated by MVC. The average reconstruction errors, calculated using (21) and shown in Table VI, and are also very similar, albeit the MVC reconstruction error is slightly lower.
The soft thresholding done in (24). The debiasing step involves adding back αh to the non-zero values of $s_{i(j)}^{k+1}$, i.e.,

$$s_{i(j)}^{k+1} = (s_{i(j)}^{k+1} + \alpha h) \ast I(s_{i(j)}^{k+1})$$

(25)

where \ast denotes elementwise multiplication and $I(\cdot)$ is the identity operator. We stress that this debiasing step is only applied in the multitemporal case, when M_i needs to be estimated, and it is otherwise not applied.
B. A-step

The minimization task when estimating A_i is
\[A_{i}^{k+1} = \arg \min_{A \in \Gamma^{M \times r}} \frac{1}{2} \| Y_i - S_{i}^{k+1}(A_i + M_i)^T \|^2_F + \text{tr}((A_i^k)^T(A_i^k - Z_i^k)) + \frac{\rho(k)}{2} \| A_i - Z_i^k \|^2_F \]
(26)

Estimating one column in A_i is done by minimizing
\[a_{i(j)}^{k+1} = \arg \min_{a(j) \in \Gamma^{r \times 1}} f_{a}(a_{i(j)}) \]
where
\[f_{a}(a_{i(j)}) = \frac{1}{2} \| R_{ij} - s_{ij}^{k+1}(a_{i(j)} + m_{i(j)})^T \|^2_F + (\lambda_{i(j)} + \rho(k)) \| a_{i(j)} - z_{i(j)} \|^2_F + \frac{\rho(k)}{2} \| a_{i(j)} - z_{i(j)} \|^2_F, \]
and $R_{ij} = Y_i - S_{ij}^{k+1}(A_{i}^{k+1} + M_i)^T$. To solve this minimization problem, we use Lagrangian multiplier theory. The Lagrange function is chosen as
\[L_{a}(a, \gamma) = f_{a}(a) + \gamma(a^T a - 1) \]
where γ is the Lagrange multiplier. Finding the differential of $L_{a}(a, \gamma)$ w.r.t. a, and setting it to zero yields (omitting sub-and superscripts)
\[\frac{dL_{a}}{da} = 0 \Rightarrow a = (R^T - ms^T)s - \lambda + \rho(k)z. \]
(27)

By defining
\[\hat{a} = \max \left(\left(R_{ij} - s_{ij}^{k+1}(a_{i(j)} + m_{i(j)})^T \right) s_{ij}^{k+1} - \lambda_{i(j)} + \rho(k)z_{i(j)} \right), \]
and choosing γ such that $a = \hat{a}$, yields the update rule for $a_{i(j)}^{k+1}$,
\[a_{i(j)}^{k+1} = \frac{\hat{a}}{\| \hat{a} \|}. \]
(28)

C. M-step

The minimization task when estimating M_i is
\[M_{i}^{k+1} = \arg \min_{(A_i + M_i) \in R^+_{M \times r}} \frac{1}{2} \| Y_i - S_{i}^{k+1}(A_{i}^{k+1} + M_i)^T \|^2_F + \frac{\psi}{2} \| M_i \|^2_F \]
(29)

Using $R_{ij} = Y_i - S_{ij}^{k+1}(A_{i}^{k+1} + M_i)^T$, the task of estimating one column in M_i becomes
\[m_{i(j)} = \arg \min_{m_{i(j)}} f_{m}(m_{i(j)}) \]
\[\text{s.t. } (a_{i(j)} + m_{i(j)}) \in R^+_{r \times 1} \]
(30)

Finding the differential of $f_{m}(m_{i(j)})$ w.r.t. m, and setting it to zero yields
\[\frac{df_{m}}{dm} = 0 \Rightarrow m_{i(j)}^{k+1} = \frac{(R_{ij} - a_{i(j)}^{k+1}(s_{i(j)}^{k+1})^T)s_{i(j)}^{k+1}}{(s_{i(j)}^{k+1})^T(s_{i(j)}^{k+1}) + \psi}. \]
(31)

To account for the nonnegativity of $(a_{i(j)}^{k+1} + m_{i(j)}^{k+1})$, we threshold $m_{i(j)}^{k+1}$ such that $(m_{i(j)}^{k+1} + a_{i(j)}^{k+1}) \geq 0$.

D. Z-step

Estimating Z is done by minimizing
\[Z^{k+1} = \arg \min_{Z \in \Gamma^{M \times r}} \sum_{i=1}^{N} \left\{ \text{tr}(A_{i}^{k+1})^T(A_{i}^{k+1} - Z) + \frac{\rho(k)}{2} \| A_{i}^{k+1} - Z \|^2_F \right\}. \]
(32)
and the update rule for Z is

$$
\hat{Z} = \max \left(\frac{1}{N} \sum_{i=1}^{N} (A_{i}^k + \frac{1}{\rho(k)} A_{i}^k), 0 \right),
$$

$$
z^{k+1}(j) = \frac{\hat{z}(j)}{\|z(j)\|}, \quad j = 1, \ldots, r.
$$

(E. DCD algorithm)

A cyclic descent algorithm is used to estimate A_i, S_i and M_i in the DMU and estimates one column in one of the matrices while holding all other columns fixed.

Algorithm 2: The DCD algorithm used to estimate A_i, S_i and M_i.

Input: Y_i, A_i, S_i, M_i, ρ, h
for $k = 0$ do
for $j = 1 \ldots r$ do
Estimate column j in S_i using (24)
Estimate column j in A_i using (28)
Estimate column j in M_i using (31)

Output: \hat{S}_i, \hat{A}_i, \hat{M}_i

REFERENCES

