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Abstract

This paper introduces a new supervised Bayesian approach to hyperspectral image seg-

mentation, with two main steps: (a) learning, for each class label, the posterior probability

distributions, based on a multinomial logistic regression model; (b) segmenting the hyper-

spectral image, based on the posterior probability distribution learnt in step (a) and on a

multi-level logistic prior encoding the spatial information. The multinomial logistic regres-

sors are learnt by using the recently introduced LORSAL (logistic regression via splitting

and augmented Lagrangian) algorithm. The maximum a posterior segmentation is efficiently

computed by the α-Expansion min-cut based integer optimization algorithm. Aiming at

reducing the costs of acquiring large training sets, active learning is performed using a mu-

tual information based criterion. State-of-the-art performance of the proposed approach

is illustrated with simulated and real hyperspectral data sets in a number of experimental

comparisons with recently introduced hyperspectral classification methods.

Index Terms

Hyperspectral segmentation, sparse multinomial logistic regression, ill-posed problems, graph

cuts, integer optimization, mutual information, active learning.

I. Introduction

I
N recent years, with the development of remote sensing sensors, hyperspectral images

are widely available. The special characteristics of hyperspectral data sets bring diffi-

cult processing problems. Obstacles, e.g., Hughes phenomenon [1], come out as the data
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2 HYPERSPECTRAL SEGMENTATION

dimensionality increases. These difficulties have fostered the development of new classifica-

tion methods, which are able to deal with ill-posed classification problems. For instance,

several machine learning techniques have been applied to extract relevant information from

hyperspectral data sets [2–4]. However, although many progresses have been made, the diffi-

culty in learning high dimensional densities from a limited number of training samples, i.e.,

ill-posed problems, is still an active area of research.

The discriminative approach, which learns the class distributions in high dimensional

spaces by inferring the boundaries between classes in the feature space [5–7], tackles effec-

tively the above mentioned difficulties. Support vector machines (SVMs) [8] are among the

state-of-the-art discriminative techniques in ill-posed classification problems. Due to their

ability to deal with large input spaces efficiently and to produce sparse solutions, SVMs

have been successfully used for hyperspectral supervised and semi-supervised classification

with limited training samples [2, 9–15]. Multinomial logistic regression (MLR) [16] is an

alternative approach to deal with ill-posed problems, which has the advantage of learning

the class probability distributions themselves. Effective sparse MLR (SMLR) methods are

available [17]. These ideas have been applied to hyperspectral classification [4, 18] yielding

state-of-the-art performance.

In order to improve the classification accuracies obtained by SVMs and MLR-based

techniques, a recent trend is to integrate spatial contextual information with spectral infor-

mation in hyperspectral data interpretation [4, 10, 13, 19]. These methods exploit, in a way

or another, the continuity, in probability sense, of neighboring labels: it is very likely that,

in an hyperspectral image, two neighboring pixels have the same label.

More recently, in order to reduce the size of the training sets, active learning has been

widely studied in the literature [20–25]. These studies based on maximum entropy [23],
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HYPERSPECTRAL SEGMENTATION 3

on an extension of SVM margin sampling [23], on a hierachical classification framework

[22, 25], on a local proximity based data regularization framework [24], etc., give evidence

that the active learning procedure leads systematically to noticeable improvements in the

classification results.

In this paper, we introduce a new supervised Bayesian segmentation approach which

exploits both the spectral and spatial information in the interpretation of hyperspectral data.

The algorithm implements two main steps: (a) learning step, which uses the multinomial

logistic regression via variable splitting and augmented (LORSAL) [26] algorithm to infer the

class distributions; (b) segmentation step, which infers the labels from a posterior distribution

built on the learned class distributions and on a multi-level logistic (MLL) prior [27], where

the maximum a posterior (MAP) segmentation is computed via a min-cut based integer

optimization algorithm. Furthermore, aiming at a reduction in the size of the training set,

we implement an active learning technique based on the mutual information (MI) between

the MLR regressors and the class labels [20, 21].

The remainder of the paper is organized as follows. Section II formulates the prob-

lem. Section III describes the proposed approach. Section IV reports segmentation results

based on simulated and real hyperspectral datasets in several ill-posed scenarios; compar-

isons with state-of-the-art competitors are also included. Finally, section V concludes with

a few remarks.

II. problem formulation

Let S ≡ {1, . . . , n} denote a set of integers indexing the pixels of a n-size image, L ≡

{1, . . . ,K} be a set of K labels, x= (x1, . . . ,xn) ∈ R
d×n be an image of d-dimensional feature

vectors, y = (y1, . . . , yn) ∈ Ln be an image of labels, and DL ≡ {(x1, y1), . . . , (xL, yL)} ∈
(
R

d×L
)L

be a training set where L denotes the number of labeled samples.
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4 HYPERSPECTRAL SEGMENTATION

With the above definitions in place, the goal of classification is to assign a label yi ∈ L

to each pixel i ∈ S, based on the vector xi, resulting in an image of class labels y. We

call this assignment a labeling. The goal of segmentation is, based on the observed image

x, to compute a partition S = ∪iSi of the set S such that the pixels in each element of

the partition share some common property, for example to represent the same type of land

cover. Notice that, given a labeling y, the collection Sk = {i ∈ S | yi = k}, for k ∈ L, is a

partition of S. On the other way around, given the segmentation Sk, for k ∈ L, the image

{yi |yi = k if i ∈ Sk, i ∈ S} is a labeling. There is, therefore, a one-to-one relation between

labelings and segmentations. Nevertheless, in this paper, we use the term classification when

there is no spatial information and segmentation when the spatial prior is being considered.

