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Abstract. We propose a vector representation approach to contour esti-
mation from noisy data. Images are modeled as random �elds composed
of a set of homogeneous regions; contours (boundaries of homogeneous
regions) are assumed to be vectors of a subspace of L2(T ) generated
by a given �nite basis; B-splines, Sinc-type, and Fourier bases are con-
sidered. The main contribution of the paper is a smoothing criterion,
interpretable as a priori contour probability, based on the Kullback dis-

tance between neighboring densities. The maximum a posteriori proba-

bility (MAP) estimation criterion is adopted. To solve the optimization
problem one is led to (joint estimation of contours, subspace dimension,
and model parameters), we propose a gradient projection type algorithm.
A set of experiments performed on simulated an real images illustrates
the potencial of the proposed methodology

1 Introduction

Boundary estimation/detection plays a key role in image analysis/understanding,
pattern recognition, computer vision, computer graphics, and computer-aided
animation. Although the approaches to contour estimation are numerous, most
of them share the same spirit: contours are obtained through the maximization
of objective functions composed of a prior term, that favors contours with some
attributes (e.g., continuity, smoothness, elasticity, and rigidity), and a data term,
that measures the adjustment to data.

As in many other �elds, di�erent aspects of contour estimation have been ad-
dressed either under the energy-minimization framework or under the Bayesian
framework.

1.1 Energy-Minimization Framework

Under the energy viewpoint, data and prior terms are interpretable as external
energy, which attracts the contour to the desired features, and internal energy
(e.g., due to contour tension and rigidity), respectively. This perspective was
introduced in the original work of Kass [16], where the concept of snake (or active
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contour, or deformable model) was put out: \A snake is an energy-minimizing
spline guided by internal constraint forces and inuenced by image forces that
pull it towards features such as lines and edges".

Since its introduction, the initial concept of active contour has been modi�ed
and improved in order to adapt it to di�erent image classes and to overcome
some of its drawbacks; namely, snake attraction by artifacts, snake degeneration,
convergence and stability of the deformation process, myopia (i.e., use of image
data only along the contour neighborhood), initialization, and model parameters
estimation. References [3], [5], [11], [28] are illustrative examples of approaches
to solve common problems with di�erent snake techniques;

1.2 Bayesian Framework

Under the Bayesian viewpoint, the objective function referred above and its
data and prior terms are interpretable as the posterior contour probability, the
likelihood function associated to the observation mechanism, and the contour
prior probability, respectively; since the sought contour maximizes the posterior
probability, it is interpretable as the maximum a posteriori (MAP) estimate.

In many imaging problems (e.g., medical imaging, synthetic aperture radar,
synthetic aperture sonar) the likelihood function can be derived from the knowl-
edge of the generation mechanism [7], [10], rather than from other heuristic and
common sense arguments. A statistical framework is therefore, in these cases,
the correct choice.

Relevant advantages of the Bayesian approach are the following:

(a) it allows to include prior knowledge about the parameters to be estimated
in a model-based fashion;

(b) it supplies an adequate framework for dealing with nuisance parameters (e.g.,
noise power, parameters distributions, blur coe�cients).

1.3 Prior and Contour Representation

Contour representation and prior term, say pc, are close issues that have received
great attention, regardless of the viewpoint. In snake-type approaches the term
pc is, typically, of the form

pc(c) =

Z
R(c(t)) dt; (1)

where R(c) measures the smoothness of the contour c. Usually R is the combi-
nation of norms of di�erent derivatives [16]. In the Bayesian approach, Markov
random �elds have been used as a way of modelling contour smoothness [7], [10],
[13].

The prior contour information can be imposed by appropriate selection of func-
tion pc and/or by introducing constraints on the set of admissible contours. For
example, functional R in (1) can be tailored in order to have continuous deriva-
tive contours. Another possibility is to �nd the solution in a constrained space;



one can assume, for example, that contours belong to a parametrized family;
i.e., c(t) = c(t;�), where � is de�ned in a given set �. This is the case of the
deformable parametrized models/templates (e.g., Fourier [11], spline [2], and
wavelet descriptors [4]).

