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ABSTRACT
Hyperspectral instruments acquire electromagnetic energy
scattered within their ground instantaneous field view in hun-
dreds of spectral channels with high spectral resolution. Very
often, however, owing to low spatial resolution of the scan-
ner or to the presence of intimate mixtures (mixing of the
materials at a very small scale) in the scene, the spectral vec-
tors (collection of signals acquired at different spectral bands
from a given pixel) acquired by the hyperspectral scanners are
actually mixtures of the spectral signatures of the materials
present in the scene.

Given a set of mixed spectral vectors, spectral mixture
analysis (or spectral unmixing) aims at estimating the number
of reference materials, also called endmembers, their spectral
signatures, and their fractional abundances. Spectral unmix-
ing is, thus, a source separation problem.

This paper presents an overview of the principal research
directions in hyperspectral unmixing. The paper is organized
into six main topics: i) mixing models, ii) signal subspace
identification, iii) geometrical-based spectral unmixing, iv)
statistical-based spectral unmixing, v) sparse regression-
based unmixing, and vi) spatial-contextual information. For
each topic, we summarize what is the mathematical prob-
lem involved and give relevant pointers to state-of-the-art
algorithms to address these problems.

1. MIXING MODELS

Spectral unmixing is an important problem in hyperspectral
data exploitation. Depending on the mixing scales at each
pixel and on the geometry of the scene, the observed mixture
is either linear or nonlinear [1], [2]. Linear mixing holds when
the mixing scale is macroscopic and the incident light inter-
acts with just one material, as it happens in checkerboard-type
scenes [4]. Nonlinear mixing holds when the light suffers
multiple scattering involving different materials [5].

• In a linear mixing scenario, the acquired spectral vec-
tors are a linear combination of the endmember sig-
natures present in the scene, weighted by the respec-
tive fractional abundances. The exploitation of this

model, in spite of its simplicity, has fostered a huge
amount of research leading to a plethora of unmix-
ing algorithms developed under the geometrical or the
statistical frameworks.

• In a nonlinear mixing scenario, the model for the scat-
tered light is much more complex than its linear coun-
terpart. Radiative transfer theory (RTT) is a well estab-
lished model for the transfer of energy as photons in-
teracts with the materials in the scene. The core of the
RTT is a differential equation describing radiance col-
lected by the sensor. It can be derived via the conserva-
tion of energy and the knowledge of the phase function,
which represents the probability of light with a given
propagation direction be scattered into a specified an-
gle solid around a given scattering direction.

In this work, we provide an overview of current trends
and techniques for analyzing hyperspectral data using spec-
tral unmixing. Although previous efforts exist in the literature
[1], none of them have been specifically focused on recent
developments in spectral unmixing techniques. Taxonomies
of unmixing algorithms have also been investigated in recent
collaborative efforts1. In the present contribution, we specif-
ically focus on the linear mixing model. The reason is that,
despite its simplicity, it is an acceptable approximation of the
light scattering mechanisms in many real scenarios. Further-
more, the linear mixing model constitutes the basis of many
effective unmixing algorithms. This is to be contrasted with
the nonlinear mixing model, where the inference of the spec-
tral signatures and of material densities based on the RTT is
a complex ill-posed problem, relying on scene parameters of-
ten very hard to obtain. A way to sidestep these difficulties
is to formulate unmixing as regression problem based, for ex-
ample, on neural networks or on kernels, in which the model
parameters are learnt in a supervised fashion from a collec-
tion of examples (see [6] and references therein). Anyway,
there are particular situations in which a nonlinear model can
be converted into a linear one, as it it is the case of the two-
stream method [4].

1http://www.hyperinet.eu



2. SIGNAL SUBSPACE IDENTIFICATION

The number of endmembers present in a given scene is, very
often, much smaller than the number of available spectral
bands. Therefore, spectral vectors generally lie in a lower-
dimensional (linear) subspace. The identification of this sub-
space enables a more compact representation of spectral vec-
tors, thus yielding gains in computational time and complex-
ity, as well as in data storage and signal-to-noise-ratio (SNR).
Furthermore, several unmixing algorithms only work on the
signal subspace requiring, therefore, signal subspace identifi-
cation as a first processing step.

Some well-known signal subspace identification algo-
rithms are the maximum noise fraction (MNF) [7], the noise
adjusted principal components (NAPC) [8], the hyperspec-
tral signal identification by minimum error (Hysime) [11], the
Harsanyi-Farrand-Chang (HFC) [9], and virtual dimension-
ality (VD) [10]. Topological methods which infer the data
manifold –usually of lower dimension– such as independent
component analysis, projection pursuit, and wavelet decom-
position have also been introduced (see [12] and references
therein).

3. LINEAR SPECTRAL UNMIXING

Linear spectral unmixing has been intensively researched in
the recent years [1, 6, 12, 13]. Under this model, and as-
suming that the number of substances and their reflectance
spectra are known, hyperspectral unmixing is a linear prob-
lem to which many solutions have been proposed (e.g., max-
imum likelihood estimation [14], spectral signature matching
[15], spectral angle mapper [16], subspace projection meth-
ods [17, 18], and constrained least squares [19]).