Inference in a Bayesian framework is often carried out by maximizing the posterior

distribution1

p(y|x) ∝ p(x|y)p(y),

where p(x|y) is the likelihood function (i.e., the probability of feature image given the labels)

and p(y) is the prior over the labelings y. Assuming conditional independency of the features

given the labels, i.e., p(x|y) =∏i=n

i=1 p(xi|yi), then the posterior p(y|x), as a function of y,

may be written as

p(y|x) =
1

p(x)
p(x|y)p(y)

= α(x)

i=n∏

i=1

p(yi|xi)

p(yi)
p(y),

(1)

where α(x) ≡∏i=n

i=1 p(xi)/p(x) is a factor not depending on y. The MAP segmentation is

then given by

ŷ = argmax
y∈Ln

{
n∑

i=1

(log p(yi|xi)− log p(yi)) + log p(y)

}
. (2)

1 To keep the notation simple, we use p(·) to denote both continuous probability densities and discrete probability
distributions of random variables. The meaning should be clear from the context.
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HYPERSPECTRAL SEGMENTATION 5

In the present approach, the densities p(yi|xi) are modeled as MLRs [16], whose regres-

sors are learnt via the LORSAL algorithm [26]. As prior p(y) on the labelings, y, we adopt

an MLL Markov random field (MRF) [27], which encourages neighboring pixels to have

the same label. The MAP labeling/segmentation ŷ is computed via the α-Expansion algo-

rithm [28], a min-cut based tool to efficiently solve a class of integer optimization problems

of which (2) is an example.

III. Proposed approach

The MLR model is formally given by [16],

p(yi = k|xi,ω) ≡ exp(ω(k)h(xi))∑K

k=1 exp(ω
(k)h(xi))

, (3)

where h(x)≡ [h1(x), ...,hl(x)]
T is a vector of l fixed functions of the input, often termed as

features, ω ≡ [ω(1)T , ...,ω(K)T ]T denotes the logistic regressors. Since the density (3) does

not depend on translations on the regressors ω(K), we take ω
(K) = 0 and remove it from ω,

i.e., ω ≡ [ω(1)T , ...,ω(K−1)T ]T .

It should be noted that function h may be linear, i.e., h(xi) = [1,xi,1, ...,xi,d]
T , where xi,j

is the j-th component of xi, or nonlinear. Kernels, i.e., h(xi) = [1,Kx,x1, ...,Kx,xl
]T , where

Kxi,xj
≡K(xi,xj) and K(·, ·) is some symmetric kernel function, are a relevant example of

the nonlinear case. Kernels have been largely used because they tend to improve the data

separability in the transformed space. In this paper, we use a Gaussian Radial Basis Function

(RBF) K(x,z) = exp(−‖x− z‖2/(2ρ2)) kernel, which is widely used in hyperspectral image

classification [11]. Defining γ as the dimension of h(x), then we have γ = d+1 for the above

linear case and γ = L+1 for the RBF kernel (recall that L is the number of samples in the

training set DL).
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6 HYPERSPECTRAL SEGMENTATION

A. LORSAL

In the present problem, learning the class densities amounts to estimating the logistic

regressors ω. Following the SMLR algorithm [17], the estimation of ω amounts to computing

the MAP estimate

ω̂ = argmax
ω

ℓ(ω) + log p(ω), (4)

where ℓ(ω) is the log-likelihood function given by

ℓ(ω) ≡ log
L∏

i=1

p(yi|xi,ω), (5)

and p(ω)∝ exp(−λ‖ω‖1) is a sparsity promoting prior (‖ω‖1 denotes the l1 norm of ω) where

λ is a regularization parameter. The prior p(ω) forces many components of ω to be zero,

thus controlling the classifier complexity and. consequently, enhancing its generalization

capacity.

Optimization (4), although convex, is difficult to solve because the term ℓ(ω) is non-

quadratic and the term logp(ω) is non-smooth. The majorization-minimization framework

[29] has recently been used in [17, 21, 30, 31] to convert (4) into a sequence of quadratic

problems. The computational cost of the SMLR algorithm [17] involved in solving each

quadratic problem is O((γK)3), which is prohibitive when dealing with datasets with large

number of features, or with large number of classes, or both. FSMLR [18], a fast version

of SMLR, implements a block Gauss-Seidual iterative procedure to calculate ω which is

O(K2) faster than the original SMLR algorithm [17]. Thus, the FSMLR algorithm extends

the SMLR capability to handle datasets with large number of classes. However, with an

overall complexity of O(γ3K), for hyperspectral data with large number of features, FSMLR

complexity is still unbearable in many cases.

In this paper, we use the recently introduced LORSAL algorith, [26] to learn the MLR

regressors. LORSAL replaces a difficult non-smooth convex problem with a sequence of
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HYPERSPECTRAL SEGMENTATION 7

quadratic plus diagonal l2-l1 problems very easy to solve. In practice, the total cost of

the LORSAL algorithm is O(γ2K) per iteration, which is in contrast with the O((γK)3)

and O(γ3K) complexities of, respectively, SMLR and FSMLR algorithms. As a result, the

reduction of computational complexity is of the order of γK2 and γ, respectively. The

LORSAL algorithm is briefly reviewed in appendix.

