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Abstract. This paper presents a new Bayesian approach to hyperspec-
tral image segmentation that boosts the performance of the discrimina-
tive classifiers. This is achieved by combining class densities based on
discriminative classifiers with a Multi-Level Logistic Markov-Gibs prior.
This density favors neighbouring labels of the same class. The adopted
discriminative classifier is the Fast Sparse Multinomial Regression. The
discrete optimization problem one is led to is solved efficiently via graph
cut tools. The effectiveness of the proposed method is evaluated, with
simulated and real AVIRIS images, in two directions: 1) to improve the
classification performance and 2) to decrease the size of the training sets.

1 Introduction

In recent years much research has been done in the field of image segmentation.
Several methods have been used in a wide range of applications in computer
vision. However, its application to high dimensional data, such as hyperspectral
images, is still a delicate task, namely owing to well known difficulties in learning
high dimensional densities from a limited number of training samples.

The discriminative approach to classification circumvent these difficulties by
modelling directly the densities of the labels, given the features. This framework
have shown success in dealing with small class distances, high dimensionality,
and limited training sets. As a consequence, discriminative classifiers hold the
state-of-the art in supervised hyperspectral image classification (see, e.g., [1]).

Real world images tend to exhibit piecewise spatial continuity of categorical
properties (i.e., classes). Thus, an intuitive way of improving the performance
of discriminative classifiers (and others) consists in adding contextual informa-
tion in the form of spatial dependencies. This direction has been pursued in
[2], introducing the concept of discriminative random fields in the computer vi-
sion applications, and in [3] and [4] using composite kernels, in hyperspectral
applications.

This paper introduces a new Bayesian segmentation approach for hyperspec-
tral images. Spatial dependencies are enforced by a Multi-Level Logistic (MLL)
Markov-Gibs prior, which favours neighbouring labels of the same class. The
class densities are build on the discriminative Fast Sparse Multinomial Regres-
sion (FSMLR) [5], which a fast version of the Sparse Multinomial Regression
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(SMLR) [6]. The SMLR includes a Laplacian prior to control the complexity of
the learned classifier and, therefore, to achieve good generalization capabilities.

To compute an approximation to the Maximum A Posteriori probability
(MAP) segmentation, we adopt the a-Expansion graph cut based algorithm
proposed in [7]. This tool is computationally efficient and yields nearly optimum
solutions.

The paper is organized as follows. Section 2 formulates the problem, describe
briefly the FSMLR classifier, the MLL Markov Gibs prior, and the a-Expansion
optimization algorithm. Section 3 presents results based on simulated and real
hyperspectral datasets.

2 Formulation

A segmentation is an image of labels y = {;},.g, where y; € L ={1,2,...,K}.
Let x = {xz eERYieS } be the observed multi-dimensional images, also known
as feature image. The goal of the segmentation is to estimate y, having observed
x. In a Bayesian framework, this estimation is done by maximizing the posterior
distribution p(y|x) o< p(x|y)p(y), where p(x]y) is the likelihood function (or the
probability of feature image) and p(y) is the prior over the classes.

In the present approach, we use the discriminative FSMLR classifier [5] to
learn the class densities p(y;|z;). The likelihood is then given by p(z;|y;) =
p(yilzi)p(z;)/p(y;). Noting that p(z;) does not depend on the labeling y and
assuming p(y;) = 1/K, we have

p(xly) o [] plyilws), (1)

€S

where conditional independence is understood.
In the following sections, we briefly describe the FSMLR method yielding the
density p(y|x), the MLL prior p(y), and a-Expansion optimization algorithm.

2.1 Class Density Estimation Using Fast-SMLR Method

Given the training set D = {(z1,¥1),- .-, (Tn,¥Yn)}, the SMLR algorithm learns
a multi-class classifier based on the multinomial logistic regression. By incorpo-
rating a Laplacian prior, this method performs simultaneously feature selection,
to identify a small subset of the most relevant features, and learns the classifier
itself [6]. The goal is to assign to each site ¢ € S the probability of y; = k, for
k=1,...,K. In particular, if y; = [y™,...,y")]T is a 1-of-K encoding of the
K classes, and if w(®) is the feature weight vector associated with class k, then
the probability of yfk) =1 given z; is

