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Abstract

This thesis addresses total variation (TV) image restoration and blind image deconvo-

lution. Classical image processing problems, such as deblurring, call for some kind of

regularization. Total variation is among the state-of-the-art regularizers, as it provides a

good balance between the ability to describe piecewise smooth images and the complex-

ity of the resulting algorithms. In this thesis, we propose aminimization algorithm for

TV-based image restoration that belongs to the majorization-minimization class (MM).

The proposed algorithm is similar to the known iterative re-weighted least squares (IRSL)

approach, although it constitutes an original interpretat ion of this method from the MM

perspective.

The problem of choosing the regularization parameter is also addressed in this thesis. A

new Bayesian method is introduced to automatically estimate the parameter, by assigning

it a non-informative prior, followed by integration based on an approximation of the

associated partition function. The proposed minimization problem, also addressed using

the MM framework, results on an update rule for the regularization parameter, and can

be used with any TV-based image deblurring algorithm.

Blind image deconvolution is the third topic of this thesis. We consider the case of

linear motion blurs. We propose a new discretization of the motion blur kernel, and a

new estimation algorithm to recover the motion blur parameters (orientation and length)

from blurred natural images, based on the Radon transform ofthe spectrum of the blurred

images.

Keywords: Total variation image restoration; inverse problems; convex optimization;

adaptive total variation regularization; blind image deconvolution; linear motion blur.
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Resumo

A presente tese aborda o problema da restaura�c~ao de imagemusando regulariza�c~ao por

varia�c~ao total ( total variation { TV), e restaura�c~ao cega de imagens. �E sabido que os

problemas de restaura�c~ao necessitam de algum tipo de regulariza�c~ao. A varia�c~ao total

encontra-se entre o estado da arte em termos de regularizadores, por permitir descrever

imagens constantes por tro�cos e pela moderada complexidade dos algoritmos resultantes.

Apresenta-se nesta tese um algoritmo para minimiza�c~ao dafun�c~ao objectivo resultante da

restaura�c~ao de imagem usando o TV, o qual pertence �a classe denominada majoriza�c~ao-

minimiza�c~ao (MM). O algoritmo proposto �e semelhante �a c onhecida abordagem iterativa

de m��nimos quadrados pesada (iterative re-weighted least squares{ IRLS), embora consti-

tua uma interpreta�c~ao original desse algoritmo na perspectiva MM.

O problema da escolha do parâmetro de regulariza�c~ao �e tamb�em abordado nesta tese.

Uma nova abordagem Bayesiana �e proposta para estima�c~ao autom�atica deste parâmetro,

baseada numprior conjugado seguido da sua integra�c~ao usado na aproxima�c~ao da fun�c~ao

de parti�c~ao associada. O problema de minimiza�c~ao resultante �e resolvido tamb�em usando a

abordagem MM, resultando numa regra para a actualiza�c~ao do parâmetro de regulariza�c~ao.

Esta regra pode ser usada com qualquer outro algoritmo de restaura�c~ao de imagem baseado

em TV.

A restaura�c~ao cega de imagens �e o terceiro tema central desta tese. Considera-se o

caso de desfocagem por movimento. Prop~oe-se uma discretiza�c~ao para este tipo dekernel

e um novo algoritmo para estima�c~ao dos parâmetros de movimento para posteriormente

restaurar imagens naturais desfocadas. A abordagem seguida baseou-se na transformada

de Radon do espectro de imagens desfocadas por movimento.

Palavras chave: Restaura�c~ao de imagem baseada na varia�c~ao total; problemas inversos;

optimiza�c~ao convexa; regulariza�c~ao adaptativa baseada na varia�c~ao total; desconvolu�c~ao

cega de imagens; desfocagem por movimento linear.
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Chapter 1

Introduction

1.1 Motivation

The main topic of this thesis is image restoration, a broad and active research �eld which

and can be divided into several di�erent topics. In this thesis, we address two related

topics: adaptive total variation image deconvolution and blind image deconvolution.

Images are complex signals. More than just a simple 2D signal, their complexity usually

comes from the spatial relation that exists among pixels. This apparently harmless signal,

that we easily interpret on a daily basis, presents vast challenging problems to researchers,

usually very di�cult to handle from a mathematical point of v iew. Formally, an image is

a representation or reproduction, of something. Mathematically speaking, an image is a

function usually de�ned on a discrete domain.

Some of the most classical, but still challenging, image restoration problems are de-

noising and deblurring. These classical problems have mathematical formulations. Image

deblurring, for example, aims at recovering an underlying image from a noisy blurred

version of it. This is usually called an inverse problem and is often ill-posed and/or ill-

conditioned. To obtain good and meaningful estimates, somerather strong assumptions

have to be made on the latent image. These assumptions can be formulated in a Bayesian

framework in the form of a prior. Image restoration is often formulated as a minimization

problem where the objective function involves two competing terms: a data mis�t term,

and a prior (or regularizer) function.

One of the major di�culties (and an active research topic) is the speci�cation of a good

regularizer, which many di�erent approaches having been proposed. However, most of the

1
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classical approaches have di�culty in preserving discontinuities, i.e., sharp edges. More

recently, to overcome this di�culty, the total variation (T V) regularization criterion has

been proposed [96]. Arguably, the success of TV regularization relies on a good balance

between the ability to describe piecewise smooth images andthe complexity of the resulting

optimization algorithms. In fact, the TV regularizer favor s images of bounded variation,

without penalizing possible discontinuities, but leads to a convex optimization problem,

albeit a non-smooth one.

Total variation regularization is among the state-of-the-art methods for image deconvo-

lution. Although originally formulated in the continuous d omain [96], several approaches

have extended it to the discrete case [15, 29, 27, 28, 47, 106,108]. However, its use poses

di�culties, mainly due to its non-di�erentiability, preve nting the direct use of classical

gradient based optimization techniques. This challenge has attracted the scienti�c com-

munity and is still the subject of active research.

In this thesis, we propose a fast method to solve the TV-basedimage restoration

problem. The proposed method belongs to the class of majorization-minimization (MM)

algorithms [56]. The algorithm is similar to the known iteratively re-weighted least squares

(IRLS) approach, also known aslagged di�usivity . Although the algorithms are similar,

the derivation was originally obtained from the MM perspective and thus constitutes a

new interpretation of this method. The MM framework also allowed the improvement of

the robustness of this method in the special case of TV-basedimage denoising.

Image restoration problems are often formulated as a minimization problem where

the objective function includes two competing terms, as mentioned above. The tradeo�

between these two terms is set by a so-called regularizationparameter. The value of this

parameter controls the degree of regularization in the restoration process. In the TV

case, if a too small value is used, we end up with a noisy estimate, whereas a two large

value results in an over-smoothed restoration. The correctparameter choice is one of the

subjects of regularization theory. This is also an active research topic; yet, no general

precise method has been proposed to overcome this di�culty.

In the literature, there are several approaches to deal withthe speci�cation of a \good"

regularization parameter, usually inherited from the statistics community. However, their

extension to TV regularization are barred in the huge dimensional space of the result-

ing methods. In this thesis, we propose a new algorithm to automatically estimate the

regularization parameter for TV-based image deconvolution. The proposed approach fol-
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lows the Bayesian framework by assigning anon-informative prior to the regularization

parameter, followed by integration based on an approximation of the associated partition

function. The resulting minimization problem, also addressed using the MM framework,

proposes an update rule for the regularization parameter, that can further be used with

any TV-based image deblurring algorithm.

The last part of this thesis addresses another di�cult probl em: blind image deconvo-

lution. In this problem the goal is to recover a noisy blurred image without full knowledge

of the blurring function and the latent image. The problem is now ill-posed both with re-

spect to the image and to the kernel. Mathematically speaking, a convolution corresponds

to a multiplication on the Fourier domain; blind image restoration thus amounts to re-

covering an image from a product: a clearly hopeless goal, inthe absence of some rather

strong assumptions or prior knowledge about the underlyingimage and/or blur. Blind

image deconvolution has received a lot of attention from thescienti�c community, partly

because of some impressive results obtained from real blurred images. These methods rely

on some strong assumptions on the image, supported on a priori statistical information.

It is common, also, to make assumptions on the kind of blur. Inthis thesis, we consider

the case of linear motion blur. This blur usually appears when an object or the entire

image moves with constant velocity. It is characterized by two parameters: a length and

an angle. In this thesis we propose a discretization of the motion blur kernel, and a new

estimation algorithm to recover the motion parameters from natural blurred images. The

method works without any assumption on the image other than that it is a natural image.

The proposed method is supported on the existence of a pattern of zeros in the spec-

trum of the observed image, that results from the motion blur spectrum. Together with an

invariance property of natural image statistics, this allows us to estimate the blur parame-

ters with the help of the Radon transform. The resulting algorithm is a robust estimation

technique that allows the recovery of natural color images degraded by linear motion blur

and acquired with common handheld cameras.

1.2 Contributions

The contributions presented in this thesis address TV-based image restoration and blind

deconvolution problems. In terms of TV-based image restoration, the thesis proposes

a new fast minimization algorithm that is supported on the majorization-minimization



4 CHAPTER 1. INTRODUCTION

framework.

The next contribution is a new algorithm to automatically es timate the regularization

parameter in the context of TV-based image deconvolution. The proposed method follows

a Bayesian approach. Anon-informative prior is used and the subsequent integration is

done by approximating the partition function. The MM framew ork used to minimize the

resulting functional leads to an update rule for the regularization parameter, that can be

used with any fast algorithm for TV-based image deconvolution.

The blind image deconvolution problem is also addressed in this thesis, with original

contributions. The particular case of linear motion blur is studied. A new discretization

of this kind of blur is proposed which allows subpixel resolution. To estimate the blur pa-

rameters, a modi�ed version of the Radon transform is introduced. The obtained method

can be applied without any parameter adjustment on motion blurred natural color images.

The contributions can all be summarized as follows:

� a reinterpretation of the lagged di�usivity algorithm for TV-based image restoration

from the majorization-minimization perspective;

� a new update rule for the regularization parameter for classical TV-based image

deconvolution;

� a new discretization of linear motion blur kernels, that allows subpixel resolution;

� a new blind algorithm to restore natural color images, degraded with linear motion

blurs.

1.3 Publications and Awards

The work done in this thesis was the subject to the following publication, in national and

international conferences:

� J. Oliveira, J. Bioucas-Dias, M. Figueiredo, \Adaptive Tot al Variation Image De-

convolution: Application to Magnetic Ressonance Imaging", 7th Conference on

Telecommunications, Santa Maria da Feira, Portugal, May 2009.

� J. Oliveira, M. Figueiredo, J. Bioucas-Dias,\Blind estimation of motion blur pa-

rameters for image deconvolution", Iberian Conference on Pattern Recognition and

Image Analysis, IbPRIA'2007, Girona, Spain, 2007.
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� M. Figueiredo, J. Bioucas-Dias, J. Oliveira, R. Nowak, \On total-variation denois-

ing: A new majorization-minimization algorithm and an experimental comparison

with wavalet denoising", IEEE International Conference on Image Processing -

ICIP'2006 , Atlanta, GA, USA, 2006.

� J. Bioucas-Dias, M. Figueiredo, J. Oliveira, \Adaptive Bay esian/total-variation im-

age deconvolution: A majorization-minimization approach", European Signal Pro-

cessing Conference - EUSIPCO'2006, Florence, Italy, 2006.

� J. Bioucas-Dias, M. Figueiredo, J. Oliveira, "Total-varia tion based image deconvo-

lution: A majorization-minimization approach", IEEE International Conference on

Acoustics, Speech, and Signal Processing - ICASSP'2006, Toulouse, France, 2006.

The work described in this thesis resulted in the following journal publication:

� J. Oliveira, J. Bioucas-Dias, M. Figueiredo, \Adaptive tot al variation image deblur-

ring: a majorization-minimization approach", Signal Processing, vol. 89, issue 9, pp.

2479-2493, 2009.

A journal paper is currently in preparation:

� J. Oliveira, M. Figueiredo, J. Bioucas-Dias,\Blind restor ation of natural color im-

ages, degraded by linear motion blur",in preparation.

The article \Blind estimation of motion blur parameters for image deconvolutio" re-

ceived the best paper award in the Iberian Conference on Pattern Recognition and Image

Analysis, IbPRIA'2007, Girona, Spain.

1.4 Thesis Outline

This thesis is divided in 6 chapters as depicted in Figure 1.1. The �rst chapter (this

chapter) introduces the problems addressed, the goals, andthe thesis outline. Chapter 2

is a brief review of image restoration methodologies.

Chapter 3 addresses the TV-based image restoration problem, for which we derive

a fast majorization-minimization algorithm. The comparison with the lagged di�usivity

algorithm is also made. The singularity issues are discussed and side stepped for the

particular case of image denoising.
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Chapter 1

Chapter 2

Chapter 3 Chapter 4 Chapter 5

Chapter 6

� Motivation

� Thesis outline

� Review of image
restoration methods

� MM interpretation of
TV image restoration

� New Bayesian update
rule for TV-based im-
age deconvolution

� New blind restora-
tion algorithm for
natural color images

� Conclusions

� Future work

Figure 1.1: Thesis outline.
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In Chapter 4, we propose a new algorithm to automatically adjust the regularization

parameter for TV-based image deconvolution. A Bayesian approach is followed by as-

signing a non-informative prior; the parameter is then integrated by approximating th e

resulting partition function. The MM framework is used again to derive the algorithm.

Chapter 5 addresses the blind image deconvolution problem.A new discrete formu-

lation to the linear motion blur kernel is proposed. Parameter estimation is done by

introducing a modi�ed Radon transform. The space limited nature of acquired images

motivates the introduction of a new sampling window to overcome aliasing e�ects. The

proposed algorithm is applied on both synthetic examples and natural color blurred im-

ages.

Chapter 6 concludes the thesis and summarizes the main contributions. Future research

directions are also presented in Chapter 6.





Chapter 2

Image Restoration

2.1 Introduction

Among all the human senses, vision is arguably the most important one. Since ancient

times, images were used to record a moment, to transmit an idea, a thought, or even an

emotion. Human beings have been using images for thousands of years. The power of an

image is well stated by the common saying \A picture is worth a thousand words".

The importance of images in the modern digital era is proportional to its broad range of

applications. From photography and television, passing byremote sensing, radar, sonar or

acoustic imaging, to modern medical imaging, we cannot livewithout all these applications.

In fact they have now a huge impact in economy and welfare.

According to [32], imaging sciences consist of three relatively independent components:

image acquisition, image processing, and image interpretation. Although the focus of this

thesis relies on image processing, we brie
y give an overview of these three components.

Image acquisition consists of all the physical mechanisms involved in the generation

of image, as well as the mathematical models and algorithms employed in these systems.

Human vision is surely the most important image acquisition system known. The image

formation system includes the cornea, pupil, iris and lens,as well as the cones and rods,

responsible for capturing colors and gray value intensities. The average human vision

system captures light in wavelengths between 400 and 700nm.

In the radio frequency range, we have di�erent types of systems. Short radio waves

pulses are sent by antennas and the echoes re
ected by objects are recorded. The waiting

time between sending and receiving, as well as the strength of the echoes, are used to

9
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compute ranges, or local con�guration and material composition of the targets. Stan-

dard radar and synthetic aperture radar (SAR) [32] are employed in remote sensing, with

applications like cartography, weather forecast, oil spill detection, among many others.

Waves in the X-ray range, i.e., with wavelengths in the order of a nanometer or picome-

ter, are so energetic that they can penetrate most materials, including biological tissues.

Many applications arose in the medical area, as noninvasivediagnosis tools. Computed

axial tomography, often referred to as CAT or CT scan, improved conventional X-ray

imaging, allowing to \see" a variety of soft tissues, bones,blood vessels and other struc-

tures.

A more sophisticated system, based on the physical theory ofnuclear magnetic res-

onance (NMR), allowed new important developments, such as functional magnetic reso-

nance imaging (fMRI) for brain mapping, or di�usion tensor i maging (DTI) for studying

neural �bers.

The world of image processing can be depicted as follows:

f H
g

T bf

The input to the image processing systemT is g, usually an image, that resulted from

an observation of an unknown imagef via an operator H . The operator T, linear or non

linear, takes an input g and generates an estimate off . Operator H is usually called

the forward or direct operator. The problem of designingT is usually called an inverse

problem. This operator is usually designed for a speci�c application or task. The classical

problems we encounter in image processing are image denoising, image debluring, image

inpainting, image interpolation, and image segmentation. Most of these problems are

ill-posed inverse problems[2].

Finally, image interpretation is the ultimate goal in imagi ng sciences. The ability to

interpret an image, by being able to monitor a scene, identify a target in a video and

estimate its position and velocity, identifying people, are examples of image interpretation

tasks, also known as computer vision.

2.2 Problem Formulation

The problems we address in this thesis belong to the �eld of low level image processing.

In this context, we �rst need to formalize what an image is and what is the problem we
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are addressing.

An image is a visual representation, reproduction, or imitation of something. Math-

ematically speaking, an image may be formalized as a function f de�ned on a subset


 = ( a; b) � (c; d) � R2. For each point (x; y) 2 
, f (x; y) is a number (for gray scale

images), or a vector (for color images). An image can be seen as a function de�ned as

f : 
 ! R, or f : 
 ! R3, for gray-scale images, or color images in RGB (or other

3-dimensional color space), respectively.

Usually, we acquire a degraded version off , denoted g. In many problems, the degra-

dation operator h : 
 � 
 ! R is linear and is usually followed by a small additive

perturbation n : 
 ! R. Formally,

g(x; y) �
Z



h(x; y; s; r )f (s; r )dsdr + n(x; y): (2.1)

In the problems addressed in this thesis, the linear degradation can be represented by

convolution between the imagef and the degradation function h, called point spread

function (PSF). The degradation function h represents the bluring mechanism andn is

the observation noise. Most of the problems that occur in practice are convolutions, i.e.,

they have a spatial-invariant model for the blur, which allows writing the observation

model in the more tractable form,

g = h � f + n; (2.2)

or

g(x; y) �
Z



h(s; r )f (x � s; y � r )dsdr + n(x; y); (2.3)

where h : 
 ! R is the so-called convolution kernel. In (2.3) we are ignoring boundary

corrections.

Since computer implementations can only handle images on discrete lattices, digital

image is often formalized as a matrix. The subset 
 is now discrete (say, a 2D array

of size M � N ), where each element is what we call a pixel. We rede�ne bothf =

f f (x; y) : x = 1 ; :::; N; y = 1 ; :::; M g, h = f h(x; y) : x = 1 ; :::; N; y = 1 ; :::; M g and

g = f g(x; y) : x = 1 ; :::; N; y = 1 ; :::; M g; in what concerns the convolution operator, we

adopt in this thesis the discrete convolution model given by

g(x; y) =
X

u

X

v

h(u; v)f (x � u; y � v) + n(x; y); (2.4)

where we are ignoring the necessary corrections at the boundaries of the lattice 
.
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Collecting the elements of f , g, and n into vectors f ; g; n 2 RM � N , for example in

lexicographic order, expression (2.4) can then be written in vector notation as

g = Hf + n; (2.5)

where H 2 RMN � MN is the matrix associated with h(u; v).

Given an observation g, the goal is to estimate f , knowing the PSF. In cases where

the PSF is not known, the goal is to estimate bothf and H . This latter problem is called

blind image deconvolution and is far more di�cult then the no n-blind counterpart.

2.3 Methodologies in Image Processing

Given (2.5), the problem of inferring f from g is often ill-posed, i.e.,H is not invertible or

its inverse is highly sensitive to noise [2]. There are di�erent approaches to deal with this

di�culty, which can be classi�ed into the following �ve majo r types of approaches [32].

2.3.1 Methods Based on Fourier and Spectral Analysis

Fourier (or spectral) analysis is one of the classical toolsin signal and image processing.

By considering the periodic extension of the domain 
, f or g can be completely encoded

in the Fourier coe�cients, if f and g belong to L 2 (the set of square integrable functions).

The convolution operation h � f can thus be easily computed by a producteh ef in the

Fourier domain.

In the discrete domain, the discrete Fourier transform (DFT) allows a fast implemen-

tation known as the fast Fourier transform (FFT). This has been particularly useful in

many image processing tasks, including �ltering and �lter design, shift invariant linear

blurs, as well as classical image compression schemes such as JPEG.

In the particular case of (2.5), Fourier analysis makes it easy to compute an inverse

�lter H � 1 (or an approximation when the �lter is not invertible). Appl ying this �lter on

g we get an estimate off . The Wiener �lter [2] is a classical example of the use of this

method.

2.3.2 Wavelet and Space-Scale Analysis

The Fourier transform is known to be ine�cient in representi ng localized image informa-

tion. Wavelets overcome this di�culty [22]. One of the stren gths of the wavelet represen-
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tation is its ability to represent signals with a sparse number of coe�cients.

Wavelets are among the state-of-the-art in a broad range of image processing prob-

lems, often replacing the Fourier transform. Wavelets are being used in physics, including

molecular dynamics, ab initio calculations, astrophysics, density-matrix localization, seis-

mic geophysics, optics, turbulence and quantum mechanics,as well as in data compression

(being part of the JPEG 2000 standard), denoising, and, recently, in communication ap-

plications.

2.3.3 Statistical Modeling

Another very successful approach in image processing treats images using statistical mod-

els. According to [32], there are two di�erent perspectivesthat lead to the statistical

nature of a given image observation:(i) g is a composition of an ideal imagef with some

random e�ect (see (2.5)); (ii) f is modelled as a sample of some random variable.