B. Active learning

In order to reduce the acquisition of large amount of labeled samples, active learning is

performed in this paper. The basic idea of active learning is that of iteratively enlarging the

training set by requesting an expert to, in each iteration, label samples from the unlabeled

set, {xi, i ∈ SU}, where SU is the set of unlabeled feature vectors, i.e., spectral vectors in the

current application. The relevant question is, of course, what vectors should be chosen. In

this paper, we use an MI based criterion [20, 21] that maximizes the MI between the MLR

regressors and the class labels. The proposed approach uses a Laplace approximation of

the posterior p(ω|DL) ≃ N (ω|ω̂,H−1), where H is the posterior precision matrix, i.e., the

Hessian of minus the log-posterior H ≡ ∇2(− logp(ω̂|DL)). Let xi be an unlabeled sample

and yi be its label. Assume that the MAP estimate ω̂ remains unchanged after including

yi. This assumption is clearly not true at the beginning of the active learning procedure.

Nevertheless, it was empirically observed that it leads to very good approximations [21].

Under this assumption, the posterior precision matrix changes to

H′ = H+
(
diag(pi(ω̂))− pi(ω̂)pi(ω̂)T

)
⊗ h(xi)h(xi)

T , (6)

where pi(ω̂)≡ [pi,1, . . . ,pi,K ]
T , pi,k ≡ p(yi = k|xi, ω̂), for k = 1, . . . ,K, and ⊗ is the Kronecker

product. As shown in [20], the MI I(ω;yi) between the MLR regressors and the class label
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8 HYPERSPECTRAL SEGMENTATION

yi is given by

I(ω;yi) = (1/2) log(|H′|/H)

= (1/2) log

(
1+

K∏

k=1

pi,k x
T
i H

−1xi

)
.

(7)

The function (7) is maximized for pi,k ≈ 1/K, i.e., for samples near the classifier bound-

aries, corresponding to probability vectors pi with maximum entropy. Algorithm 1 shows

the pseudo-code of an iterative active learning scheme, where u is the number of new sam-

ples considered per iteration, β ≥ 0 is the augmented Lagrangian LORSAL parameter (see

appendix). Although the expression (7) has been derived for the selection of just one sample,

we consider the inclusion of a number u ≥ 1 in each iteration of Algorithm 1. This is, of

course, a sub-optimal procedure. Nevertheless, we have found out experimentally that it

still leads to very good results with the advantage of being u times faster.

Algorithm 1 LORSAL using active learning (LORSAL-AL)

Input: ω̂, DL, u, λ, β
1: repeat

2: P̂ := [pi(ω̂)] for i ∈ S
3: Hi :=H [pi(ω̂] for i ∈ S −{1, . . . ,L} (∗ compute entropy of pi ∗)
4: i1, i2, . . . , in−L := permutation of S −{1, . . . ,L} such that Hik is decreasing
5: DL :=DL

⋃{(xii,yi1), . . . ,(xiu ,yiu)}
6: ω̂ := LORSAL(DL,λ,β)
7: until some stopping criterion is meet

C. The Multi-Level Logistic spatial prior

In order to encourage piecewise smooth segments and promote solutions in which adja-

cent pixels are likely to belong to the same class, we include the contextual spatial information

by adopting an isotropic MLL prior to model the image of class labels y. This prior, which

belongs to the MRF class, is a generalization of the Ising model [32] and has been widely

used in image segmentation problems (see e.g., [4, 30, 31, 33]).

According to the Hammersly-Clifford theorem [34], the density associated with an MRF
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HYPERSPECTRAL SEGMENTATION 9

is a Gibbs’s distribution [32]. Thus, the prior model has the structure

p(y) =
1

Z
e

(
−
∑

c∈C

Vc(y)

)

, (8)

where Z is a normalizing constant for the density, the sum in the exponent is over the

so-called prior potentials Vc(y) for the set of cliques2 C over the image, and

−Vc(y) =





υyi, if |c|= 1 (single clique)

µc, if |c|> 1 and ∀i,j∈cyi = yj

−µc, if |c|> 1 and ∃i,j∈cyi 6= yj,

(9)

where µc is a non-negative constant.

The potential function in (9) encourages neighbors to have the same class label. The

considered MLL prior offers great flexibility by varying the set of cliques and the parameters

υyi and µc. For example, the model generates texture-like regions if µc depends on c and

blob-like regions otherwise [27]. By taking eυyi ∝ p(yi), denoting µc =
1
2
µ > 0, and assuming

that the cliques consistes either of a single pixel, i.e., c = {i}, or of a pair of neighboring

pixels, i.e., c = {i, j} where i and j are neighbors, then the equation (8) can be rewritten as

p(y) =
1

Z
e

∑

i∈S

υyi + µ
∑

{i,j}∈C

δ(yi − yj)

, (10)

where δ(y) is the unit impulse function3. This choice gives no preference to any direction. A

straightforward computation of p(yi), i.e., the marginal of p(y) with respect to yi, leads to

p(yi)∝ eυyi . Thus, in order to retain the compatibility between the prior and the marginal, we

take υyi = logp(yi) + cte, where cte is a constant term. Notice that the pairwise interaction

terms δ(yi − yj) attach higher probability to equal neighboring labels than the other way

2 A clique is a single term or either a set of pixels that are neighbors of one another.
3
i.e., δ(0) = 1 and δ(y) = 0, for y 6= 0

July 28, 2010—5 : 50 pm DRAFT



10 HYPERSPECTRAL SEGMENTATION

around. In this way, the MLL prior promotes piecewise smooth segmentations, where µ

controls the degree of smoothness.