1.4 Proposed Approach

Herein we address contour estimation under the Bayesian setting. We assume
that images are piece-wise homogeneous random �elds, and that contours are
the boundaries of open connected sets.

Likelihood function

The likelihood function is derived from the image generation mechanism. We
assume that pixels within each homogeneous region are independent samples of
a selected random variable. For example, coherent amplitude images (e.g., ultra-
sound and synthetic aperture radar and sonar images) are Rayleigh distributed
[26], X-ray images are very well approximated with a Gaussian distribution [19],
and nuclear and confocal microscopic images are Poisson distributed [22].

We take as hypothesis that the random variables associated with the image
pixels are independent, i.e., we assume the so-called conditional independence

property [14]. In an image system, this is a correct assumption if the resolution

volumes contributing to di�erent pixels are disjoint. This is approximately the
case in most acquisition systems, since there is no information gain in acquiring
extremely correlated neighboring data.

Prior

We assume that contours belong to a �nite-dimensional subspace spanned by a
given vector basis. Smoothness properties of contours are closely related to those
of basis vectors and to the subspace dimension K [6].

Roughly, the basis dimension determines the frequency content of contours.
What should then be a suitable subspace dimentionK? From the error projection
point of view, K should be as large as possible. However, as K increases the
subspace becomes less constrained and the estimated contours more noisy.

We tackle the estimation of the subspace dimension by assuming that con-
tours c(t;�;K) are random, with probability density function of the form

pc(c(t;�; k)) = pK(k): (2)

The density pK is chosen to be a decreasing function of K, thus favoring smooth
contours. The exact structure of pK is derived with basis on the estimate good-
ness.

Themaximum a posteriori probability (MAP) estimation criterion is adopted.
To solve the optimization problem one is led to, a gradient projection type algo-
rhitm is used.

Dealing with contours as subspace elements is very appealing, namely due to
the following:



(a) it is a parametrized approach: given a subspace basis, a natural parametriza-
tion is the set of basis coe�cients, which are normally much smaller than
the basis dimension;

(b) given a generic contour c 2 S, the closest contour of c in a subspace of S is
given by the projection of c onto this subspace.

Fourier descriptors [11], B-splines [2], and wavelets [4] have already been
proposed in the �eld of contour estimation. However, only work [11] explores the
vector space perspective; namely, it introduces a minimum description length

(MDL) [20] type principle for the determination the subspace dimension.
The MDL criterion, as applied in [11], is a smoothing criterion depending

only on the subspace dimension K. The smoothing criterion herein proposed,
besides depending on K, depends also on the Kullback distance between neigh-
boring densities. This modi�cation plays a key rule in assuring that estimated
space dimension is, to a great extent, independent of the neighboring densities
parameters.

The mais contribution of this work are the following:

(a) the study of the adequacy of subspaces generated by B-splines, Sinc-type,
and Fourier bases to the smoothness contour modeling;

(b) the introduction of a criterion for the subspace dimension estimation based
on the estimate robustness;

(c) the proposal of a complete adaptive scheme that iteratively estimates the
contour, the distribution parameters, and the subspace dimension.

The paper is organized as follows. Section 2 addresses aspects of contour rep-
resentation using B-splines, Sinc-type and Fourier, bases. Section 3 proposes two
algorithms for contour estimation: the �rst assumes that the subspace dimension
is know; the second estimates the subspace dimension jointly with the contours.
Finally Section 4 presents results obtained with real data.

2 Contour Representations and Subspaces

Contours are closed periodic curves c(t) = fx(t); y(t)g, such that c(t) = c(t+T ).
For notational convenience, assume that contours are de�ned in the complex
plane C, and, therefore, x(t) and y(t) are the real and imaginary parts of c,
respectively.