In the �rst perspective, the observation g results from the composition, represented

by a function � , of an ideal imagef with some random perturbation n,

g = � (f ; n);

where � can be either deterministic or stochastic. The problems studied in this thesis fall

in this category. For example, if � (f ; n) = f + n, with n denoting a sample of (usually

Gaussian) noise, the problem is image denoising. If, on the other hand, � (f ; n) = f � h + n,

with n being a sample of (usually Gaussian) noise andh a PSF, the resulting problem is

image deconvolution.

The second perspective treats images as samples from some random �eld, as pioneered

in the work of Geman and Geman [53]. Images with natural textures, such as trees, cloudy

skies, or any other natural landscapes, are often more properly handled in a statistical

framework. Tools like Bayesian inference, stochastic algorithms, such as Monte-Carlo

simulation and simulated annealing are just a few examples of important methods in this

�eld.

Bayesian methods are perhaps those deserving special attention among all others statis-

tical methods. Let g denote some observed image andf some hidden data to be inferred.

Bayesian inference is based on the posterior probability function, p(f jg), obtained via

Bayes law,

p(f j g) =
p(f ) p(g j f )

p(g)
;
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wherep(f ) is the prior probability expressing prior knowledge about the unobservedf and

p(g j f ) is the likelihood, or observation model; p(g) is the marginal densitity of g. We

will return to Bayesian inference methods in Section 2.4; atthis point we simply mention

that the most common use ofp(f jg) is in obtaining the \maximum a posteriori" (MAP)

estimate, de�ned as

bf = arg max
f

p(f jg): (2.6)

2.3.4 Variational Methods

Some times the priorp(f ) may be written as a function of some \energy" function U(f ).

This \energy" measures a degree of \undesirability" of candidate estimates of f . In this

context, the prior is written as

p(f ) =
1
Z

e� �U [f ];

and �nding the maximum a posteriori (MAP) estimate becomes equivalent to minimizing

the \posterior energy",

U[f jg] �
�
� 0 U[f ] + U[gjf ];

where U[gjf ] is the conditional energy associated withp(gjf ), i.e.,

p(gjf ) =
1
Z 0e

� � 0U[f ]:

This formulation closely related to the Bayesian one, is present in several image pro-

cessing approaches such as Mumford and Shah's segmentationmodel [80], and Rudin,

Osher and Fatemi's total variation-based image restoration [97].

2.3.5 Partial Di�erential Equations (PDE)

The calculus of variations allows that some variational problems can be solved by the cor-

responding Euler-Lagrange equations. The total variation-based image restoration prob-

lem [97] is an example of a problem that can be solved by the corresponding Euler-Lagrande

equations which is a PDE.

Not all PDE problems result from a variational problem. Many image processing appli-

cations use some modeling inspired in classical mathematical physics, such as dynamic and

equilibrium equations, including di�usion, advection, or transport. One such example is

mean curvature motion (MCM), applied to image denoising [23, 45, 86]. Another approach

is the PDE family Perona and Malik's anisotropic di�usion fo r image denoising [87, 109].



2.4. BAYESIAN METHODS 15

2.4 Bayesian Methods

The approaches described in the previous section are all somehow related. As an example,

total variation-based image restoration, proposed by Rudin, Osher and Fatemi [97], can

be seen either as a variational problem, or a PDE problem. Both are related under the

Bayesian framework, by considering the total variation as the logarithm of a probability

density function. In this context, and since the majority of the state-of-the-art methods

are Bayesian, we brie
y describe Bayesian framework in thissection.

2.4.1 Bayesian Framework

The most important principle of the Bayesian philosophy is to treat all the variables and

parameters as random variables. For each of these quantities, we assign a probability

density, usually based on subjective belief or on models of the physical processes involved.

Each of these probabilities depends on some parameters, herein denoted by �. In the

special case of the prior distribution, these parameters are often referred to ashyperpa-

rameters [95].

Often, � is assumed to be known. When this is not the case, the hyperparameters

can also be estimated from the data. The assumed distribution for the hyperparameters

is called hyperprior. This approach allows a greater robustness when the uncertainty is

larger, specially when the noise variance is high.

The Bayesian framework thus treat all quantities g and f as samples of random vari-

ables. The joint global probability density function is

p(� ; f ; g) = p(�) p(f j�) p(gj� ; f ): (2.7)

Bayesian inference is based on the posterior density given by,

p(f ; � jg) =
p(gj� ; f ) p(f j�) p(�)

p(g)
: (2.8)

The term p(gj� ; f ), as a function of (� ; f ), is the so-called likelihood; the term p(f j�) is

the prior distribution, and p(�) the hyperprior.

From a statistical decision perspective, the goal is to makeinference (guess) some

unknown quantity. The inference criterion corresponds to minimizing the posterior expec-

tation of a so called loss (or cost) function C(f ;bf ), which expresses how much an estimate

f is to be penalized if the true unknown isf [95]. Formally,

L (f 0jg) �
Z

C(f ; f 0) p(f ; � jg) df d� ; (2.9)
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bf = arg min
f 0

L(f 0jg): (2.10)

Di�erent loss functions lead to di�erent Bayesian decision criteria, as seen in the

following sub-sections.

2.4.2 Maximum a Posteriori and Maximum Likelihood

The well-known and widely used maximum a posteriori (MAP) criterion results from

adopting a delta function as the loss function [95],

C(f ; f 0) = � (f � f 0): (2.11)

In this case, (2.10) can be written as

bf MAP � arg max
f

p(f jg)

� arg max
f

p(gjf ) p(f ): (2.12)

Another related technique is maximum likelihood (ML) estimation, which instead of

maximizing the posterior, maximizes the likelihood. This method is equivalent to MAP

estimation under the assumption of a 
at prior p(f ).

2.4.3 Minimum Mean Squared Error

Another very common technique uses the quadratic error,

CMMSE (f ; f 0) = ( f � f 0)T Q (f � f 0); (2.13)

where Q is a symmetric and positive de�nite matrix ( Q � 0), which will result in the

so-calledminimum mean squared error (MMSE) estimate [95]. The value that minimizes

the MMSE is the posterior expected value

bfMMSE = E[f jg]; (2.14)

where E[ � ] denotes expected value.

2.5 Non-Bayesian Methods

In the particular case of blind image deconvolution, some methods cannot be obtained

from the Bayesian formulation just described. Usually, these methods estimate the decon-

volution PSF separately from the image.
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Some of these approaches are spectral and cepstral zero methods [16]. These ap-

proaches are well suited to the case where the frequency response of the deconvolution

system has a known parametric form, that can be characterized by its frequency domain

zeros. This is the case of linear motion blur and out-of-focus blur, that will be addressed

in Chapter 5.





Chapter 3

Image Restoration with Total

Variation

3.1 Introduction

Total variation image restoration has received a lot of attention from the scienti�c com-

munity in the last decade [15, 29, 27, 28, 47, 106, 108]. The ability to avoid oscillatory

solutions, while preserving edges/discontinuities has made it suitable as a regularizer for

piece-wise smooth images.

In this chapter, we propose an e�ective algorithm for total variation image restoration,

similar to the well-known lagged di�usivity �xed-point method [31], but derived from a

general class of algorithms called majorization-minimization algorithms (MM) [56].

This chapter starts by introducing and formulating the TV re storation problem. We

next review related work and introduce the general MM framework. The chapter ends by

applying this framework to two classical image restorationproblems: TV-based denoising

and deblurring.

The results obtained show the e�ectiveness of the proposed method in terms of quality

of the reconstructions and computational complexity. The present chapter shows that TV

is an e�ective regularizer for image restoration, and introduces the tools that will be used

in the next chapter on adaptive TV-based image restoration.

19
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3.2 Problem Formulation

As reviewed in Chapter 2, in linear image restoration problems, the goal is to estimate

an original image from an observed blurred and/or noisy version. In this chapter, y will

denote the observed image,x the original image, i.e.,

y = Hx + n; (3.1)

where H is a linear operator representing, for example, the convolution point spread

function (PSF) (the identity operator in the case of denoising), and n is a sample of a

zero-mean white Gaussian �eld of variance� 2. We assume that the observed and true

images are of sizeM � N . This observation mechanism can be represented schematically

by the very common signal processing system illustrated in Figure 3.1.

x H y+

n

Figure 3.1: Image processing problem.

The problem of inferring x from y under the observation model (3.1) is usually ill-

posed or ill-conditioned, i.e., either the linear operator does not admit inverse, or it is

nearly singular, thus yielding highly noise-sensitive solutions. To obtain meaningful image

estimates, some form of regularization (prior knowledge, from a Bayesian viewpoint) has to

be enforced to penalize \undesirable" solutions [3, 10, 32]. Under the Bayesian framework,

according to the linear observation model, the likelihood p(y jx) is a Gaussian density

function,

p(y jx) � N ( Hx ; � 2I ); (3.2)

with mean Hx and covariance� 2I . The MAP criterion is given by

bx = arg max
x

p(x jy ): (3.3)

The logarithm function is a monotonic increasing function, so maximizing the posterior is

equivalent to minimizing the negative of the log ofp(x jy ). Accordingly, the MAP criterion,
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after a simple manipulation, has the form1

bx 2 arg min
x

�
1

2� 2 ky � Hx k2 + 
 P (x)
�

; (3.4)

wherekzk2 stands for the squaredEuclidean norm, i.e., the sum of all the squared elements

of somez, if z is a discrete image or vector, or

kzk2 =
Z



z2(t) dt;

if z is de�ned on the continuous domain 
. The function(al) P(x) is minus the log

of a prior density function. In fact, this can be just a penalty function(al), denoted

regularizer, designed to have small values for \desirable" estimates. The hyper-parameter

(or regularization parameter) 
 has the role of controlling the weight assigned to the

regularizer, relatively to the log-likelihood term.

The TV regularizer (introduced in [96], see also [29] for a review of recent advances and

pointers to the literature) appears in the context of bounded variation (BV) functions. In

a continuous domain formulation, the estimation criterion takes the form of a variational

problem,

bx 2 arg min
x 2 L 2 (
)

�
1

2� 2

Z



(y (t) � Hx (t))2 dt + 
 TV( x)

�
; (3.5)

where TV(x) measures the total variation of x and is given by

TV( x) �
Z



jr x(t)j dt; (3.6)

and L 2(
) is the set of square integrable functions de�ned on 
.

The TV regularizer is very well suited for piecewise smooth images, as it avoids os-

cillatory solutions while preserving edges/discontinuities [29]. These characteristics have

fostered the use of TV regularization in denoising and deconvolution of real world images

with very good results [29].

Given that the TV regularizer is not di�erentiable (due to th e presence of the abso-

lute value function), solving (3.5) is a challenging task, which has been the focus of a

considerable amount of work over the last decade [15, 27, 28,29, 47, 106, 108]. Most of

the approaches adopted to deal with (3.5) fall into one of three classes:(i) solving the

associated Euler-Lagrange equation [32], which is a nonlinear partial di�erential equation ;

(ii) using methods based on duality [32], still formulated in thecontinuous domain, which

1The \ 2" symbol is used because the estimatebx is one of possibly many minimizers of (3.4), i.e., usually

the minimum set is not a single point.
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avoid some of the di�culties of (3.5) at the cost of replacing it by a constrained variational

problem; (iii) optimization methods applied to a discrete version of (3.5)[32].

A large fraction of the literature on TV denoising/deblurin g follows one of the �rst

two approaches; however, in practice, since computer implementations can only handle

images on discrete lattices, the solution methods derived on the continuous domain have

to be replaced, at some point, by discrete formulations. Thechoice to be made is between:

(a) deriving a solution method on the continuous domain and thendiscretizing it; (b)

discretizing the problem and then using a �nite-dimensional optimization algorithm. In

this thesis, we propose a method of type(b) , which belongs to the class ofmajorization-

minimization (MM) algorithms [56].

A discrete version of the problem can be obtained by considering that the functions

x and y have been uniformly sampled. The way the image is obtained isoutside the

scope of this thesis. For what this thesis concerns, we assume that x and y denote vectors

containing all the samples arranged in (say) column lexicographic ordering. Thus, the

linear operator H present in (3.1) is a matrix, and Hx , i.e., the action of H on x, is a

matrix-vector product.

The TV functional (3.6) was formulated in the continuous domain. To deal with the

discrete nature of the digital images, we need a discretizedversion. Replacing derivatives

with local di�erences, integration with summation, we can write a discrete version of the

TV functional as

TV( x) =
X

i

q
(� h

i x)2 + (� v
i x)2; (3.7)

where � h
i and � v

i are linear operators corresponding to, respectively, horizontal and ver-

tical �rst-order di�erences, at pixel i ; that is, � h
i x � x i � x r (i ) , where r (i ) denotes the

nearest neighbor to the right of pixel i , and � v
i x � x i � xb(i ) , where b(i ) denotes the

nearest neighbor below pixeli . Of course, these neighborhood relationships have to be

adequately adjusted at the image boundary; in this thesis, we adopt circular/periodic

boundary conditions2.

The variational optimization problem is thus replaced naturally by the following �nite-

dimensional optimization problem:

bx 2 arg min
x 2 RMN

L(x); (3.8)

2The nearest neighbor below a pixel in the bottom of the image i s the top one of the same column,

while the nearest neighbor to the right of the last pixel of a r ow is the leftmost pixel of that row.
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with

L (x) = ky � Hx k2 + � TV( x); (3.9)

where � = 2 � 2 
 . Notice that L (x) is a convex function [20], but it may not be strictly

convex (related with the non invertibility of H and the fact that TV( x) is not strictly

convex); in that case, the minimizer may not be unique.

3.3 Related Work

Since its introduction in 1992 [96, 97], TV regularization has become popular in many

image restoration problems [15, 14, 29, 27, 28, 47, 106, 108]. The range of applications have

been successfully extended from the classical image denoising and deblurring problems, to

inpainting, blind deconvolution, and processing of vector-valued images (e.g. color). Such

success relies on the fact that TV regularizer favors imagesof bounded variation, without

penalizing possible discontinuities.

In this section, we review the most important contributions to image denoising and

deblurring with TV. Given that the TV regularizer is not di�e rentiable, solving (3.5) is a

challenging task. It is not surprising that much of the work done in the last decade has

been devoted to the optimization problem.

The non-di�erentiability of the TV functional led to di�ere nt approaches, categorized

into three classes:(i) solving the associated Euler-Lagrange equation, which is anonlinear

partial di�erential equation ; (ii) using methods based on duality, still formulated in the

continuous domain, which avoid some of the di�culties of (3.5) at the cost of replacing

it by a constrained variational problem; (iii) optimization methods applied to a discrete

version of (3.5).

The solution to the variational problem (3.5) is the well-known Euler-Lagrange equa-

tion

r �
r x
jr x j

� � H (Hx � y) = 0 : (3.10)

This equation was solved in [97] using a time-dependent partial di�erential equation (PDE)

on a manifold that satis�es the degradation constrains. Several other methods also work

around this nonlinear equation.

A discretization of the Euler-Lagrange equation led to another popular technique:

the lagged di�usivity �xed point method [31]. The idea of the method is to replace the

derivative r operator by local di�erences, and to �x the di�usivity term 1 =jr x (t ) j in the
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resulting minimization. The algorithm works in a cyclic fashion: (i) estimate x (t+1) with

1=jr x (t ) j �xed; (ii) update the di�usivity term. A convergence proof of the method is

presented in [31].

Recent approaches to TV image restoration are based on optimization techniques.

Every optimization problem has a dual formulation, usually a constrained optimization

problem. The main advantage is that quite often the dual formulation is smooth and

di�erentiable.

In the particular case of denoising, the linear operator isH = I (the identity matrix).

Following [27], the dual formulation for the TV denoising problem can be obtained using

subgradients and convex conjugates. Let the problem be written as

min
u

ku � f k2 + 2 � �( u): (3.11)

Taking w = ( f � u)=� , the dual formulation amounts to minimizing

kw � (g=� )k2

2
+

1
�

� � (w); (3.12)

where � � (w) is the Legendre-Fenchel transformation of �( x). It turns out that the min-

imization of (3.12) corresponds to a non-linear projectionon a convex set. Based on the

use of Lagrange multipliers, Chambolle [27] proposed a semi-implicit gradient descent al-

gorithm. A di�erent approach was followed in [30], where both the primal u and dual

variable w are minimized simultaneously.

The dual formulation just presented applies to the TV denoising problem. An extension

of Chambolle's algorithm to the deblurring case was also proposed in [7] (see [72] for a

comprehensive review of Chambolle's algorithm).

A recent alternating minimization technique proposed in [108], also supported on opti-

mization techniques, solve the a similar TV image restoration problem using an alternating

minimization scheme, by formulating the TV deconvolution problem as

min
w;u

X

i

kwi k2 +
�
2

X

i

kwi � D i uk2 +
�
2

kKu � f k2: (3.13)

The main advantage is that each of the problems of minimizingonly with respect to w

or u (while keeping the other �xed) can be easily solved. The minimization w.r.t. w has

a unique minimizer obtained by the well-known shrinkage soft-threshold formula [43, 44].

Minimizing with respect to u results in a quadratic minimization problem; by assuming

periodic boundary conditions on the di�erence operator D i , the minimization can be
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written as a linear system, where the di�erence operator canbe written as a convolution

operator, and thus e�ciently computed in the Fourier domain , using the FFT algorithm.

The majorization-minimization method proposed in this chapter belongs to the class of

optimization methods applied to a discrete version of the problem. Although derived from

a completely di�erent path, the resulting equations are similar to the lagged di�usivity

�xed point method. It is important to point out that the Chamb olle's TV denoising

algorithm can also be derived from the MM perspective, as shown in [100]. We will make

the appropriate comparisons in Section 3.6.

3.4 Majorization Minimization Framework

MM algorithms have been used for the last three decades [56] in areas such as statistics,

medical imaging, and others. The idea behind MM is that we substitute a di�cult op-

timization problem, by a sequence of simpler ones. The simplicity is achieved in many

di�erent ways: (i) by avoiding large matrix inversions; (ii) by linearizing an optimization

problem; (iii) by separating parameters of an optimization problem; (iv) dealing with

equality and inequality constraints smoothly, or (v) turning a non smooth problem into

a smooth one. These advantages usually came only with a price: the need to iterate.

The MM algorithms make use of a set of inequalities to force monotonicity towards

the minimum. Suppose we have a functionf (� ) that we want to minimize. We de�ne a

new function g(� j� (t ) ), depending on a current estimate parameter� (t ) . This function is

said to be a majorizer off (� ) at the point � (t ) if

g(� j� (t ) ) � f (� ); for all �; (3.14)

g(� j� (t ) ) = f (� ); i� � = � (t ) : (3.15)

The function g(� j� (t ) ) is \designed" to lie above f (� ), and touch it (be tangent to) only

at the point � (t ) . An MM algorithm proceeds by minimizing g(� j� (t ) ) with respect to

� to obtain � (t+1) . It follows from (3.14) and (3.15), that the MM algorithm enf orces

monotonicity of the sequence of function values. Indeed,

f (� (t+1) ) = g(� (t+1) j� (t ) ) + f (� (t+1) ) � g(� (t+1) j� (t ) ) (3.16)

� g(� (t+1) j� (t ) ) (3.17)

� g(� (t ) j� (t ) ) (3.18)

= f (� (t )) (3.19)
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where the �rst inequality results from f (� (t+1) ) � g(� (t+1) j� (t ) ) � 0, for any � , and the

second one from the fact that � (t+1) is a minimizer of g(� j� (t ) ); �nally the equality in

(3.19) results from (3.15).

MM algorithms have three properties (which have trivial proofs), of which we will

make use later:

Property 1 The function ga(� j� (t )) = A g(� j� (t ) ) + B , where A > 0 and B are constants

independent of � (but possibly depend on � (t )) de�nes exactly the same iterations

as g(� j� (t ) );

Property 2 Let f (� ) = f 1(� ) + f 2(� ) and consider a pair of majorizers,g1(� j� (t ) ) � f 1(� )

and g2(� j� (t )) � f 2(� ), both with equality for � = � (t ) . Then, all the following

functions majorize f (� ) (with equality for � = � (t ) ): g1(� j� (t ) ) + g2(� j� (t ) ), f 1(� ) +

g2(� j� (t ) ) and g1(� j� (t )) + f 2(� );

Property 3 The monotonicity property of MM is preserved if, instead of exactly mini-

mizing g(� j� (t ) ), the following weaker condition is satis�ed:

� (t+1) is such that g(� (t+1) j� (t ) ) � g(� (t ) j� (t ) ): (3.20)

Notice that this is the only property of � (t+1) that was invoked in showing the mono-

tonicity of MM. A similar reasoning underlies generalized EM (GEM) algorithms

[110].

Notice that Property 3 has a relevant impact, namely when the minimum ofg(� j� (t ) )

cannot be found exactly or is hard to obtain. The majorization relationship between

functions is closed under their sums, products by non-negative constants, limits, and com-

position with increasing functions [50]. These propertiesallow us to tailor good majorizing

functions g, the crucial aspect in the design of MM algorithms.