D. Computing the MAP Estimate via Graph-Cuts

Using the LORSAL algorithm to learn p(yi|xi) and the MLL prior p(y), and according

to (2), the MAP segmentation is finally given by

ŷ = arg min
y∈Ln

{
∑

i∈S

−(logp(yi|ω̂)− logp(yi))− (
∑

i∈S

logp(yi) +µ
∑

i,j∈C

δ(yi − yj))

}

= arg min
y∈Ln

{
∑

i∈S

− logp(yi|ω̂)−µ
∑

i,j∈C

δ(yi− yj)

}
,

(11)

where p(yi|ω̂)≡ p(yi|xi,ω), computed at ω̂. Minimization of expression (11) is a combinato-

rial optimization problem, involving unary and pairwise interaction terms, which is difficult

to compute. Energy minimization algorithms like Graph cuts [28,35,36], Loopy Belief Prop-

agation [37, 38], and tree-reweighed message passing [39] developed recently are efficient

tools to tackle this class of optimization problems. In this work, we use the α-Expansion

algorithm [28] to solve our integer optimization problem [40], which yields very good approx-

imations to the MAP segmentation and is efficient from the computational point of view,

being the practical computational complexity O(n). The pseudo-codes for the proposed

supervised segmentation algorithms with discriminative class learning and MLL prior are

shown in Algorithm 2, without active learning, and in Algorithm 3, with active learning.

Algorithm 2 Supervised segmentation algorithm (LORSAL-MLL)

Input: DL, λ, β
1: ω̂ := LORSAL(DL,λ,β)

2: P̂ := p̂(xi, ω̂), i ∈ S
3: ŷ := α-Expansion(P̂,µ)
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HYPERSPECTRAL SEGMENTATION 11

Algorithm 3 Supervised segmentation algorithm using active learning (LORSAL-AL-MLL)

Input: ω̂, DL, u, λ, β
1: repeat

2: P̂ := [pi(ω̂)] for i ∈ S
3: Hi :=H [pi(ω̂] for i ∈ S −{1, . . . ,L} (∗ compute entropy of pi ∗)
4: i1, i2, . . . , in−L := permutation of S −{1, . . . ,L} such that Hik is decreasing
5: DL :=DL

⋃{(xii,yi1), . . . ,(xiu ,yiu)}
6: ω̂ := LORSAL(DL,λ,β)

7: ŷ := α-Expansion(P̂,µ)
8: until some stopping criterion is meet

E. Overall complexity

The overall complexity is dominated by the supervised learning of the MLR regressors

through the LORSAL algorithm, shown in appendix (Algorithm 4), which has a complexity

of O(γ2K), and by the α-Expansion algorithm used to determine the MAP segmentation,

which has a practical complexity of O(n). In conclusion, if γ2K ≫ n (e.g, h(x) are kernels

and the number of classes is large), then the algorithm is dominated by the computation

of the MLR regressors, whereas if γ2K ≪ n, the algorithm complexity is dominated by the

α−Expansion algorithm.

IV. Experimental Results

In this section, we evaluate the performance of the proposed algorithm using both sim-

ulated and real hyperspectral data sets. The main objective in running experiments with

simulated data is the assessment and characterization of the algorithm in controlled environ-

ment, whereas the main objective in running experiments with real data sets is comparing

its performance with that reported for state-of-the-art competitors.

This section is organized as follows. Section A reports experiments with simulated

data and it has the following structure. Subsection A.1 evaluates the LORSAL algorithm.

Subsection A.2 evaluates the impact of the spatial prior. Finally, subsection A.3 evaluate the
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12 HYPERSPECTRAL SEGMENTATION

impact of the active learning approach. Section B evaluates the performance of the proposed

algorithm using four real hyperspectral scenes collected by AVIRIS over agricultural fields

located at Indian Pines, Indiana [41], and by the ROSIS sensor, operated by DLR (German

Aerospace Agency) over the town of Pavia, Italy. In this section, the results are compared

with state-of-the-art algorithms for hyperspectral image processing presented in [10], as

recent advances in hyperspectral techniques have been introduced in this paper.

It should be noted that, in all experiments, except in Section A.1, which uses the lin-

ear model to evaluate the LORSAL algorithm, we use RBF Kernels K(x,z) ≡ exp(−‖x−

z‖2/(2ρ2)) applied on the normalized data4, where all spectral bands have been used. The

scale parameter is set to a fixed value with ρ= 0.6, as this setting leads to very good estimate.

Furthermore, we have noticed that there is no noticeable improvements for small variations

of ρ. The regularization parameter and the LORSAL augmented Lagrangian parameter were

set to λ = 10−3 and β = 10−4, respectively. Although this setting is not optimal, we have

observed that it yields very good results in all experiments.

Let DLi
, DL, and DU ≡DL−Li

denote the initial labeled set, the final labeled set, and the

actively selected samples (and labels), respectively, Du be the new samples actively selected

per iteration, where Li, L, U, u are the number of samples in the respective set. In the

experiments, DLi
and DU are, respectively, randomly selected and actively selected from the

complete training set. In all cases, the reported values of the overall accuracy (OA) are

obtained by averaging the results of 10 Monte Carlo runs, with respect to the initial labeled

samples DLi
.

4 The normalization is xi := xi

(
√∑

‖xi‖
2)
, for i= 1, . . . ,n, where xi is a spectral vector and x is the collection of all

image spectral vectors.
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HYPERSPECTRAL SEGMENTATION 13

A. Experiments with simulated data

In this section, we generate images of labels, y ∈ Ln, sampled from a 128× 128 MLL

distribution with µ= 2. The feature vectors are simulated according to:

xi = myi + ni, i ∈ S, yi ∈ L (12)

where xi ∈ R
d denotes the spectral vector observed at pixel i, myi , for yi ∈ L, denotes a

set of K known vectors, and ni denotes zero-mean Gaussian noise with covariance σ2I, i.e.,

ni ∼N (0,σ2I).