We assume that c 2 L
2(T ) (contour power over its period is �nite). Since

L
2(T ) is a separable Hilbert space [17], then there exist bases f'n(t)g, for

n = 0; 1; : : :, in L
2(T ), such that each vector c 2 L

2(T ) is given by the lin-
ear combination

c(t) =

1X
n=0

�n'n(t): (3)

For an orthoganal basis f'n(t)g, coe�cients �n are unique and given by

�n = (c; 'n) �
1

T

Z
T

0

c(t)'�
n
(t) dt: (4)



Equality (3) is to be understood as a limit in norm.
In the proposed approach, contours are chosen to be elements of the sub-

space SK � span ('0; : : : ; 'K�1) generated by the vector basis f'n(t)g, for
n = 0; 1; : : : ;K � 1. Each contour is then written as

c(t;�) =

K�1X
n=0

�n'n(t): (5)

where � � f�0; : : : ; �K�1g.
The contour smoothness constraint is enforced by adequate selection of the

basis f'ng and of the subspace dimension K. In this work we consider B-spline
[6], Sinc-type, and Fourier bases.

2.1 B-splines Basis

Spline functions are piecewise polynomials [6], which have been widely used
to represent contours and surfaces in computer graphics, computer vision, and
signal and image processing [8], [9], [25], [24]. Given the set of so-called knots

ft0 < t1 < : : : < tkg � <, a m-order spline is a piece-wise polynomial function
de�ned on [t0; tk], which are Cm�1 continuous on [tm; tk�m]. Given a knot se-
quence, the set of all splines which are Cm�1 continuous on [tm; tk�m] is a linear
space of dimension (k�n). The family of so-called B-splines functions, generated
by the Cox-deBoor recursion [6], is a basis for this linear space. For equispaced
knots, the B-spline are named uniform, and given by

Bm
i
(t) = Bm0 (t� iTs); (6)

where index i denotes the i-th basis element, Ts = ti+1 � ti, and

Bm0 (t) = B00(t) � B00(t) � : : :B00| {z }
m convolutions

; (7)

with

B00 =
�
1 ti � t < ti+1

0 otherwise:

Since we are interested in representing periodic curves, splines and their B-
spline basis must be modi�ed accordingly. For this purpose, de�ne f~tn; n 2 Zg,
with ~tn = t

nmod k, as the periodic extension of the knot sequence ft0 < t1 <

: : : < tkg [12]. The basis functions ~Bm
i
(t) are now periodic extensions of Bm

i
(t),

with period T = tk � t0, given by

~Bm
i
(t) =

1X
n=�1

Bm
i+nT (t): (8)

When using the spline representation, we assume that contours are elements
of the subspace SK � span ( ~Bm0 ; ~Bm1 ; : : : ; ~BmK�1) and, therefore, Cm�1 continu-
ous; the degree of smoothness is enforced by the subspace dimension K: as the
subspace dimension increases, contours becomes less constrained.



B-splines exhibit local control: when representing curves as linear B-spline
combinations, modifying a coe�cient causes only a small part of the curve to
change. This leads to simple an e�ective algorithms for computing displacements
of the active contour under the inuence of image forces.

In all examples herein presented we use m = 3. The spline contours are
therefore C2 continuous. This a common choice in vision and computer graphics
[9]. Nevertheless, the concepts to be presented apply to any m-order spline.

2.2 Sinc-type Basis

A natural way to impose smoothness is to constrain the curves to be F -bandlimited
(i.e., having maximum frequency F ). The set of F -bandlimited curves of �nite
energy is a linear space; the sequence fSn(t)g = fS0(t�nTs)g, where Ts = 1=2F
and

S0(t) =
p
2F

sin 2�Ft

2�F t
�
p
2F sinc (2Ft); (9)

is an orthonormal space basis. The projection of a curve c(t) on Sn(t) is exactly
c(nTs) (see, e.g., [27]).

In order to adapt basis elements Sn(t) to periodic curves, one should have
jS0(t)j ' 0 for jtj � T=2. Since S0(t) goes to zero as jtj�1, for jtj ! 1, this
might not be ful�lled, if K = T=Ts is too small. To overcome this di�culty, we
replace the basis function (9) with

S0(t) =
p
2F

sin 2�F t

2�Ft

cos(2�F t�)

1� (4�F t)2
: (10)

Basis (10) is the impulse response of a raised cosine �lter with a roll-o� factor
� [15], which goes to zero as jtj�3, for jtj ! 1. Seting, for example, � = 0:4, we
can take, for most practical purposes, S0(t) ' 0 for jtj > 3Ts.