_exp (w(k)Th(xi))
T e (0 A(r)

p (ygk) = 1|xi,w) ) (2)
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where w = [w®", .. w7 and h(z) = [hi(z),..., h(z)]T is a vector of
[ fixed functions of the input, often termed features. Possible choices for this
vector are h(z;) = [1,x;1,...,2;4)7, where x;; is the jth component of z;,
and h(z) = [1, K(z,21), ..., K(z,2,)]T, where K(-,-) is some symmetric kernel
function. The latter nonlinear mapping guarantees that the transformed samples
are more likely to be linearly separable. Nevertheless, in this paper, we consider
only the linear mapping, because it is much lighter from the computational
point of view (note that the linear and the nonlinear mapping have | = d+1 and
I = n+ 1, respectively, and, usually, n > d) yet it leads to competitive results.
The MAP estimate of w is

inrap = arg mas L(w) = arg max [l(u) + log p(w)] (3)
where I(w) is the log-likelihood function and p(w) ox exp(—A|w||;), where X is
a regularization parameter controlling the degree of sparseness of wy;ap. The
inclusion of the Laplacian prior does not allow the use of the classical IRLS
method. However, the bound optimization framework [8] supplies a tool that
makes it possible to perform exact MAP multinomial logistic regression, with
the same cost as the original IRLS algorithm for ML estimation (see [6] for
details).

In practice, the application of SMLR to large datasets is often prohibitive. A
solution for this problem consists in using the Block Gauss-Seidel method [9] to
solve the system used in the IRLS method. In each iteration, instead of solving
the complete set of weights, only blocks corresponding to the weights belonging
to the same class are solved [5], resulting in an improvement of the order of
O(K?), where K is the number of classes.

2.2 The MLL Markov-Gibs Prior

The MLL prior is a MRF which models the piecewise continuous nature of the
image elements, considering that adjacent pixels are likely to belong to the same
class. According to the Hammersly-Clifford theorem, the prior probability of an
MRF is a Gibb’s distribution [10]. Thus

ply) = 5 exp (— 3 vc<y>> , (4)

ceC

where Z is a normalizing constant and the sum is over the prior potentials V.(y)
for the set of cliques® C over the image, and

ay, if |c| =1 (single clique)
—Vi(y) =1 Be if |¢| > 1 and all sites in ¢ have the same label (5)
=B if |c| > 1 at least one site has a different label,

where . is a nonnegative constant.

3 A clique is a set of pixels that are neighbours of one another.
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Let ap = a and (3. = %ﬂ > 0. This choice gives no preference to any label
nor to any direction. Under this circumstances, (4) can be written as

1
_ — Bn(y) 6
ply) = e, (6)
where n(y) denotes the number of cliques having the same label. The conditional
probability is given by

E/f:(:l eﬂnz(k) ’

(7)

p(yi = klyn,) =

where n;(k) is the number of sites in the neighbourhood of site ¢, AV;, having the
label k.

2.3 Energy Minimization Via Graph Cuts

Using the FSMLR to learn p(x|y) and the MLL prior p(y), the MAP segmen-
tation is given by

y =arg m;tXp(XlY)p(Y)

= argmax Z log p(x:]y:) + Bn(y)

1€ES
= argmin }_ —logp(wily:) = 6 > 0(y: = v;)- (8)
€S i,jEC

Minimization (8) is a combinatorial optimization problem, where the right hand
side pairwise interaction term is equivalent to a metric? and thus a-Expansion
algorithm can be applied, yielding very good approximations to the MAP seg-
mentation [7].

3 Results

3.1 Experimental Setup

Simulated datasets were used to test the proposed method. Images of labels
were generated using a MLL distribution, with a 2nd order neighbourhood. The
shape of these label images depends on a parameter (3p) that controls the spatial
continuity (8o represents the § in (6)). This parameter takes values between
1 and 2, with increments of 0.2. Figure 1 shows four examples of these label
images with 4 classes, for 8y = 1, By = 1.4, By = 1.6 and [y = 2.0. Images with
4 and 10 classes were generated, for each value of (3y, resulting in a total of 12
different label images. The feature images were obtained by adding zero-mean
Gaussian independent noise with standard deviation o to a source matrix of

4 A metric is obtained by adding 8 to terms —B8(y; — y;)
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Fig. 1. Image labels with four classes generated by a MLL distribution with Gy = 1,
Bo =14, Bo = 1.6 and Bo = 2 (from left to right, respectively).

e | 1

mineral signatures. This source matrix is provided by a Matlab data file [11],
and was extracted from the USGS spectral library. Each signature is evaluated in
221 spectral bands, resulting in a dataset of dimension 120x120x221 (120x120
is the spatial size of the simulated images). Datasets with added noise standard
deviation of 0.01, 0.1 and 1 were generated. The variation of the parameters 3
and o was made to evaluate the response of the proposed method to the spatial
continuity of label images and to the amount of noise present in the feature data.
To evaluate the method performance depending on the size of the training sets,
tests were made using 10%, 30%, 50%, 70% and 90% of the training set.
Datasets with the characteristics described above were simulated 10 times
for each set of parameters, in order to better evaluate the segmentation results.