In the subsections of A.1 and A.2, we do not consider the active learning procedure, i.e.,

L = Li, because our focus is on the competitiveness of the LORSAL algorithm and on the

role of the spatial prior, independently of the active learning mechanism. The training set

DL is randomly selected from the ground truth image. The remaining samples are considered

as the validation set.

A.1 On the effectiveness of the LORSAL algorithm

In this experiment, we illustrate the effectiveness of the LORSAL algorithm. We generate

the spectral vector according to the above model (12), where spectral vectors mi, for i =

1, . . . ,K, were selected (randomly) from the U.S. Geological Survey (USGS) digital spectral

library5 with d = 224, K = 10, L = 1000, and σ = 1. Fig.1 plots the evaluation of the log-

posterior ℓ(ω)−λ‖ω‖1 as a function of time for LORSAL, FSMLR, and SMLR algorithms.

LORSAL is, by far, the fastest algorithm. For a similar log-posterior, LORSAL algorithm

takes about 2 seconds while FSMLR algorithm takes around 48 seconds, and the SMLR

algorithm takes about 880 seconds.
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14 HYPERSPECTRAL SEGMENTATION
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Fig. 1. Evaluation of the log-posterior (4) as a function of the time for LORSAL, FSMLR, and SMLR
algorithms.

(a) Ground truth (b) Classification map (c) Segmentation map

Fig. 2. Classification and segmentation results obtained with the proposed algorithm. The simulated
data set was generedted according to (12) with d = 500 and σ = 1.5, µ = 2. (a) simulated binary map; (b)
classification map produced by the LORSAL algorithm using L= 100 labeled samples without active learning
(OA=60.13%, with OAopt = 71.91%, see text); (c) as in (b) but using the MLL spatial prior (OA=92.48%).

A.2 Impact of the spatial prior

In this experiment, we analyze the impact of the spatial prior on the segmentation

performance on a binary problem, i.e., K = 2. The feature vector is set to mi = ξiφ, where

‖φ‖= 1, and ξi =±1. An image of class labels y generated according to the MLL prior (12)

is shown in Fig. 2(a), where labels yi = 1,2 correspond to ξi =−1,+1, respectively.

In this problem, the theoretical OA, given by OAopt ≡ 100(1−Pe)% and corresponding

5 USGS is available online: http://speclab.cr.usgs.govand
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HYPERSPECTRAL SEGMENTATION 15

to the minimal probability of error [42] is

Pe =
1

2
erfc

(
1 + λ0√

2 σ

)
p0 +

1

2
erfc

(
1− λ0√

2 σ

)
p1, (13)

where λ0 = (σ2/2) ln(p0/p1) and p0 and p1 are the a priori class labels probabilities.

To give a broad picture of the good performance of the proposed algorithm, we first illus-

trate the classification (just LORSAL) and segmentation (LORSAL-MLL) maps in Fig. 2(b)

and (c) for σ = 1.5 and d= 500 using L= 100 training samples. Clearly, the inclusion of the

spatial prior yields, as expected, much better results.

Fig.3 plots the OA results obtained with the proposed algorithms. The following con-

clusions may be drawn:

1. the best results are obtained, as expected, by the proposed segmentation algorithm,

which are higher, in all cases, than the classification results (and also of OAopt). This

confirms our introspection that the inclusion of a spatial prior significantly improve

the classification results provided by using only spectral information, even for very

noisy scenarios [see plot (a)].

2. the classification OA approaches the optimal values OAopt as the number of labeled

samples increases [see plot (b)]. However, the number of labeled samples needs to be

relatively high in order to obtain classification accuracies which are close to optimal.

3. by using the same size of training samples, the classification accuracy decreases as

the number of bands increases [see plot (c)]. This is expectable according to the

Hugues phenomenon. On the contrary, by including the spatial prior, our supervised

segmentation algorithm, performs very well even with small training sets and large

number of bands.

4. the segmentation results are almost insensitive to the smooth parameter µ for µ≥ 2

[see plot (d)].
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Fig. 3. OA results obtained by the proposed algorithms. Plot (a), OA results as a function of the noise
standard deviation σ. Plot (b), OA results as a function of the number of labeled samples L. Plot (c),
OA results as a function of the number of bands d. Plot (d), OA results as a function of the spatial prior
parameter µ.

A.3 Impact of active learning approach

In this subsection, we analyze the impact of the proposed active learning approach. A

new simulated hyperspectral data set is generated according to the model (12) with K = 4,

σ = 1, and vectors myi are signatures from the USGS library with d= 224.

Fig. 4 reports the learning results obtained as a function of L and U with u= U/10 (recall

that U is the number of new sample actively selected, and u is the number of new active
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Fig. 4. OA results obtained by the proposed active learning approach: (a), classification OA results; (b),
segmentation OA results; (c), OA results as a function of u with L= 100, U = Li = 50%L.

samples selected per iteration). Several conclusions can be obtained from Fig. 4. In general,

the inclusion of the active learning improves the classification and segmentation performance.