The basis fSn(t)g = fS0(t�nTs=(1+�))g, with S0(t) given by (10) generates
the space of F (1 + �)-bandlimited functions. Therefore the smoothness of space
elements is enforced by selecting F . Since the sampling interval Ts=(1+ �) must
be equal to T=K (i.e., an integer number of bases over T ), the relation between
F and K is

F =
1

2(1 + �)

K

T
: (11)

The periodic extension ~Sm0 (t) of Sm0 (t), with period T , is given by

~Sm
i
(t) =

1X
n=�1

Sm
i+nT (t): (12)

When using the bandlimited representation, we assume that contours are el-
ements of the subspace SK = span ( ~S0; ~Sm1 ; : : : ; ~SK�1); the degree of smoothness
is enforced by choosing K, which determines the maximum content frequency of
contours according to (11).

As the B-spline basis, also the Sinc-type function (11), exhibits local control:

the energy of ~Si(t) is concentrated at t = iT s.



2.3 Fourier Basis

The Fourier orthonornal basis is, probably, the representation most often used
for periodic functions. In this representation the basis elements are given by

Fn(t) = e
j
2�
T
nt

n 2 Z : (13)

With the Fourier representation, the most natural way of imposing smooth-
ness is to restrict L2(T ) to the �nite subspace SK generated by fFn(t)g, for
n = �K + 1; : : : ; 0; : : : ;K � 1. The generated contours are then given by

c(t) =

K�1X
n=�K+1

�ne
j
2�
T
nt
: (14)

Subspace SK is obtained by �ltering L2(T ) elements with an ideal low-pass
�lter of cut frequency K=T . As in the Sync-type basis, the smoothness degree
is enforced by selecting the maximum contour content frequency. Contrarily to
the B-spline and Sync-type representations, the Fourier basis does not exhibit
local control.

2.4 Contour Sampling and Fitting

Due to the discrete nature of digital images, one frequently faces the problem of
�nding, in a given subspace SK , the closest element of a set of discrete points.
In other words, given c � fc(t0); c(t1); : : : ; c(tN�1)g, �nd ĉ 2 CN , such that

ĉ = arg min
w(w); w2SK

kc�wk; (15)

where w � fw(t0); w(t1); : : : ; w(tN�1)g.
In the �tting problem at hand, the set ft0; t1; : : : ; tN�1g and the period T

are not known. Herein we take T = N and ti = i, for i = 0; 1 : : : ; N � 1, which
is termed the uniform assignment strategy.

De�ne matrix B such that

[B]ij � ~'j(ti); i = 0; 1; : : : ; N � 1; j = 0; 1; : : : ;K � 1; (16)

where ~'j is one of the basis functions (8), (12), or (13).
In terms of matrix B, minimization (15) is written as

ĉ = arg min
w2R(B)

kc�wk; (17)

where R(B) stands for the span generated by the columns of B (notation Bk,
when used, stresses that k = dim(span(Bk)). Using the Euclidian norm, and
assuming that K � N � 1, the projection (17) is given by

ĉ = BB#c; (18)

with
B# � (BHB)�1BH (19)



being the pseudoinverse matrix of B [21]. Matrix B# also solves the following
problem:

� = arg min
�2CK

kc�B�k (20)

= B#c; (21)

being, therefore, ĉ also given by c# = B�.
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Fig. 1. (a) Projection of a noisy contour onto the subspace generated by Fourier basis.
Stars represent the discrete contour to be projected, whereas doted and solid lines
represent the projection onto R(B10) and R(B30), respectively. (b) Representation
error for B-spline, Sinc-type, and Fourier bases.

Fig. 1(a) shows the projection of a hand traced contour contaminated with
white noise, on the subspace generated by the Fourier basis. A complex zero-
mean Gaussian random variable with standard deviation of 0:1 was added to
each coordinate; stars represent the discrete contour to be projected; doted and
solid lines represent the projections onto R(B10) and R(B30), respectively. Pro-
jection onto R(B10) is clearly under�tted, while projection on R(B30) is nearly
optimum. This can be perceived from the error projection plotted on Fig. 1(b).
The minimum error occurs, for the three representations, roughly atK = 30. For
large values of K, the representation error increases, as the respective subspaces
are now unable to smooth out the high frequency components of noise.