3.4.1 Obtaining Majorizing Functions

To obtain meaningful and useful majorizing functions for a particular problem, we have

to satisfy the restrictions imposed by equations (3.14) and(3.15). Usually the inequal-

ity restrictions are obtained from convexity and concavity properties. In the following

paragraphs we give a brief overview of some of the common inequalities used to construct

majorizing or minorizing functions.
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Jensen's Inequality

Given a convex function ' (x) and a random variable X , the Jensen's inequality [98] states

that

' ( E[X ] ) � E[ ' (X ) ]; (3.21)

where E[ � ] denotes expected value. For probability density functions a(x) and b(x), and

since � ln(x) is a convex function, the Jensen's inequality gives

� ln
�

E
�

a(x)
b(x)

��
� � E

�
ln

a(x)
b(x)

�
: (3.22)

If X has the density b(x), E[a(X )=b(X )] = 1, and equation (3.22) gives

E[ ln a(X ) ] � E[ ln b(X ) ]: (3.23)

Jensen's inequality is used to obtain the E-step of EM algorithms [39].

Minorizing via Supporting Hyperplanes

It is also possible to obtain an inequality involving a convex function, by using the sup-

porting hyperplane property [18]: any linear function tangent to a convex function, is a

minorizer at the point of tangency. If ' (x) is convex and di�erentiable, then

' (x) � ' (x(t ) ) + r ' (x(t ) )T (x � x(t ) ); (3.24)

with equality when x = x(t ) .

Majorization via the De�nition of Convexity

Suppose we want to majorize a convex function, instead of minorizing it. We can make

use of the de�nition of convexity. Recall that a function ' is convex if and only if

'

 
X

i

� i t i

!

�
X

i

� i ' (t i ); (3.25)

for a set of points t i and multipliers � i that satisfy � i � 0 and
P

i � i = 1. This can be

particularly useful if the function ' appears composed with a linear functionr T x. Consider

the points r , x and x(t ) and the substitution t i = r i (x i � x(t )
i )=� i + r T x(t ) . Equation (3.25)

can be written as

' (r T x) �
X

i

� i '

 
r i (x i � x(t )

i )
� i

+ r T x(t )

!

: (3.26)
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In the particular case of r , x and x(t ) being all positive, alternatively we can make use of

the substitutions t i = r T x(t )x i =x(t )
i and � i = r i x

(t )
i =rT x(t ) yielding

' (r T x) �
X

i

r i x
(t )
i

r T x(t )
'

 
r T x(t )x i

x(t )
i

!

: (3.27)

These inequalities have been used in medical image reconstruction [88, 65] and least-

squares estimation without matrix inversion [6].

Majorization via a Quadratic Upper Bound

It is also possible to �nd a quadratic upper bound for a convexfunction, if the function is

di�erentiable and with bounded curvature [17]. In this case, a quadratic function tangent

to ' at x(t ) with curvature M such that M � r 2' � 03, is a majorizer for ' :

' (x) � ' (x(t ) ) + r ' (x(t ) )T (x � x(t ) ) +
1
2

(x � x(t ) )T M (x � x(t ) ): (3.28)

This inequality results from second order Taylor expansion, and upper bound the Hessian

using the above inequality.

The Arithmetic-Geometric Mean Inequality

A particular case of (3.25) is the arithmetic-geometric mean inequality. Making ' (s) = es

and � i = 1=m we have

exp

 
1
m

mX

i =1

si

!

�
1
m

mX

i =1

esi : (3.29)

If we take x i = esi , we obtain the well-known form

m

vu
u
t

mY

i =1

x i �
1
m

mX

i =1

x i ; (3.30)

valid for x i � 0. As the exponential function is strictly convex, equality holds if and only

if all the x i are equal.

3.5 A Quadratic Upper Bound for TV

We now derive a quadratic majorizer for TV(x), which is based on a linear majorizer for

the square root function. Notice that the square root function, for non-negative arguments,

3The notation A � 0 means that A is positive-semide�nite, i.e., for all vectors v 6= 0 we have vT Mv > 0.
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is strictly concave, thus upper bounded by any of its tangents. According to (3.24), for

any a � 0 and a0 > 0,
p

a �
p

a0+
a � a0

2
p

a0
; (3.31)

with equality if and only if a = a0. Applying this inequality to (3.7), it follows that the

function QTV (�j� ), de�ned as

QTV (x jx (t ) ) = TV( x (t ) )

+
1
2

X

i

�
(� h

i x)2 � (� h
i x (t ) )2

�

q
(� h

i x (t ) )2 + (� v
i x (t ) )2

+
1
2

X

i

�
(� v

i x)2 � (� v
i x (t ) )2

�

q
(� h

i x (t ) )2 + (� v
i x (t ) )2

; (3.32)

satis�es QTV (x jx (t ) ) � TV( x) for any x and x (t ) , with equality if and only if x = x (t ) .

Since the goal will be minimizingQTV (x jx (t ) ) with respect to x, we can rearrange equation

(3.32),

QTV (x jx (t ) ) = TV( x (t ) )

+
1
2

X

i

�
(� h

i x)2 + (� v
i x)2

�

q
(� h

i x (t ) )2 + (� v
i x (t ) )2

�
1
2

X

i

�
(� h

i x (t ) )2 + (� v
i x (t ) )2

�

q
(� h

i x (t ) )2 + (� v
i x (t ) )2

or,

QTV (x jx (t ) ) =
1
2

X

i

(� h
i x)2

q
(� h

i x (t ) )2 + (� v
i x (t ) )2

+
1
2

X

i

(� v
i x)2

q
(� h

i x (t ) )2 + (� v
i x (t ) )2

+ K; (3.33)

where K stands for a constant independent ofx. The function QTV (x jx (t ) ) is thus a

quadratic upper bound for TV( x). Let D h and D v denote matrices of size (MN � MN ),

such that D hx and D vx are vectors containing the horizontal and vertical (respectively)

�rst-order di�erences, i.e.,

D hx = [� h
1x; � h

2x; : : : ; � h
MN x]T ; (3.34)

and

D vx = [� v
1x; � v

2x; : : : ; � v
MN x]T : (3.35)
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De�ne also the (MN )-vector w (t ) = f w(t )
i ; i = 1 ; : : : ; MN g with

w(t )
i =

1
q

(� h
i x (t ) )2 + (� v

i x (t ) )2
: (3.36)

Equation (3.33) can thus be rewritten as

QTV (x jx (t ) ) =
1
2

X

i

(� h
i x)2

w(t )
i

+
1
2

X

i

(� v
i x)2

w(t )
i

+ K

=
1
2

X

i

�
D hx

� 2
i

w(t )
i

+
1
2

X

i

[D vx]2i
w(t )

i

+ K: (3.37)

Introducing the diagonal (MN � MN ) matrix � (t ) = diag( w (t ) ), QT V can �nally be

written as

QTV (x jx (t ) ) = ( D hx)T � (t ) (D hx) + ( D vx)T � (t ) (D vx) + K

=

0

@

2

4
D h

D v

3

5 x
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T 2

4
� (t ) 0

0 � (t )
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5
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W ( t )
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D h

D v

3

5 x + K (3.38)

= xT D T W (t )Dx + K; (3.39)

where

D =

2

4
D h

D v

3

5 : (3.40)

3.6 Application to Image Denoising

In image denoising problems, the observation mechanism is given by,

y = x + n; (3.41)

where x is the original image and n is a sample of a zero-mean white Gaussian �eld of

variance � 2. The goal is to recover the originalx from the noisy versiony. It is clear that

the success of the denoising task lies on some prior information about the signal x, and

the noisen (e.g., its variance). The total variation can be used as a prior information, or

regularizer. Usually, a clear and sharp image has a lower total variation than a noisy one.

The TV-based estimate is given by

bx 2 arg min
x

ky � xk2 + � TV( x): (3.42)
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To minimize (3.42) we will make use ofProperty 2 to obtain an upper bound Q(xjx (t ) ), by

adding the quadratic term ky � xk2 = ( y � x)T (y � x) to the quadratic bound � Q TV (x jx (t ) )

obtained in section 3.5,

Q(x jx (t ) ) = ( y � x)T (y � x) + � Q TV (x jx (t ) )

= yT y + 2yT x + xT x + � xT D T W (t )Dx + � K

= xT
�

� D T W (t )D + I
�

x � 2xT y + K 0; (3.43)

where K 0 is an irrelevant (independent of x) constant. Since this is a quadratic function,

the minimization w.r.t. x can be solved by computing the derivative and equating it to

zero, which leads to

bx (t+1) = solution
x

n
(� D T W (t )D + I ) x = y

o
: (3.44)

This system cannot be solved analytically due to its huge dimension. For M � N images,

we have matrices of dimensionMN � MN , which are not even storable in memory, even for

relatively small images. In addition to its size, (3.44) hasan additional di�culty: when one

(or more) term(s) (� h
i x (t ) )2+(� v

i x (t ) )2 goes to zero, the corresponding element(s) of vector

W (t ) goes to in�nity, and so do some elements of the system matrix (� D T W (t )D + I ).

To sidestep this di�culty we invoke the well know Sherman-Mo rrison-Woodbury matrix

inversion lemma,

(A + UCV )� 1 = A � 1 � A � 1U
�
C � 1 + VA � 1U

� � 1
VA � 1; (3.45)

which applied to the matrix of the linear system (3.44) leadsto

h
I + � D T W (t )D

i � 1
= I � D T

h
(� W (t ) )� 1 + DD T

i � 1
D : (3.46)

The solution of the system can now be rewritten as

bx (t+1) =
�

I � D T
h
(� W (t ) )� 1 + DD T

i � 1
D

�
y ; (3.47)

or

bx (t+1) = y � D T z(t ) ; (3.48)

where

z(t ) = solution
z

nh
DD T + ( � W (t ) )� 1

i
z = Dy

o
: (3.49)
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Notice that now, the matrix of the system to be solved involves (W (t ) )� 1 instead of

W (t ) ; since the elements of (W (t ) )� 1 go to zero, instead of in�nity, when pairs of local

di�erences go to zero, the system matrix remains well de�ned.

Notice that, we do not have to explicitly invert the de�ned ma trix, simply solve the

corresponding system of equations. To this end, we adopt thestandard conjugate gradient

(CG) algorithm [83]. The CG algorithm is an iterative method for solving large systems

of linear equations, that can be written in the form Ax = b, where x is an unknown

vector, b is a known vector, and A is a known, square, symmetric, positive-de�nite (or

positive-semide�nite) matrix. One of the main strengths of CG algorithm is that we don't

even need to have an explicit representation ofA : only the action of A on a vector v , i.e.

Av , is needed.

By invoking Property 3 of the MM algorithms, we may run just a few CG iterations;

the corresponding algorithm is thus ageneralized MM (GMM) algorithm. In summary,

the proposed algorithm is composed of two alternating steps. Starting with an initial

estimate bx (t ) , the algorithm proceeds cyclically repeating the following steps until some

stopping criterion is met:

Step 1: Compute (W (t ) )� 1 using (3.36);

Step 2: Update the estimate by applying (3.48) and (3.49).

3.6.1 Implementation Aspects

Let us make some comments about implementation of this algorithm. Computing ( W (t ) )� 1

is simpler than computing W (t ) itself, as is obvious from its de�nition. The vector Dy

in (3.49) can be pre-computed since it remains constant during the algorithm. The only

operations involving
�
DD T + ( � W (t ) )� 1

�
required by the CG algorithm are matrix-vector

products; these products can be very e�ciently computed (for an arbitrary v) as
h
DD T + ( � W (t ) )� 1

i
v = ( DD T )v + ( � W (t ) )� 1v; (3.50)

where (� W (t ) )� 1v is just the product by a diagonal matrix. Finally, computati on of DD T

when v is some image, corresponds to the convolution ofv (in its 2D form) by a small

local kernel, which can be carried out much more e�ciently (with linear cost) than the

explicit matrix-vector multiplication (which has quadrat ic cost). The same thing is true

for the product by D T in (3.48).

We can summarize the algorithm as follows:
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Algorithm 1 TV image denoising
Require: Initial noisy image y

1: while \MM Stopping criterion" is not statis�ed do

2: Compute (W (t ) )� 1 using (3.36);

3: while x (t+1) does not satisfy \CG stopping criterion" do

4: z(t+1) := CG iteration for system (3.49);

5: x (t+1) := y � D T z(t ) ;

6: end while

7: end while

3.6.2 Results

We start this subsection with an illustrative example of the proposed algorithm. Figure

3.2 shows a noisy Lena image (with noise standard deviation� = 15) and the denoised

image produced by the proposed algorithm. In Figure 3.3 we show the evolution of the

objective function and the peak signal-to-noise ratio (PSNR). The PSNR is commonly

used to assess the quality of the reconstructed image and is de�ned as the ratio between

the maximum possible power of the signal and the noise power,expressed in logarithmic

decibel scale,i.e.,

PSNR � 10 log10
MAX 2

MSE
[dB]: (3.51)

The quantity MAX is the maximum pixel value of the image. Usually, when pixels are

represented using 8 bits per sample, this value is 255. The mean squared error (MSE), of

an estimated imagebx with N pixels, is given by

MSE �
1
N

kbx � xk2; (3.52)

which leads to the usual de�nition:

PSNR � 20 log10
255

q
1
N kbx � xk

[dB]: (3.53)

The choice of � is critical; we have veri�ed experimentally that � =
p

3� is a good

general purpose choice [47] for a large range of values of� (see [49] for an empirical-Bayes

justi�cation of this threshold value in the wavelet-based denoising context). Nevertheless,

we look for the best value in terms of PSNR. In all experimentsthe number of iterations

was �xed to 10 MM iterations with 5 CG iterations in each itera tion of MM.
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(a)

(b)

Figure 3.2: TV-based denoising example: (a) noisy Lena image (� = 15); (b) reconstructed

with proposed TV algorithm.



3.6. APPLICATION TO IMAGE DENOISING 35

0 2 4 6 8 10 12
0.8

1

1.2

1.4

1.6

1.8

2
x 10 8

MM iterations

ky
�

b x
k2

+
�

T
V

(
x

)

(a)

0 2 4 6 8 10
29.5

30

30.5

31

31.5

32

32.5

MM iterations

P
S

N
R

(b)

Figure 3.3: TV-based denoising example of Lena image: a) Objective function; b) PSNR.
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Table 3.1 shows the results of the four methods: TV denoising, classical wavelet-based

soft thresholding (SF), the methods proposed in [49, 76]. For SF, the threshold value

was obtained in a clairvoyant way (using the original image to obtain the best PSNR);

although this gives an unfair advantage over the other methods, the result of SF are always

the worst. It is remarkable that TV, despite the simplicity o f the underlying criterion,

can perform competitively with these wavelet-based methods for the Lena image. For the

Barbara image, the presence of strong texture makes the TV criterion less competitive.

Table 3.2 shows the results of TV and the method from [89]; in these results, TV is

outperformed, at all noise levels and for all images, by thisstate of the art method, which

uses explicit models of inter-coe�cient dependencies and sophisticated wavelet represen-

tations (steerable pyramid). Given the di�erence in complexity of the TV penalty and the

model used in [89], this is not surprising.

All images used are of size 512� 512. The experiments were carried out on an Apple

Macbook with a 2.2 GHz Intel Core2Duo processor. Each experiment took around 6

seconds to complete.

3.7 Image Deconvolution

In image deconvolution problems, we want to estimate the original image from a degraded

observed version of it. In the case of a linear degradation model, the observation mecha-

nism is given by,

y = Hx + n; (3.54)

where x is the original image and n is a sample of a zero-mean white Gaussian �eld of

variance � 2, and H represents the linear degradation operator,i.e., the blur point spread

function (PSF).

The problem of inferring x from y, is usually ill-posed or ill-conditioned, depending on

the nature of H . A trivial solution can be obtained by minimizing the root me an squared

error, which results in the following least-squares problem:

bx 2 arg min
x

ky � Hx k2: (3.55)

If H has full column rank, the null space of H is empty, and the estimate is unique.

Usually this is not the case; when the null space ofH is not empty, we have an in�nite

number of solutions.
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Lena

� = 10 � = 15 � = 20 � = 25

TV 34.11 32.17 30.92 29.91

soft rule 32.00 29.57 28.04 26.66

[49] 32.74 30.48 28.74 27.38

[76]-(a) 33.72 31.37 29.63 28.22

[76]-(b) 34.25 32.33 31.00 29.96

Barbara

� = 10 � = 15 � = 20 � = 25

TV 31.09 28.52 26.87 25.72

soft rule 30.37 27.67 25.91 24.68

[49] 31.28 28.79 27.03 25.71

[76]-(a) 32.32 29.72 27.93 26.53

[76]-(b) 32.46 30.03 28.39 27.21

Table 3.1: PSNR (dB) results for the methods mentioned in thetext; [76]-(a) and [76]-(b)

refer to two di�erent methods proposed in [76].

Lena Barbara Boats

� [89] TV [89] TV [89] TV

10 35.61 34.11 34.03 31.09 33.58 32.48

15 33.90 32.17 31.86 28.52 31.70 30.43

20 32.66 30.92 30.32 26.87 30.38 29.08

25 31.69 29.91 29.13 25.72 29.37 28.08

50 28.61 26.94 25.48 23.33 26.38 25.20

75 26.84 25.41 23.65 22.32 24.79 23.75

100 25.64 24.44 22.61 21.69 23.75 22.78

Table 3.2: PSNR (dB) results of proposed method and the method from [89].
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In the case of TV regularization, the estimated image is given by

bx 2 arg min
x

ky � Hx k2 + � TV( x): (3.56)

Under the Bayesian framework, the previous equation is the well known maximum apos-

teriori (MAP) estimation criterium, where � TV( x) = � logp(x) + c, and p(x) is a prior

density function, expressingprior knowledge about the original image. In the next chapter

we will formally treat the TV prior as a density function; for the rest of this chapter, the

TV regularizer is simply a function that has small values for expected images, and high

values for undesirable ones.

In order to solve (3.56), we proceed like in the previous section, building a quadratic

upper bound Q(xjx (t ) ), by adding the quadratic term ky � Hx k2 to the quadratic bound

� Q TV (x jx (t ) ) obtained in subsection 3.5,

Q(x jx (t ) ) = ( y � Hx )T (y � Hx ) + QTV (x jx (t ) )

= yT y + 2yT Hx + xT H T Hx + � xT D T W (t )Dx + � K

= xT
�

� D T W (t )D + H T H
�

x � 2xT H T y + K 0; (3.57)

whereK 0 is an irrelevant constant4. Since this is a quadratic function, minimization w.r.t.

x can be obtained by computing the gradient and equating it to zero, which leads to

bx (t+1) = solution
x

n
(� D T W (t )D + H T H ) x = H T y

o
: (3.58)

Like in the previous section, obtaining x (t+1) by direct minimization of (3.58) is com-

putationally hard, as it amounts to solving a huge linear system A (t )x = y0, where

y0 = H T y; (3.59)

and

A (t ) � � D T W (t )D + H T H : (3.60)

Nevertheless, it has the same additional di�culty as of (3.44): when one (or more) term(s)

(� h
i x (t ) )2 + (� v

i x (t ) )2 goes to zero, the corresponding element(s) of vectorW (t ) goes to

in�nity, and so do some elements of the system matrixA (t ) . In this particular case, matrix

A (t ) is not well de�ned as a consequence of the bound (3.31) not being de�ned at a0 = 0.

Unfortunately, in this case we cannot invoke the Sherman-Morrison-Woodbury matrix

inversion lemma. Like in [48] we refer to this as the \singularity" issue. In the next

4 It does not depend on x .
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subsection, we show that this is not in fact an issue, and so weproceed by minimizing

(3.58) again by adopting the standard CG algorithm.

3.7.1 Proposed Algorithm

The solution of the system of equations given by (3.58) provides the update image estimate.

As we saw previously, this amounts to solving the linear system of equationsA (t )x = y0,

where y0 = H T y and A (t ) � � D T W (t )D + H T H . Like in Section 3.6, we will adopt the

standard CG algorithm [83].

Again, the advantage of the CG algorithm is that it simply req uires the ability of com-

puting matrix-vector products with the system matrix A (t ) . In the deconvolution case,

such products involve matrix products by D , H , D T and H T , without requiring an ex-

plicit representation of matrix A (t ) . These matrixes correspond to convolution operators.

Thus, the corresponding products can be e�ciently computed by a product in the Fourier

domain. However, since the kernels involved have very smalldimension comparing to the

image size, we will compute the convolution in the image domain. Notice that the oper-

ator D computes the horizontal and vertical �rst order di�erences , which correspond to

a convolution with the small kernels [1 � 1] and [1 � 1]T , respectively. The convolution

operator is usually de�ned as a small kernel. The corresponding adjoint operators are

simply a transpose and re
ection of the original kernels.

The diagonal matrix W (t ) is easily computed using (3.36), andy0 can be computed

only once and stored. Again invokingProperty 3 of the MM algorithms, we run just a few

CG iterations; the corresponding algorithm is also a GMM algorithm. The pseudo-code

of the algorithm is summarized in Algorithm 2.