An important observation is that the advantages are less relevant as the size of the training

set increases. This is expected, since the uncertainty of the classifier boundaries decreases

as the training set size increases. Moreover, the contribution of the active learning depends

both on the sizes of U and Li. For U ≃ Li ≃ 50%L, the active learning leads to the best good

results. It is worth noting that even with a very small amount of samples actively selected,

i.e., U = 10%L, the proposed active learning procedure still performs better results than

random selection. However, if Li ≪ U , in some cases, the active learning produces results

even worse than the random selection. The explanation is that, with very small values of Li,

the initial estimate of the regressors ω̂ is very poor and thus, violating the active selection

assumption, will suffer noticeable changes when the new label will be included. From plot (c),

it can be observed that, the gain achieved by the proposed active learning approach increases

as the size of u decreases. This is because the setting of u > 1, although speeding up the

learning algorithm u times, is sub-optimal. Nevertheless, it is clear that the contribution

to the segmentation performance is noticeable even with very large u. For this reason, and

from a practical point of view, we set Li ≃ U , u≃ U/10 or u≃ U/5.
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18 HYPERSPECTRAL SEGMENTATION

B. Experiments with real data sets

Four real hyperspectral data sets are used to evaluate our algorithm. The first one is

the well-known AVIRIS Indian Pines scene, collected over Northwestern Indiana in June

of 1992 [41]. The scene is available online6 and contains 145× 145 pixels and 224 spectral

bands. A total of 20 spectral bands were removed prior to experiments due to noise and

water absorption in those channels. The ground truth image, Fig.5 (a), contains 16 mutually

exclusive ground-truth classes, 7 of which were discarded for insufficient number of training

samples. The remaining 9 classes were used to generate a set of 4757 training samples, with

random partition, and 4588 test samples.

The second data sets considered in this paper are based on urban hyperspectral data

over the town of Pavia, Italy. The data set collected by the ROSIS sensor, operated by DLR

(German Aerospace Agency) with a total of 115 spectral bands. Three different subsets of

the full data set are considered in the experiments.

• Subset #1, with 492× 1096 pixels in size, was collected over Pavia city center, Italy.

The noisy bands were removed yielding a dateset with 102 spectral channels. The

ground truth image (see Fig. 6 (a)) contains 9 ground truth classes, 5536 training

samples, and 103539 test samples.

• Subset #2, with size of 610× 340 pixels, is centered at the University of Pavia. The

noisy bands were removed yielding 103 spectral channels. The ground truth image

(see Fig. 7 (a)) contains 9 ground truth classes, 3921 training samples, and 42776

test samples.

• Subset #3, which is a superset of the scene over Pavia city centre, includes a dense

residential area, with 715× 1096 pixels. The ground truth image(see Fig. 6 (d))

6 http://cobweb.ecn.purdue.edu/ biehl/MultiSpec/

DRAFT July 28, 2010—5 : 50 pm



HYPERSPECTRAL SEGMENTATION 19

(a) (b) OA=75.28% (c) OA=85.79%

(d) OA=80.01% (e) OA=89.97% (f) OA=94.76%

Fig. 5. Classification and segmentation maps. (a) Ground truth. (b) LORSAL classification map: L= 237.
(c) LORSAL-MLL segmentation map: L = 237. (d) LORSAL-AL classification map: L = 237, U = 126.
(e) LORSAL-AL-MLL segmentation map: L = 237, U = 120. (f) LORSAL-AL-MLL segmentation map:
L= 475, U = 230.

contains 9 ground truth classes, 7456 training samples and 148152 validation samples.

B.1 Experiment 1: AVIRIS Indiana Pines Data Set

In this experiment, we use the AVIRIS Indian Pines data set to analyze the proposed

algorithm. We use training sets with 5% (237 samples), 10% (475 samples) and 25% (1189

samples) of the original training set. For the active learning procedure, we set U ≃ Li ≃ L/2

and u= U/9. The current problem is particularly complex and ill-posed because the number

of training samples is only slightly higher than (or even comparable to) the size of the number

of bands. Table I shows the results in comparison with the state-of-the-art competitors.

Several conclusion can be obtained from Table I. First, the proposed MLR-based algorithms
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(a) (b) (c) (d) (e) (f)

Fig. 6. Classification and segmentation maps for subset #1 and subset #3. (a) Ground truth of subset #1.
(b) Classification map for subset #1 obtained by the LORSAL algorithm by using 10 labeled samples per
class (OA=95.24%). (c) Classification map for subset #1 obtained by the LORSAL-AL algorithm by using
10 labeled samples per class, and U = L/2 (OA=96.25%). (d) Ground truth of subset #3. (e) Classification
map for subset #3 obtained by the LORSAL-AL algorithm by using L = 50, and U = L/2 (OA=98.18%).
(f) Segmentation map for subset #3 obtained by the LORSAL-AL-MLL algorithm (OA=98.41%).

(a) (b) (c) (d) (e)

Fig. 7. Classification and segmentation maps for subset #2. (a) Ground truth. (b) Classification map for
subset #2 obtained by the LORSAL algorithm with the full training set(OA=79.61%). (c) Segmentation
map for subset #2 obtained by LORSAL-MLL algorithm (OA=86.60%). (d) Classification map for subset
#2 obtained by the LORSAL-AL algorithm with L = 650, U = 200 (OA=81.92%). (e) Segmentation map
for subset #2 obtained by LORSAL-AL-MLL algorithm (OA=89.31%).

outperforms the competitors in all cases. Our classification results obtained by the LORSAL

algorithm are better than the results of TSVMs classifier [10]. This comparison is fair as

all classifiers do not use spatial information and all training samples are randomly selected.