3.2 Results on Simulated Data

The ratio of the correct classified pixels over the total number of pixels, termed
overall accuracy (OA), was computed for each dataset. The regularization para-
meter is § = 1.5.

Graphics with the overall accuracies as function of 3y are presented in Figures
2(a) and 2(b), for 4 and 10 classes, respectively. Lines corresponds to the overall
accuracies for the MRF segmentation and dotted lines for the FSMLR classifi-
cation. For each method, results for different training set size are also presented.
The graphics are displayed for different values of feature noise: o = 0.01,0.1 and
1. In some plots, the overall accuracy of the FSMLR classifier (dotted lines) are
nearly 100%, and the lines are thus not visible in those plots.

In the case of K = 4 (Fig.2(a)) and for larger values of 5y and ¢ = 0.01 or 0.1,
the results from FSMLR classifier and MRF segmentation are similar. When the
noise increases, the MRF outperforms the FSMLR by over 5%. As expected for
values of low values of (y, the performance of the MRF segmentation is slightly
worse. However, our method clearly outperforms the FSMLR classification when
the noise is high (0 = 1). The different sizes used for the training set do not
seems to affect the results, except for the case of 0 = 1, where the use of a
smaller training set degrades the performance of the FSMLR.

In the case of K = 10 (Fig.2(b)), the results for ¢ = 0.01 and ¢ = 0.1
are very similar for both methods. For ¢ = 0.1, it is nevertheless possible to
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Fig. 2. Overall accuracies as function of spatial continuity (8o) of the label images.
Lines represent the MRF segmentation results and dotted lines the FSMLR classifica-
tion results.

see a small improvement of the accuracy achieved with MRF segmentation.
Once again, when higher noise in the feature image is considered (¢ = 1), MRF
segmentation clearly outperforms FSMLR classifier, by over 30%.

3.3 Results on Real Data

We applied the proposed MAP segmentation to an AVIRIS spectrometer image,
the Indian Pines 92 from Northern Indiana, taken on June 12, 1992 [12]. The
ground truth data image consists of 145 x 145 pixels of the AVIRIS image in
220 contiguous spectral bands. Experiments were carried out without 20 noisy
bands. Due to the insufficient number of training samples, seven classes were
discarded, leaving a dataset with 9 classes distributed by 9345 elements. This
dataset was randomly partitioned into a set of 4757 training samples and 4588
validation samples. The spatial distribution of the class labels is presented in
Figure 3. Each of the nine land cover classes is represented in one of nine grey
levels. The black areas are the areas with unknown classes.

The results presented in this section are the overall accuracy measured in the
independent (validation) dataset with 4588 samples. Experiments were evaluated
using 10%, 20% and the complete training set. As in the previous section, we
use a linear mapping h in the FSMLR. Parameter 3 was learned in a supervised
fashion leading to 8 = 1.5 and 8 = 4, when the complete and subsets of the
training set were used, respectively.

The results of overall accuracy from FSMLR classification and segmentation
with MRF are presented in Table 1. From these results we observe that, regard-
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Fig. 3. AVIRIS image used for testing. Left: original image band 50 (near infrared);
Centre: training areas; Right: validation areas.

Table 1. Overall accuracy of the proposed MRF segmentation with linear mapping h,
the SVM [1], the LDA, and the FSMLR, using 10%, 20% and 100% of the complete
training set. The number of bands selected by the FSMLR is shown in brackets.

10% 20% 100%
MRF (no. of bands) 88.40% (24) 89.56% (39) 95.51% (37)
SVM [1] 82.70% 86.70% 94.44%
FSMLR 75.57% 79.69% 85.77%
LDA 69.40% 78.40% 82.08%

less the size of the training set used to learn the density function, the MRF
segmentation with a linear mapping h outperforms all other methods compared.
The gains with respect to the FSMLR and the linear discriminant analysis (LDA)
are larger than 10%. Based on this results, we foresee that the proposed approach
using kernel functions i will achieve much better performance than that of SVD

[1].

4 Conclusions

A new segmentation technique for hyperspectral images was introduced. The
procedure uses a sparse method for the estimation of feature densities, and in-
cludes statistical spatial information using a MLL Markov-Gibs based prior. The
a-Expansion optimization tool is used to estimate the optimal segmentation.

Experiments were done using simulated datasets and an AVIRIS image.
When compared with the support vector machines (SVM), the sparse multino-
mial logistic regression (SMLR), and the linear discriminant analysis (LDA), the
proposed segmentation approach outperformed them all.

We believe that there is clearly room for improvement, namely by adopting
kernel functions in the multinomial regression and by implementing accurate
supervised learning of the model parameters.
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