Algorithm 2 TV image debluring

Require: Initial estimate x (0)

1: Compute y0 = H T y

2: while \MM Stopping criterion" is not statis�ed do

3: Compute W (t ) using (3.36);

4: while x (t+1) does not satisfy \CG stopping criterion" do

5: x (t+1) := CG iteration for system A (t )x = y0 using (3.60), initialized at x (t ) ;

6: end while

7: end while
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Number of Iterations and Stopping Criterion

The so calledimprovement in SNR (ISNR) is de�ned as

ISNR = 10 log
ky � xk2

kbx � xk2 [dB]; (3.61)

and expressed, as usual, in logarithmic decibel scale. Is isknown that the lowest value of

L (x), de�ned as

L(x) = ky � Hx k2 + � TV( x); (3.62)

does not necessarily correspond to the best ISNR. As an example, we plot in Figure 3.4 the

ISNR and L(x) for a deblurring problem. As we can see, the energy is alwaysdecreasing,

as expected, but the ISNR �rst increases and then starts decreasing. Using this quality

measure as a criterion to compare the various methods in image restoration, one must be

aware of this characteristic. Nevertheless we need to de�nesome generic criterion for what

the \MM stopping criterion" and \CG stopping criterion" sho uld be.
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MM iterations
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Figure 3.4: Evolution of L (x) and ISNR for TV-based deblurring example.

The simplest criterion is to set the maximum number of iterations for both the MM

loop and the CG algorithm. To compare the di�erent options, we plot, in Figure 3.5 (a)

and (b), the evolution of the objective function L(x) and ISNR, for a deblurring problem

with di�erent values of the maximum number of CG iterations. In this setup, the MM

stopping criterion was just set as a maximum total number of iterations. These plots allow
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us to extract two conclusions: (i) all the MM algorithms converge with di�erent rates (ii)

they all converge approximately for the same number of MM iterations.

The �rst conclusion states that the best �nal ISNR values are reached when we have

a larger number of CG iterations in the beginning of the algorithm. It can be seen from

the plots that the CG algorithm needs at least 50 iterations so that the MM algorithm

converges to the right solution.

The second conclusion has to do with the e�ective number of MMiterations: all the

variants converged in 5 or 6 iterations. To study the trade-o� between CG iterations and

MM iterations, we plot in Figure 3.6 the evolution of L (x) and ISNR for the particular

case of a maximum of 300 CG iterations. In these plots, we alsoinclude the iterations

in each MM cycle from where the relative decrease of the objective function L(x) is less

than 1 � 10� 4, 5� 10� 5 and 1� 10� 5. It is clear from the plots that, for a relative decrease of

5�10� 5, the number of CG iterations is around 150{200. Since the �nal values of ISNR and

L(x) are very close to each other, and having computational timealso in consideration,

we decided to have the following stopping criterion:

CG Stopping Criterion

� Minimum number of iterations: 10;

� Maximum number of iterations: 250 or a relative decrease in the objective function

L(x) of 5 � 10� 5.

MM Stopping Criterion

� Maximum number of iterations: 10.

3.7.2 Stability Analysis

It is well known that TV regularization tends to set many �rst -order di�erences to zero.

It happens that, if for some pixel i , the di�erences � h
i x (t ) and � v

i x (t ) are both zero, the

corresponding diagonal term ofW (t ) are in�nity. We referred to this as the \singularity"

issue [48]. This is a consequence of the bound (3.31) not being de�ned at a0 = 0. This fact

seems to suggest that Algorithm 2 has conceptual and numerical 
aws. That is, however,

not the case, as far as the initial imagex (0) is chosen such that no TV term in the right
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Figure 3.5: Evolution of L (x) and ISNR for TV-based deblurring with di�erent values of

the maximum CG iterations.
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Figure 3.6: Evolution of L (x) and ISNR for TV-based deblurring with di�erent values of

the maximum CG iterations: the circles mark the iteration in the current MM cycle where

the decrease ofL (x) is smaller than a given value (in the legend).
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hand side of (3.62) is zero:i.e., � h
i x (t ) 6= 0 or � c

i x
(t ) 6= 0 for all i = 1 ; : : : ; MN . We term

as totally non-smooth the images with this property.

Following a reasoning parallel to that introduced in [48] in wavelet-based deconvolution,

one may show that the probability of having � h
i x (t ) and � v

i x (t ) equal to zero, for some

pixel i = 1 ; : : : ; MN , at some �nite t, is zero. The proof of this result is an elementary

adaptation of that in [48].

However, we provide a Monte Carlo experiment, illustrating this property: even in

problems where most �rst-order di�erences of the original image are zero, the algorithm

runs without problems, as far as we initialize the algorithm with a totally non-smooth

image, i.e., although most of the �rst-order di�erences, computed from the iterates x (t ) ,

approach zero, none of them becomes exactly zero in a �nite number of iterations. Figure

3.7 (a)-(c) show, respectively, a 64 by 64 image with a squareat the center of gray value

255 over a constant background of value 0, a noisy (i.i.d. Gaussian of variance 10� 3)

blurred (9 � 9 uniform blur) version, and a restored image using Algorithm 2 (� = 0 :06).

The restoration was carried out 1000 times, using a Gaussiani.i.d. initial random image

of variance 64; note that this initialization ensures, with probability one, that the initial

images are totally non-smooth. Figure 3.7 (d) shows, for each run, the root mean squared

error of the obtained images

RMSE =
kbx � xk
p

MN
: (3.63)

Notice that the algorithm yielded almost exact reconstruction in all runs, and we have

never faced problems with in�nity values of the elements ofW (t ) .

An alternative approach used by some authors to avoid the non-di�erentiability of the

TV penalty, consists in adding a small positive constant � to the arguments of the square

roots [31], i.e., using

TV � (x) =
X

i

q
(� h

i x)2 + (� v
i x)2 + � ; (3.64)

instead of (3.7). Using di�erential notation, the TV norm ca n be written as TV( x) =
P

i;j jr ij xj, or in this case,

TV � (x) � jr x j� =
X

i;j

q
jr ij xj2 + � : (3.65)

Since TV� (x) is di�erentiable, we can solve (3.8) by computing the derivative and equatings

it to zero. The resulting equation is the discretization of the so called Euler-Lagrange
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Figure 3.7: Monte Carlo stability analysis experiment: (a) original square image; (b)

blurred noisy image (9� 9 uniform, � = 10 � 3); (c) TV-based deblurred image; (d) root

mean squared errors of the 1000 runs.



46 CHAPTER 3. IMAGE RESTORATION WITH TOTAL VARIATION

equation. The term related to the derivative of TV � is given by

X

i;j

r T
i;j

�
r i;j x

jr i;j xj + �

�
; (3.66)

where r T
i;j is the transpose of the r i;j operator. It is the presence of the di�usivity

term 1=jr i;j xj that makes the Euler-Lagrange highly nonlinear and thus, the Newton's

method does not work satisfactorily on it [106]. Using a �xed point method, we can \�x"

the denominator; the resulting minimization scheme is the well known iterative lagged

di�usivity �xed point method,

bx (t+1) = arg min
x

ky � Hx k2 + �
jr x j2

jr bx (t ) j + �
: (3.67)

We could also have use the di�erentiable TV norm; the corresponding MM algorithm

is similar and easily obtained. However, as we stated before, since the \singularity" issue

is not in fact an issue, we decided not to use it.

3.7.3 Results

To illustrate the performance of the proposed algorithm, and thus TV reconstruction in

general, TV based deblurring results are compared with wavelet-based state-of-the-art

methods [13, 50, 75, 82, 4]. To this end, a set of �ve di�erent experiments is reproduced

here. The setup of these experiments is the following:

Experiment 1: The original image is the \cameraman" of size 256� 256, the blur is

uniform of size 9� 9, and the signal-to-noise ratio of the blurred image (BSNR

� 10 log10(var[Hx ]=� 2) ) is set to BSNR=40 dB, corresponding to a noise variance

of 0:562.

Experiment 2: The image is also the \cameraman", the blur point spread function is

hij = (1 + i2 + j 2)� 1, for i; j = � 7; : : : ; 7, and the noise variance is set to� 2 = 2.

Experiment 3: The image and the blur point spread function are the same as inExper-

iment 2, the noise variance is set to� 2 = 8.

Experiment 4: The image is \Lena" of size 256� 256; the blur point spread function is

the matrix [1 ; 4; 6; 4; 1]T [1; 4; 6; 4; 1]=256, and BSNR=17 dB, corresponding to a noise

variance of � 2 = 7 2.
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Experiment 5: The image is the \Shepp-Logan" phantom of size 256� 256; the blur

is uniform of size 9� 9, and BSNR=40 dB, corresponding to a noise variance of

� 2 = 0 :42.

The performance of the proposed algorithm depends on the regularization parameter.

As we already know, the regularization parameter sets the tradeo� between data �t and

prior information. If this parameter is small, we may obtain a very noisy reconstruction;

on the opposite side, if this parameter is too high, the reconstructed image may be too

much piecewise smooth. A good choice is thus crucial to obtain a meaningful estimate.

For now, and for the purpose of illustrating the e�ectiveness of the proposed algorithm,

this parameter is chosen based on the ISNR (see section 3.6).We also have veri�ed exper-

imentally [15] that � = k� 2, with k = 0 :032 can be a good general purpose choice. This

rule can be understood under a Bayesian setup, and will be discussed in detail in Chap-

ter 4. The values of � used in the present experiments were determined experimentally

for maximum performance, i.e., best ISNR results. The search was made using a golden

section search algorithm in MATLAB. The number of MM and CG it erations were �xed

to 10 and 400, respectively, to obtain the value closest to the optimum. In Table 3.3 we

show the best� values obtained experimentaly and with the � = k� 2 rule.

Table 3.3: Best � value for the set of experiments.

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

� = k� 2 0.010 0.064 0.256 1.568 0.0051

best � 0.0095 0.058 0.149 1.4856 0.0056

The results of the proposed algorithm are shown in Table 3.4.The last row of Table

3.4 shows the ISNR obtained using thel1 regularization [15], which is given by:

� (x) =
X

i

j� h
i xj + j� v

i xj: (3.68)

The algorithm for computing the l1 solution is similar to Algorithm 2, but now using the

bound function5 (� �
i x)2=j� �

i x (t ) j for each terms 1=j� �
i xj.

Figure 3.8 (a)-(d) shows, respectively, the original \Cameraman" image of size 256�

256, the degraded version (according to Experiment 1), the restored image with the pro-

posed algorithm (ISNR = 8.51dB), and the evolution of objective function L [x (t ) ]. Figure

5* is either v or h, to denote the vertical or horizontal di�erences.
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Figure 3.8: TV-based deblurring experiment 1: (a) Original \Cameraman"; (b) blurred

noisy image (9� 9 uniform, BSNR = 40dB); (c) image restored using Algorithm 2 (ISNR

= 8.50dB); (d) L (x).
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Figure 3.9: TV-based deblurring experiment 5: (a) Original Shepp-Logan phantom; (b)

blurred noisy image (9� 9 uniform, BSNR = 40dB); (c) image restored using Algorithm

2 (ISNR = 16.70dB); (d) L (x).
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Table 3.4: SNR improvements (ISNR) of the proposed Algorithm 2 compared with other

methods.

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Algoritm 2 8.51 7.29 5.27 2.91 17.07

[13] 8.10 2.94 12.02

[50] 8.16 7.46 5.24 2.84 12.00

[75] 8.04 - -

[82] 7.30 { {

[4] 6.70 { {

L 1 based [15] 6.42 2.46 8.90

(a) (b)

Figure 3.10: TV-based deblurring experiment 2: (a) noisy blurred; (b) restored image

(ISNR = 7.29dB).
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(a) (b)

Figure 3.11: TV-based deblurring experiment 3: (a) noisy blurred; (b) restored image

(ISNR = 5.25dB).

(a) (b)

Figure 3.12: TV-based deblurring experiment 4: (a) noisy blurred; (b) restored image

(ISNR = 2.95dB).
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3.9 shows the corresponding results obtained for the \Shepp-Logan" phantom of Experi-

ment 5. In �gures 3.10{3.12 we show the blurred and reconstructed images for experiments

2, 3 and 4.

As we can see from all experiments, TV image reconstruction achieves state-of-the-art6

results in image deblurring. This is in accordance with the common knowledge that TV

is one of the bestpriors for image restoration. It is however an interesting fact that,

wavelet based methods, do not perform equally well in this case. The role of theprior in

image deblurring problems is to choose a meaningful image from the space of unobservable

images. Some of the artifacts, like the Gibbs phenomena thatoccurs near the edges, are

structured components that perhaps are equally well represented in the wavelet domain.

This comparison could be an interesting research path, but is outside the scope of this

thesis, and it will not be addressed.

In terms of complexity, we present in Table 3.5 the computational time for the proposed

number of iterations (case 1) and the more conservative criterion7 (case 2). From the

ISNR values obtained, the extra computational time gives only a small increase on the

performance and it took in general about 3 times more.

Table 3.5: Computational time of proposed algorithm for the set of 5 experiments.

Case 1 Case 2

ISNR (dB) time (s) ISNR (dB) time(s)

Exp. 1 8.50 58 8.52 162

Exp. 2 7.29 91 7.30 308

Exp. 3 5.25 75 5.27 296

Exp. 4 2.95 27 2.90 97

Exp. 5 16.70 75 17.10 159

3.8 Discussion

In this chapter we have proposed a MM algorithm to solve the TV image restoration

problem. The purpose of this chapter is to show that, although TV image restoration is

not the general purposeprior for image restoration, it is e�ectively one of the best for

6The state-of-the-art results refers to 2006, the date of our �rst paper on this subject.
7We consider as more conservative criterion a �xed number of 10 MM iterations, and 300 CG iterations.
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image deconvolution, in terms of the objective quality results and in terms of complexity.

This explains why TV is still attractive in the scienti�c com munity.

The proposed approach is similar to thelagged di�usivity �xed point method [31].

Although the algorithms are similar, the derivation was originally obtained from the MM

perspective and thus constitutes a new interpretation of this method. The minimization

part of the MM (corresponding to the �xed-point iteration), was done with the CG algo-

rithm, by implementing the gradient operator with a convolu tion kernel. The \singularity"

issue, also present in thelagged di�usivity method, can be avoided by adding a small posi-

tive constant to the argument of the square root in TV term, resulting in a smooth version

of the TV. As long as conveniently initialized, our simulati on results have shown that this

is not in fact a problem.





Chapter 4

Adaptive Total Variation Image

Restoration

4.1 Introduction

The choice of the value of the regularization parameter is a crucial and di�cult problem in

the theory of regularization. This subject has been widely discussed in the literature and

no general purpose recipe has been discovered yet that couldbe used for any problem.

In this chapter, we introduce a new method to estimate the regularization parameter

in total variation (TV) image deconvolution. The proposed m ethod follows entirely the

Bayesian framework. In this sense, an (almost)non-informative prior is assigned to the

TV regularization parameter. The integration of the regularization parameter is then

performed by using an approximation to the partition functi on, by assuming that local

pairwise di�erences are independent.

To minimize the resulting objective function, we will use again the MM framework. In-

terestingly, the resulting algorithm is similar to the algorithm proposed in the last chapter,

with an update rule for the regularization parameter � .

The e�ectiveness of the proposed method is evaluated by comparing the results ob-

tained in the last section with the ones obtained with the newalgorithm. Also, the pro-

posed algorithm is compared with a recently proposed generalized cross-validation (GCV)

method for TV based regularization. The e�ectiveness of theproposed approach is also

extended to natural color images. Despite the fact that the TV prior favors piecewise

smoothness, the reconstructed images show that the algorithm is able to perform well on

55
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natural color images.

4.2 Problem Formulation and Related Work

The TV-based image restoration problem is usually written as

bx 2 arg min
x

1
2� 2 ky � Hx k2 + � TV( x): (4.1)

The regularization parameter � (here with the same meaning as
 in (3.4)) sets a tradeo�

between data mis�t and minimization of the regularizer. When � is close to zero, little

regularization is used. In this case, the reconstructed image will be noisier and/or have

artifacts, mainly due to noise ampli�cation by the ill condi tioned nature of H . On the

other hand, if too much regularization is used, the prior will take over and the image will

be oversmoothed. The importance of choosing� properly is thus critical to obtain the

best possible reconstruction.

The correct parameter choice should be made based on some optimal objective crite-

rion. Let x � denote the solution of

arg min
x

1
2� 2 ky � Hx k2 + � TV( x); (4.2)

for a particular � value. Ideally, � should be such that the estimated imagex � minimizes

some �delity indicator function, or some solution error, i.e.,

e� � x � � x : (4.3)

This is commonly known as theestimation error . Since usually x is not known (other-

wise the problem would not be a problem), estimating � using the estimation error is

impossible. An error measure is needed based only on the available information. Since

the observation model is given by

y = Hx + n; (4.4)

an alternative measure could be thepredictive error, de�ned as

p � � He � = Hx � � Hx : (4.5)

Again, this quantity is not directly computable, although i t can sometimes be accurately

estimated [107]. The use of these quality measures has the underlying problem that we

don't know the true image x. We will now review and discuss the available alternative

methods for estimating the regularization parameter, someof them related to the predictive

error , as well as other methods that do not use an objective criterion.
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4.2.1 Visual Inspection

Often, choosing the regularization parameter� is simply a tradeo� between excessive noise

ampli�cation, by lack of regularization, and oversmoothin g, if too much is used. With the

advance of modern computers in terms of computing power, this choice can be made by

visual inspection. We simply hand tune � , and choose the best restoration based on our

prior knowledge on the underlying scene. This kind of approach works well, for example,

on natural images.

There are also some iterative methods where the number of iterations act as an e�ective

regularization parameter. By monitoring the intermediate estimates, we can simply stop

the process when distortions start to appear in the reconstructed image. O� course, this

line of attack will fail, when we have little or no prior knowl edge of the image structure.

The Richardson-Lucy algorithm [94], proposed in 1972, is one of such methods. In

Figure 4.1, we show the deconvolution results of a blurred noisy Lena with di�erent number

of iterations. As we can see from the di�erent images, the number of iterations acts like

the inverse of a regularization parameter.

4.2.2 The Discrepancy Principle

Sometimes, the energy of the true image is known or can be estimated. The energy is

de�ned as

E 2(x) = k x k2 =
X

i

jx i j2; (4.6)

and we can use its value to estimate the optimal value of the regularization parameter. A

possible estimate of� is the one for which the regularized solution has the same energy

as the true one,i.e.,

k bx � k = E: (4.7)

If we overestimate the energy, we get a value for the regularization parameter that is

smaller than the value obtained for the exact energy. In thiscase, we get a noisier re-

construction. If we underestimate the energy, the regularization parameter will be higher,

and the reconstructed image will be oversmoothed. The energy depends on the image

structure, rather than on its size. Thus, this is a di�cult cr iterion to use on a regular

basis.

Unlike for the original image energy, there are some reliable methods to estimate the

noise energy [13]. In some problems, this can be inferred from physical considerations,
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(a) Blured image (b) 5 iterations

(c) 10 iterations (d) 15 iterations

(e) 20 iterations (f) 50 iterations

Figure 4.1: Deconvolution of Lena image, blurred with a 9� 9 uniform blur and the noise

variance set to BSNR = 30dB, using Richardson-Lucy algorithm with di�erent number of

iterations.
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or even be prior knowledge. Thisa priori information often appears as a bound on the

energy of the perturbation n,

k n k � � n ; (4.8)

in a stochastic sense� n is proportional to the standard deviation of the noise. This value

provides a bound for the norm of residualr � = y � Hx � ,

k r � k2 = k y � H bx � k2 � MN � 2: (4.9)

A natural choice for the regularization parameter � is the one for which the residual of

the estimated image matches this bound,i.e.,

k y � H bx � k2 = MN � 2: (4.10)

This is known as the discrepancy principle [10]. There is also a generalized version of the

discrepancy principle that incorporates knowledge of perturbations to the modelH [19].

4.2.3 The L-Curve

Another method for choosing the regularization parameter is based on the variation of both

the data mis�t and regularization terms with respect to � . The data mis�t is measured

by the norm of the residual r � . A graphical representation of these two quantities in a

log-log scale, as a function of� is called an L-curve [52].

In Figure 4.2 we plot a typical L-curve. The name is due to its \L" shape. A point

in this plot represents the data mis�t and the value of the regularizer for a particular �

value. Thus, � is a parameter along this curve.

The horizontal part of the L-curve corresponds to oversmoothed estimates,i.e., large

values of � , which results in a solution dominated by the residual �t err ors. On the other

hand, the vertical part corresponds to small values of� , that lead to noisier solutions

imposed by a small data mis�t. In these two regions, small changes in the regularization

parameter have a strong impact either on the energy size ofx � or on the �t error.

There is however a compromised region where we change from oversmoothed to highly

noisy estimates, and vice-versa. In this transition regionlies a compromise between these

two extreme cases. The L-curve criterion for choosing the regularization parameter consists

in picking the parameter value corresponding to the \corner". Although this choice appears

as the natural and intuitive criterion, the de�nition of \co rner" is not clear. There are a

number of di�erent proposed de�nitions, including the poin t of maximal curvature [54],
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Figure 4.2: Typical L-curve.

the point closest to a reference location and the point of tangency with a line slope of� 1.