Second, by including the spatial prior, the proposed segmentation method improves a lot

the classification results provided by LORSAL (the improvement is always in the order
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TABLE I

OA [%] results obtained with the proposed algorithm as a function of the number of

labeled sample for the AVIRIS Indiana Pines, with U ≃ Li ≃ L/2. The prior parameter is

set to µ= 6.

Training set
[10] Proposed algorithm

Classification Classification Segmentation

Percentage L SVMs TSVMs LORSAL LORSAL-AL LORSAL-MLL LORSAL-AL-MLL

5% 237 73.41 76.20 76.60 80.40 85.09 89.30

10% 475 76.46 80.21 81.82 85.03 90.75 94.31

25% 1189 82.17 84.83 86.48 90.77 95.35 97.76

of 8% or higher). Furthermore, the proposed active learning procedure improves the OA

results for both the classification and the segmentation algorithms. Finally, as expected the

advantage of the active learning decreases as the size of the training set increases, since the

uncertainty of the class boundaries decreases as the number of labeled samples increases.

The effectiveness of the proposed method is illustrated in Fig. 5 where shows classification

and segmentation maps.

B.2 Experiment 2: ROSIS Pavia Data Sets

In this section, the ROSIS Pavia data sets are used to evaluate the proposed approaches.

The first experiment uses the ROSIS Pavia Data subset #1. Small size of training sets,

composed of 10, 20, 40, 60, 80, 100 samples per class, are randomly selected from the

complete training set. In all cases, we set U = L/2 = Li and u= U/5. Table II summarizes

the results obtained by the classification algorithms. The best results are obtained by the

LORSAL-AL algorithm. For a comparable OA, the LORSAL-AL algorithm requires much

less labeled samples than the competitors. Moreover, the classification algorithms, both

LORSAL and LORSAL-AL, generalize very well and are quite robust to small size training

sets.

In the second experiment, we use subset #2. Two different scenarios are considered
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TABLE II

OA [%] classification results for the ROSIS Pavia subset #1 with the proposed algorithm

by using U = L/2. The prior parameter µ is set to µ= 6. mean, min, and max denotes the

average, minimum and maximum OA value obtained over 10 runs.

Number of labeled samples per class

Classification Algorithms 10 20 40 60 80 100

mean 95.22 96.27 96.91 97.03 97.39 97.37

LORSAL min 94.06 95.81 96.33 96.55 96.89 96.97

max 96.14 96.79 97.35 97.40 97.71 97.66

mean 95.94 97.50 98.49 99.02 99.34 99.48

LORSAL-AL min 94.78 96.75 97.37 98.54 98.96 99.04

max 97.04 98.20 99.90 99.41 99.69 99.81

kgaussian 93.85 94.51 94.51 94.71 95.29 96.45

[10] kpoly 92.34 92.77 94.20 94.07 94.81 96.03

kSAM 93.32 93.87 93.79 94.23 94.54 95.56

in this experiment: (a) we use the entire training set to learn the classifiers; (b) we use

a subset of the whole training set with Li = 450 and u = 100 to train the classifiers. OA

results are shown in Table III, in comparison with the results obtained by the extended

morphological profile (EMP) [10], from which we conclude that the integration of active

learning produces comparable results with less labeled samples: with 1050 labeled samples,

we obtain a segmentation OA of 86.15% with the LORSAL-AL-MLL algorithm, which is

better than the EMP result using 3921 training samples.

In the final experiment, we consider subset #3. Table IV summarizes the results for

subset #3 in comparison with DAFE/MRF and Neuro-fuzzy [10], which are unsupervised

algorithms. Maximum and minimum OAs obtained are also reported. With the entire

training set, obviously, both classification and segmentation results obtained by the proposed

algorithms are better than those obtained by DAFE/MRF and Neuro-fuzzy. For instance,

DRAFT July 28, 2010—5 : 50 pm



HYPERSPECTRAL SEGMENTATION 23

TABLE III

OA [%] results for the ROSIS Pavia subset #2 with the proposed algorithm. The prior

parameter µ is set to µ= 2. For the LORSAL-AL and LORSAL-AL-MLL algorithm,

Li = 450, u= 100. Class. denotes classification. Seg. denotes segmentation.

[10] Proposed algorithms

Class. Seg. Class. Seg.

Spectral EMP LORSAL-AL LORSAL LORSAL-MLL LORSAL-AL-MLL

L 3921 3921 650 850 1050 3921 3921 650 850 1050

OA 80.99 85.22 78.60 79.86 80.44 80.24 86.02 85.39 85.58 86.15

even without spatial information, LORSAL algorithm obtained an OA of 98.61%, which is

higher than those of the competitors. However, this comparison is not fair, as the competitors

are unsupervised classifiers. For a fairer comparison, we considered small size of training

sets, i.e., L = {50, 80, 102, 120} labeled samples. In this example, we set U = Li = L/2

and u = U/5. It should be noticed that these are very difficult and complex problems as

the number of labeled samples is even smaller than the number of bands. From Table IV,

we conclude that the proposed algorithm performs very well in these circumstances. For

instance, with only L= 50 labeled samples, which is half of the number of bands, we obtain

a mean OA of 95.58% and 98.01% with LORSAL and LORSAL-AL algorithms,respectively.

The latter result is better than those of the competitors and almost equals to the OA obtained

by the entire training set. This result is very good as only 25 samples were actively selected

from the original training set, which is a very small subset of the full image.

For illustration purposes, Fig. 6 (b)-(c), (e)-(f) and Fig. 7 (b)-(c) plot the classifica-

tion and segmentation maps obtained by the proposed algorithms over the Pavia data sets.