The similarity between the three representations, at least for the example
presented, is evident. However, we would like to call attention to the following
point: the representation error on the subspaces generated by Sinc-type and
Fourier bases decreases until it reaches a minimum. This is not the case with
the B-splines basis: the representation error, in this latter case, may increase,
although slightly, with K. This behavior results from the non-nested structure of
subspaces generated by the B-splines, whereas the subspaces generated by Sinc-
type and Fourier bases are nested: the linear space of F -banlimited functions
contains all subspaces of W -bandlimited functions with W � F .

Subspaces having nested structure might be a desirable feature when the
space dimension is unknown and it should be somehow estimated.



3 Image Generation Model

Let c = fc0; : : : ; cN�1g be the boundary of a connected region R1 of the plane
and R2 the set of points not in R1. Denote xi as the image gray-level observed at
i-th pixel, x = fxig as the set of image gray-levels, px as the gray-level density,
and  

x
= f 1; 2g as the density parameters (i.e., px(xi) = px(xij 1)) for

i 2 R1 and px(xi) = px(xij 2)) for i 2 R2). Since we take as hypothesis that the
image random variables, conditioned to the contour, are independent, it follows
that

p
xjc(xjc; x

) =

 Y
i2R1

px(xij 1)

! Y
i2R2

px(xij 2)

!
: (22)

According to the proposed approach, contour c belongs to the subspace R(BK),
being therefore given by c = BK�, for � 2 CK . Subscript K will occasionally
be omitted.

3.1 Bayesian Approach to Contour Estimation

In accordance with the rationale already exposed, we assume that contours
c(K) = c(K;�) are random vectors with probability density function given
by

pc(c(k)) = pK(kj c
); (23)

where  
c
denotes a parameter vector of pK . Hence, the MAP estimate of the

pair (c;K) is

(ĉ; K̂) = arg max
k;c2R(Bk)

p
xjc(xjc; x

)pK(kj c
): (24)

3.2 Known Space Dimension

Consider now that K is know. The MAP estimate (24) is, under this condition,
simply the maximum likelihood (ML) contour estimate given by

ĉ = arg max
c2R(B

k
)
L
xjc(xjc; x

); (25)

where L
xjc(xjc; x

) � log p
xjc(xjc; x

) is the loglikelihood function.
To compute ĉ, we implement an ascent type iterative algorithm that, in the

t-th iteration, implements the following steps:

1. determine, in the unconstraint space CN , a contour displacement �c(t) that
increases L

xjc(xjc; x
);

2. project c(t) + �c(t) onto the constrained subspace R(B), thus obtaining
c(t+1).

The displacement�c(t) is computed along orthogonal lines, as schematized in
Fig. 2. Underlying this choice is the fact that the gradient of L

cjc(xjc), computed
with respect to c, is orthogonal to the tangent vector d c=d t [23].
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Fig. 2. Contour displacements computed along orthogonal lines. Crosses show the max-
imum of the loglikelihood function, along each orthogonal line. The doted line denotes
the initial contour.

To prevent contours to be self intercepting, the orthogonal lines should be
not too large. Work [23] proposes a technique for selecting long range orthogonal
curves that do not intercept each other. Herein, however, we do not follow the
mentioned technique, since it is not suited to our setting.

When the vector  
x
is not known, we determine ML estimate of vector

(c; 
x
) according to

(ĉ;  ̂
x
) = arg max

c2R(B); 
x

L
xjc(xjc; x

): (26)

To compute (ĉ;  ̂
x
), given by (26), the following iterative scheme is imple-

mented:

Initialization: set c(0),  (0)
x
, and �

DO

step 1: �c(t) = arg max
u2O(c(t))

L
xjc(xjc(t) + u; 

(t)
x
)

where O(c) � CN is the set of points de�ning
orthogonal displacements to the contour c
step 2: c(t+1) = c(t) +B�c(t)

step 3:  
(t+1)
x

= argmax
 
x

L
xjc(xjc(t+1); x

)

step 4: �L = L
(t+1)

xjc
� L

(t)

xjc

While j�Lj � �.