As it can be seen in [19], this last de�nition leads to a� criterion that satis�es

� 2 =
ky � H bx � k2

kL(bx � )k2 : (4.11)

4.2.4 Unbiased Predictive Risk Estimator

The unbiased predictive risk estimator (UPRE), also known as the CL method, was �rst

introduced for model selection in linear regression [74]. The UPRE method is based on

the mean squaredpredictive error :

kP � k2 = kHx � � Hx k2: (4.12)

This quantity is called the predictive risk. The method assumes that all quantities are

random vectors and that the solution depends linearly on thedata,

bx � = R � y; (4.13)

which is not the case in TV-based regularization. An exampleof such a solution is that

of Tikhonov regularization, in which case R � = ( H T H + � I )� 1H T [107]. De�ning the

symmetric in
uence matrix as

A � = H R �

= H (H T H + � I )� 1H T ; (4.14)
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the UPRE estimator [107] is de�ned as

UPRE( � ) =
1

MN
kr � k2 +

2� 2

MN
trace(A � ) � � 2: (4.15)

SinceE(UPRE( � )) = E( 1
MN kP � k2), the regularization parameter is estimated according

to

b� UPRE = arg min
�

UPRE( � ): (4.16)

As just presented, the method is only valid for Tikhonov-type regularization. An

extension to large scale regularization problems, that also includes TV regularization,

was proposed in [69]. The most expensive and di�cult part is the computation of the

trace of the in
uence matrix. The method proposed in [69] is acombination of two other

techniques: the Lanczos [36] method to approximate the eigenvalues of the large scale

system matrix, and a technique based on Monte-Carlo randomization to compute the

trace. The extension to TV regularization is made by approximating the non-quadratic

TV term, by a quadratic one, using the interpolation formula

f (x + p) � f + pT r f +
1
2

pT r 2fp

�
1
2

pT r 2fp: (4.17)

The authors of [69] only presented a few examples, with images of very small size.

4.2.5 Generalized Cross-Validation

Another method for choosing the regularization parameter that does not require prior

knowledge of the variance� 2, and has its roots in statistics, is generalized cross-validation

(GCV). The basic idea behind GCV is to partition the data in tw o distinct subsets: a

training set and a validation set. The choice of� is made such that the regularized solution

obtained in the training set, predicts the validation set as well as possible. Usually the

validation set is just a point, so the GCV chooses the value of� that best predicts a

missing point, averaged over a (usually large) set of choices of this point. The process is

usually repeated by taking several partitions. By proceeding this way, the GCV method

leads to the minimization of the functional [107]:

GCV( � ) =
1

MN kr � k2

[1
2 trace(I � A � )]2

: (4.18)

Implementation of the GCV method is very similar to that of UP RE [107]. Again, this

method is an estimator for the predictive risk and also involves the in
uence matrix A � .
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Its extension to TV regularization has been recently proposed in [68]. In that work, the

proposed TV restoration is rewritten as a deblurring plus denoising problem, i.e., the TV

minimization scheme is used to denoise the deblurred image:

min
u;x

� 1kHx � yk2 + � 2kx � uk2 + kukTV : (4.19)

Despite the use of two regularization parameters, during the optimization stage, the pro-

posed method makes� 2 larger and larger. The GCV criterion can be written as

GCV( � 1) = ( MN )2 k(I � A � 1 )(y � Hu (i � 1) )k2

trace(I � A � 1 )
; (4.20)

whereu (i � 1) is the lastest iteration of the denoising subproblem� 2kx � uk2+ kukTV . If H is

a blurring matrix generated by a symmetric point spread function, H can be diagonalized

by a fast transform matrix (discrete cosine or Fourier), leading to a simpler equation.

When H cannot be diagonalized, the Hutchinson estimator can be used [68] to obtain an

unbiased estimator for the term trace(I � A � 1 ).

4.2.6 Statistical Methods

In the previous approaches, the regularization parameter has been treated \literately"

as a tradeo� between two terms: the data mis�t and the regular izer. In the context of

Bayesian image restoration, the regularization parameterresults from a ratio between the

uncertainty in the observation mechanism p(y jx) and in the prior knowledge about x,

modeled byp(x).

In the TV image restoration problem addressed in this thesis, the unknown is x, and

the relation betweenx and the observationsy is given by (4.4), whereH is a known matrix

representing the blur point spread function (PSF). The �rst step of the Bayesian inference

procedure is to write the probability distributions p(x j� ) and p(y jx; � ).

The so-called hyperparameters� and/or � are usually unknown. One of the key aspects

of Bayesian inference is how these parameters should be adjusted or estimated. This issue,

although controversial, is not new and has been the subject of much research in the past

(see [9, 41, 42, 67, 37, 103, 73] and references therein).

To deal with the hyperparameters � and � we follow the Bayesian paradigm and assign

prior distributions to each hyperparameter, p(� ) and p(� ), called hyperpriors.

After we have assigned priors to all the unknown quantities,we can write the complete

joint distribution p(�; �; x ; y ). From this point on, two di�erent inference procedures have
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been proposed:(i) the evidence approach and,(ii) the MAP approach. In the �rst one

p(�; �; x ; y ) is integrated over x and combined with the priors p(� ) and p(� ) to obtain

the marginal posterior likelihood p(�; � jy ). This posterior is then maximized over the

hyperparameters.

The MAP approach follows a di�erent path: integrate p(�; �; x ; y ) over � and � and

then maximize the resulting posterior with respect to x. Which method leads to the best

results is still an open discussion in the Bayesian community.

There are a few di�erent approaches in the literature [3, 52,51, 79, 40], of both type(i)

and (ii) . Most of them assume Gaussian or Laplacian priors. These choices, together with

the i.i.d. Gaussian noise assumption, have enormous advantages from the computational

point of view, namely in the integrations required since they are conjugate [8].

In this chapter, the regularization parameter � is going to be estimated following an

approach of type (ii) , assuming a prior density based on TV.

4.3 Bayesian Approach to TV Regularization

4.3.1 The MAP Restoration Method

In this thesis, we consider that the observed imagey results from the linear degradation

model given by

y = Hx + n; (4.21)

where n is a sample of a Gaussian random �eld of covariance matrix� 2I . The random

noise is a characteristic of the acquisition mechanism. Thus, the observed image is a

stochastic quantity characterized by

p(y jx) � N (Hx ; � 2I ): (4.22)

Given this observation model, we can look for the imagex that maximizes the probability

of the actual observed data, i.e., the density that is most likely to have generated the

observed data. This is called themaximum likelihood (ML) estimation method, where the

estimated image is given by

bxML = arg max
x

p(y jx): (4.23)

The maximum a posteriori (MAP) estimator is given by:

bxMAP = arg max
x

p(x jy ); (4.24)
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where p(x) is a prior on the original unknown image.

Usually, it is common to see the logarithmic version of (4.24). Since the logarithm is

a monotonic function, and given that p(x jy ) = p(y jx)p(x)=p(y),

ln p(x jy ) = ln p(y jx) + ln p(x) + K; (4.25)

where K is a constant that does not depend onx. Maximizing p(x jy ) is, thus, the same

as maximizing lnp(x jy ) and the MAP criterion can formally be written as

bxMAP = arg max
x

f ln p(y jx) + ln p(x)g (4.26)

= arg min
x

f� ln p(y jx) � ln p(x)g (4.27)

Making use of (4.22), and considering TV as the logarithm ofp(x), the resulting

optimization problem is given by (4.1). Again, although thi s equation is identical, we

have just derived it from a Bayesian point of view. In this sense, the TV prior is not just

a function that penalizes \bad" solutions, but has the role of a prior probability density

function.

4.3.2 Improper Priors, Hyper-Priors, and Marginalization

As we have just seen, the restoration problem (4.1) can be interpreted from a Bayesian

point of view. Under this perspective the regularizer, say �(x) corresponds to the negative

logarithm of a prior distribution. To be a proper prior distribution, the prior must be

absolutely integrable and normalized:

p(x) =
1
Z

exp(� �( x)) ; (4.28)

where Z is the normalization factor, also known as the partition function. It is possible,

however, to use a function �( x) such that

Z
exp(� �( x)) = + 1 : (4.29)

Such a prior is calledimproper. Improper priors often appear as a limit case: for example,

a uniform density on in�nite intervals or a Gaussian distrib ution with in�nite variance.

Nevertheless, it is still possible to make MAP inference using p(x).

The TV-based prior can be written as

p(x j� ) =
1

Z (� )
exp(� � TV( x)) ; (4.30)
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where � is a scale parameter. The Bayesian paradigm dictates that weshould also assign

a prior distribution to � . This distribution is called a hyper-prior, and the hyper-prior 's

parameters are calledhyper-parameters.

At this point we have formally written the TV prior distribution function, given by

(4.30), with an hyper-parameter � considered unknown. To deal with this uncertainty

of the model, we cannot continue through the chain ofhyper-priors inde�nitely. As is

standard in Bayesian inference, any quantity that we are not interested on making any

inference, should be integrated,i.e., marginalized. Simply put, consider that we have a

density function p(x ja; b), and we want to make inference ona. Since we don't know

anything about b we simply integrate it, that is, we compute the marginal distribution.

Any inference on a will be made considering

Z
p(x ja; b)p(b)db; (4.31)

instead. This is the line of attack that will be used to deal with parameter � . However, to

integrate it we need to assign it aprior . The prior distribution should express somehow

our ignorance about� . In the next section we will address this subject,i.e., how to assign

a prior to � , that at the same time expresses complete ignorance about it.

4.3.3 Non-Informative Priors and TV Regularization

In Bayesian estimation it is possible that we don't have enough information or even know

anything about the parameter being estimated. This is the case with parameter � of the

TV prior. As we don't know anything about this parameter, the idea is to proceed by

assigning a prior that explicitly expresses ignorance about. This ignorance depends on the

parametric model used. For location parameters, for example the mean of Gaussian den-

sity, the prior that express complete ignorance is a 
at prior, i.e., an uniform distribution.

On the other hand, for scale parameters, such as the varianceof a Gaussian density, the

prior that expresses ignorance is proportional to the inverse of the parameter. These class

of priors are callednon-informative priors [8].

There is a general technique for obtainingnon-informative priors that was proposed by

Je�reys [58]. The so callednon-informative Je�rey's prior relies on the concept of Fisher

information (well known for its use in the Cramer-Rao bound). The non-informative

Je�rey's prior is simply proportional to the square root of t he Fisher information [58].
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Recall that the TV-based prior is given by

p(x j� ) =
1

Z (� )
exp(� � TV( x)) : (4.32)

The � parameter is clearly a scale parameter, thus thenon-informative Je�rey's prior for

� is

p(� ) /
1
�

; (4.33)

which is equivalent to a 
at prior on a logarithm scale [9]. Th is prior was used with good

results in [12], but two open problems had remained:

(i) a \singularity issue", similar to the one referred in Section 3.7.2, but now relative to

the estimation of � ;

(ii) the Je�rey's prior is not normalizable (improper), which ma y raise di�culties, de-

pending on the loss function adopted to infer the original image.

To avoid the above referred di�culties, we adopt instead a Gamma density for � , i.e.,

p(� j�; � ) / � � � 1 exp(� � � ): (4.34)

Notice that, by using the Gamma prior, we are proceeding in the same way as in [12], but

avoiding the above mentioned problems; making (�; � ) ! 0 recovers thenon-informative

Je�rey's prior [9].

To integrate out the parameter � , under the Bayesian framework, we need to compute

the marginal

p(x) =
Z

p(x; � )d� =
Z

p(x j� )p(� )d�: (4.35)

The major di�culty in computing p(x) is that there is no closed form expression for the

partition function

Z (� ) =
Z

exp(� � TV( x))dx: (4.36)

To approximate it, we make the assumption (which is of coursenot true) that, under p(x),

each pair of di�erences (� h
i x; � v

i x) is independent of all the other pairs; this resembles

the pseudo-likelihood approximation used in parameter estimation of Markov random

�elds [11]. Noting that Z

R2
exp(� �

p
u2 + v2)dudv =

2�
� 2 ; (4.37)

we obtain, under the above referred independence assumption,

Z (� ) =
Z

RMN
exp(� TV( x))dx ' C � � �MN ; (4.38)
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where C is a constant independent of� and � is a parameter used to adjust the approxi-

mation. Because of the dependence that really exists among the �rst-order horizontal and

vertical di�erences, we introduce � to adjust (4.38) for better results. A related derivation

can be found in [42]. Using this approximate partition function, we are led to

p(x) =
Z 1

0

1
Z (� )

exp(� � TV( x)) p(� j�; � ) d�

'
1
C

Z 1

0
� �MN exp(� � TV( x)) p(� j�; � ) d�

/ [TV( x) + � ]� (� + �MN ) : (4.39)

Finally, using this prior p(x) to obtain a MAP estimate leads to the minimization of the

objective function

bx = arg min
x

ky � Hx k2
2 + � � 2 log[TV( x) + � ]; (4.40)

where � = 2( � + �MN ).

4.4 Proposed Algorithm

The MAP estimation criterion for the adaptive Bayesian TV im age restoration is given

by the minimization of the objective function appearing in (4.40)

E(x) = ky � Hx k2 + � � 2 log[TV( x) + � ]; (4.41)

with � = 2( � + �MN ). To minimize (4.41) we introduce a GMM algorithm. To this

end, notice that the logarithm is a concave function, thus upper-bounded by any of its

tangents; more formally, for any z > 0 and z0 > 0,

logz � logz0 +
z � z0

z0
: (4.42)

Applying this inequality to the right-hand size of (4.41), w e obtain the following majorizer:

Q(x; x (t ) ) = ky � Hx k2 + �� 2 TV( x)
TV( x (t ) ) + �

+ K; (4.43)

whereK is some irrelevant constant (does not depend onx). By using a Gamma prior with

� > 0, as shown in (4.34) instead of the Je�reys' priorp(x) / 1=� (which corresponds to

� = 0), we avoid the \singularity issue" in (4.43): since TV( x) � 0, we have TV(x)+ � > 0,

for any x.
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What is remarkable is that the majorizer equation is equivalent to the original TV-

based objective (4.1), with � replaced by a regularization parameter that changes from

iteration to iteration,

� (t ) =
�� 2

TV( x (t ) ) + �
: (4.44)

Based on this equivalence, we use Algorithm 2 de�ned in Section 3.7.1 to minimize

E(x) in the following cyclic fashion: for a given � (t ) , we run a few iterations of Algo-

rithm 2 and next update the value of � (t ) according to (4.44). The pseudo-code for the

proposed GMM algorithm is summarized in Algorithm 3. Note that the resulting GMM

algorithm can in fact use any TV deconvolution algorithm and not necessarily the one in

the previous chapter. Basically, the adaptive algorithm introduces in the TV deconvolu-

tion algorithm, an update rule for � according to (4.44). A careful choice of the parameters

and a convenient initialization is one of the subjects of theSection 4.5.

Algorithm 3 Adaptive TV image restoration

Require: Initial estimate x (0)

1: Compute y0 = H T y; set t = 0

2: while \ � stopping criterion" not satis�ed do

3: � := �� 2=(TV( x (t ) ) + � )

4: while \MM Stopping criterion" is not statis�ed do

5: Compute W (t ) using (3.36);

6: while x (t+1) does not satisfy \CG stopping criterion" do

7: x (t+1) := CG iteration for system A (t )x = y0 using (3.60), initialized at x (t ) ;

8: end while

9: t := t + 1

10: end while

11: end while

If the observation mechanism is a �nite support convolution kernel, then the product

Hx can be computed with complexity O(n) (where n = NM denotes the number of

image pixels). If the support is not �nite, this product can s till be computed e�ciently

with complexity O(n logn) via a 2D FFT, by embedding H in a larger block-circulant

matrix [57].

For convolution kernels, the complexity of the proposed algorithm is O(n) and

O(n logn), for �nite and non-�nite support convolution kernels, res pectively. If the obser-
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vation mechanism is not a convolution, the complexity of the algorithm is chie
y deter-

mined by the complexity of products of the form Hx and H T x.

4.5 Parameter Choice and Initialization

The proposed method for adaptive TV image restoration apparently replaces one parame-

ter � , with three new ones: � , � and � . The �rst two parameters belong to the hyper-prior

(4.34) and the last one to the approximation of the partition function (4.37). By introduc-

ing a prior for our unknown parameter � , we are introducing a priori knowledge about,

and thus, robustness. Parameters� and � will be the same for all set of experiments.

Finally, the proposed algorithm also assumes knowledge of the noise variance� 2. Ex-

cellent o�-line estimates of this parameter can be obtained, for example, using the MAD

rule [13] or another recent method [70].

Choosing � and �

The use of a Gamma distribution (4.34) unlike the non-informative Je�rey's prior is

proper. This prior choice is not innocent: by making (�; � ) ! 0 we would recover the

non-informative improper Je�rey's prior. Thus, we want these to be small, but non-zero.

The Je�rey's prior p(x) / 1=� has no mode. By setting� < 1, we ensure that the

Gamma prior has also no mode. In this particular case, the exact value of� is irrelevant

in all expressions, as long as� � �MN .

Concerning � , the \scale parameter", it is clear that its main role is to avoid the

\singularity issue" in (4.44); we thus set this value to 1, so that the Gamma prior will be

very close to anon-informative Je�rey's prior. Again, its exact value has little e�ect on

the results of the algorithm, since TV(x) � � .

Number of Iterations and Initialization

Given the non-convex nature of the objective function (4.41), it is important to initialize

the algorithm with a convenient image, thus helping to avoid poor local minima. Note

that a 
at image is a bad local minimum where the algorithm wil l stay inde�nitely. Thus,

to avoid being close to this trivial solution, we want the local di�erences to exhibit high

amplitude, which will result in an initial smaller � (t ) , as can be understood from expression

(4.44). A smaller value for � (t ) leads to a low-bias but very noisy estimate. As� (t )
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increases, the image will become progressively smoother. To accomplish this, we initialize

the algorithm with a random image with high variance (Gaussian noise with � = 128).

As the algorithm runs, the image becomes smoother (and consequently � (t ) increases),

reaching a solution where we have an equilibrium between theerror and the prior term.

Since we are updating� (t ) , we don't need to solve exactly each problem (4.43), accord-

ing to Property 3 of MM algorithms (see Section 3.4) . Based on the same arguments

of Section 3.7.1, we set the \stopping condition" of Algorithm 3 as follows:

CG stopping criterion

� Minimum number of iterations: 10;

� Maximum 100 iterations or a relative decrease in the objective function L(x) of 10� 5.

MM stopping criterion

� Maximum 5 iterations or a relative decrease in the objectivefunction L(x) of 10� 5.

� stopping criterion

� Maximum 10 iterations or a relative decrease in the objective function L(x) of 10� 2.

Choice of �

In order to better approximate the partition function, para meter � was introduced in

(4.38). The number of pixels in the image isMN , which leads to 2MN independent

horizontal and vertical di�erences. In order to marginalize the posterior, we assumed that

each pair of local di�erences is independent of all the others. In fact, each local di�erence

belongs to three di�erent local TV terms, which suggests that a reasonable choice for�

would be around 2/3. In order to better justify the qualitati ve reasoning, we performed

an experimental analysis of the in
uence of� on the overall performance of the algorithm,

in terms of ISNR. The experimental setup was the same as in Section 3.7.3.

The results are shown in Figure 4.3. The best ISNR values are attained for � smaller

than 2/3. This provides evidence that, in fact, the dependency among the local di�erences

exists. Based on the values obtained in the di�erent experiments, a good general-purpose

value is around 0.2. For values over 0.2, the choice for� has almost no impact on the

results achieved, with only a small degradation observed.
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Figure 4.3: ISNR as a function of� for experiments 1{5.

4.6 Results

In this section we will demonstrate the e�ectiveness and accuracy of the proposed method.

We start by choosing the algorithm parameters. Remark that the problem is no longer

convex, and thus subject to the existence of poor local minima.

4.6.1 Experimental Setting

We now describe the experimental setup used to study the performance of the proposed

algorithm. In the �rst experiments, the same experimental setting of Section 3.7.3 is

used to compare the results obtained with Algorithm 3 with those obtained with manual

adjustment of � .

To compare our algorithm with the GCV method proposed in [68], the same experi-

mental setting is replicated in Experiments 6{8. To conclude this section, and to further

illustrate the e�ectiveness of the proposed algorithm, we apply Algorithm 3 to natural

color images. Since there are no available results to compare with, we opted to apply the

algorithm independently to each RGB channel. The detailed setup of all1 the experiments

is the following:

Experiment 6: The original image is the \cameraman" of size 256� 256, the blur is

1Experiments 1{5 are the same of Section 3.7.3 (see page 46).
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Gaussian (� = 2, radius = 3), and the signal-to-noise ratio of the blurred image

(BSNR) is set to BSNR=40 dB, corresponding to a noise variance of 0:572.

Experiment 7: The image is also the \cameraman", the blur is Gaussian (� = 2, radius

= 3), and the noise variance is set to� 2 = 1 :822 (BSNR=30 dB).

Experiment 8: The image is the \Barbara" of size 256� 256; the point spread function

is out-of-focus with radius of 3 and the noise variance is setto � 2 = 0 :492 (BSNR =

30 dB).

Experiment 9: The image is the natural color image of Figure 4.4. We use three crops of

size 512� 512; the blur point spread function is uniform of size 9� 9 and the signal-

to-noise ratio of the blurred image (BSNR) is set to BSNR=40 dB, corresponding to

a noise variance2 of 0:42.

4.6.2 Experimental Results

Discrepancy

Figure 4.5 shows plots of the normalized discrepancyky � Hx k2=(MN� 2) and ISNR values

(for the 256� 256 \Cameraman" image, with 9� 9 uniform blur) as a function of the noise

variances, for both the proposed adaptive algorithm (denoted in the plots as � auto ) and

the manually tuned � (denoted as� best).

The �rst conclusion drawn from these plots is that the adapti ve algorithm yields results

very close to those obtained by manually tuning� . A second conclusion is the following:

since the noise variance is considered as known (or accuratelly estimated), the normalized

discrepancy is expected to be very close to 1; this is indeed the case for� 2 > 2, both for the

adaptive algorithm or with a manually adjusted � . Although for smaller noise variances

(roughly � 2 < 2) the normalized discrepancy becomes clearly smaller than1. The fact

that this happens both for the adaptive algorithm and with th e manually adjusted � (for

optimal ISNR) indicates that for these low noise cases, the best results are not obtained

when the discrepancy is close to one.