Effective results can be observed from these maps.

At this point, we want to call attention to the fact that, in all experiments, the set

DU is actively selected from the whole training set, which usually is a small subset of the

complete data set. If users have more freedom to label new samples from a larger source,
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TABLE IV

OA [%] results for the ROSIS Pavia subset #3 with the proposed algorithm by using

U = L/2, which are selected from the complete training set The prior parameter µ is set

to µ= 2. mean, min, and maxdenotes the average, minimum and maximum value over 10

runs, respectively.

Number of labeled samples (L)

Algorithms 50 80 102 120 All

Classification

LORSAL

mean 95.58 96.52 96.64 97.00

98.61

min 92.28 95.49 94.82 96.48

max 98.14 97.50 98.20 97.80

LORSAL-AL

mean 98.01 98.39 98.51 98.53

min 96.90 98.16 97.99 98.20

max 98.63 98.55 98.82 98.71

Segmentation

LORSAL-MLL

mean 96.52 97.31 97.37 97.70

98.90

min 94.31 96.03 96.12 97.23

max 98.52 98.30 98.57 98.50

LORSAL-AL-MLL

mean 98.25 98.51 98.41 98.70

min 97.21 98.05 97.87 98.11

max 98.76 98.88 98.63 98.90

[10] Unsupervised DAFE/MRF 97.27

Segmentation Neuro-fuzzy 97.29

the performance is expected to be better. For instance, for subset #3, by setting L = 80,

U = Li = L/2 = 40, if the initial labeled set DLi
is randomly selected from the whole training

set and DU is actively selected from the complete test set, an OA of 99.32% from the

LORSAL-AL algorithm and an OA of 99.45% from the LORSAL-AL-MLL algorithm would

be obtained, respectively.
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V. Conclusions

In this paper, LORSAL-AL-MLL, a new supervised Bayesian segmentation approach

aimed at ill-posed hyperspectral segmentation/classification problems has been introduced.

LORSAL-AL-MLL models the posterior class probability distributions using a multinomial

logistic regression (MLR), where the MLR regressors are learnt by the logistic regression via

splitting and augmented Lagrangian (LORSAL) algorithm [26]. LORSAL-AL-MLL adopts

a multi-level logistic (MLL) prior to model the spatial information present the class la-

bel images. The MAP segmentation is efficiently computed by the α-Expansion graph-cut

based algorithm. With respect to the classification results just based on the learned class

distribution (LORSAL), the segmentation algorithm (LORSAL-MLL) greatly improves the

overall accuracies. Moreover, an active learning approach based on maximum mutual infor-

mation between the regressors and class label, is used to reduce the acquisition of the ground

reference data. The effectiveness of the proposed LORSAL-AL and LORSAL-AL-MLL algo-

rithm is illustrated with both simulated and real hyperspectral datasets. A comparison with

state-of-the-art methods indicates that the proposed method yields better or comparable

performances using less, or much less, labeled samples.

Appendix

Problem (4) is equivalent to

(ω̂, ν̂) = arg min
ω, ν

−ℓ(ω) + λ‖ν‖1 (14)

subject to: ω = ν.

By applying the alternating direction method of multipliers (ADMM) [43] (see also [44] and

references therein) to solve the optimization (14), we get the following iterative algorithm:
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Algorithm 4 Logistic regression via variable splitting and augmented Lagrangian (LOR-
SAL)

Input: ω
(0), ν(0), b(0), λ, β

1: t := 0
2: repeat

3: ω̂
(t+1) ∈ argmin

ω

−ℓ(ω) +
β

2
‖ω−ν

(t) −b(t)‖2 (15)

4: ν̂
(t+1) ∈ argmin

ν

λ‖ν‖1+
β

2
‖ω(t+1) −ν −b(t)‖2 (16)

5: b(t+1) := b(t) −ω
(t+1) +ν

(t+1)

6: t := t+1
7: until some stopping criterion is meet

where β ≥ 0 sets the augmented Lagrangian weight. Under mild conditions, the above

sequence ω̂
t, for t= 0,1,2 . . . converges to a minimizer of (14), for any β ≥ 0 [43].

The solution of the optimization (15) in line 3 is still a difficult problem because ℓ(ω),

although strictly convex and smooth, is non-quadratic and often very large. We tackle this

difficulty by replacing ℓ(ω) with a quadratic lower bound given by [16]

ℓ(ω) ≤ ℓ(ω(t)) + (ω − ω
(t))Tg(ω(t)) +

1

2
(ω − ω

(t))TB(ω − ω
(t)), (17)

where B ≡ −(1/2)[I−11T/K]⊗∑L

i=1h(xi)h(xi)
T (symbol 1 denotes a columns vector of

ones) and g(ω(t)) is the gradient of ℓ at ω
(t). Since the system matrix involved in the

optimization (15), with ℓ(ω) replaced with the quadratic bound given in (17), is fixed, its

inverse can be pre-computed, provided that γ, the dimension of h(xi), is below, say, a

few thousands. Under mild conditions, the converge of Algorithm 4 with the just referred

modification still holds [43, 44].

The solution of the optimization in (16) in line 4 is simply the soft-threshold rule [45]

given by ν̂
(t+1) =max{0,abs(u)}signal(u), where u≡ (ω(t+1)−b(t))−λ/β and the involved

functions are to be understood componentwise.

As a final note, we refer that the complexity of each iteration of the LORSAL algorithm
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is O(γ2K), which is must faster than O((γK)3), for the SMLR algorithm [17], and O(γ3K),

for FSMLR algorithm [18].
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