Vector  (t+1)
x

can be written in terms of regions R1 and R2 as

 
(t)
1 = argmax

 
1

X
i2R

(t)

1

Lxjc(xij 1) (27)
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Fig. 3. Sequence of contour estimates produced by the proposed technique. The inner
square represents the initial contour.

 
(t)
2 = argmax

 
1

X
i2R

(t)

2

Lxjc(xij 2): (28)

Expressions (27) and (28) depend on the particular structure of px. For
example, for Gaussian densities with mean � and variance �

2, estimates of
 
i
� f�i; �2i g, for i = 1; 2, are given by the sample mean and sample variance

within the respective region.
Fig. 2, parts (a) and (b), displays estimates bc(2) and bc(5), respectively, of a

Gaussian image with parameters f�1 = 60; �1 = 15g and f�2 = 160; �2 = 30g.
The boundary is obtained from a hand traced contour followed by projection
onto R(B7).

Fig. 3 shows a sequence of contours estimates produced by the proposed al-
gorithm. The long range nature of the external forces pulls the contour outwards
as it was under an expansion force.

Fig. 4, part (a) and (b), displays two �nal estimates of Gaussian images with
parameters  (a) = f(�1 = 80; �1 = 15); (�2 = 160; �1 = 30)g and  (b) = f(�1 =
100; �1 = 15); (�2 = 100; �1 = 30)g. The estimated contours are nearly the true
ones, even for image (b), which exhibits no contrast at all (i.e., �1 = �2).

3.3 Unknown Space Dimension

Consider now that the space dimension is unknown and, consequently, it is also
to be estimated jointly with the contour. Noting that c = c(K), and according
to expression (24), the MAP estimate of the space dimension is given by

K̂ = argmax
k

�
LK(kj c

) + arg max
c2R(BK)

L
xjc(xjc; x

)

�
; (29)

where LK(kj c
) � log pK(kj c

). The estimated contour is the ML solution

studied in the previous section, with the space dimension set to K̂.
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Fig. 4. Illustration of performance at very low contract: gray-levels in image (b) have
the same mean value in both regions; in spite of this, the estimated contour is identical
to the one estimated from image (a), which has high contrast.
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Fig. 5. Behavior of the loglikelihood function for two di�erent vector parameters.

As in any Bayesian approach, the prior term must be speci�ed. The �rst
thought that could come to mind is to assume that pK(kj c

) is uniformly dis-
tributed for Kmin � K � Kmax; the estimate of (c;K) would therefore be inter-
pretable as a ML estimate. Unfortunately, this attempt would fail. The reason is
the following: due the nested nature of parameter spaces (R(BK) � R(BK+1)),

the loglikelihood function L
xjc(xjĉ(K̂); 

x
) will be a monotonically (or at least

nondecreasing) function of K, so it will reach its maximum at Kmax.

The problem of choosing the order of competing models of di�erent dimen-
sions is termed a model order selection problem. Among the approaches that
have been suggested to this problem, the Akaike information criterion (AIC)
[1], and the minimum description length (MDL) [20] have gained popularity.
Work [11], also on contour estimation, applies the MDL principle to derive the
term LK(kj c

) of (29).
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Fig. 6. Loglikelihood and prior behavior for the images shown in Fig. 7.

In this work we propose the prior

pK(kj c
) =

1

Z
e
��k

; � > 0; (30)

where Z is a normalizing constant, and � is given by

� =
nc

4
�D( 1; 2); (31)

where nc is the number of contour pixels, � ' 0:1, and

D( 1; 2) � D( 1k 2) +D( 2k 1); (32)

is the symmetric Kullback distance [18] and D( 1k 2) the Kullback distance [18]
between densities px(xij 2) and px(xij 2) given by

D( 1k 2) = E 1
log

px(xij 1)
px(xij 2)

: (33)

The derivation of prior (30) is out of the scope of this paper. We present,
however, an informal justi�cation. Aiming at this purpose, de�ne

Lcjx(kjx; ) = LK(kj c
) + arg max

c2R(BK )
L
xjc(xjc; x

): (34)