2The noise was applied in each RGB color separately. Since thenoise level depends on the image

content, we used the mean of the given variance for each RGB channel.
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Figure 4.4: Natural color image of Experiment 9 (the green squares represent the crops

used in experiment).
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Figure 4.5: Normalized discrepancy and ISNR values for 256� 256 \Cameraman" image,

with 9 � 9 uniform blur, for di�erent values of � .
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Experiments 1{5

This set of experiments compares the results of the adaptivealgorithm, with those obtained

in Chapter 3, where � was manually tuned for optimal ISNR. Table 4.1 shows the ISNR

of the proposed approach. Figure 4.6 shows the reconstructed \Cameraman" and \Shepp-

Logan" phantom of Experiments 1 and 5, respectively, with both algorithms and, Figure

4.6 the evolution of the objective function E(x). Clearly, the algorithm performs basically

as well as Algorithm 2, where � was chosen with an empirically hand-tuned rule. In

some experiments, the adaptive algorithm performs surprisingly better. This stresses

the importance of a correct choice of the regularization parameter, and shows that our

algorithm is able to adequately handle this problem.

We must not forget that the underlying optimization problem is no longer convex,

and that the number of iterations has an important impact on t he results. In terms of

computational time, the algorithm took at most 2.5 times more to converge, as we can see

in Table 4.2.

Table 4.1: SNR improvements (ISNR) of the proposed Algorithm 3 compared with other

methods.

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Algorithm 3 8.49 7.35 5.12 2.73 18.20

Algorithm 2 8.51 7.29 5.27 2.91 17.07

[13] 8.10 2.94 12.02

[50] 8.16 7.46 5.24 2.84 12.00

[75] 8.04 - -

[82] 7.30 { {

[4] 6.70 { {

L 1 based [15] 6.42 2.46 8.90

In Figure 4.8 we plot the L-curve for Experiments 1{5. We alsomarked in these plots

the points corresponding to the manually tuned� and the one obtained with Algorithm 3

(respectively denoted as� best and � auto ). The estimated parameters clearly belong to the

\corner" of the L-curve, although the exact position depends essentially on the problem.

This shows the di�culty of using this method for choosing the regularization parame-

ter. Nevertheless, the results obtained in all experimentsproduced values that are close
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(a) Exp. 1 | � best (b) Exp. 1 | � auto

(b) Exp. 5 | � best (d) Exp. 5 | � auto

Figure 4.6: Comparison of restored images of Experiments 1 and 5.
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Figure 4.7: Evolution of ISNR and E(x) of algorithm 4.1: (a) { (b) Experiment 1; (c) {

(d) Experiment 5.
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enough to reinforce that our method is able to handle the estimation of the regularization

parameter. Finally, to compare the values obtained by the di�erent algorithms, we show

in Table 4.3 the � obtained in the last MM iteration.

Table 4.2: Overall performance of algorithms 2 and 3 for the set of 5 experiments.

best � best � (max. iter.) Adaptive �

ISNR (dB) time (s) ISNR (dB) time(s) ISNR (dB) time(s)

Exp. 1 8.50 58 8.52 162 8.49 93

Exp. 2 7.29 91 7.30 308 7.35 213

Exp. 3 5.25 75 5.27 296 5.12 186

Exp. 4 2.95 27 2.90 97 2.73 50

Exp. 5 16.70 75 17.10 159 18.20 99

Table 4.3: Last � value for the set of experiments.

Method Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

� = k� 2 0.010 0.064 0.256 1.568 0.0051

best � 0.0095 0.058 0.149 1.4856 0.0056

Algorithm 3 0.012 0.0864 0.4681 2.40 0.0099

Experiments 6{8

In order to compare the proposed algorithm with another method that estimates automat-

ically the regularization parameter, we replicate in Experiments 6{8 the setup proposed

in [68]. Figure 4.9 shows the blurred and reconstructed images with the proposed algo-

rithm. In Table 4.4 we compare the SNR, relative errors and time took by both methods.

The GCV method was faster than the proposed algorithm. It is not surprising as their

method use a fast deconvolution algorithm. We stress that the proposed estimate for the

regularization parameter can be used with any TV-based deconvolution algorithm.

Color Images

The last experiment of this chapter, illustrates the e�ecti veness of the adaptive algorithm

also in natural color images. Figure 4.10 shows the blurred and reconstructed versions of
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(a) Exp. 1 { blurred (b) Exp. 1 { restored

(c) Exp. 2 { blurred (d) Exp. 2 { restored

(e) Exp. 3 { blurred (f) Exp. 3 { restored

Figure 4.9: Blurred and restored images of Experiments 6{8.
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Table 4.4: Performance comparison of adaptive TV deblurring and GCV to TV deblurring.

GCV Adaptive TV

SNR (dB) Rel. Errors time (s) SNR (dB) Rel. Errors time (s)

Experiment 6 21.67 0.0825 13 23.02 0.005 64

Experiment 7 19.57 0.1051 13 20.69 0.0085 57

Experiment 8 23.89 0.0639 13 20.44 0.009 66

the three di�erent crops of the natural image represented inFigure 4.4. It is known that

TV is not the best regularizer for natural images, as it favors piecewise smooth images.

Nevertheless, the results obtained once again corroboratethat the proposed method can

handle the estimation of the regularization parameter conveniently.

4.7 Discussion

In this chapter, we proposed a Bayesian approach and an algorithm to estimate the regu-

larization parameter for the total variation image deconvolution problem. To this end, we

started by assuming that the TV regularizer is the logarithm of a prior density function,

with scale parameter � . Next, following the Bayesian paradigm, we assigned� a prior

distribution. Since we don't know anything about this param eter, the prior distribution

chosen re
ects this ignorance. Since the regularization parameter � is a scale parameter,

we could have adopted thenon-informative Je�rey's prior. Instead, and to sidestep a sin-

gularity issue that can occur with this choice [85], we adopted a Gamma distribution. The

parameters of this Gamma density were chosen such that it is very close to the Je�rey's

prior, thus inheriting the non-informative nature.

The resulting joint density function is then integrated wit h respect to � . To perform

this integration, we needed to compute the partition function of the TV prior, which

has no closed form solution. Following an approach similar to the pseudo-likelihood ap-

proximation used in parameter estimation of Markov random � elds, we approximated the

partition function by assuming that local pairwise di�eren ces are all independent. Af-

ter the integration has been carried out, the resulting MAP estimation criterion is again

solved by applying the MM framework to the new objective function. This new algorithm
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(a) blurred (b) estimated

(c) blurred (d) estimated

(e) blurred (f) estimated

Figure 4.10: Example of adaptive total variation deconvolution of color images.
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is similar to the algorithm proposed in Chapter 3, with an updating rule for � . This

simplicity also suggests that the adaptive method can be applied with any new fast TV

restoration method, by running in cyclic fashion the deconvolution algorithm with a �xed

� parameter, followed by the proposed update rule for� .

To show the e�ectiveness of the proposed algorithm, the method was compared us-

ing the same experimental setting of Chapter 3. The results obtained clearly show that

the proposed method performs well when compared with the hand-tuned regularization

parameter. The algorithm was also compared with a recent proposed GCV for TV im-

age deconvolution. Once again, the results show that the proposed method was able to

correctly estimate the regularization parameter, leadingto better results.

Finally, we showed that the method can also be used on naturalcolor images. Although

it is known that TV favors piecewise smooth images, thus is not the best regularizer for

natural images, the results obtained are visually very good.





Chapter 5

Blind Restoration of Natural

Images Degraded by Linear

Motion Blur

5.1 Introduction

In image deconvolution/deblurring problems, the goal is to estimate an original imagef

from an observed imageg, assumed to have been produced according to

g = f � h + n; (5.1)

whereh is the blur point spread function (PSF), n is a set of independent samples of zero-

mean Gaussian noise of variance� 2, and � denotes the two-dimensional (2D) convolution.

In standard deconvolution problems, it is assumed that h (or equivalently the two

dimensional discrete matrix representation H ) is fully and exactly known. The blind

image deconvolution problem seeks to obtain an estimate of the image f with (total or

partial) lack of knowledge about the blurring operator [63, 64]. Blind deconvolution is

signi�cantly more di�cult than its non-blind counterpart [ 5]. The problem is now ill-

posed both with respect to the unknown original image and to the blur operator. Simply

put (and because convolution can be expressed as a product inthe Fourier domain), blind

deconvolution can be seen as the problem of recovering two functions from their product; a

clearly hopeless goal, in the absence of some rather strong assumptions or prior knowledge

about the underlying image and blur. Assumptions about the blur PSF which have been

85
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used are positiveness, known shape (e.g., Gaussian blur), smoothness, symmetry or known

�nite support [24].

There are essentially two alternative approaches to blind deconvolution: (i) simul-

taneously estimate the image and the blur [5, 34];(ii) perform a previous step of blur

estimation and then feed this blur estimate to a standard non-blind image deblurring

algorithm [25].

Most of the existing methods fall in the approach of type (i) , where the image and

the blur are identi�ed simultaneously. However, in practice, most of the methods use the

strategy of alternating between estimating the blur kernel and estimating the image. To

do so, some prior knowledge about the image and the blur are usually formalized under the

Bayesian framework. What distinguishes the di�erent methods are precisely the function

to be optimized, which results from the prior distributions used to model the original

image and the blur kernel [24].

We introduce, in this thesis, a blur estimation technique to be used in an approach of

type (ii) . More speci�cally, we introduce a method to estimate the parameters of a \lin-

ear motion blur" from the noisy blurred image, with weak assumptions on the underlying

original image. Note that some of the best methods proposed in the literature assume

prior knowledge about the image. This is usually expressed by approximating the statis-

tics of some operator. Common types include �rst order di�erences operators, Laplacian

operators, or even some local operators that lead to sparse representations (e.g. wavelets,

curvelets, DCT). These methods usually depend on several parameters, that need to be

obtained a priori, either from similar images, or manually adjusted.

The proposed method does not require any prior knowledge of any kind of parameter,

and it is in this sense a truly blind method. The only assumption made is that the

blur results from linear motion. The proposed approach takes advantage of a property of

natural image statistics, and works on the spectrum of the blurred image.

This chapter is divided into four major sections. We start by introducing (in Section

5.2) the state-of-the-art and related work in blind image deconvolution, with emphasis on

motion blur. We de�ne formally the motion blur parameters in the discrete case, and how

the PSF can be obtained. The following section (Section 5.3)is dedicated to presenting the

proposed algorithm for blind deblurring natural color images degraded by linear motion

blur. The �nal section (Section 5.6) is dedicated to simulation results, both on synthetic

examples and on natural motion blurred images. The proposedmethod is compared with
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one considered the state-of-the-art.

5.2 Related Work

The blind image deconvolution problem has recently received a lot of attention from the

scienti�c community, partly because of some impressive results obtained from real blurred

images acquired from common handheld cameras. We review in this section some of these

methods, in particular those related to the proposed thesis.

Fergus et al. [46] introduced a blind restoration method that uses natural image statis-

tics to estimate the blur kernel of a general blurred image. They use ensemble learning

[77] to recover the blur kernel using a prior on the derivative distributions obtained from

an unblurred image. A variational method is then used to approximate the posterior.

A. Levin [66] uses the same prior for natural image statistics, but follows a completely

di�erent approach by searching for the kernel that brings the unblurred distribution clos-

est to the observed distribution. The method works by classifying the image into blurred

and not blurred areas. The direction of blur is then selectedas that of minimal derivative

variation and consequently the blur length is selected by choosing the best �t using k-tap

blurs [66]. Although the method can work in any direction, the only results presented are

for horizontal motion blur, with small lengths.

The authors of [101] propose an uni�ed probabilistic framework that iteratively alter-

nates between blur kernel estimation and latent image recovery. To avoid ringing artifacts,

the authors used a new model for thespatially random distribution of noise and a smooth-

ness constraint on the latent image, in areas where the observed image has low contrast.

The e�ect of these constraints also propagates to the kernelre�nement stage.

A di�erent approach was followed by Jia [60]. In that work, th e PSF is recovered from

the transparency on objects boundaries; it is assumed that the transparency should be

two-tone for a clear foreground object. Edges were also explored in [61]. The authors

start by detecting blurred edges and predict the underlyingsharp edges that created the

observed ones, under the strong assumption that the underlying edge was a step edge before

blurring. They claim that if the image has edges spanning allthe directions, the blurred

and predicted sharp image contains enough information to estimate a two-dimensional

PSF.

Other restoration techniques follow a di�erent approach by trying to reduce the ill-
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posedness nature of the problem. This is the case of Rav-Achaet al. [93] that use infor-

mation of two motion blurred images, and Yuan et al. [111] that use a pair of images, one

blurred and one noisy. Other methods also try to reduce the ill-posedness with the help

of some specialized hardware [71, 81, 92].

Some special blurs can also be identi�ed in a non-Bayesian (or non-regularization)

way. These include the cases where the frequency response ofthe blurring system has

a well known parametric form that can be characterized by its frequency domain zeros.

Two of these are the linear motion blur, and the circular out-of-focus blur [32]. The

Fourier transform (FT) of these blurs are sinc and Bessel like functions, respectively. The

space between zeros depends directly on the blur length. These methods, also known as

zero crossing methods, rely on identifying these zero patterns in the frequency domain.

Often, these patterns are very di�cult to detect due to the pr esence of noise, and the

methods usually have a weak performance. In order to improvethese weaknesses, some

methods have been proposed that exploit the non-stationarynature of the images versus

the stationarity of the blur. This is the case of the Power Cepstral method [16, 90]

that makes use of the FT of the logarithm of the power spectra of signals. In the Cepstral

domain, a large spike will occur wherever there is a periodicpattern of zeros in the original

Fourier domain. The location of this spike can be used to estimate the parameters of the

linear motion blur. An extension of this idea led to the Power Bispectrum [35], which is

more robust to noise.

Recently the Radon transform (RT) [21] has been proposed formotion blur estima-

tion [62, 78]. The idea is to integrate the spectrum of the blurred image along di�erent

directions. Along the direction perpendicular to the blur, the zero pattern will lead to

local minima. In [78], the angle estimate is the one for whichthe maximum of the Radon

transform occurs, and in [62] it is the one that has highest entropy. The length is then

estimated using fuzzy sets in [78] and Cepstral features were explored in [62]. Instead

of working directly on the spectrum of the blurred image, the method proposed in [59]

explores the same ideas on the image gradients. They also extended the linear motion

blur model to account for acceleration.

Other methods also seek to estimate the length and directionfrom the zero pattern in

the Fourier domain. The Hough transform was employed in [99]to estimate the dark lines

of the spectrum (the zeros), while in [104] the correlation of the spectrum with a detecting

function was used.
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The method proposed in this chapter estimates the parameters of a linear motion blur,

characterized by its length and direction. In this sense, the method proposed is included in

the category of non-Bayesian methods. Although it is a simpli�cation of the general blind

deconvolution problem, it is a relevant one; the experimental results on natural images,

acquired with common handheld cameras, shows its e�ectiveness.

The approach herein described improves our previous work described in [85]. We

introduce a new parametric model for the motion blur kernel, to accurately deal with

linear motion blur in any direction. Another major improvem ent is the ability to deal

with natural color images, taken from common handheld cameras. The proposed method

also relies on the use of the Radon transform. To this end, theangle estimation was

improved and the length estimation was done by �tting an approximate function on the

blur spectra. The algorithm uses a modi�ed Radon transform [84] of the Fourier spectrum

of the observed image, and makes use of a property of natural images statistics. We are

able to robustly estimate the blur angle and then proceed to estimate the blur length by

�tting a sinc-like function to the Radon transform at the est imated angle. These new

features allow accuratly estimating longer blurs and attain sub-pixel precision.

Although the method is parametric, it turns out to be advanta geous: (i) it does not

require any prior statistics on the image to estimate the blur kernel; (ii) it is not sensitive

to saturated parts of the image; (iii) it is faster than statistical methods and, (iv) scales

better with the image size. Experimental results show that the proposed parametric model

is able to recover blurred natural images, independently ofthe blur length and direction.

5.3 Motion Blur Parameters

During the image acquisition process, the sensors are exposed for a usually small amount

of time to the light coming from the scene being recorded. If the camera is perfectly

still, focused, and the image doesn't move during that period, we get what we call a

sharp image. Some times, due to low light conditions, absence of a tripod, or even as

a consequence of the smaller size of handheld cameras, it is di�cult for a user to �rmly

hold the camera. Even a small movement will inevitable result in a blurred image. This

is known as camera jitter and can be easily observed in a picture near edges, where a

particular detail is spread among its neighbors.

Camera jitter, also known as \camera shake", is not the only cause of blur. Some
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Figure 5.1: Proposed discretized kernel for linear motion blur: a) bright spot of light

traveling across discrete sensor grid, lengthL and angle � ; b) resulting kernel.
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times, the camera is not properly focused, a particular object within the image moves

(e.g., a fast car), or even all the image moves at once (e.g., a captured scene taken from a

train). The underlying image degradation process can, in any of these cases, be modeled

as a convolution.

In this thesis we are interested in linear motion blurs, that are characterized by the

linear movement of an object or the entire image, along one direction. We assume that

these movements are due to camera translation with no in-plane rotation. This way,

all the image is a�ected equally by the motion blur, which all ows assuming a spatially

invariant blur 1. Note that this is a strong assumption that may not be valid for every

kind of movement; just think of an object moving in the camera's direction (i.e., becoming

bigger) or rotating over it's axis.

In the continuous case [33], the motion blur PSF is characterized by a normalized delta

function, supported on a line segment with length L and an angle � (for example, with

respect to the horizontal). The angle gives the direction ofmotion, and the length L is

proportional to the motion speed. This model results from considering a single bright spot

(the image of a physical point) moving along a line between two di�erent points.

Since we are dealing with digital images, we need a discrete version of the motion

blur model. In particular, we need to be able to represent theblur PSF equivalently in a

discrete pixel grid. In our previous work [85], we used a standard algorithm (well known

in computer graphics): the digital di�erential analyzer (D DA) [55]. That approach had

some limitations. The length L was assumed to be the number of pixels. Worse, we could

not distinguish between two blur kernels with nearby angles. This e�ect was stronger for

shorter motion blur kernels.

To circumvent these limitations, we introduce a new discretized version of the contin-

uous case. We consider again a single bright spot of light [33] that travels along a line

between two di�erent points (see �gure 5.1 a)). As this point moves, it passes by di�erent

sensors with constant velocity. Assuming that each imagingsensor is linear and cumula-

tive, the response should be proportional to both the luminance of the bright point and

the time spent over that sensor. Thus, we obtain the corresponding intensity of each pixel

of the blur kernel by computing the length of the intersection of the line segment with each

pixel in the grid. To preserve the energy, the kernel is then normalized, so that the result

1The spatially invariant blur allow us to write the convoluti on with an invariant kernel, whose dimension

is much smaller than the image.



92 CHAPTER 5. BLIND RESTORATION OF NATURAL IMAGES

sums up to one (Figure 5.1). We can always improve this model to take into account the

non linearities of the sensors, or even acceleration. However, the obtained results on real

images show that the proposed model is reasonably accurate.

5.4 Estimation of Motion Blur Parameters

Estimating the motion blur parameters consists in identifying the direction and the length

of the blur kernel. These parameters allow us to obtain an estimate of the blurring kernel

and then use it to recover the original image. To accomplish this, we will make use

of some properties of natural images statistics as well as properties of the convolution

operator associated with linear motion blurs.

In the 2D continuous case, the Fourier transform of a line is asinc function in the

direction of the line. For the proposed discretized kernel (see Section 5.3), this is not the

case. Now a line has to be represented by multiple pixels withdi�erent intensities, that

depend on the direction of the blur. Although the FT of this \e quivalent" line is not

a pure sinc function, it exhibits a sinc-like behavior along � . To better understand the

implications, we will consider in this section a linear motion blurred example of the Lena

image, with L = 10 and � = 45 � . The original and blurred versions can be observed in

Figure 5.2. In Figure 5.3 the FT spectrum of the original and blurred images are depicted.

Recall that the convolution in the image domain f (x; y) � h(x; y) corresponds to the

product in the Fourier domain F (�; � )H (�; � ) [57]. Thus, the zeros ofF (�; � ) will also

be zeros of the productF (�; � )H (�; � ). To capture the sinc-like structure of the trans-

form of the linear motion blur, we compute the absolute value of the spectrum, i.e.,

jF (�; � )H (�; � )j. The noise present (resulting from the sensors, sampling, and any subse-

quent digital processing), prevents the zeros of this sinc-like function from being exactly

zero. Nevertheless, they are very close to zero, and more importantly, they still continue to

be local minima. To amplify this characteristic, we compute the logarithm of this spectra,

i.e., log jF (�; � )H (�; � )j. Recall that, as x ! 0, logx ! �1 .

In the rest of this chapter, we will refer to the logarithm of t he absolute value as the

spectrum of an image. The properties we have just mentioned can be observed in Figure

5.3, where the spectrum of the original and blurred noisy versions of the Lena image are

depicted.