Given that linear spectral unmixing is a source separa-
tion problem, the independent component analysis (ICA)
framework comes naturally to mind to unmix spectral data.
However, the ICA crux assumption of source statistical in-
dependence is not satisfied in spectral applications, since
the sources are fractions and, thus, non-negative and sum-
ming up to one. As a consequence, ICA-based algorithms
have severe limitations in the area of spectral unmixing [3],
and this has fostered new unmixing research directions tak-
ing into account geometric and statistical characteristics of
hyperspectral sources.

To overcome the limitations of the ICA-based approaches
to spectral unmixing, large research efforts have been devoted
in the last decade to the development of unmixing algorithms
targeted at spectral unmixing. Most of these algorithms adopt
either a geometrical or a statistical framework [12, 13].

3.1. Geometrical based approaches: pure pixel based al-
gorithms

The pure pixel based algorithms assume the presence in the
data of at least one pure pixel per endmember, meaning that
there is at least one spectral vector on each vertex of the data
simplex. This assumption, though enabling the design of very
efficient algorithms from the computational point of view, is
a strong requisite that may not hold in many datasets. In any
case, these algorithms find the set of purest available pixels
in the data. Anyway, perhaps due to its computational light-
ness and clear conceptual meaning, they are, by far, the most
widely used class of algorithms in linear hyperspectral un-
mixing applications. Relevant algorithms of this class are the
pixel purity index (PPI), [20], N-FINDR [21], the iterative er-
ror analysis (IEA) [22], the vertex component analysis (VCA)
[23], the simplex growing algorithm (SGA) [24], the sequen-
tial maximum angle convex cone (SMACC) [25], the alterna-
tive volume maximization (AVMAX) [26], and the successive
volume maximization (AVMAX) [26].

3.2. Geometrical based approaches: Minimum volume
based algorithms

The minimum volume (MV) approaches aim at finding the
mixing matrix that minimizes the volume of the simplex de-
fined by its columns and containing the observed spectral
vectors. This is a nonconvex optimization problem much
harder to solve than those considered in the previous sub-
section. Relevant algorithms of this class are the convex
cone analysis (CCA) [27], the iterative constrained endmem-
bers (ICE) [28], the sparsity-promoting iterative constrained
endmembers (SPICE) [29], the minimum volume transform-
nonnegative matrix factorization (MVC-NMF) [30], the min-
imum volume simplex analysis (MVSA) [31], the minimum
volume enclosing simplex (MVES) [32], and the simplex iden-
tification via variable splitting and augmented Lagrangian
(SISAL) [33].

3.3. Statistical methods

When the spectral mixtures are highly mixed, the geometri-
cal based methods yield poor results because there are not
enough spectral vectors in the simplex facets. In these cases,
the statistical methods are a powerful alternative, which, usu-
ally, comes at the expense of higher computational complex-
ity when compared with the geometrical based approaches.

Under the statistical framework, spectral unmixing is
formulated as a statistical inference problem. Adopting a
Bayesian perspective, the inference engine is the posterior
density of the random objects to be estimated. Relevant ex-
amples of this approach are the joint Bayesian endmember
extraction and linear unmixing [34], the Bayesian analysis of
spectral mixture data using Markov chain Monte Carlo meth-
ods [35], the Bayesian nonnegative matrix factorization [36],



the dependent component analysis DECA [37], and the em
generalized bilinear model [38], which adopts a non-linear
observation model accounting for double light interactions
among the endmembers.

3.4. Sparse regression based unmixing

The spectral unmixing problem has recently been approached
in a semi-supervised fashion, by assuming that the observed
image signatures can be expressed as linear combinations of a
number of pure spectral signatures known in advance [39, 40,
41] (e.g., spectra collected on the ground by a field spectro-
radiometer). Unmixing then amounts to finding the optimal
subset of signatures in a (potentially very large) spectral li-
brary that can best model each mixed pixel in the scene [42].
In practice, this is a combinatorial problem which calls for ef-
ficient linear sparse regression techniques based on sparsity-
inducing regularizers, since the number of endmembers par-
ticipating in a mixed pixel is usually very small compared
with the (ever-growing) dimensionality and availability of
spectral libraries [1]. Linear sparse regression is an area of
very active research with strong links to compressed sensing,
basis pursuit, basis pursuit denoising, and matching pursuit
[43].

A recent trend in sparse approximation is the learning of
the regression dictionary from example data [44], [45]. These
ideas have been recently applied with success in hyperspectral
unmixing [46].

3.5. Incorporation of spatial-contextual information

Quite often, the hyperspectral vectors are organized into im-
ages and, thus, besides the spectral information, we have also
spatial information: it is very likely that two neighboring pix-
els display similar properties. The exploitation of this contex-
tual information is currently object of active research. Some
examples of works including some sort of spatial information
are the spectral and spatial complexity-based hyperspectral
unmixing [47], the automatic morphological endmember ex-
traction (AMEE) [48], ℓ1 unmixing and its application to hy-
perspectral image enhancement [49], [50].

4. SUMMARY

This overview aims at describing the mathematical problems
involved in the area of hyperspectral unmixing and summariz-
ing state-of-the-art algorithms to address these problems. The
compendium of techniques presented in this work reflects the
increasing sophistication of a field that is rapidly maturing at
the intersection of many different disciplines including phys-
ical modeling, signal and image processing, statistical infer-
ence, optimization, and computing developments.
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