De�ne also the sets A12 and A21 containing pixel indexes wrongly classi�ed: in
the �rst case region 1 has been detected, whereas in the second case region 2
has been detected. Assume that the true dimension space is k0 and introduce

�Lcjx(k) � Lcjx(kjx; )� Lcjx(k0jx; ): (35)



The di�erence �Lcjx(k) can be written in terms of A12(k) and A21(k) as

�Lcjx(k) =
X

i2A12(k)

log
px(xij 1)
px(xij 2)

+

X
i2A21(k)

log
px(xij 2)
px(xij 1)

+�LK(k); (36)

where

�LK(k) � LK(kj c
)� LK(k0j c

): (37)

A lengthy manipulation of (36), and a few weak assumptions, lead to

Ef�Lcjx(k)kk0g = �n12(k)D( 1; 2) +�LK(k); (38)

where nij(k) � #Aij(k) is the number of elements of Aij .

The interpretation of (38) is clear: term n12(k)D( 1; 2) tends to zero as
the the number of missclassi�ed pixels tends to zero. The vanishing rate is pro-
portional to the symmetric Kullback distance D( 1; 2).

Fig. 5 schematizes the behavior of the loglikelihood function L
xjc(xjc; x

)

and of the prior term LK(kj c
), for two vector parameters  0

x
and  00

x
. When

nij(k) approaches zero, Lxjc(xjc; x
) approaches a constant. By adding an ap-

propriate prior term LK(k; 
0

c
) to the loglikelihood function, a maximum is

obtained at k = k0. For the second vector parameter  00
x
, the increasing rate of

L
xjc(xjc; 00x) is slower than Lxjc(xjc; 0x). If the prior term LK(k; 

0

c
) was used,

a maximum would be obtained for k < K0.
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Fig. 7. Magnetic resonance images: (a) heart and (b,c) brain.



Fig. 6 displays the loglikelihood and prior behavior for images shown in Fig. 4:
the left column plots data from part (b), while the right column plots data from
part (a). For both cases the maximum of L

xjc+Lk is obtained for k = 7. However,

the loglikelihood function L
xjc(xjc; 00x) grows much slower than L

xjc(xjc; 0x),
approximately by a factor of 12, determined in the interval k 2 f2; 3; 4; 5g. For
the maximizer k to be the same, the prior term LK(k; 

00

c
) must grow slower

than LK(k; 
0

c
) by the same factor. This is, with great approximation, what

happens.
The symmetric Kullback distance, for Gaussian distributions, is given by

D( 1;  2) =
(�21 � �

2
1)
2 + (�21 + �

2
1)(�1 � �2)

2

2�21�
2
2

: (39)

Noting that the parameters associated with images displayed in Fig. 6 are  00
x
=

 
x
(a) = f(�1 = 80; �1 = 15); (�2 = 160; �2 = 30)g and  0

x
=  

x
(b) = f(�1 =

100; �1 = 15); (�2 = 100; �2 = 30)g, it follows that D( 001 ; 
00

2)=D( 01; 
0

2) ' 10,
in accordance with the experimental results.

Fig. 7 shows estimated contours over real magnetic resonance images: (a)
heart and (b,c) brain. The Gaussian model and the Fourier basis was used. The
estimated space dimensions are 4, 6, and 7, which are in agreement with the
contours frequency content.

We stress the methodology robustness with respect to image nonhomogeneities
and poor contour initializations.

4 Concluding Remarks

This paper introduced a novel adaptive methodology to contour estimation from
noisy images. The approach was Bayesian: images were modeled as as a set of
homogeneous regions, in a statistical sense. Contours were assumed to be vectors
of a subspace generated by a �nite basis: B-splines, Fourier, and Sinc-type bases
were studied. It was concluded that Fourier, and Sinc-type bases were better
suited to the proposed technique due to its nesting property.

A relevant contribution of the paper was on the contour prior design. By
parametrizing the a priori probability density function with the symmetric Kull-
back distance between densities of each homogeneous region, the proposed algo-
rithm produces meaningful estimates.

The proposed scheme is completely adaptive; all model parameters are esti-
mated jointly with the contour. Results obtained with simulated and real data
show the adequacy of the proposed approach.
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