The proposed method seeks to identify the direction of this sinc-like structure, as well
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(a)

(b)

Figure 5.2: Lena image: (a) original image; (b) motion blurred version with L = 10,

� = 45o.
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(a) (b)

Figure 5.3: Spectrum of Lena image: (a) original image; (b) motion blurred with L = 10,

� = 45o.

as the distance between local minima. We will start by introducing the natural image

model that we will make use of, and address some technical \issue", related with the

horizontal and vertical lines that appear in the spectrum of the both original and blurred

versions of the Lena image (see Figure 5.3). Finally, we willformally introduce the Radon

transform and summarize the proposed algorithm.

5.4.1 Natural Image Model

Natural images are well known by their scale-invariant statistical properties [105]. Never-

theless, direct use of these properties on image restoration is not simple since the statistical

properties are di�erent from image to image. Instead, most of the proposed methods use

some indirect statistical model. Typically, they approximate the result of an operator

over the image, such as the Laplacian operator, �rst-order di�erences, wavelets, DCT and

others. The restoration methods that use these approximatemodels usually achieve good

performance, but are far from being widely usable.

One interesting property of natural image statistics, which is the one that we will

make use of, was pointed out in [25]. LetF (�; � ) denote the 2D Fourier transform of a

natural image f (x; y). The behavior of logjF (�; � )j along lines � = � tan � in the ( �; � )

plane, is roughly the same for most natural images. While local behavior may be irregular,

the coarse/global behavior is essentially monotonically decreasing with j� j. In [25], the
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Figure 5.4: Spectrum of Lena image for di�erent angles: (a)� = 15 � ; (b) � = 30 � .

approximate model

log jF (�; � tan � )j ' � a j� jb; (5.2)

with a; b > 0, was proposed. Althougha and b can have di�erent values for di�erent

images, this global behavior is approximately the same, regardless of the considered angle.

In Figure 5.4 we plot the logjF (�; � tan � )j of the Lena image, for two di�erent angles, as

well as the approximate model proposed in [25], witha = 3 :1 and b = 0 :22.

If we take the Fourier transform of equation (5.1), we obtain

G(�; � ) = F (�; � )H (�; � ) + N (�; � ); (5.3)

where F; G; H; and N are the Fourier transforms of f; g; h; and n, respectively. As is

common in deconvolution problems, we assume that the noise is weak, leading to

log jG(�; � )j � log jF (�; � )H (�; � )j; (5.4)

and so the coarse behavior of theG(�; � ) depends essentially on the productF (�; � )H (�; � ).

Since the coarse behaviorF (�; � ) along lines� = � tan � in the ( �; � ) plane is approximately

independent of � , the sinc-like structure of H (�; � ) is preserved inG(�; � ). In the presence

of noise, the zeros of this sinc function become local minima. In order to capture these

coarse behaviors, we will make use of the Radon transform of logjG(�; � )j, as described in

the following subsections.

5.4.2 Sampling and the Fast Fourier Transform

A digital image is a discrete representation of the continuous world. The operation of

measuring the light intensity at a discrete grid is called sampling. This operation is of
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major concern, and requires a careful planning. The Shannon-Nyquist theorem [102] states

that if we sample a signal at at least twice the rate of the maximum component frequency

of the signal, we can recover it exactly from the samples thusobtained.

This remarkable result is unfortunately not enough: we cannot store, or even acquire,

the discrete samples with arbitrary precision. The quantization errors in the sampling

process lead inevitable to a noisy reconstruction of the original signal. This noise is

denoted quantization noise [26] and can be made as small as desired.

One key aspect, sometimes ignored, is the relation between sampling and the spectrum

of a signal. If the signal is band-limited, we can obtain the spectrum of a continuous signal

by a discrete number of samples of this continuous signal [38]. If the sampling frequency of

the signal is at least twice the highest component frequency, we don't observe any aliasing,

and the reconstruction is perfect. Nevertheless, an in�nite number of samples of the signal

is needed. In a common digital image, acquired for example with a handheld camera, this

is not possible by physical restrictions: we only have a �nite number of samples.

Since the image is truncated in the spatial domain, this corresponds to the multipli-

cation by a rectangular window. This multiplication corresponds to a convolution in the

frequency domain. So, instead of observing the true spectrum of the image, we observe a

version convoluted with a sinc function. In the two-dimensional case, we have

eF (�; � ) = F (�; � ) � S(�; � ); (5.5)

where

S(�; � ) = Sx (� )Sy(� ); (5.6)

and Sx (� ) and Sy(� ) are sinc functions along the xx and yy axis, respectively. If the

spectrum has some mass concentrated in the center, it will spread out. This is due to

a maximum of the product Sx (� )Sy(� ). Remark that, along one of the axis, the other

sinc function is at a maximum. However this e�ect is not so signi�cant along any other

direction, as the product goes to zero quickly as we move awayfrom the origin. In Figure

5.5 we show the function

log jS(�; � )j = log j sinc(x) � sinc(y) j: (5.7)

The implicit presence of the convolution with S(�; � ) can be seen in Figure 5.3-(a).

The horizontal and a vertical bright lines result from the \s pread" of the components of

the image spectrum that are concentrated at the origin.
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Figure 5.5: Function logjS(�; � )j.

The proposed method, as we will see, estimates the directionand the length directly

from the log of the spectrum. Since we do not have samples outside the image domain,

an alternative to circumvent this limitation is to use anoth er sampling window that has

a faster decay in the frequency domain. To this end, we could use a circular sampling

window, that is constant up to a �xed distance t from the center, from where it goes to

zero with a cosine function. This resembles the raised cosine window [91] used in digital

communications to minimise intersymbol interference. Theproposed windowwcos(x; y) is

thus given in polar coordinates by

wcos(r; � ) =

8
>>><

>>>:

1 r � t

1
2

�
1 + cos

�
r � t
m� t � �

��
t < r � m

0 otherwise

; (5.8)

where m = min( M; N ). A graphic representation of wcos is depicted in Figure 5.6. The

Fourier transform of wcos in one dimension,i.e., for a �xed � is given by

Wcos(f ) / sinc (f (m + t))
cos (� (m � t) f )
1 � 4 (m � t)2 f 2 ; (5.9)

which has a faster decay in the frequency domain than the sincfunction.

In Figure 5.7 we can observe the blurred Lena image with the sampling window given

by (5.8), and the corresponding spectrum. In Figure 5.8-(a), we show the di�erence of

the spectrum of the original Lena, and the sampled one. In Figure 5.8-(b), the spectrum
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t m r

1

Figure 5.6: Sampling windowwcos(r; � ), for a �xed � .

of the blurred image sampling with (5.8) is depicted. The results obtained shows clearly

that the horizontal and vertical lines could be attenuated this way.

(a) (b)

Figure 5.7: E�ect of sampling window (5.8) on Lena image: (a) original image with

sampling window (5.8); (b) Spectrum of the original Lena image with sampling window

(5.8); compare with Figure 5.3-(a).

5.4.3 Radon Transform

The Radon transform is an integral transform that consists of the integral of a function

along straight lines [21]. Formally, the Radon transform of a real-valued function � (x; y)

de�ned on R2, at angle � and distance� from the origin, is given by

R(�; �; � ) =
Z 1

�1

Z 1

�1
� (x; y) � (� � x cos� � y sin � ) dx dy; (5.10)
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(a) (b)

Figure 5.8: E�ect of sampling window (5.8) on spectrum of theLena image: (a) di�erence

between the spectrum of the original and the sampled one with(5.8); (b) sampled spectrum

of blured image.
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Figure 5.9: Radon transform of a 2D square.
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where � denotes the Dirac delta function. Equivalently,

R(�; �; � ) =
Z 1

�1
� (� cos� � s sin �; � sin � + scos� ) ds: (5.11)

The Radon transform R(�; �; � ) is nothing more than the integral of � along a perpen-

dicular direction to a line that forms an angle � with the x-axis, at a distance� from the

origin [21] (see Figure 5.9).

The graphical representation of the Radon transform is often called a sinogram. In

Figure 5.10-(a) the sinogram of the square of Figure 5.9 is depicted. This name is due to

the fact that the Radon transform of a Dirac delta function is a sine wave. Consequently,

the Radon transform of an object appears graphically as a number of blurred sine waves

with di�erent amplitudes and phases. The Radon transform is used in many scienti�c

�elds, in particular in computed axial tomography (CAT scan ) [57].

5.4.4 Angle Estimation

The Radon transform has been recently proposed for motion blur estimation in [62, 78].

These two approaches di�er in the way they use the Radon transform to estimate the

angle. In [78], the estimate is given by the angle for which the maximum of the Radon

transform occurs; naturally, this only works for rather long blurs, so that the image gets


at, leading to a maximum of the Radon transform. On the other hand, in [62], the angle

estimate is the one for whichR(�; �; � ), as a function of � , has the highest entropy. The

authors also claim to have a problem at 45o (due to the �nite support of the images):

at this angle, the entropy is maximum because the length of the integral is maximum,

thus picking up the largest amount of noise (according to theauthors' explanation). To

circumvent this problem, they normalize the Radon transform of the image with the Radon

transform of a matrix of 1's of the same dimension as the image. However, this oscillatory

behavior at � = 45 � is related to the MATLAB implementation of the Radon transfo rm.

MATLAB computes the Radon transform by dividing each pixel i nto four equally spaced

points (inside the pixel), each with 1=4 of the original amplitude. Then, for a particular

� , an integration is carried out by summing up the small points that belong to the same

interval as � . At � = 45 � , the \mass" of a particular point is not conveniently distri buted

by adjacent intervals, resulting in an oscillatory Radon transform with � .

Our approach circumvents these limitations and allows excellent angle estimation per-

formance. We use instead of MATLAB's implementation, an exact Radon transform
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Figure 5.10: Radon transform of a 2D square of size 64� 64: (a) Sinogram; (b) Radon

transform for � = 30 � .
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for digital images [84]. As explained above, for natural images, logjG(�; � )j has an ap-

proximate coarse behavior along radial lines, independentof the angle; thus the Radon

transform obtained by integrating on similar intervals, th at is, with the same area for any

direction, will also be approximately equal. Accordingly, instead of computing the Radon

transform for the whole image, we change the integration limits to integrate only in the

maximum inscribed square,

R d(f; �; � ) =
Z d

� d
f (� cos� � s sin �; � sin � + scos� )ds; (5.12)

with d =
p

2
2 m (m = min f N; M g). This Radon transform of log jG(�; � )j has approxi-

mately the same energy, independently of� .

In Figure 5.12 we show the spectrum of the blurred natural color image of Figure

5.11, with and without the sampling window wcos given by (5.8). In Figure 5.13, we plot

the values of the spectrum along di�erent lines that pass through the origin, also with

and without the sampling window. We can observe from this last �gure that the Radon

transform is almost the same for di�erent angles, except for0� and 90� . The e�ect of the

sampling window can be observed in both Figures 5.12-(b) and5.13-(b). However, the

elimination is not complete due to the square structure of the image.

At the correct motion blur angle, in this case � = 155� , the sinc-like structure can

be observed in the Radon transform (Figure 5.14). The sampling window has little or

no e�ect in this case. We will thus use the Radon transform to identify the angle that

exhibits this pattern.

Under the weak noise assumption,

log jG(�; � )j � log jF (�; � )H (�; � )j: (5.13)

Let G� denote the integral of f (�; � ) = log jG(�; � )j along a direction perpendicular to � .
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Figure 5.11: Natural color image with linear motion blur.

(a) (b)

Figure 5.12: The Fourier spectrum of natural color image of Figure 5.11: (a) original; (b)

with sampling window (5.8).
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Figure 5.13: Radon transform of spectrum of natural image ofFigure 5.11 for di�erent

angles: (a) without wcos sampling window; (b) with wcos sampling window.
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Figure 5.14: Radon transform of spectrum of natural image ofFigure 5.11 at motion blur

angle (� = 155� ): (a) without wcos sampling window; (b) with wcos sampling window.
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To simplify the notation, let � (s) = � cos� � s sin � , � (s) = � sin � + scos� . Thus we have,

G� = R d(f; �; � ) =
Z d

� d
f (� (s); � (s))ds

=
Z d

� d
log jG(� (s); � (s)) jds

�
Z d

� d
log (jF (� (s); � (s)) j jH (� (s); � (s)) j) ds

�
Z d

� d
log jF (� (s); � (s)) jds + (5.14)

+
Z d

� d
log jH (� (s); � (s)) jds

� F� + H � ; (5.15)

where F� and H � are the Radon transform of logjF (�; � )j and logjH (�; � )j at angle � ,

respectively. Let � ? = � + 90 � . Consider the function

r (� ) = G� � G� ? : (5.16)

Under the natural image model assumption, the termsF� and F� ? are approximately

equal. Equation (5.16) can be written as

r (� ) = F� + H � � (F� ? + H � ? )

� H � � H � ? : (5.17)

When r (� ) is computed at the exact motion angle, H � ? is the integral of a 
at line.

Thus, the energy ofr (� ) will attain its maximum precisely at this angle. We can compute

the energy by computing the variance of r (� ). Since r (� ) = � r (� + 90 � ), we end up

with two possible maximum values. To choose the right one, wecompute the variances

of G� and G� ? and choose the one with the highest value. Equivalently, by de�ning

v(� ) = var f G� g � varf G� ? g, the correct angle is the one that has a positivev(� ) value.

The proposed angle estimate is thus given by

b� = arg max
�

var f r (� )g � signf v(� )g: (5.18)

In Figure 5.15 we plot the di�erent variances of (5.18). Remark that the proposed method

is based on the di�erence of two perpendicular Radon transforms. Thus, the \sampling

artifacts", i.e., the existence of two lines that appear at 0� and 90� are approximately

canceled out. By proceeding this way, we avoid using the proposedwcos sampling window

given by (5.8) and the consequent need of determining a correct value for parameter t.
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Figure 5.15: Angle estimation algorithm: (a) G� ; (b) var f G� g � varf G� ? g; (c) varf r (� )g;

(d) f r (� )g � signf vg.
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5.4.5 Length Estimation

Once we haveb� , the estimate of the blur direction, we proceed to estimate the length of

the blur kernel. Given that the sinc-like behavior is preserved in the Radon transform at

angle b� , we base the estimation of the blur length onR d(log jG(�; � )j; �; b� ). This line of

attack was also followed in [78] using fuzzy sets and in [62] exploiting cepstral features.

Let us denote

�( ! ) = R d(log jG(�; � )j; !; b� ): (5.19)

From the above rationale, we conclude that the minima of �( ! ) are the minima of the

Fourier transform of a rectangular pulse of sizeL . Let's assume that �( ! ) is indeed the

Fourier transform of a rectangular pulse of lengthL , i.e.,

�( ! ) = ej (! ) sin( !L
2 )

sin( !
2 )

: (5.20)

Our goal is to �nd L . In our previous work [85], we did so by seeking for the �rst positive

zero of �( ! ), that is given by

! 0 =
2�
L

: (5.21)

Since we have determinedR d based on anm-point FFT (recall that m = min f M; N g),

we approximated (5.21) with the frequency 2�
m i corresponding to the minima of the FFT

magnitude. Let bL p be the angle estimate of our previous work. This estimate is given by

bL p = round
� m

i

�
: (5.22)

The algorithm proposed in [85] performed well but has some limitation: for larger blur

lengths, the estimate bL p could have large errors.

In this thesis, we follow a di�erent line of attack. Recall th at G� � F� + H � ; the coarse

behavior of G� is the sum of the Radon transform of a sinc-like function with the Radon

transform of the spectrum of the image (see Figure 5.14). So,depending on the noise

level, the Radon transform follows approximately a sinc-like function, at least until the

�rst zero. According to [25], the spectrum follows approximately

log jF (�; � tan � )j ' � a j� jb; (5.23)

with a; b > 0. Consider that the spectrum follows exactly the last approximation, i.e.,

f (�; � ) = a(� 2 + � 2)
b
2 : (5.24)
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Since this function has circular symmetry, the Radon transform of (5.24) will be indepen-

dent of � . An estimate of the Radon transform for any � can be obtained by integrating,

for example on � , which leads to

F (� ) =
Z d

� d
f (�; � )d�

= 2 � a � d � jyjb 2F1

�
1
2

; �
b
2

;
3
2

; �
d2

y2

�
; (5.25)

where 2F1 is the generalized hypergeometric function, also known as Barnes extended

hypergeometric function [1]. In [25], the valuesa = � 2:92 and b = 0 :16 for the Grace

Kelly image were pointed out as \typical" ones. Using these values, we plot (5.25) in

Figure 5.16, for an example image of size 512� 512. The resulting plot is almost a line.

In order to identify the local minima of the spectrum, we propose to adjust a function


 (! ) to Gb� . The natural image statistics assumption and the approximate model (5.23)

suggests thatF� can be approximated by a line,

F� � A + B � j! j; (5.26)

whereA and B are the coordinate at the origin and slope, respectively.H � is approximately

the integral of the logarithm of a sinc-like function. Thus, we can approximate it with

H � � C � log (1 + D � j sinc(E � ! ) j) ; (5.27)

where

sinc(x) =
sin(�x )

�x
: (5.28)

Parameter C adjusts the length of the integrated function, D sets the ratio between the

unknown noise level and the sinc-like function, and parameter E adjusts the frequency of

the sinc, which is proportional to the blur length. Since integration is a linear operation,

the global proposed �tted function is given by


 (! ) = A + B � j! j + C � log (1 + D � j sinc(E � ! ) j) : (5.29)

Estimating all parameters of (5.29) at once may not lead to the right solution, as the

corresponding least squares criterion is highly non-convex, thus any iterative minimization

algorithm is doomed to be trapped on local minima. Instead, we �rst minimize with

respect to A, B , C, and D, with E �xed, thus obtaining a function of E alone, which is

then minimized by line search. ParameterE is chosen to be the value that leads to the
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Figure 5.16: Hypergeometric function 2F1 from (5.25), for d = 512, a = � 2:92 and

b = 0 :16.

least squared error. In Figure 5.17 we show the Radon transform at b� , the root mean

squared error as a function ofE , and the approximated function (5.29).

In the discrete Fourier domain, the angular frequency is given by ! = 2 �k=m , where

m is the total number of points2. From (5.20) and (5.28) we have

bL =
E � m

�
: (5.30)

5.5 Proposed Algorithm

The proposed algorithm aims at estimating the blur parameters. From these estimates, a

blur kernel can be generated and used to recover the natural color image that was degraded

with linear motion blur. The complete blind deblurring pseudo-code is summarized in

Algorithm 4. Since estimation process is done in grayscale mode, color images have to

be converted �rst. Then, we compute the spectrum of the grayscale version, compute

the Radon transform and apply the angle and length estimation algorithm. Once we

have estimates of these parameters, we generate a blur kernel and restore the original

image. The implementation of the proposed algorithm was done in MATLAB; some of the

functions called belong to the Image Processing Toolbox or to the Optimization Toolbox.

We will now brie
y comment on some implementation aspects.

In Algorithm 4, motionkernel() is a function that computes the blur kernel, according

2Assuming that the image is squared with size m � m.
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to what was presented in Section 5.3 andradon() is the exact Radon transform, computed

in the maximum inscribed square inside the image (see Section 5.3). The length estimation

algorithm, summarized in Algorithm 6, seeks the value of parameter E that leads to the

lowest value of the RMSE of the �tted function. To this end, we start by computing the

RMSE at a set of discrete and equally spaced values ofE . We choose the best value and

start a �ner local search, based on the golden section method, to attain subpixel resolution.

The deblurring algorithm, Algorithm 7, uses the Richardson-Lucy (RC) algorithm, the

same used in [46]. This algorithm has some advantages, like speed and absence of the need

to specify a regularization parameter. We could use any other method that usually leads to

best reconstructions, such as based on total variation or wavelets. However, those methods

are very sensitive to the exact blur kernel shape, while the RC algorithm is more robust

to mis-speci�cation of the blur kernel. A compromise between reconstruction performance

and robustness with respect to the uncertainty of the kernelestimate is achieved using the

RC algorithm. It is no surprise that it is widely used in blind image restoration methods.

To get the best possible results, some additional steps are needed in Algorithm 7: (i)

we �rst remove the gamma correction (default value 
 = 2 :2); ii) edgetaper() function is

used to reduce ringing e�ects and,(iii) the image contrast is enhanced using histogram

equalization using the function histeq().

Algorithm 4 Blind debluring algorithm
Require: Initial blured image g

1: Compute g0, a grayscale version ofg

2: Compute G' = FT( g0)

3: Compute RT = radon(log jG0(�; � )j)

4: angle = estimateAngle(RT )

5: length = estimateLength( RT (angle))

6: bh = motionkernel( angle; length) (see Section 5.3)

7: bf = deblur( g;bh)

5.6 Results

In this section we evaluate the performance of the proposed method in two di�erent ways.

First, we use synthetic blurred images, i.e., images corrupted by motion blur given by

the model of Section 5.3. Next, we apply the method to real motion blurred images and
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Algorithm 5 Angle estimation algorithm
Require: Radon transform G of g

f Shift RT by its minimum value g

1: for i = 0 to 179 do

2: R(:; i ) = G(:; i ) � min G(:; i )

3: vR(i ) = var f R(:; i )g

4: end for

f On the following, i+90 � mod(i+90,180)g

5: for i = 0 to 179 do

6: � G(:; i ) = G(:; i ) � G(:; i + 90)

7: v� G(i ) = var f � G(:; i )g

8: end for

9: angle = arg max i vR(i ) � signf v� G(i ) � v� G(i + 90)g

10: return angle

Algorithm 6 Length estimation algorithm
Require: Radon transform G� (! )

1: De�ne S, the set of values for searchingF

2: for eachF 2 S do

3: Fit 
 (! ) to G� (! ) in least-squares sense

4: errorF it (i ) = RMSE (
 (! ) � G� (! ))

5: end for

6: index0 = arg min i errorF it (i )

7: E = linesearch(errorF it () ; index0)

8: length = 1
� E � M

9: return length
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Algorithm 7 Deblurring algorithm
Require: blured image g, angle and length

1: h = motionkernel( angle; length)

2: g = removeGammaCorrection(g)

3: g = edgetaper(g; h)

4: f = deconvLucy(g; h)

5: f = GammaCorrection( f )

6: f = histeq(f; g )

7: return f

compare it with the method proposed in [46].

5.6.1 Synthetic Blurred Images

The performance of the proposed method is evaluated �rst in terms of the root mean

squared error (RMSE) of the reconstruction. To this end, we considerer a set of 7 well

known images: cameraman, Lena, Barbara, boats, peppers, goldhill, of size 256 by 256, and

a �ngerprint of size 512 by 512 pixels (see Figure 5.18). The RMSE values are computed

based on 70 runs, 10 for each image.

The accuracy of the angle and estimation algorithms are performed separately. In

terms of the angle estimation algorithm, Figure 5.19 clearly shows the accuracy of the

proposed method: the errors are similar and independent of the true angle. The highest

errors are obtained for the smallest lengths. In this case, the kernel we obtain with two

close angles is almost identically.

In terms of the length estimation, the errors are also very small, even for larger blur

lengths (Figure 5.20). This is a major improvement over our previous algorithm [85]. One

of the big di�culties was precisely the correct identi�cati on of longer blurs. By using the

�tting function 
 (! ), the method is no longer dependent on the location of the �rst local

minima, and achieves subpixel resolution. This is particularly important in the case of

natural motion blurred images, where no ground truth is available.

5.6.2 Natural Blurred Images

The performance and e�ectiveness of the proposed algorithmis evaluated on natural color

images, degraded with linear motion blur, acquired with a Canon IXUS 950 IS. The images
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are all of size 3264 by 2448 pixels. To simulate motion blur and not \camera shake" we

performed an out of plane rotation of a far away scene. This way, all the elements of the

image move approximately the same, making valid the space invariant blur approximation.

Note that this is indeed an approximation, and that some in plane rotation may be present

near the edges of the image.

Since we don't have ground truth, only a qualitative visual comparison can be made.

The methods that we have available, i.e., the methods for which the authors provide

some code, are [46, 101]. However, due to the huge size of the images and a closed

implementation (only an executable �le is available), we couldn't use [101]. Nevertheless,

we tried a cropped version of some pictures, with the same size of the images used in

the paper [101]. The number of parameters to be tuned is high,and the quality of the

reconstructions were not comparable with the other methods. Accordingly, we chose not

to use this method in the comparison.

The method proposed in [46] also requires some manual adjustments. The maximum

dimension of the kernel window has to be speci�ed as well as the location of a window

inside the image with enough detail, i.e., enough statistical information, to estimate the

kernel. These manual adjustments are done for each image used in this thesis, in order to

get the best possible reconstruction.

The images used in the comparison were the following:

Image 1: Neighborhood view from IST (see Figure 5.21).

Image 2: View of \Col�egio Militar" (see Figure 5.24).

Image 3: Another view of \Col�egio Militar" (see Figure 5.27).

Image 4: View of the historical Portuguese village of \Monsanto" (see Figure 5.30).

In Appendix A, we show some more reconstructions of natural blurred images, with

di�erent blur parameter values. We stress that the reconstructed images were obtained

with our algorithm without any parameter adjustment. Due to the huge dimension of the

images, the reconstruction was done with the Richardson-Lucy algorithm, separately for

each color channel. Each image took around 10 minutes to be processed in Matlab, in a

MacBook running at 2.2 Ghz. For the method [46], each reconstruction took more than

one hour.
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In Figures 5.21, 5.24, 5.27 and 5.30 we show the blurred and reconstructed images with

our proposed algorithm. A graphical representation of the estimated kernel with both

methods, as well as some closeups showing the original blurred image, the reconstruction

obtained with our algorithm and with the algorithm proposed in [46] are depicted in

Figures 5.22, 5.23, 5.25, 5.26, 5.28, 5.29, 5.31 and 5.32.

The reconstructed images are all visually very good. Comparing with the results

obtained with the algorithm from [46], we can observe that some particular details are

almost perfectly reconstructed with our algorithm. Notice, in particular, some details for

which we know a priori their original shape, such as the\P" sign in Image 1 or a circular

lamp in Image 2.

We can see in all the examples that both methods produce kernel estimates with similar

lengths and directions. The only exception is image 3, precisely the one for which the blur

length is the longest. However, the kernel shapes obtained with the method from [46] are

not true a line. This method is a general blind deblurring algorithm, that looks for the

best kernel that brings the statistics of the reconstructedimage close to an a priori de�ned

statistical distribution.

The blur parameters for all the examples, including the appendix, are shown in Table

5.1. The results obtained on natural color images clearly show the accuracy and e�ective-

ness of the proposed method.

Table 5.1: Estimated blur parameters of blurred natural color images.

L �

Image 1 13.7 155�

Image 2 16.8 146�

Image 3 46.6 33�

Image 4 14.5 159�

Image A 39.6 161�

Image B 39.8 60�

Image C 10.2 90�

Image D 60.8 0�

Image E 12.7 162�
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5.7 Discussion

In this chapter, we presented an algorithm to handle the problem of blind linear motion

blur estimation. The proposed method can be classi�ed as nonBayesian, as it estimates

the parameters of the motion blur without any prior statisti cal information. The recovered

kernel is then used to recover the original image.

The proposed algorithm is a major improvement over our previous work [85]. In that

work, the blurring kernel was modeled using the well-known digital di�erential analyzer

(DDA) algorithm. This poses some di�culties on handling nat ural blurred images, where

the kernel can have an arbitrary angle and/or length. To overcome this di�culty, we

proposed another discretization of a line, which is closelyrelated with the underlying

physical process.

Like in [85], the algorithm proposed in this thesis is supported on the identi�cation

and interpretation of the spectral characteristic of a sincfunction. Recall that the Fourier,

in the continuous domain, spectrum of a 2D line is a sinc function in the direction of the

line. Despite the proposed discretization, the resulting spectrum also exhibits a sinc-like

structure.

The identi�cation of this sinc-like structure in the Fourie r spectra was done with the

help of a modi�ed Radon transform. One particular feature was observed in the spectra of

natural images: two horizontal and vertical lines that passthrough the origin. These lines

result from sampling with an insu�cient number of points. Th e �nite number of samples

can be interpreted as the multiplication of the original image by a rectangular window,

whose spectrum is a sinc function. It was shown that the convolution with a sinc was the

source of these two lines.

To overcome this di�culty, we proposed a new sampling window that has a faster

decay in the Fourier spectra. This sampling window is based on the raised cosine function

that is used to avoid intersymbol interference in digital communications [26]. We showed

that the proposed approach attenuates those lines.

The angle estimate algorithm is based on the use of the Radon transform on the spec-

trum of the image. If integrated in the direction perpendicular to the motion direction,

the sinc-like behavior is preserved. To identify this pattern, we used an invariant statis-

tical property of natural images proposed in [25], where it was shown that the spectrum

follows approximately a polynomial function along lines that pass through the origin, in-



116 CHAPTER 5. BLIND RESTORATION OF NATURAL IMAGES

dependently of the direction. By computing a modi�ed Radon transform, i.e., with the

same bounds independently of the angle, the resulting integration will be approximately

constant.

This property was successfully used in the proposed angle estimation algorithm. We

de�ne a new function of � as the di�erence of the Radon transforms of perpendicular

angles. This function is approximately zero for natural images. Since the observed image

is convolved with the blur kernel, that is a multiplication i n the Fourier spectrum, and

the integration is linear, this function results on the di�e rence of the integration of the

blur spectra at perpendicular angles. As the spectrum of thesinc is constant along the

direction perpendicular to the motion angle, the computation of the maximum variance

of this function identi�es the correct angle.

Once we have the angle estimate, we proceed to the estimationof the blur length.

In this thesis, we proposed to adjust a function to the Radon transform at the estimated

angle. This function results from the approximation of the sinc-like structure of the kernel,

and the invariant polynomial approximation proposed in [25]. The proposed approach is

not subject to the exact location of the �rst minima of spectr a, as in the previous work [85],

and allows the correct identi�cation of longer blurs, attai ning subpixel resolution.

Restoration was carried out using the Richardson-Lucy (RC) algorithm [94]. This

algorithm is widely used in the blind deblurring literature , as it allows a good compromise

between the quality of the restoration, speed, and no need tospecify a regularization

parameter. Also, the RC algorithm is more insensitive to kernel errors, comparatively

to the best total variation or wavelet based methods. This is particularly important in

the natural color image examples, where no ground truth is available, and the images are,

thus, subject to imprecisions in the motion blur assumption, since they were acquired with

a common handheld camera.

The algorithm was evaluated on both synthetic blurred images and natural color images

degraded with linear motion blur. The synthetic examples showed that the errors of the

method are very small, and approximately the same for di�erent angles and lengths. This

is a major improvement on our previous method, as we can now achieve very small errors

on longer and more di�cult blurs.

Finally, the method was applied to natural color images. Since there is no ground truth

in this case, the proposed method was compared qualitatively with the method proposed

in [46], considered to be the state-of-the-art. The comparison showed that our method is
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faster and more accurate. Both methods agreed in the direction but not in the length.

Specially on longer blurs, our method performed better. Thequality of the images can

be assessed visually by verifying that some particular details, whose shapes we know a

priori, are correctly reconstructed. The results obtained in all experiments are visually

very good.
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Figure 5.17: Radon transform and corresponding approximate function: a) RMSE of �tted

function 
 (! ) as a function of L ; b) Adjusted function 
 (! ).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Images used in synthetic blurred examples: (a)Lena ; (a) Barbara; (c) boat;

(d) goldhill; (e) �ngerprint; (f) peppers.
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Figure 5.19: Estimation angle error: (a) BSNR = 40dB; (b) BSNR = 30dB; (c) BSNR =

25dB and (d) BSNR = 20dB.
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Figure 5.20: Estimation length error: (a) BSNR = 40dB; (b) BS NR = 30dB; (c) BSNR

= 25dB and (d) BSNR = 20dB.
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(a)

(b)

Figure 5.21: Image 1: (a) natural blurred image; (b) reconstructed image.
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(a) (b) (c)

Figure 5.22: Image 1: (a) closeup of blurred image; (b) estimated kernel with proposed

algorithm; (c) estimated kernel with algorithm proposed in [46].

(a) (b)

Figure 5.23: Closeup of Image 1: (a) estimated image with proposed algorithm; (b) esti-

mated with algorithm proposed in [46].
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(a)

(b)

Figure 5.24: Image 2: (a) natural blurred image; (b) reconstructed image.
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(a) (b) (c)

Figure 5.25: Image 2: (a) closeup of blurred image; (b) estimated kernel with proposed

algorithm; (c) estimated kernel with algorithm proposed in [46].

(a) (b)

Figure 5.26: Closeup of Image 2: (a) estimated image with proposed algorithm; (b) esti-

mated with algorithm proposed in [46].
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(a)

(b)

Figure 5.27: Image 3: (a) natural blurred image; (b) reconstructed image.
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(a) (b) (c)

Figure 5.28: Image 3: (a) closeup of blurred image; (b) estimated kernel with proposed

algorithm; (c) estimated kernel with algorithm proposed in [46].

(a) (b)

Figure 5.29: Closeup of Image 3: (a) estimated image with proposed algorithm; (b) esti-

mated with algorithm proposed in [46].
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(a)

(b)

Figure 5.30: Image 4: (a) natural blurred image; (b) reconstructed image.
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(a) (b) (c)

Figure 5.31: Image 4: (a) closeup of blurred image; (b) estimated kernel with proposed

algorithm; (c) estimated kernel with algorithm proposed in [46].

(a) (b)

Figure 5.32: Closeup of Image 4: (a) estimated image with proposed algorithm; (b) esti-

mated with algorithm proposed in [46].





Chapter 6

Conclusions

In this �nal chapter, we present an overall view of the work reported in this thesis. The

main contributions can be divided in two parts: algorithms for TV-based image restoration

and criteria and algorithms for blind restoration of natura l color images. This chapter ends

by presenting future research directions.

6.1 TV-based Image Restoration

In this thesis, we have proposed a fast method to solve the TV-based image restoration

problem. The proposed method belongs to the class of majorization-minimization algo-

rithms (MM). The idea behind MM is to substitute a di�cult opt imization problem by

a sequence of simpler ones. In the TV case, we proposed a quadratic majorizer for TV

which is based on a linear majorizer for the square root function. The algorithm is similar

to the well-known iteratively re-weighted least squares (IRLS) approach, also known as

lagged di�usivity in the TV literature. Although these methods are similar, th e derivation

in this thesis was originally obtained from the MM perspective. This constitutes a new

interpretation of this method.

The minimization step of the MM algorithm, corresponding to the �xed-point iteration

of the lagged di�usivity method, was done with the standard conjugate gradient algorithm,

by implementing the gradient operator with a convolution kernel. The resulting algorithm

is fast and was considered state-of-the-art at publishing time [15].

The so-called \singularity" issue, also present in thelagged di�usivity method, can be

avoided by adding a small positive constant to the argument of the square root in the TV

term, resulting in a smooth version of the TV term. In the denoising case, we overcome this
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di�culty by rewriting the problem based on the Sherman-Morr ison-Woodburry inversion

lemma. The new system matrix remains well de�ned: when pairsof local di�erences

go to zero, the corresponding elements of the system matrix go to zero. In the general

deconvolution case, the inversion lemma cannot be applied.However, our simulation

results showed that this is not in fact a problem if the algorithm is properly initialized.

Image restoration is often formulated as a minimization problem where the objective

function includes two competing terms. The tradeo� between these two terms is set by

a so-called regularization parameter. The value of this parameter controls the degree of

regularization in the restoration process. Often this choice is made by manually tuning the

parameter to obtain the best reconstruction results. The choice of a good regularization

parameter is a subject of regularization theory. Many approaches are inherited from the

statistical community. However, their extension to the TV r egularization case are barred

in the huge dimensional space of the resulting methods.

In this thesis, we have proposed a new algorithm to estimate the regularization param-

eter for total variation image deconvolution. The proposedapproach followed the Bayesian

framework by assignin anon-informative prior to the regularization parameter. To avoid

the \singularity issue", we adopted a Gamma distribution. T he parameters of the Gamma

distribution were chosen such that the distribution is very close to the Je�rey's prior, thus

being close tonon-informative.

The resulting joint density function was then integrated wi th respect to the regulariza-

tion parameter. To perform this integration, we needed to compute the partition function

of the TV prior, which has no closed form solution. We followed an approach similar

to the pseudo-likelihood approximation. We approximated the partition function by as-

suming that local pairwise di�erences are all independent.After the integration has been

carried out, the resulting MAP estimation criterion was again solved by applying the MM

framework to the new objective function.

The proposed algorithm is similar to the algorithm proposedfor TV image deconvo-

lution, with an updating rule for the regularization parame ter. This simplicity suggested

that the adaptive method can be applied with any TV restorati on method, by running in

a cyclic fashion the deconvolution algorithm, followed by the proposed update rule for the

regularization parameter.

The assessment of the e�ectiveness of the proposed algorithm was done in a set of

experiments. The results obtained clearly showed that the proposed method performs
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equally well when compared with the results obtained by hand-tunning the regularization

parameter. The algorithm was also compared with a recent proposed generalized cross

validation for TV-based image deconvolution. Once again, the results show that the

proposed method was able to correctly estimate the regularization parameter, leading to

better results. Finally, we showed that the method can also be used on natural color

images. Although it is known that TV favors piecewise smooth images, thus not being

the best regularizer for natural images, the results obtained are visually very good.

6.2 Blind Restoration of Natural Color Images

In this thesis, we have proposed an algorithm to handle the problem of blind linear motion

blur estimation. The proposed method can be classi�ed as nonBayesian, as it estimates

the parameters of the motion blur without any prior statisti cal information. The recovered

kernel is then used to recover the original image.

To address the problem of representing lines with arbitrarydirection and length, we

proposed a new discretization of a line, which is closely related with the underlying physical

process.

The proposed algorithm is supported on the identi�cation and interpretation of the

spectral characteristic of a sinc function. The Fourier spectrum, in the continuous domain,

of a 2D line is a sinc function in the line direction. Despite the proposed discretization, the

resulting spectrum also exhibits a sinc-like structure. The identi�cation of this sinc-like

structure in the Fourier spectra was done with the help of a proposed modi�ed Radon

transform.

The angle estimation algorithm was based on the Radon transform of the spectrum of

the image. If integrated in the direction perpendicular to the motion direction, the sinc-

like behavior is preserved. The identi�cation of this pattern was done with the help of an

invariant statistical property of natural images, proposed in [25], where it was shown that

the spectrum follows approximately a polynomial function along lines through the origin,

independently of the direction. The computation of a modi�ed Radon transform, i.e.,

with the same bounds independently of the angle, results in an approximately constant

integration. We de�ned a new function as the di�erence of the Radon transforms of

perpendicular angles. This function is approximately zerofor natural images. Since the

observed image is convolved with the blur kernel, that is a multiplication in the Fourier
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spectrum, and the integration is linear, this function resulted on the di�erence of the

integration of the blur spectra at perpendicular angles. Asthe spectrum of the sinc is

constant along the direction perpendicular to the motion angle, the computation of the

maximum variance of this function identi�ed the correct ang le.

The blur length estimation was carried out by adjusting a function to the Radon

transform at the estimated angle. This function resulted from the approximation of the

sinc-like structure of the kernel, and the invariant polynomial approximation proposed in

[24]. The proposed approach allowed the correct identi�cation of longer blurs, attaining

subpixel resolution.

Restoration was carried out using the Richardson-Lucy algorithm [90]. This algorithm

is widely used in the blind deblurring literature, as it allows a good compromise between

the quality of the restoration, speed, and no need to specifya regularization parameter.

Also, the RC algorithm revealed to be more insensitive to kernel errors, comparatively

to the best total variation or wavelet based methods. This was particularly important in

the natural color image examples, where no ground truth was available, and the images

are, thus, subject to imprecisions in the motion blur assumption, since they were acquired

with a common handheld camera.

The algorithm was evaluated on both synthetic blurred images and natural color images

degraded with linear motion blur. The synthetic examples showed that the errors of the

method are very small, and approximately the same for di�erent angles and lengths.

Finally, the method was applied to natural color images. Since there was no ground

truth in this case, the proposed method was compared qualitatively with the method

proposed in [42], considered to be the state-of-the-art. The comparison showed that our

method is faster and more accurate. Both methods agreed in the direction but not in the

length. Specially on longer blurs, our method performed better. The quality of the images

was assessed visually by verifying that some particular details, whose shapes we know a

priori, were correctly reconstructed. The results obtained in all experiments are visually

very good.

6.3 Future Work

The presented thesis leaves some open questions to, which wewould like to devote addi-

tional research e�ort in the future. We describe next some ofthe ideas to explore.
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TV Image Restoration

Total variation regularization has proved its ability to re store piecewise smooth images.

However, one of the limitations is the representation of textured images. It is possible

however, to control locally the degree of regularization byintroducing a local regularization

parameter. This idea has already been partially explored, together with a proposed non-

isotropic TV version, which locally favors some direction. Preliminary results showed

some marginal gains compared with other deconvolution methods, which encourage this

research path that naturally needs to mature.

Adaptive Restoration

It is our idea to go in further in terms of adaptive regularization. The TV-based denoising

case clearly needs some further research. However, it is ouridea to follow a di�erent path,

and try to combine prior statistical information of images i n estimation process of the

regularization parameter.

Blind Deconvolution

Blind deconvolution is essentially an open problem. However, recent impressive results

show that is always possible to go further. In terms of linearmotion blur, the natural

way is to try to recover motion blurrer objects within an imag e. After a successfully

segmentation of the image, itself an active research area, it is an interesting topic to study

how the in
uence of the object shape can be minimized in termsof the spectrum of the

image, and how accurately the proposed method can be used in this context.





Appendix A

Blind restoration (more examples)

In this appendix we show �ve more examples of the proposed method for restoring natural

color images degraded by motion blur. We invite the reader tosee a full resolution of all

the blurred and reconstructed images inhttp://www.lx.it.pt/ � jpaos/thesis/ .

Figure A.1: Natural blurred Image A.
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Figure A.2: Restored image from blurred Image A. Motion blur parameters: L = 39:6,

� = 161� .
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Figure A.3: Natural blurred Image B.
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Figure A.4: Restored image from blurred Image B. Motion blur parameters: L = 39:8,

� = 60 � .
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Figure A.5: Natural blurred Image C.
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Figure A.6: Restored image from blurred Image C. Motion blur parameters: L = 10:2,

� = 90 � .
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Figure A.7: Natural blurred Image D.
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Figure A.8: Restored image from blurred Image D. Motion blur parameters: L = 60:8,

� = 0 � .
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Figure A.9: Natural blurred Image E.



146 APPENDIX A. BLIND RESTORATION (MORE EXAMPLES)

Figure A.10: Restored image from blurred Image E. Motion blur parameters: L = 12:7,

� = 162� .
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